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Compression technology is an e
cient way to reserve useful and valuable data as well as remove redundant and inessential data
from datasets. With the development of RFID and GPS devices, more and more moving objects can be traced and their trajectories
can be recorded. However, the exponential increase in the amount of such trajectory data has caused a series of problems in
the storage, processing, and analysis of data. 	erefore, moving object trajectory compression undoubtedly becomes one of the
hotspots in moving object data mining. To provide an overview, we survey and summarize the development and trend of moving
object compression and analyze typical moving object compression algorithms presented in recent years. In this paper, we �rstly
summarize the strategies and implementation processes of classical moving object compression algorithms. Secondly, the related
de�nitions about moving objects and their trajectories are discussed. 	irdly, the validation criteria are introduced for evaluating
the performance and e
ciency of compression algorithms. Finally, some application scenarios are also summarized to point out
the potential application in the future. It is hoped that this research will serve as the steppingstone for those interested in advancing
moving objects mining.

1. Introduction

In recent years, with the rapid development and extensive
use of GPS devices, RFID sensors, satellites, and wireless
communication technologies, it is possible to track various
kinds of moving objects all over the world and collect a
myriad of trajectory data with respect to the mobility of
various moving objects (such as people, vehicles, and ani-
mals) containing a great deal of knowledge. 	ese data need
an urgent and e�ective analysis. A moving object spatial-
temporal trajectory is a sequence of position, attribute, and
time [1], which are three basic characteristics of geographic
phenomena and three basis data of GIS database [2]. Moving
objects move continuously while their locations can only
be updated at discrete times, leaving the location of a
moving object between two updates uncertain, for the limit
of acquisition, storage, and processing technologies [3]. 	e
simplest description of a trajectory is a �nite sequence of
geolocations with timestamps.

As time goes on, it will lead to a series of di
culties
in storing, transmitting, and analyzing data, for the size of
trajectory data is sharply increasing and the scale of data is
growing huge and complex. First of all, the shear volumes
of data can quickly overwhelm available data storage, which
will make it di
cult to store the data. For instance, if data
is collected at 2 second intervals, 1 GB of storage capacity
is required to store just over 800 objects for a single day.
	erefore, the storage of data will result in an enormous
cost. 	e cost of transmitting a large amount of trajectory
data, which may be expensive and problematic, is the second
major problem highlighting the need of compressing data.
According to [4], the cost of sending a volume of data over
remote networks can be prohibitively expensive, typically
ranging from $5 to $7 perMb. 	us, tracking a �eet of 800
vehicles for a single daywould incur a cost of $5,000 to $7,000,
or approximately $1,825,000 to $2,555,000 annually. Finally,
along with the increasing of the data scale, it is di
cult for us
to extract the valuable and useful patterns.
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Figure 1: A schematic of the trajectory compression.

To address these issues, two categories of trajectory
compression strategies have been proposed, aiming to reduce
the size of a trajectory while not compromising much
precision in its new data representation [5]. One is the
o�ine compression, which reduces the size of trajectory a�er
the trajectory has been fully generated. 	e other is online
compression, compressing a trajectory instantly as an object
travels. On the one hand, it can reduce the memory space by
compressing, which will make the storage of data easier. On
the other hand, it can cut down the size of data, which will
be convenient for the transmission of data. What is more, it
can reserve the useful information in trajectories and remove
redundant data from trajectories, which have the potential to
make the thorough analysis of trajectory data easier.	e data
compression is a method that reduces the size of data to cut
down the memory space and improve the e
ciency of trans-
mission, storage, and processing without losing information
or reorganizes data to reduce the redundancy and memory
space according to certain algorithms. Data compression can
be classi�ed into two categories, namely, lossless and lossy
compression. Moving object trajectory compression aims to
reduce the size and memory space of a trajectory on the
premise that the information contained in trajectory data
is reserved; that is to say, in order to cut down the size of
data, it removes redundant location points while ensuring
the accuracy of the trajectory [6]. Figure 1 is a schematic
diagram of a trajectory compression, where the original
trajectory is represented by black lines and the compressed
trajectory consists of red lines (namely, �1, �2, �3, and �4).
	ere are 9 points in the original trajectory, but only 5
points are retained to approximately represent the original
trajectory a�er compressing whose compression ratio is close
to 50%. 	us, it can be seen that trajectory compressions
play an important role in the storage and analysis of data.
But trajectory compression tends to cause a certain loss
of information, while compressing trajectories. 	erefore,
various trajectory algorithms existing in literature balance the
tradeo� between accuracy and storage size.

	e trajectory compression technology derives from the
topographic cartography and computer graphics. 	e most
native and simplest compressionmethod is uniform sampling
algorithmwhich simply takes every �th point in the trajectory
[7]. In 1961, Bellman put forward a new algorithm called

Bellman algorithm, which solves linear generalization prob-
lems by dynamic programming methods [8]. 	is method
will guarantee that the segments connecting the speci�c
number of points selected from the curve are closest to the
original curve, but the time overhead of it is giant which is

