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Multiple sequence alignment (MSA) of DNA, RNA, and protein sequences is one of the most essential techniques in the 
elds of
molecular biology, computational biology, and bioinformatics. Next-generation sequencing technologies are changing the biology
landscape, �ooding the databases with massive amounts of raw sequence data. MSA of ever-increasing sequence data sets is
becoming a signi
cant bottleneck. In order to realise the promise of MSA for large-scale sequence data sets, it is necessary for
existing MSA algorithms to be run in a parallelised fashion with the sequence data distributed over a computing cluster or
server farm. Combining MSA algorithms with cloud computing technologies is therefore likely to improve the speed, quality,
and capability for MSA to handle large numbers of sequences. In this review, multiple sequence alignments are discussed, with a
speci
c focus on the ClustalW and Clustal Omega algorithms. Cloud computing technologies and concepts are outlined, and the
next generation of cloud base MSA algorithms is introduced.

1. Introduction

Multiple sequence alignments (MSA) are an essential and
widely used computational procedure for biological sequence
analysis in molecular biology, computational biology, and
bioinformatics. MSA are completed where homologous
sequences are compared in order to perform phylogenetic
reconstruction, protein secondary and tertiary structure
analysis, and protein function prediction analysis [1]. Bio-
logically good and accurate alignments can have signi
cant
meaning, showing relationships and homology between dif-
ferent sequences, and can provide useful information, which
can be used to further identify new members of protein
families.	e accuracy ofMSA is of critical importance due to
the fact that many bioinformatics techniques and procedures
are dependent on MSA results [1].

Due to MSA signi
cance, many MSA algorithms have
been developed. Unfortunately, constructing accurate mul-
tiple sequence alignments is a computationally intense and
biologically complex task, and as such, no currentMSA tool is

likely to generate a biologically perfect result. 	erefore, this
area of research is very active, aiming to develop a method
which can align thousands of sequences that are lengthy
and produce high-quality alignments and in a reasonable
time [2, 3]. Alignment speed and computational complexity
are negatively a�ected when the number of sequences to be
aligned increases. 	e recent advances in high throughput
sequencing technologies means that this sequence output
is growing at an exponential rate, the biology, landscape
being punctuated by a number of large-scale projects such
as the Human Genome Project [4], 1000 Genomes Project
[5], and Genome 10K Project [6]. Indeed, technologies such
as Roche/454 [7], Ilumina [8], and SOLiD [9] are capable of
producing Giga basepairs (Gbp) per machine per day [10].
	e entire worldwide second-generation sequencing capacity
surpasses 13 Pbp per year (recorded in 2011) and is continuing
to increase yearly by a factor of 
ve [11]. Other large-scale
data is emerging from high-throughput technologies, such
as gene expression data sets, protein 3D structures, protein-
protein interaction, and others, which are also generating
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huge sequence data sets. 	e analysis and storage of the
growing genomic data represents the central challenge in
computational biology today.

As the protein alignment problem has been studied for
several decades, studies have shown considerable progress in
improving the accuracy, quality, and speed of multiple align-
ment tools, with manually re
ned alignments continuing
to provide superior performance to automated algorithms.
However, more than three sequences of biologically relevant
length can be di�cult and time consuming to alignmanually;
therefore, computational algorithms are used as a matter of
course [2]. Sequences can be aligned using their entire length
(global alignment) or at speci
c regions (local alignment).
Multiple sequence alignment for protein sequences is much
more di�cult than the DNA sequence equivalent (containing
only 4 nucleotides) due to the fact that there are 20 di�erent
amino acids. Global optimization techniques, developed in
applied mathematics and operations research, provide a
generic toolbox for solving complex optimization problems.
Global optimization is now used on a daily basis, and its
application to the MSA problem has become a routine [12].
Local alignments are preferable; however, they can be chal-
lenging to calculate due to the di�culty associated with the
identi
cation of sequence regions of similarity.	e twomajor
aspects of importance for MSA tools for the user are biolog-
ical accuracy and the computational complexity. Biological
accuracy concerns how close the multiple alignments are to
the true alignment and are the sequences aligning correctly,
showing insertions, deletions, or gaps in the right positions.
Computational complexity refers to the time, memory, and
CPU requirements. Complexity is of increasing relevance
as a result of the increasing number of sequences needed
to be aligned. 	e complexity of a primal MSA tools was
always �(��), where � is complexity, � is length of the
sequence, and � is the number of sequences to be aligned.
Until recently, this was not a problem because � was always
smaller than �; therefore, most algorithms concentrated on
how to deal with lengthy sequences rather than the number
of sequences, and now the situation has changed, where a
lot of alignments have � larger than �; therefore, new and
more recent MSA algorithms are concentrating not only on
the length of sequences but also on the increasing number of
sequences [13].