up to�(�3). One of the most classical trajectory compression
algorithms called Douglas-Peucker algorithm was presented
in 1973 by Douglas and Peucker [9]. In 2001, Keogh et al.
put forward the Opening Window algorithm to compress
trajectory data online. However, traditional error metrics
(such as perpendicular distance) are not suitable for moving
object trajectories, whose spatial characteristics and temporal
characteristics need to be simultaneously considered, due
to their internal features. In 2004, Meratnia and Rolf put
forward a top-down speed-based algorithm and a top-down
time-ratio algorithm [3]. 	e former improves the existing
compression techniques by exploiting the spatiotemporal
information hiding in the time series, while the latter is a
transformation of DP algorithm which took a full consid-
eration of spatiotemporal characteristics by replacing spatial
error with SED. In 2006, Potamias et al. put forward STTrace
algorithm estimating the safe zone of successor point by
location, velocity, and direction. Meanwhile, it is suitable for
smallmemory devices [10]. Gudmundsson et al. developed an
implementation of the Douglas-Peucker path-simpli�cation
algorithm in 2009, which works e
ciently even in the case
where the polygonal path given as input is allowed to self-
intersect [11]. In 2009, Schmid et al. proposed that trajectories
stored in the form of trajectory points can be instead of
semantic information of road networks [12]. Since then,many
researchers have been doing a great deal of studies about
the semantic information of road networks [13–18]. With the
increasing of the data, traditional compression algorithms
are quite limited for online trajectory data. 	erefore, online
trajectory compression becomes one of the hot topics [19–
21]. For example, Opening Window Time-Ratio algorithm
was put forward by Meratnia, which is an extension to
Opening Window using SED instead of spatial error, to take
temporal features into account [2]. And Trajcevski et al. put
forward another online algorithm called Dead Reckoning
algorithm, which estimates the successor point through
the current point and its velocity [22]. Out of traditional
position preserved trajectory compression algorithms, many
scholars have focused on di�erent perspectives. For example,
Birnbaum et al. proposed a trajectory simplicity algorithm
based on subtrajectories and their similarity [23]. Long et al.
proposed a polynomial-time algorithm for optimal direction-
preserving simpli�cation, which supports a border appli-
cation range than position-preserving simpli�cation [24].
Nibali and He proposed an e�ective compression system
for trajectory data called Trajic, which can �ll the gap of
good compression ratio and small error margin [25]. Similar
to STTrace, Muckell et al. put forward the Spatial QUalIty
Simpli�cationHeuristicmethod [26]. In 2012, Chen et al. pro-
posed aMultiresolution PolygonalApproximation algorithm,
which compressed trajectories by a joint optimization on
both the LSSD and the ISSD criteria [27]. In 2014, Muckell et
al. proposed a new algorithm, SQUISH-E, which compresses
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Table 1: Summary of trajectory compression algorithms (� is the size of trajectories).
Algorithm

Computational
complexity

Batch or online Error criteria

Uniform sampling algorithm �(�) Batch/online
Target compression

ratio (�)
Bellman algorithm �(�3) Batch

Target compression
ratio (�)

Douglas-Peucker algorithm �(� log �) Batch Spatial distance (�)
Opening Window algorithm �(�2) Online Spatial distance (�)
Top-down time-ratio algorithm �(� log �) Batch SED distance (�)
Top-down speed-based algorithm �(�2) Batch/online Speed di�erence (��)
Opening Window Time-Ratio algorithm �(� log �) Online SED distance (�)
Dead Reckoning �(�) Online

SED distance (�),
velocity (v)

Semantic trajectory compression �(�2) Batch Spatial distance (�)
Paralleled road-network-based trajectory
compression

�(�) Batch TSND, NSTD

Similarity based compression of GPS
trajectory data

�(� log �) Batch Similarity (	)
Spatial QUalIty Simpli�cation Heuristic
algorithm

�(log �) Batch/online SED distance (�)
Spatial QUalIty Simpli�cation
Heuristic-Extended algorithm

�(log �) Batch/online
SED distance (�),

compression ratio (�)

trajectories with provable guarantees on errors [28]. 	is
algorithm has the �exibility of tuning compression with
respect to compression ratio and error. Algorithms involved
in this paper are summarized in Table 1 from the complexity,
application scope, and error metric of them.

In literature [29], the traditional trajectory compression
algorithms were classi�ed into the following 4 categories,
which are now unable to contain all of the compression
algorithms.

(1) Top-Down. 	e data series is recursively partitioned
until some halting condition is met. 	e popular top-down
compression methods include Douglas-Peucker algorithm,
top-down speed-based algorithm, and top-down time-ratio
algorithm.

(2) Bottom-Up. Starting from the �nest possible representa-
tion, successive data points are merged until some halting
condition is met. 	e algorithm may not visit all data points
in sequence.

(3) Sliding Window. Starting from one to the end of the data
series, a window of �xed size is moved over the data points
and compression takes place only on the data points inside
the window. Spatial QUalIty Simpli�cation Heuristic method
and SQUISH-E algorithm are the popular sliding window
methods.

(4) OpeningWindow. Starting from one to the end of the data
series, a compression takes place on the data points inside
the window whose size is decided by the number of points
to be processed. Its process will not end until some halting

condition is met. 	e window size is not constant while
compressing. 	e famous Opening Window methods are
Opening Window algorithm and Opening Window Time-
Ratio algorithm.

	e organization of this paper is as follows: the basic ideal
of compression and typical algorithms of compression are
introduced and discussed in Section 1.	e related de�nitions
about moving objects and their trajectories are summarized
in Section 2. 	e survey of moving object compression
algorithms is given in Section 3. Some validation criteria of
compression performance are discussed in Section 4 to reveal
their bene�t for moving object compression. In Section 5,
some public trajectory datasets are described. Some typical
application scenarios are listed to show the application of
moving object compression in Section 6. In Section 7, some
disadvantages and future works are summarized.

2. Related Definitions about Moving Objects
and Their Trajectories

2.1. Trajectory Data. A spatial-temporal trajectory of a mov-
ing object is de�ned as a sequence of position, attribute, and
time in literature [1]. It is necessary for a formal description
of a trajectory and its correlation attributes to describe the
methods in this paper. A trajectory formally de�ned in
literature [30] is also suitable in this paper. Giving TD as
Trajectory Database denotes trajectory sets, and TD = {TR1,
TR2, . . . ,TR�}. A trajectory (TR) is a chronological sequence
consisting of multidimensional locations, which is denoted
by TR� = {
1, 
2, . . . , 
�} (1 ≤ � ≤ �). 
� (1 ≤ � ≤ ),
a sampling point in TR�, is represented as ⟨Location�, ��⟩,
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which means that the position of the moving object is
Location� at time��. Location� is amultidimensional location
point. A trajectory 
�1 , 
�2 , . . . , 
�� (1 ≤ �1 < �2 < ⋅ ⋅ ⋅ ≤) represents a trajectory segment or subtrajectory of a
trajectory TR�, denoted as TS (Trajectory Segment), TS� ={� �1 , � �2 , . . . , � �num}.

In this section, we classify the derivation of trajectories
into 4 major categories, brie�y introducing a few application
scenarios in each category [31].

(1) Mobility of People. Real-world movements of people are
recorded in the formof spatial-temporal trajectories passively
and actively. Such records can be translated into a great
amount of spatial-temporal trajectories that can be used in
human behavior analysis and inferring social ties.

Active Recording. Travelers actively log their travel routes for
the purpose of memorizing a journey and sharing experience
with friends. In Flickr, a series of geotagged photos can
formulate a spatial-temporal trajectory as each photo has a
location tag and a time stamp corresponding to where and
when the photo was taken. Likewise, the “check-ins” of a user
in a location-based social network can be also regarded as a
spatial-temporal trajectory, when sorted chronologically.

Passive Recording. A user carrying a mobile phone uninten-
tionally generates many spatial-temporal trajectories repre-
sented by a sequence of cell tower IDs with corresponding
transition times. In addition, transaction records of a credit
card also indicate the spatial-temporal trajectory of the
cardholder, as each transaction contains a time stamp and
a merchant ID denoting the location where the transaction
occurred.

(2) Mobility of Transportation Vehicles. A great number of
vehicles (such as taxis, buses, vessels, and aircra�s) have
been equipped with a GPS device. For instance, many taxis
have been equipped with a GPS sensor, which enables them
to report a time-stamped location with a certain frequency.
Such reports formulate a large amount of spatial-temporal
trajectories that can be used for resource allocation, tra
c
analysis, and improving transportation networks.

(3) Mobility of Animals. Biologists are collecting the moving
trajectories of animals like tigers and birds, for the purpose
of studying animals’ migratory traces, behavior, and living
situations.

(4) Mobility of Natural Phenomena. Meteorologists, envi-
ronmentalists, climatologists, and oceanographers are busy
collecting the trajectories of natural phenomena, such as
hurricanes, tornados, and ocean currents. 	ese trajectories
capture the change of the environment and climate, helping
scientists deal with natural disasters and protect the natural
environment we live in.

2.2. Road Network. A road network is de�ned as a directed
graph � = (�, �), where � is a �nite vertex set in which
every vertex denotes a location point, and � is a �nite edge

Figure 2: A schematic of road network.

set in which every edge denotes a segment connecting 2
vertexes. A road network can also be regard as a constrained
2-dimensional space, o�en referred to as 1.5-dimensional
space. 	e road network contains 29 vertexes (�) and 36
edges (�) in Figure 2.

In 2-dimensional space, a point (�) is a two-tuple in
the form of (�, �) and a polyline (pl) is a set of points.
	e distance (�) of the points (�) in the polyline (pl) is
the distance along the polyline (pl) from its starting point
to point �. 	e de�nitions of road network point, distance,
polyline, segment, and measurement in road network space
are described as follow.

(1) Road Network Point. 	e point � in road network space
can be denoted in the form of � = (�, �), where � is the point
in a road and � is the measurement of � along the road.

(2) Road Network Distance. 	e distance (�) between 2
random points (�1 and �2) in road network space is the
shortest path length along the road from �1 to �2.
(3) Road Network Polyline. 	e road network polyline is
denoted as pl = (�1, �2, . . . , ��), where � > 1. 	e length of
polyline is the summation of the distance between 2 adjacent
vertexes.

(4) RoadNetwork Segment.	e roadnetwork segment in road
network space is a road network polyline which owns and
only owns 2 vertexes.

(5) Edge of Road Network. 	e edge (�) in road network is the
path between 2 adjacent intersections.

(6) A TrajectoryModel Based on RoadNetwork.	e trajectory
model based on road network is a new representation of
moving object trajectories, which matches GPS points with
road network to more accurately describe the spatial motion
information of moving objects by their motion laws in
road network. Meanwhile, the model introduces a nonlinear
interpolation function among sampling points to preferably
describe variable motions. 	e trajectory model based on
road network separates the locations from time stamps. In
other words, a trajectory is represented by a spatial path
and a temporal sequence. 	e spatial path of a trajectory
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Figure 3: A trajectory in road network.

in a road network is a sequence of consecutive edges. As
shown in Figure 3, a trajectory sequentially passes edges�15, �16, �13, �6, and �3. Consequently, it can be represented
by a spatial path in the format of ⟨�15, �16, �13, �6, �3⟩. Note
that a trajectory can start from or end at any point of an
edge, not necessarily an endpoint. 	e temporal information
of a trajectory is captured by a two-tuple (��, ��), where ��
represents the road network distance the object has traveled
at the time stamp �� from the start of the trajectory and ��
represents the time the object has traveled at the location ��
from the start of the trajectory.

2.3. Perpendicular Distance and Synchronized Euclidean Dis-
tance. 	e perpendicular distance of point � is the shortest

distance between the current point and the segment con-
necting the �rst and last points of the trajectory, while
Synchronized Euclidean Distance of point � is the distance
between the currently real point and the synchronized point
acquired by interpolating between the precursor point and
the successor point of the current point. In Figure 4, the
perpendicular distance of point ��+1 is denoted as �⊥ and the
Synchronized Euclidean Distance of point ��+1 is denoted as
SED.

As shown in Figure 4, ��+1 is the current sampling point,����+2 is the segment connecting the �rst and last points of the
trajectory, �	�+1 is the synchronized point of ��+1 in segment����+2, and the coordinate of �	�+1 is calculated by

�	�+1 = ��+1,
�	�+1 = ��+1 + ��+1 − ����+2 − �� (��+2 − ��) ,
�	�+1 = ��+1 + ��+1 − ����+2 − �� (��+2 − ��) .