A wide range of computational algorithms have been
applied to the MSA problem, including slow, yet accu-
rate, methods like dynamic programming and faster but
less accurate heuristic or probabilistic methods. Dynamic
programming (DP) is a mathematical and computational
method which refers to simplifying a complicated problem
by subdividing it into smaller and simpler components in
a repeated manner. 	e dynamic programming technique
can be applied to global alignments by using methods
such as the Needleman-Wunsch algorithm [14] and local
alignments by using the Smith-Waterman algorithm [15]. Up
to themid-1980s, the traditionalmultiple sequence alignment
algorithms were only best suited for two sequences, so when
it came to producing multiple sequence alignment with more
than two sequences, it was found that completing the align-
ment manually was faster than using traditional dynamic

programming algorithms [16]. Dynamic programming algo-
rithms are used for calculating pairwise alignments (two
sequence alignments) with the time complexity of �(��). In
theory, this method could be extended to more than two
sequences; however, in practice, it is too complex, because
the time and space complexity becomes very large [17].
	erefore, producing multiple sequence alignment requires
the use of more sophisticated methods than those used
in producing a pairwise alignment, as it is much more
computationally complex. Finding a mathematically optimal
multiple alignment of a set of sequences can generally be
de
ned as a complex optimization problem or NP-complete
problem as it must identify an MSA with the highest score
from the entire set of alignments; therefore, heuristic (“best
guess”) methods must be used.

2. Multiple Sequence Alignment Algorithms

	e most popular heuristic used from which the major-
ity of multiple sequence alignments are generated is that
developed by Feng and Doolittle [18], which they referred
to as “progressive alignment” [16, 18]. Progressive alignment
works by building the full alignment progressively, 
rstly
completing pairwise alignments using methods such as the
Needleman-Wunsch algorithm, Smith-Waterman algorithm,
k-tuple algorithm [19], or k-mer algorithm [20], and then
the sequences are clustered together to show the relationship
between them using methods such as mBed and k-means
[21]. Similarity scores are normally converted to distance
scores and guide trees are constructed using these scores by
guide tree building methods such as Neighbour-Joining (NJ)
[22] and Unweighted Pair Group Method with Arithmetic
Mean UPGMA [23]. Once the guide tree is built, the multiple
sequence alignment is assembled by adding sequences to the
alignment one by one according to the guide tree, that is,
the most similar sequences added 
rst and then gradually
adding more distant sequences. Unfortunately, this heuristic
has a greedy nature; that is, it only looks at two sequences at
a time and ignores the remaining data and therefore cannot
guarantee an optimal solution. Also, if mistakes are made in
the initial stages of the alignment, they cannot be 
xed in later
stages, and the mistake will continue throughout the align-
ment process with the problem worsening as the number of
sequences increases. Progressive alignment is the foundation
procedure of several popular alignment algorithms such as
ClustalW [24], Clustal Omega [21],MAFFT [25], Kalign [26],
Probalign [27], MUSCLE [13], DIALIGN [28], PRANK [29],
FSA [30], T-Co�ee [31, 32], ProbCons [33],and MSAProbs
[34]. Di�erent methods for producing multiple sequence
alignment exist, and their use depends on user preferences
and sequence length and type, as shown in Table 1.

An improved version of the progressive alignment
method was developed called “iterative progressive algo-
rithms.” 	ese algorithms work in a similar manner to
progressive alignment; however, this approach repeatedly
applies dynamic programming to realign the initial sequences
in order to improve their overall alignment quality, also at
the same time adding new sequences to the growing MSA.
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Table 1: Types of multiple sequence alignment and corresponding algorithms.

Types of MSA alignment MSA algorithms

Pairwise alignment Needleman-Wunsch, k-mer, k-tuple, and Smith-Waterman algorithms.

Progressive alignment Clustal Omega, ClustalW, MAFFT, Kalign, Probalign, MUSCLE, Dialign, ProbCons, and MSAProbs.

Iterative progressive alignment PRRP, MUSCLE, DIALIGN, SAGA, and T-COFFEE.

Homology search tools BLAST, PSI-BLAST, and FASTA.

Structure incorporating alignment 3D-COFFEE, EXPRESSO, and MICAlign.

Motif alignment PHI-Blast, GLAM2.

Short-read alignment Bowtie, Maq, and SOAP.

	e iteration bene
ts the alignment by correcting any errors
produced initially, therefore improving the overall accuracy
of the alignment [35]. Iterative methods are able to give 5%–
10% more accurate alignments; however, they are limited
to alignments of a few hundred sequences only [21]. 	e
most used iterative alignment algorithms include PRRP [36],
MUSCLE [13], Dialign [28], SAGA [37], and T-COFFEE
[32, 38].

Multiple sequence alignments can also be constructed
by using already existing protein structural information. It
is believed that by incorporating structural information to
the alignment, the 
nal MSA accuracy can be increased;
therefore, most structure-based MSA are of higher quality
than those based on sequence alignment only. 	e reason
for structure-based MSA being of better quality is not due
to a better algorithm but rather an e�ect of structures
evolutionary stability that is, structures evolve more slowly
than sequences [39]. 	e most popular structure and based
MSA is 3D-COFFEE [40], and others include EXPRESSO
[41] and MICAlign [42].

Motif discovery algorithms are another type of MSA
algorithms that are used. 	ese methods are used to 
nd
motifs in the long sequences; this process is viewed as a
“needle in a haystack” problem, due to the fact that the
algorithm looks for a short stretch of amino acids (motif)
in the long sequence. One of the most widely used tools
for searching for motifs is PHI-Blast [43] and Gapped Local
Alignments of Motifs (GLAM2) [44].

Short sequence alignment algorithms are also beginning
to emerge, primarily due to advances in sequencing tech-
nologies. Most genomic sequence projects use short read
alignment algorithms such as Maq [45], SOAP [46], and the
very fast Bowtie [47] algorithms.

3. Top Multiple Sequence
Alignment Algorithms

	e number of multiple sequence alignment algorithms is
increasing on almostmonthly baseswith∼1-2 new algorithms
published per month. 	e computational complexity and
accuracy of alignments are constantly being improved; how-
ever, there is no biologically perfect solution as yet. ClustalW
(one of the 
rst members of the Clustal family a�er ClustalV)
is probably the most popular multiple sequence alignment
algorithm, being incorporated into a number of so-called

black box commercially available bioinformatics packages
suchDNASTAR, while the recently developedClustal Omega
algorithm is the most accurate and most scalable MSA
algorithms currently available. ClustalW and Clustal Omega
are described later, and also a brief description is provided for
the T-Co�ee, Kalign, Ma�, and MUSCLE multiple sequence
alignment algorithms.

3.1. ClustalW. ClustalW [24] was introduced by 	ompson
et al. in 1994 and quickly became the method of choice for
producing multiple sequence alignments as it presented a
dramatic increase in alignment quality, sensitivity, and speed
in comparison with other algorithms. ClustalW incorporates
a novel position-speci
c scoring scheme and a weight-
ing scheme for downweighting overrepresented sequence
groups, with the “W” representing “weights.” Firstly, the
algorithm performs a pairwise alignment of all the sequences
(nucleotide or amino acid) using the k-tuple method by
Wilbur and Lipman [19] which is a fast, albeit approximate,
method or the Needleman-Wunsch method [14] which is
known as the full dynamic programming method. 	ese
methods calculate a matrix which shows the similarity of
each pair of sequences. 	e similarity scores are converted
to distance scores, and then the algorithm uses the distance
scores to produce a guide tree, using the Neighbour-Joining
(NJ) method [22] for guide tree construction. 	e last step
of the algorithm is the construction of the multiple sequence
alignment of all the sequences. 	e MSA is constructed
by progressively aligning the most closely related sequences
according to the guide tree previously produced by the NJ
method (see Figure 1 for an overview).

3.1.1. Pairwise Alignment. 	e k-tuple method [19], a fast
heuristic “best guess” method, is used for pairwise alignment
of all possible sequence pairs. 	is method is speci
cally
used when the number of sequences to be aligned is large.
	e similarity scores are calculated as the number of k-tuple
matches (which are runs of identical residues, usually 1 or
2 for protein residues or 2–4 for nucleotide sequences) in
the alignment between a pair of sequences. Similarity score
is calculated by dividing the number of matches by the sum
of all paired residues of the two compared sequences. Fixed
penalties for every gap are subtracted from the similarity
score with the similarity scores later converted to a distance
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Figure 1: ClustalW algorithm, which works by taking an input
of amino acid or nucleic acid sequences, completing a pairwise
alignment using the k-tuple method, guide tree construction using
theNeighbour-Joiningmethod, followed by a progressive alignment
to output a multiple sequence alignment.

score by dividing the similarity score by 100 and subtracting
it from 1.0 to provide the number of di�erences per site.

	en, all of the k-tuples between the 2 sequences are
located using a hash table. A dot matrix plot between the two
sequences is produced with each k-tuple match represented
as a dot. 	e diagonals with the most matches in the plot are
found and marked within a selected “Window Size” of each
top diagonal. 	is sets the most likely region for similarity
between the two sequences to occur. 	e last stage of the k-
tuple method is to 
nd the full arrangement of all k-tuple
matches by producing an optimal alignment similar to the
Needleman-Wunsch method but only using k-tuple matches
in the set window size, which gives the highest score. 	e
score is calculated as the number of exactlymatching residues
in the alignment minus a “gap penalty” for every gap that was
introduced.

3.1.2. Guide Tree Construction. ClustalW produces a guide
tree according to the “Neighbor-Joining” method. 	e NJ
method is o�en referred to as the star decompositionmethod
[48]. 	e NJ method keeps track of nodes on a tree rather
than a taxa (a taxonomic category or group, such as phy-
lum, order, family, genus, or species) or clusters of taxa.
	e similarity scores are used from the previous k-tuple
method and stored in a matrix. A modi
ed distance matrix
is constructed in which the separation between each pair
of nodes is adjusted by calculating an average value for
divergence from all other nodes. 	e tree is then built by
linking the least distant pair of nodes. When two nodes are
linked, their common ancestral node is added to the tree
and the terminal nodes with their respective branches are
removed from the tree. 	is process allows the conversion
of the newly added common ancestor into a terminal node
tree of reduced size. At each stage in the process, two terminal
nodes are replaced by one newnode.	eprocess is completed
when two nodes remain separated by a single branch. 	e
tree produced by the NJ method is un-rooted and its branch
lengths are proportional to divergence along each branch.
	e root is placed at the position at which it can make the

equal branch length on either side of the root. 	e guide tree
is then used to calculate weight for each sequence, which
depends on the distance frombranch to the root. If a sequence
shares a common branch with another sequence, then the
two or more sequences will share the weight calculated from
the shared branch, and the sequence lengths will be added
together and divided by the number of sequences sharing the
same branch.