(1)

	e perpendicular distance and Synchronized Euclidean
Distance between ��+1 and ����+2 are calculated by formula
(2), according to formula (1):

�⊥ = ������ ∗ ��+2 + ��+2 ∗ ��+1 + ��+1 ∗ �� − ��+2 ∗ �� − ��+1 ∗ ��+2 − �� ∗ ��+1����4 ∗ √(�� − ��+2)2 + (�� − ��+2)2 ,
SED = √(�� − �	�+2)2 + (�� − �	�+2)2.

(2)

2.4. Trajectory Similarity. 	e trajectory similarity is calcu-
lated by measuring the similarity between two trajectories
or subtrajectories utilizing Euclidean distance, PCA Plus
Euclidean distance, Hausdor� distance, Fréchet distance, and
so on. In this section, we introduce 4 classical trajectory
similarity measurements.

2.4.1. Euclidean Distance. Let � � and �� be �-dimensional
trajectory segmentswith length of �.	eir Euclidean distance
denoted as"
 is given in

"
 (� �, ��) = 1�
�∑
�−1
√ �∑
�−1

('�� − *�� )2. (3)

2.4.2. PCA Plus Euclidean Distance. When computing PCA
(Principal Components Analysis) Plus Euclidean distance,

trajectory is �rstly represented as a 1D signal by concatenating
the � and the � projections.	en, location signal is converted
into the �rst few PCA coe
cients.	e trajectory similarity is

the Euclidean distance computed with the PCA coe
cients,
as shown in

"PCA�
(� �, ��) = √ ∑

�−1
('�� − *��)2. (4)

Here, '�� and *�� are, respectively, the -th PCA coe
cient
in two-dimensional space trajectory segments � � and ��,
whose length is �, and/ ≪ 2�.
2.4.3.Hausdor�Distance. Given 2 trajectory segments� � and��, their Hausdor� distance denoted as"�(� �, ��) is given in
"� (� �, ��) = max (ℎ (� �, ��) , ℎ (��, � �)) ,

where ℎ (� �, ��) = max
�∈� �

(min
�∈��

(dist (', *))) . (5)

In the formula, ℎ(� �, ��) is the direct Hausdor� distance
of � � and ��, and dist(', *) is the Euclidean distance between
sampling points ' and * in � � and ��, respectively.



6 Mathematical Problems in Engineering

pi+1(ti+1, xi+1, yi+1)

pi(ti, xi, yi)

SED d⊥

p�
i+1(t

�
i+1, x

�
i+1, y

�
i+1)

pi+2(ti+2, xi+2, yi+2)

Figure 4: A schematic of perpendicular distance and Synchronized
Euclidean Distance.

2.4.4. Discrete Fréchet Distance. Discrete Fréchet distance
fully considers the location and sequential relationship of the
point in trajectories while measuring their similarity. It scans
the points on two trajectories and calculates its Euclidean
distance point by point. 	e maximum Euclidean distance is
the Discrete Fréchet distance between two trajectories. 	e
calculating formula is shown as

"� (� �, ��)
= min {‖9‖ , 9 is the coupling between � � and ��} ,

where ‖9‖ = max
�−1

dist ('�� , *�� ) .
(6)

Here, � � and �� are the trajectory segments whose lengths

are  and �, respectively. Consider / = min(, �). '��
and *�� are the -th points on trajectory segments � � and ��,
respectively. dist('�� , *�� ) is the Euclidean distance between '��
and *�� .
2.4.5. Others. In addition to the 4 trajectory similarity mea-
sures discussed above, Vlachos et al. put forward longest
common subsequence which is di�erent from distance calcu-
lation and is used to obtain the longest common subsequence
existing in two trajectory sequences [32]. Chen et al. proposed
Dynamic Time Warping method which is a well-known
technique to �nd an optimal alignment between two given
(time-dependent) sequences under certain restrictions [33].
Lee et al. put forward a comprehensive distance function
which is composed of three components: the angle distance,
the parallel distance, and the perpendicular distance [1]. 	e
method overcomes the limitations of the trajectory similarity
measure by the length of trajectory segments. It can more
comprehensively measure the similarity between trajectory
segments. Yuan et al. extract trajectory structure and propose
a structure similarity measurement for comparing trajecto-
ries in microlevel [34].

2.5. Compressive Sensing. Compressive sensing (CS) is an
e
cient signal processing technique to acquire and recon-
struct a signal by �nding solutions to underdetermined
linear systems. It is also known as compressed sensing,

compressive sampling, or sparse sampling. CS is with the
principle that, through optimization, the sparsity of a signal
can be exploited to recovery from far fewer samples than
required by the Shannon-Nyquist sampling theorem. 	ere
are two conditions under which recovery is possible. 	e
�rst one is sparsity which requires the signal to be sparse in
somedomain.	e second one is incoherencewhich is applied
through the isometric property which is su
cient for sparse
signals [35].

In this section, we will discuss CS given in literature [16]
brie�y. Given a vector � ∈ R

�, the representation ? ∈ R
�

can be computed on a basis @ ∈ R
�×� by solving the linear

equation � = @? which is said to be compressible if ? has
a large number of elements with small magnitude. If there
is a basis on which a given vector � has a compressible
representation, then � is also compressible. Compressive
sensing considers the problem of recovering an unknown
compressible vector � from its projections. LetΦ be an×�
projection matrix with < �. Consider the equation

� = Φ� + B, (7)

where B ∈ R
� is a noise vector whose norm is bounded byC. Compressive sensing aims to reconstruct � from � and Φ

given the knowledge that � is compressible on the basis @.
Compressive sensing shows that under certain conditions it is
possible to recover � by solving the following ℓ1 optimization
problem:

min
�̂∈R�

EEEEE?̂EEEEE1
subject to

EEEEE� − Φ@?̂EEEEE2 ≤ C.
(8)

Given ?̂, � can be estimated from �̂ = @?̂.
In the context of trajectory compression, � is the tra-

jectory measured by a Mobile Sensor Networks node. 	e
dimension of � is large. 	e MSN node computes � = Φ�
and transmits � to the server. 	e server can compute an
estimated trajectory �̂ by using �, Φ, and @ to solve the
aforementioned ℓ1 optimization problem as shown in (8).
Note that the compression is lossy with 1 −/� representing
both space savings and reduction in wireless transmission
requirement.