3.1.3. Progressive Alignment. ClustalW’s progressive align-
ment uses a series of pairwise alignments to align sequences
by following the branching order of the guide tree previously
constructed by the NJ method. 	e procedure starts at the
tips of the rooted tree proceeding towards the root. At each
step, a full dynamic programming algorithm is used with a
residue weight matrix (BLOSUM) and penalties for opening
and extending gaps.

3.2. Clustal Omega. Clustal Omega is the latest MSA algo-
rithm from the Clustal family. 	is algorithm is used to
align protein sequences only (though nucleotide sequences
are likely to be introduced in time). 	e accuracy of Clustal
Omega on small numbers of sequences is similar to other
high-quality aligners; however, on large sequence sets, Clustal
Omega outperforms other MSA algorithms in terms of com-
pletion time and overall alignment quality. Clustal Omega is
capable of aligning 190,000 sequences on a single processor
in a few hours [21]. 	e Clustal Omega algorithm produces
a multiple sequence alignment by 
rstly producing pairwise
alignments using the k-tuplemethod.	en, the sequences are
clustered using the mBed method. 	is is followed by the k-
means clustering method. 	e guide tree is next constructed
using the UPGMA method. Finally, the multiple sequence
alignment is produced using the HHalign package, which
aligns two pro
le hidden Markov models (HMM) as shown
in Figure 2.

3.2.1. Pairwise Alignment. Pairwise alignment of Clustal
Omega is produced using the k-tuple method, the same
technique as employed by ClustalW, described earlier.

3.2.2. Sequence Clustering. A�er the similarity scores are
determined from the pairwise alignment, Clustal Omega
employs the mBed method which has a complexity of
�(� log�). mBed works by “emBedding” each sequence in
a space of � dimensions, where � is proportional to log�.
Each sequence is then replaced by an � element vector. Each
element is the distance to one of � “reference sequences.”
	ese vectors can then be clustered extremely quickly by
methods such as k-means or UPGMA [49].

3.2.3. k-Means Clustering. Clustal Omega uses the k-
means++ clustering method by Arthur and Vassilvitskii
[50]. 	e k-means method is a widely used clustering
technique which seeks to minimise the average squared
distance between points in the same cluster. 	is method is
very simplistic and fast at clustering sequences. k-means++
successfully overcomes the problems of de
ning initial
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Figure 2: Clustal Omega algorithm, which works by taking an input
of amino acid sequences, completing a pairwise alignment using the
k-tuple method, sequence clustering using mBed method, and k-
means method, guide tree construction using the UPGMAmethod,
followed by a progressive alignment using HHalign package to
output a multiple sequence alignment.

cluster centres for k-means and improves the speed and
accuracy of the k-means method [50].

3.2.4. Guide Tree Construction. Clustal Omega uses the
UPGMA method for sequence guide tree construction.
UPGMA is a straightforward method of tree construction
which uses a sequential clustering algorithm in which local
homology between operational taxanomic units (OTUs) is
identi
ed in order of similarity. 	e tree is constructed in
a stepwise fashion. Pairs of OTUs that are most similar are

rst determined and then are treated as a new single OTU.
Subsequently, from the new group of OTUs, the pair with
the highest similarity is identi
ed and clustered. 	is process
continues until only two OTUs remain [20].

3.2.5. Progressive Alignment. Clustal Omega uses the
HHalign package by Johannes Soding 2005 [51] for
completing progressive alignments. 	is method aligns
two pro
le hidden Markov models, instead of a pro
le-
pro
le comparison; this improves the sensitivity and
alignment quality signi
cantly. All sequence-pro
le and
sequence HMM comparison methods are based on the
log-odds score. 	e log-odds score is a measure for how
much more probable it is that a sequence is emitted by an
HMM rather than by a random null model.

3.3. T-Co�ee. T-Co�ee, which stands for tree-based con-
sistency objective function for alignment evolution, is

Weighting signal 
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Extension

Primary library

Extension library

Progressive 
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(local pairwise alignment)
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C

B

A

C
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C

C
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Figure 3: T-COFFEEdiagram. Steps involved in producingmultiple
sequence alignment by T-Co�ee method.

an iterative MSA algorithm. T-Co�ee provides a simple and
�exible means of producing multiple sequence alignments
by using heterogeneous data sources which are provided
to T-Co�ee via library of global and local pairwise align-
ments. In the progressive alignment, pairwise alignments
are completed 
rst in order to produce a distance matrix.
	is matrix is then used to produce a guide tree using
the Neighbour-Joining method. 	e tree is then used to
group the sequences together during the multiple sequence
alignment process. 	e closest two sequences on the tree are
aligned 
rst using normal dynamic programming method.
	e alignment uses weighting in the extended library as
shown in Figure 3. 	is is done in order to align the residues
in two sequences. 	e next two closest sequences suggested
by the guide tree or prealigned group of sequences are
always joined. 	is continues until all the sequences have
been aligned. To align two groups of prealigned sequences,
the scores from the extended library are used; however, the
average library scores in each column of existing alignment
are taken. T-Co�ee increases the accuracy of the alignments
5–10% in comparison to ClustalW; however, the algorithm
presents disadvantages such as weak scalability. T-Co�ee can
only align maximum 100 sequences without loss of accuracy
[52].
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3.4. MAFFT. Another good quality, highly accurate mul-
tiple sequence alignment is an algorithm called MAFFT.
MAFFT uses two novel techniques; 
rstly, homologous
regions are identi
ed by the fast Fourier transform (FFT).
In this method, the amino acid sequences are converted to
a sequence composed of volume and polarity values of each
amino acid residue. Secondly, a simpli
ed scoring system
is introduced which reduces CPU time and increases the
accuracy of alignments. MAFFT uses two-cycle heuristics,
the progressive method (FFT-NS-2) and iterative re
nement
method (FFT-NS-i). In the (FFT-NS-2) method, low-quality
all-pairwise distances are rapidly calculated, a provisional
MSA is constructed, re
ned distances are calculated from the
MSA, and then the second method (FFT-NS-i) is performed.
(FFT-NS-i) is a one cycle progressive method; it is faster and
less accurate than the FFT-NS-2. Part tree option is available
to alignments of ∼50,000 sequences, and this method allows
scalability [53].