3. Trajectory Compression Algorithms

In this section, we comprehensively analyze moving object
trajectory compression algorithms which have been one of
the research hotspots in the moving object data mining
�eld. Existing trajectory compression algorithms include 2
categories: single trajectory compression (STC) and multiple
trajectory compression (MTC). 	e former compresses each
trajectory individually ignoring the commonalities among
trajectories, and the latter compresses several trajectories or
subtrajectories at the same time by the commonalities among
trajectories (such as similarity).	ere are some di�erent clas-
si�cation strategies about compression algorithms, but they
are not unable to contain all of the compression algorithms as
the rapid development of compression technology.	erefore,
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in this paper, we present a new classi�cation strategy to divide
trajectory compression algorithms into 5 categories on the
basis of compression theories.

3.1. Distance Based Trajectory Compression. Distance (such
as perpendicular distance and Synchronized Euclidean Dis-
tance) information is one of the most classic and common
compression metrics in trajectory compression algorithms.
Many researchers have devoted their talent to compress tra-
jectories by deciding whether the sampling point is reserved
based on distance, since 1973. 	e earliest distance based tra-
jectory compression algorithm is Douglas-Peucker algorithm
proposed by Douglas and Peucker [9], which recursively
selects the point whose perpendicular distance is greater than
given threshold until all points reserved meet the condition.
Keogh et al. put forward Opening Window algorithm that
online compresses trajectory data based on perpendicular
distance. A transformation of Douglas-Peucker algorithm
called top-down time-ratio algorithm, which takes a full
consideration of spatial-temporal characteristics by replacing
perpendicular distance with SED, is proposed by Meratnia
and Rolf [3]. 	en, an extension to Opening Window called
Opening Window Time-Ratio algorithm using SED instead
of perpendicular distance to take temporal features into
account is proposed by Wu and Cao [2]. Gudmundsson
et al. developed an implementation of the Douglas-Peucker
algorithm which works e
ciently even in the case where the
polygonal path given as input is allowed to self-intersect [11].

Perpendicular distance based trajectory compression is
simple and e
cient, but it just considers the spatial features
and ignores the temporal features of trajectories. Synchro-
nized Euclidean Distance based trajectory compression not
only is simple and e
cient but also has a better compression
e�ect than perpendicular distance based trajectory compres-
sion for it takes the spatial-temporal features of trajectories
into account. Distance based trajectory compression provides
an e�ective way to compress trajectory data and a satisfac-
tory compression result, which has been applied to many
�elds, such as animal migration, hurricane prediction, and
aerospace �eld. But there are some obvious shortcomings
in processing limited trajectories, such as the trajectory
of human activities in urban and taxi motion track and
keeping the internal features in trajectories for distance based
trajectory compression pays more attention to keeping the
holistic geometrical characteristics of trajectories.

3.2. Velocity Based Trajectory Compression. Velocity is one
of the most basic features of moving objects and it can
re�ect the motion features of moving objects as well as
the internal features in trajectories. 	e researches on com-
pressing trajectory data based on velocity are not perfect
by now. A famous velocity based trajectory compression is
top-down speed-based algorithm proposed by Meratnia and
Rolf [3] improving the existing compression techniques by
exploiting the spatiotemporal information hiding in the time
series which can be made by analyzing the derived speeds
subsequent to the trajectory. A large di�erence between the
travel speeds of two subsequent segments is a criterion that

can be applied to retain the data point in the middle. An
online algorithm called Dead Reckoning algorithm proposed
by Trajcevski et al. [22] compresses trajectory by estimat-
ing the successor point through the current point and its
velocity. A polynomial-time algorithm for optimal direction-
preserving trajectory simpli�cation, which supports broader
application range than position-preserving simpli�cation,
proposed by Long et al. [24] can be also regarded as a
velocity based trajectory compression. 	is method uses the
maximum angular di�erence between the direction of the
movement during each time period in original trajectory and
the direction of the movement during the same time period
in a simpli�cation of original trajectory.

Velocity based trajectory compression not only is simple
and e
cient but also can keep the internal features in
trajectories; however, it is not popular, for the existing velocity
based trajectory compression methods only take speed into
account which may lead to greater errors and break the
holistic geometrical characteristics of trajectories. In the
future study, we hope that researchers will pay their attention
to compressing trajectory data by various features of velocity
(such as velocity direction and accelerated velocity) except for
the magnitude of velocity.

3.3. Semantic Trajectory Compression. Semantic information
in road network has more practical signi�cance in repre-
senting moving object trajectories that are collected from
limited moving objects. Semantic trajectory compression
stores trajectories in the form of semantic information in
road network instead of trajectory points, compresses spa-
tial information in trajectory data by spatial compression
methods, and compresses temporal information in trajectory
data by temporal compression techniques, until some halting
condition is met. 	e new and novel representation for tra-
jectories that replaces trajectory data by the form of semantic
information in road network was proposed by Schmid et
al. [12] in 2009. Many researchers have paid their attention
to semantic trajectory compression since then. Semantic
trajectory compression was applied to humanmotion dataset
in urban area by Richter et al. [13] which identi�es the
relevant reference points along the trajectory, determines
all possible descriptions of how movement continues from
here, and exploits motion feature description of reference
points to compress trajectory data. Song et al. [14] proposed
a new framework, namely, paralleled road-network-based
trajectory compression, to e�ectively compress trajectory
data under road network constraints. Di�erent from existing
works, PRESS proposed a novel representation for trajecto-
ries to separate the spatial representation of a trajectory from
the temporal representation and proposes a Hybrid Spatial
Compression (HSC) algorithm and error Bounded Temporal
Compression (BTC) algorithm to compress the spatial and
temporal information of trajectories, respectively.