3.5. Kalign. Kalign is yet another good quality multiple
sequence alignment algorithm.	e algorithm follows a strat-
egy that is very similar to the standard progressive methods
for sequence alignments, such as pairwise distances which
are calculated 
rstly by using k-tuple method adopted from
ClustalW.	e guide tree is constructed using either UPGMA
or Neighbour-Joining method, and progressive alignment is
completed by following the guide trees. In contrast to the
existing methods, what makes this algorithm di�erent is the
use of Wu-Manber approximate string-matching algorithm.
	is method is used in the distance calculation and in the
dynamic programing used to align the pro
les. 	is method
allows string matching with mismatches. Also, the distances
between two strings are measured using Levenshtein edit
distance.

3.6. MUSCLE. MUSCLE stands for multiple sequence com-
parison by log expectation. MUSCLE uses two distance
measures, kmer distance for unaligned pairs of sequences
and the Kimura distance method for aligned pairs of
sequences. Guide trees are produced using UPGMAmethod.
A progressive alignment is then constructed following the
order of the guide tree. 	is process produces an initial
multiple sequence alignment. 	e program carries out stage
two which is completed in order to improve the progres-
sive alignment. 	e initial guide tree is reestimated using
Kimura distance method, and this method is known to be
much more accurate than kmer, and however it requires an
alignment. Once the distances are computed, the UPGMA
method reclusters the sequences producing second guide
tree. A progressive alignment is calculated following second
tree, producing second multiple sequence alignment. A new
multiple sequence alignment is produced using both the

rst multiple sequence alignment and the second one. New
multiple sequence alignment is produced by realigning the
two pro
les. If the SP score is improved on the second MSA,
then the new alignment is kept and the old is discarded;
otherwise, it is deleted and the 
rst alignment is used
[20].

4. Cloud Computing Technologies for
the MSA Problem

In order to realise the promise of MSA for large-scale
sequence data sets, it is necessary for existingMSAalgorithms
to be executed in a parallelised fashion with the sequence
data distributed over a computing cluster or server farm.
High performance computing has become very important
in large-scale data processing. 	e message passing interface
(MPI) and graphics processing unit (GPU) are the primal
programming APIs for parallel computing. In recent years,
cloud computing has received signi
cant attention, though
many di�erent de
nitions of the technology exist. As an
o�en mistakenly used analogy for the Internet or anything
“online,” the “cloud” is a familiar buzzword. Alternatively,
some analysts tend to provide a very narrow de
nition of
cloud computing as an updated version of utility computing
[54]. While such a de
nition is not inaccurate, it does
not describe the whole picture. A more precise de
nition
is provided by the National Institute of Standards and
Technology (NIST) who describe it as “a pay-per-use model
of enabling available, convenient and on-demand network
access to a shared pool of con	gurable computing resources
that can be rapidly provisioned and released with minimal
management e�ort or service provider interaction” [48]. 	e
term cloud computing was cocoined by an Irish entrepreneur
Sean O’Sullivan, cofounder of Avego Ltd., along with George
Favaloro from Boston, Massachusetts [55]. It should be
noted that while cloud computing is a recent technology,
some of the concepts behind cloud computing are not new,
such as distributed systems, grid computing, and parallelised
programming. Cloud services remove the need for the user
to be in the same physical location as the hardware that stores
its data and/or applications. 	e cloud can do both, own and
store the hardware and the so�ware needed for a user to
run their applications or processes. Truly, one of the biggest
enablers of cloud computing is the virtualisation technology.
Virtualisation is a layered approach for running multiple
independent virtual machines (VM) on a single physical
machine, sharing the resources yet running on its own
operating systems and applications [49].	e concept of virtu-
alisation can be applied to devices, servers, operating systems,
applications, and networks. Virtualisation is bene
cial due to
providing easy access to data, the ability to share applications
from central environment, and it reduces the cost associated
with data backups, maintenance personnel, and so�ware
licensing [56]. A virtual machine (VM) is a piece of so�ware
that runs on a local machine emulating the properties of a
computer. 	e emulator provides a virtual central processing
unit (CPU), network card, and hard disk. Popular products
such asVMware [57] andKVM[58] provide virtualmachines
to customers. 	e di�erences between traditional and virtual
server models can be seen in Figure 4.