Semantic trajectory compression is only suitable for
limited moving objects, such as movement in road network,
urban movement, and orbital trajectory, which will get a
more realistic signi�cance result in compressing trajectories
of limited moving objects.
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3.4. Similarity Based Trajectory Compression. Similarity
based trajectory compression splits original trajectories into
subtrajectories and then clusters subtrajectories with high
similarity into the same group and clusters subtrajectories
with low similarity into the di�erent groups. And then it
uni�es spatial information of trajectory data in the same
group by a certain strategy which will keep a set of spatial
information and all temporal information in every group,
until some halting condition is met. A famous similarity
based compression is similarity based compression of GPS
trajectory data proposed by Birnbaum et al. [23] which splits
trajectories into subtrajectories according to the similarities
among them. For each collection of similar subtrajectories,
this technique stores only one subtrajectory’s spatial data.
Each subtrajectory is then expressed as a mapping between
itself and a previous subtrajectory.

Similarity based trajectory compression has great advan-
tages in retaining the commonalities among trajectories. It is
suitable for trajectory set and may be not suitable for a single
trajectory for the error may be large.

3.5. Priority Queue Based Trajectory Compression. Priority
queue based trajectory compression selects the best subset
of trajectory points and permanently removes redundant
and inessential trajectory points from original trajectory by
utilizing local optimization strategies, until some halting
condition ismet.	e Spatial QUalIty Simpli�cationHeuristic
(SQUISH)method based on the priority queue data structure
proposed byMuckell et al. [26] prioritizes themost important
points in a trajectory stream. It uses local optimization to
select the best subset of points and permanently removes
redundant or insigni�cant points from the original GPS
trajectory. 	ree years later, Muckell et al. [28] presented a
new version of SQUISH, called SQUISH-E (Spatial QUalIty
Simpli�cation Heuristic-Extended) which has the �exibility
of tuning compression with respect to compression ratio and
error.

Priority queue based trajectory compression is not only
an online trajectory compression algorithm but also a tra-
jectory compression algorithm that requires presetting the
memory bu�er. Hence, it can be well applied to real-time
applications and small memory devices. It is suitable for all
kinds of trajectories, but the compression e�ect andmatching
e�ect may be a little worse than the other compression
methods.

3.6. Others. Considering that if the movement pattern and
internal features are neglected, applications, such as trajec-
tory clustering, outlier detection, and activity discovery may
be not so accurate as we expected.	erefore, we expect that a
new algorithm called structure features based trajectory com-
pression which compresses trajectories based on movement
pattern and structure features in trajectories, such as moving
direction of objects, internal �uctuation in trajectories, and
trajectory velocity or acceleration, will attract more attention
of researchers, for instance, a polynomial-time algorithm
for optimal direction-preserving simpli�cation proposed by
Long et al., which supports border application range than

position-preserving simpli�cation [24]. At present, most of
the portable equipment used for data collection is inexpen-
sive, power saving, and of lower computational capability,
while the data processing procedure is o�en performed in
supercomputers which have a higher computational capa-
bility. In order to e�ectively reduce the transport cost, we
expect that compressive sensing based trajectory compres-
sion, which reduces the data scale in the process of acquiring
data by combining compressive sensing with trajectory fea-
tures, will attract more attention of researchers, for instance,
Rana et al. present an adaptive algorithm for compressive
approximation of trajectory in 2011, which performs trajec-
tory compression, so as to maximize the information about
the trajectory subject to limited bandwidth [36]. Four years
later, another compression method called adaptive trajectory
(lossy) compression algorithm based on compressive sensing
has been proposed by Rana et al., which has two innovative
elements [16]. First, they propose a method to compute
a deterministic projection matrix from a learnt dictionary.
Second, they propose a method for the mobile nodes to
adaptively predict the number of projections needed based
on the speed of the mobile nodes.

4. Validation Criteria of
Compression Performance

Compression result validation is very important for com-
pression algorithms and it can measure the level of success
and correctness reached by the algorithms. 	ere are many
solutions to validate the result, mainly including Analysis,
Experience, Evaluation, and Example. 	e Analysis solution
includes rigorous derivation and proof or carefully designed
experiment with statistically signi�cant results. Experience
solution is applied in real-world scenarios or projects and
the evidence of approach’s correctness (usefulness or e�ec-
tiveness) can be obtained from the process of execution.
Evaluation uses a set of examples to illustrate the pro-
posed approach, with a nonsystemic analysis of gathered
information from the execution of examples. Example uses
only one or several small-scale examples to illustrate the
proposed approach, without any evaluation or comparison of
the execution result. In this section, wemainly discuss 2 kinds
of compression validation solutions. 	e �rst compression
validation solution is performancemetrics which are used for
comparing the e
ciency and performance of trajectory com-
pression algorithms. And the other compression validation
solution is accuracy metrics which are used for comparing
the accuracy and information loss of trajectory compression
algorithms. 	is section, respectively, denotes the original
trajectory as OT whose length is  and the compressed
trajectory as RT whose length is �, in order to facilitate the
validation of trajectory compression.

4.1. Performance Metrics

4.1.1. Compression Ratio. Compression ratio (R) is an impor-
tant index to measure the advantages and disadvantages of
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Figure 5: A schematic of spatial error.

trajectory compression performance, which is de�ned as
in

R = (1 − �) ∗ 100%. (9)

Compression ratio is the most common compression
index which can accurately re�ect the change of the size
of trajectory data. But R is in�uenced by the original
signal data sampling rate and quantization accuracy and so
on; it is di
cult to make an objective measurement. For
instance, a compression ratio of 70% indicates that 30% of the
original points remained in the compressed representation
of the trajectory; namely, if there are 100 points in original
trajectory, only 30 points will be reserved in the compressed
representation of the trajectory a�er compressing.

4.1.2. Compression Time. Compression time (�) is an impor-
tant index tomeasure the e
ciency of trajectory compression
performance, which re�ects the total time required by the
compression. For example, a compression time of 24 indicates
that the total time of compressing original trajectory is 24ms.

4.2. Accuracy Metrics

4.2.1. Spatial Error. Given an original trajectory OT and its
compressed representation RT, the spatial error (SplE) of RT
with respect to a point �� in OT is de�ned as the distance
between ��(��, ��, ��) and its estimation �	� (�	� , �	� , �	� ). If RT
contains ��, then �	� is �� (e.g., �	1 = �1, �	4 = �4, �	6 = �6,
and �	8 = �8 in Figure 5 where there is a trajectory containing�1, �2, . . . , �8). Otherwise, �	� is de�ned as the closest point to�� along the line between precursor point and successor point
of �� in trajectory RT.	e precursor point of �2 is �1 and the
successor point of �2 is �4. 	erefore, the spatial error of RT
with respect to �2 is the perpendicular distance from �2 to
line �1�4.
4.2.2. SED Error. Temporal characteristics of trajectory data
are not considered in spatial error, so Synchronized Euclidean
Distance (SED) is introduced to overcome this limitation.
SED is also the distance between ��(��, ��, ��) and its estima-
tion �	� (�	� , �	� , �	� ), which is obtained by linear interpolation
method, owning the same time coordinate with ��. If RT
contains ��, then �	� is �� (e.g., �	1 = �1, �	4 = �4, �	6 = �6,
and �	8 = �8 in Figure 6 where there is a trajectory containing�1, �2, . . . , �8). Otherwise, �	� is de�ned as the location point
owning the same time coordinate with �� in trajectory RT.
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	e estimation point of �2 is �	2. 	erefore, the SED error of

RT with respect to �2 is the distance between �2 and �	2.
4.2.3. Heading Error. Heading error (HE) is the angular
de�ection betweenmoving direction from the actual location
point ��−1(��−1, ��−1, ��−1) to ��(��, ��, ��) along original trajec-
tory andmoving direction from the estimation location point�	�−1(�	�−1, �	�−1, �	�−1) to �	� (�	� , �	� , �	� ) along compressed trajec-

tory. 	e estimation �	� owning the same time coordinate
with �� is obtained by linear interpolation method. As shown
in Figure 7, we specify clockwise direction is positive value
and anticlockwise direction is negative value, to facilitate the
calculation.

4.2.4. Speed Error. Speed error (SpdE) is an importantmetric
for various kinds of transit applications. For instance, velocity
measurement system gets overspeed hotspots by velocity
information [37], as well as acceleration and deceleration data
help to identify all kinds of irregular driving behaviors, which
will help police to �nd vehicle’s illegal activities [38]. 	e
computing method of speed error is similar to heading error.
It calculates the di�erence value between actual velocity and
estimated velocity instead of calculating angular de�ection.

4.2.5. Information Loss Degree. Information Loss Degree
(ILD) that can comprehensively analyze the accuracy and
error of trajectory compression results is a comprehensive
index to measure the advantages and disadvantages of trajec-
tory compression e�ectiveness. Information Loss Degree can
be calculated by the SED distance, Dynamic Time Warping
distance, and Speed Corner between original trajectory and
compressed trajectory.

Information Loss Degree based on SED (ILDSED) is the
mean value of maximum SED distance error (SEDEmax(OT,
RT)), average SED distance error (SEDEavg(OT,RT)), and
minimum SED distance error (SEDEmin(OT,RT)) between
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original trajectory OT and compressed trajectory RT, which
can be calculated as

ILDSED (OT,RT) = SEDEmax (OT,RT) + SEDEavg (OT,RT) + SEDEmin (OT,RT)3 . (10)

Information Loss Degree based on DTW (ILDdtw) is
measured by the time warping distance between original

trajectory OT and compressed trajectory RT, which can be
calculated as

ILDdtw (OT,RT) =
{{{{{{{{{{{{{{{{{{{{{{{{{

0  = � = 0
∞  = 0 ‖ � = 0
SEDE (op1, rp1) +min

{{{{{{{{{{{

ILDdtw (Rest (OT) ,Rest (RT))
ILDdtw (Rest (OT) ,RT)
ILDdtw (OT,Rest (RT))

others.

(11)

Here, SEDE(op1, rp1) is the SED error between point
op1 and rp1, which, respectively, are the �rst point of OT
and RT. Rest(OT) and Rest(RT) are the remaining trajectory
a�er removing the �rst sampling point. ILDdtw calculates the
Information Loss Degree by DTW error.

Information Loss Degree based on Speed Corner (ILD-
corner) is measured by the original and compressed Speed
Corner of moving objects which can be calculated as

ILDcorner (OT,RT)
= ∑min(�,�)
1 ((�����?� − ?������) / (����?����� + �����?������)) + � . (12)

5. Public Trajectory Datasets

	ere are quite a few real trajectory datasets that are publicly
available. In this section, a detailed description of real
trajectory datasets is given from their sources, characteristics,
sampling rate, and so on.

5.1. GeoLife Trajectory Dataset. A GPS trajectory dataset
from Microso� Research GeoLife project was collected by
182 users in a period of over 5 years from April 2007 to
August 2012. A GPS trajectory of this dataset is represented
by a sequence of time-stamped points, each of which contains
the information of latitude, longitude, and altitude. 	is
dataset whose size is 1.55GB contains 17,621 trajectories with
a total distance of 1,292,951 kilometers and a total duration
of 50,176 hours. 	ese trajectories were recorded by di�erent
GPS loggers and GPS-phones and have a variety of sampling
rates. 91.5 percent of the trajectories are logged in a dense
representation, for example, every 1∼5 seconds or every 5∼10
meters per point.