Cloud computing is an information technology disci-
pline, which provides computing, such as the necessary
storage space and processing power, on demand and as a
service. Such a “rental” model is o�en referred to as Infras-
tructure as a Service (IaaS) or utility computing. However,
another aspect of cloud computing is Platform as a Service
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Figure 4: Transition from traditional computing where applications interact with the hardware via one instance of the operating system (OS)
to virtualised computing where multiple OS images share the hardware resources.

Table 2: Cloud computing deployment models.

Deployment
model

Description

Public

A cloud infrastructure that is owned by a cloud
provider, who made resources such as
infrastructure, so�ware, and platform available to
general public for “pay-per-use” basis, via
Internet.

Private
A cloud which is owned and used by a single
organisation. 	is model provides more security
measures in comparison to other models.

Community
A cloud which is shared amongst several users or
organizations.

Hybrid
A cloud that is a combination of public,
community, and private clouds.

(PaaS) which allows users to build so�ware applications
by building on so�ware libraries or development platforms
already developed by the cloud provider. Another enabler
includes advances in “Big Data” technologies that have
realised the potential of distributed systems, grid computing,
and parallelised programming enabling developers to focus
on solving the problem at hand rather than maintaining
the robustness of the distributed system and the parallelised
programming structure. 	e negative consequences caused
by a failure of a single machine in a distributed system have
been eliminated by improving the overall distributed systems
structure [59]. Cloud computing provides four deployment
models. Selecting a deployment model depends on the users,
organisations requirements according to their suitability, as
shown in Table 2.

In order to use cloud computing services, one require-
ment has to be met, which is Internet connection. Clouds are
accessed via the Internet which is of bene
t; it enables users
or organisations to access their stored data, to download or
upload data at any given time or place through any device
which has wireless or wired Internet connection.

Cloud computing is o�en considered to provide only
rental of computing storage and power; however, cloud
computing provides many service models according to an
“XaaS” paradigm, representing “X as a Service,” “Anything as
a Service,” or “Everything as a Service.” 	e acronym refers
to an increasing number of services that are provided over
the Internet rather than the local services. XaaS is the essence
of cloud computing. 	e primary service models of cloud
computing are So�ware as a service (SaaS), Infrastructure as
a service (IaaS) and Platform as a service (PaaS) as illustrated
in Figure 5.

4.1. Infrastructure as a Service (IaaS). An IaaS provider allows
subscribed users to completely outsource the storage and
resources, such as hardware and so�ware that the user may
require. IaaS companies provide o�site servers, storage, and
also networking hardware which users can rent and access on
demand. An IaaS service o�ers bene
ts to users such as no
maintenance, no up-front capital costs, 24/7 accessibility to
applications and data, and elastic infrastructure that allows
the user to scale up and down on demand [60]. IaaS is
o�en referred to as “elastic computing” as a consequence of
this ability to scale up and down on demand. As seen in
Figure 5, users maintain signi
cant management capability
when it comes to this service model.	e user can create their
own VM, with a speci
c operating system and applications.
	is can be custom built or chosen from an IaaS catalogue.
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Figure 5: Cloud computing service models: Infrastructure as a
Service (IaaS), Platformas a Service (PaaS), and So�ware as a Service
(SaaS). 	is 
gure highlights the functionality provided by the
vendor to the user which largely depends on the user’s requirements.

Some of the leading companies in the IaaS space include
AmazonWeb Services (AWS) [61],Microso� [62], Rackspace
[63], and VMware [57]. Amazon Web Services (AWS) is the
leading IaaS provider, widely recognized for providing the
most reliable, scalable, cost-e�cient, and user friendly web
infrastructure. In 2011, alone the company has earned $6
billion based on providing public cloud services. Examples
of the services o�ered by AWS are Amazon Elastic Compute
Cloud (EC2), Amazon Simple Storage Service (S3), Amazon
SimpleDB, Amazon Simple Queue Service (SQS), Amazon
Simple Noti
cation Service (SNS), Amazon CloudFront, and
Amazon Elastic MapReduce (EMR).

Bioinformaticians use IaaS for building databases, storing
data, and in developing a pipeline for comparative analysis
on various genes and/or proteins. 	ey can now also access
databases through AWS, who have started to provide bioin-
formatics data sets in their publically hosted datasets such as
Ensembl [64] and Genbank [65].

4.2. So
ware as a Service (SaaS). SaaS refers to cloud based
delivery of so�ware applications which are hosted by cloud
providers. SaaS eliminates the need to install so�ware locally
on computers with the user instead accessing so�ware via
the Internet. 	e vendors own the applications and the users
may pay a subscription fee to access them via a VM, where
all the applications are installed, without the necessity for
the user to have a physical copy of the so�ware installed
on their own device. SaaS providers run and maintain
all necessary hardware and so�ware. One of the top SaaS
providers, Salesforce.com, o�ers on-demand customer rela-
tionship management (CRM) so�ware solutions built on

its own infrastructure. Salesforce.com does not sell licence
for this so�ware, instead it charges a monthly subscription
fee starting from $65 per user per month and delivers this
so�ware directly to users via Internet [66]. 	e Economist
estimates that the market for SaaS is growing at 50% each
year [67]. SaaS vendors have a complete management control
of applications, O/S, Runtime, VM, and Servers as shown in
Figure 5; however, as a user is simply using the so�ware and
does not require control over the OS, and this model is not
restrictive and meets the user’s requirements.