5.2. T-Drive Taxi Trajectories. A sample of trajectories from
Microso� Research T-Drive project was generated by over
30,000 taxicabs in a period of 6 months from March 2009 to
August 2009. 	e total distance traveled by the taxis is more
than 800 million kilometers and the total number of GPS
points is nearly 1.5 billion. 	e size of the dataset is 756Mb
and the average sampling interval and average distance
between two consecutive points are around 3.1 minutes and
300 meters, respectively.

5.3. GPS Trajectory with Transportation Labels. 	is is a
portion of GPS trajectory dataset collected in (Microso�
Research Asia) GeoLife project. Each trajectory has a set of
transportation mode labels, such as driving, taking a bus,
riding a bike, and walking.	ere is a label �le associated with
each folder storing the trajectories of a user. A GPS trajectory
of this dataset is represented by a sequence of time-stamped
points, each of which contains the information of latitude,
longitude, height, speed, heading direction, and so forth.
	ese trajectories were recorded by di�erent GPS loggers or
GPS-phones and have a variety of sampling rates. 95 percent
of the trajectories are logged in a dense representation,
for example, every 2∼5 seconds or every 5∼10 meters per
point, while a few of them do not have such a high density
being constrained by the devices. 	e size of the dataset is
560Mb.

5.4. Check-in Data from Location-Based Social Networks.
	e dataset from a LBSN in China whose size is 10.68Mb
consists of 2,756,710 check-in data generated by 10,049 users
excluding the timestamp and relationships between users.
Each check-in includes the information of ID, latitude,
longitude, and timestamp.
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5.5. Hurricane Trajectories. 	is dataset is provided by the
National Hurricane Service (NHS) containing 1,740 trajec-
tories of Atlantic Hurricanes from 1851 to 2012. NHS also
provides annotations of typical hurricane tracks for each
month throughout the annual hurricane season that spans
from June to November. 	e data were collected every 6
hours.

5.6. Movebank Animal Tracking Data. Movebank is a free,
online database of animal tracking data helping animal
tracking researchers to manage, share, protect, analyze, and
archive their data. Movebank is an international project
with over 11,000 users, including people from research and
conservation groups around the world. A lot of datasets are
collected in this database, such as Continental black-tailed
godwits (data from Senner et al., 2015) whose size is 5.161Mb
[39], andNavigation experiments in lesser black-backed gulls
(data fromWikelski et al., 2015) whose size is 29.09Mb [40].

6. Application Scenarios of
Trajectory Compression

(1) 	e unrestricted movement of moving objects is a typical
application scenario of trajectory compression, such as a bird
�ying in the sky, a �sh swimming in the sea, and a horse
running on the grassland.Distance based trajectory compres-
sion and velocity based trajectory compression have a high
e
ciency in this application scenario and a good application
prospect in many �elds, such as studying animals’ migratory
traces, behavior, and living situations, as well as animal
migration research and hurricanes, tornados, and ocean
currents prediction. For instance, animal tracking data helps
biologists understand how individuals and populations move
within local areas, migrate across oceans and continents, and
evolve through millennia. 	is information is being used to
address environmental challenges such as climate and land
use change, biodiversity loss, invasive species, and the spread
of infectious diseases. However, the data that need to be
analyzed always have a large scale which will make them
di
cult to be analyzed and �nd the useful information in the
data, so it is necessary to compress the data by removing the
redundant data and only keeping the valuable data.

(2)	e restrictedmovement of moving objects is another
very important application scenario of trajectory compres-
sion, such as themotion track of taxis in urban area. Semantic
trajectory compression can e�ectively and e
ciently com-
press the trajectory data in this application scenario with
respect to transport analysis, smart city plan, and smart
transportation management. For instance, vast amounts of
trajectory data can be collected by vehicle positioning equip-
ment and other devices, which can be used to help police to
�nd dangerous driving, predict the stream of people in major
festivals in important places of a city, and trace escaping route
of criminals. But the large scale of the data will lead to the
di
culty of �nding dangerous driving, predict the stream of
people in major festivals in important places of a city, and
trace escaping route of criminals for police, so the data are in

urgent need of compression which can remove the redundant
data and only reserve the valuable data in the dataset.

(3) Priority queue based trajectory compression is widely
applied to small memory devices and has a high e
ciency
in this scenario. For instance, most of the portable mobile
devices have a small memory. If the data have to be analyzed
on portable mobile devices, it is easy to meet the breakdown
(out of memory) that will lead to the device not working.
	erefore, it is necessary for portable mobile devices with
a compress application that may compress the data by
removing the redundant data before analyzing them.

7. Conclusion and Future Work

Trajectory compression is an e
cient way to reduce the
size of trajectory data and reserve the useful and valuable
information in large scale dataset, which is one of the impor-
tant components of data mining technology. In this paper,
the research status and new development of moving object
trajectory compression algorithms in recent years have been
surveyed and summarized. Firstly, the representative com-
pression algorithms proposed in recent years are analyzed
and summarized from algorithmic thinking, key technology,
and the advantages and disadvantages. 	en, the existing
algorithms are classi�ed into several categories according to
compression theories. 	irdly, some typical valid criteria of
compression result are summarized. Lastly, some application
scenarios are pointed out and discussed.

On the basis of summarizing and surveying on the mov-
ing object trajectory compression and its theories, methods,
and techniques, we also summarize the problems and the
challenges existing in moving object trajectory compression,
which mainly includes the following aspects: (1) Most of the
current trajectory compression algorithms pay more atten-
tion to the holistic outline geometrical characters of trajectory
and ignore the movement patterns and the internal features
in trajectories. (2) Most of the current trajectory compres-
sion algorithms cannot fully combine time dimension with
space dimensions, and they just regard time dimension as
the additional dimension of space dimension of trajectory
object. (3)	e general applicability of trajectory compression
algorithm is low. (4) Few researchers have paid their attention
to compressing trajectories by compressive sensing which
reduces the data scale in the process of acquiring data.
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