An example of SaaS used in bioinformatics is Cloud
BioLinux, which was developed at the J. Craig Venter Insti-
tute. Cloud BioLinux is a publicly accessible Virtual Machine
(VM)which o�ers an on-demand, cloud computing solutions
for the bioinformatics 
eld. Users have access to a range of
precon
gured command line and graphical so�ware appli-
cations, documentation, and more than 135 bioinformatics
tools for applications such as sequence alignments, clustering,
tree construction, editing, and phylogeny. Cloud BioLinux is
stored onAmazon EC2 and is freely available to its users [49].

4.3. Platform as a Service (PaaS). PaaS providers allow
subscribed users to access the components that are required
for the user to develop or operate applications. 	ese PaaS
systems are web-based application development platforms,
providing either end-to-end or partial environments for
implementing full programs/algorithms online.	is includes
tasks such as editing code, debugging, deployment, and run-
time. As seen in Figure 5, users can build the application with
the vendor’s on-demand tools and collaborative development
environment. 	e bene
ts of PaaS include the elimination
of complex evaluation, con
guration, and management and
cost reduction in buying, updating, and maintaining of all
hardware and so�ware needed for custom built applications
[68]. PaaS also saves time and resources, that is, no need
to reinvent the wheel; developers simply build more com-
plex systems using existing platforms. Some of the biggest
PaaS platforms today are Google App Engine, Microso�
Azure, and MapReduce/Hadoop. Google App Engine was

rst released in 2008 and is used for developing and hosting
web applications. First created by Google in order to process
vast amounts of data, MapReduce is a programming model
and an implementation for storing and processing large data
sets. Using the MapReduce paradigm, the user speci
es a
map function which analyses data with the reduce function
merging all the results associated with the values from the
map phase [69].

One such PaaS technology, Hadoop and Map/Reduce,
driven by big data, distributes the data over commodity
hardware and provides parallelised processing and analytics.
MapReduce developed by Google is a general purpose, rela-
tively easy-to-use parallel programmingmodel that is perfect
for carrying out analysis of large data sets on commodity
hardware clusters. Additionally, Apache Hadoop is a so�ware
framework that implements the distributed processing of
big data sets across cluster farms based on the MapReduce
model. With the combination of MapReduce and Hadoop
Distributed File System (HDFS), Hadoop intends to enable
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Table 3: Related so�ware and projects on MapReduce.

Projects Description

Avro A data serialization system. URL: http://avro.apache.org/

Cassandra
A highly scalable, consistent, distributed, and structured multimaster database. URL:
http://cassandra.apache.org/

Chukwa
An open source data collection system for monitoring large distributed systems. URL:
http://incubator.apache.org/chukwa/

Dryad
An infrastructure which allows the use of resources of a computer cluster for running data-parallel programs.
URL: http://research.microso�.com/en-us/projects/dryad/

Hadoop Common 	e common utilities that support the other Hadoop subprojects. URL: http://hadoop.apache.org/

Hadoop MapReduce
A programming model and an associated implementation for processing and generating large data sets. URL:
http://research.google.com/archive/mapreduce.html

HaLoop
A modi
ed version of the Hadoop MapReduce framework, which supports iterative applications by making the
task scheduler loop-aware and by adding various catching mechanisms. URL:
https://code.google.com/p/haloop/

HBase A Hadoop database, a distributed, scalable big data store. URL: http://hbase.apache.org/

HDFS
Hadoop Distributed File System is a distributed 
le system designed to run on commodity hardware. URL:
http://hadoop.apache.org/docs/r1.0.4/hdfs design.html

Hive
A data warehouse system for Hadoop that facilitates data summarization and ad hoc queries. URL:
http://hive.apache.org/

Mahout
A scalable machine learning and data mining library.
URL: http://mahout.apache.org/

MapR
A complete distribution for Apache Hadoop and HBase that includes Hive, Mahout, Pig, Cascading, and many
other projects. URL: http://www.mapr.com/

Pig
A platform for analysing large data sets that consists of high-level language for expressing data analysis
programs. URL: http://pig.apache.org/

Pregel A system for large-scale graph processing. URL: http://kowshik.github.com/JPregel/pregel paper.pdf

Twister
A support for iterative MapReduce computations.
URL: http://www.iterativemapreduce.org/

YARN
Next Generation Apache Hadoop MapReduce Framework. URL:
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

ZooKeeper A high-performance manager for distributed applications. URL: http://hadoop.apache.org/zookeeper/

reliable, scalable, and distributed computing. Hadoop [94]
was initiated by Doug Cutting, who worked on the Apache
Nutch project (Hadoop is named a�er his son’s toy, a stu�ed
yellow elephant). It has been designed to scale out from as
little as one server to thousands of machines each o�ering
local computation and storage. One of the biggest advantages
of Hadoop is speed, being able to process data stored in
billions of records, overnight, a process which would have
taken several weeks to process [95]. Apache o�ers other
projects similar to Hadoop, these include HBase, HaLoop,
Chukwa, Cassandra, Hive, Mahout, Pig, ZooKeeper, and
others as outlined in Table 3.

Such technology provides a scalable and cost-e�cient
solution to the big data challenge. Recent years have shown
a massive increase in the size of biological data sets and the
growth of new, highly �exible on-demand computing tech-
nologies. 	e data from genomic, proteomic, and metage-
nomic sequencing projects are increasing at exponential
rates, providing information for widening the overall insight
of genomes and proteins; however, it is also introducing
new challenges such as need for increased storage space,
higher power computation, and large data analysis. Cloud
computing resources have the potential to aid in solving

these problems, by o�ering a utility model of computing and
storage, such as almost unlimited storage capacity, anytime
usage, and cheap �exible payment models. E�ective use of
cloud computing on large biological datasets requires dealing
with nontrivial problems of scale and robustness, since
performance-limiting factors can change substantially when
a dataset grows. New computing paradigms are thus o�en
needed. 	e use of cloud platforms also creates new oppor-
tunities to make data widely available and share it amongst
di�erent research laboratories by uploading data to the cloud.
CloudWeb services such as Amazon Elastic Compute Cloud
(EC2) and Amazon Elastic MapReduce are commercially
available, but there are also clouds that provide free service;
IBM/Google Cloud Computing University Initiative and the
United States Department of Energy’s Magellan provide free
services, so the users can upload their data by using a web
interface, and then they can perform all of their operations
on a remote client webpage.

A case in point is Amazon Web Services (AWS) which
provides a centralized repository of public data sets, includ-
ing archives of GenBank, Ensembl, 1000 Genomes, Model
Organism Encyclopedia of DNA Elements, Unigene, and
In�uenza Virus. As a matter of fact, AWS contains multiple
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public datasets for a variety of scienti
c 
elds, such as
biology, astronomy, chemistry, climate, and economics [96].
All public datasets in AWS are delivered as services and
therefore can be easily integrated into cloud-based applica-
tions. Also, using cloud platforms would reduce duplication
and provide easy reproducibility by making the sequence
datasets and computational methods easily available [97]. Big
data technology algorithms are increasing on monthly bases,
facilitating di�erent functional sequence analysis, as outlined
in Table 4.

4.4. Cloud-Based MSA-Next-Generation MSA. 	e multi-
ple sequence alignment algorithms certainly need to be
improved in order to be able to handle large amounts of
DNA/RNA/protein sequences andmost importantly produce
multiple sequence alignments of high quality. At themoment,
the only algorithm able to handle as much as 190,000
sequences is Clustal Omega, which even at that takes a
few hours on a single processor to produce an alignment
of all the sequences. In a recent study by Sievers et al.,
2013, 18 standard automated multiple sequence alignment
packages were compared with the main focus being on how
well they scaled, aligning from 100 to 50,000 sequences.
It was found that most of the algorithms, for example, T-
Co�ee, PSAlign, Prank, FSA, andMummals, did not produce
alignments above 100 sequences. Some of the algorithms
produced alignment of max 1,000 sequences; these were
Probcons, MUSCLE, MAFFT, ClustalW, and MSAProbs.
Finally, the onlyMSAalgorithms that completed alignment of
50,000 sequences were Clustal Omega, Kalign, and Part-Tree.
Furthermore, it was noted that the quality of the alignment
for each of the algorithms decreased progressively as the
number of sequences increased [52]. 	is could possibly be
explained by the nature of progressive alignments, which are
heuristic in nature, therefore introducing noise and mistakes
at the start of the alignment. 	e main concerns with scaling
up and producing MSA of large sets of sequences are the
computational complexity, the time it takes to produce the
alignment and the accuracy of the 
nal alignment. Also, at
present, there are no systematic benchmarks tests that can
handle testing alignments of massively increasing number
of sequences; therefore, new benchmarks must be developed
due to the fact that new algorithms are created on monthly
bases and soon will be able to align massive numbers of
sequences.

By employing big data technologies and cloud comput-
ing projects, the aim would be to develop an improved
version of Clustal Omega which could produce alignments
of very large data sets and in a shorter time frame than
the original Clustal Omega algorithm. Also, other popular
multiple sequence alignments could possibly be recoded,
so it could complete MSA algorithm over a cluster of
machines in a distributed, parallelised way by using the
Hadoop/MapReduce framework. An example of multiple
sequence alignment that is optimized in the cloud is the
FASTA algorithm published by Vijaykumar et al. in 2012.
	is study presents an implementation of the FASTA algo-
rithm built on the Hadoop/MapReduce framework andMPP
Database. In this experiment it was observed that the time

taken for sequence alignment increased as the number of
sequences also increased. However, the experiment also
showed that as the number of nodes increased the number
of alignments that was executed in parallel also increased,
resulting in a time decrease for alignment completion [98].
	is proves the theory of parallelization and the use of
the cloud computing technologies for improving multi-
ple sequence alignment tools. Parallel, distributed multiple
sequence alignments in the cloud is likely our only real
means of keeping pace with today’s sequence tsunami and
will ultimately aid in the discovery of novel genes, entire
metabolic pathways, novel proteins and potentially medically
valuable end-products from the global metabolome [99].	e
implication of such scalable worldwide analysis and sharing
of data sets is enormous in that it will not only change lives
but may also save them.

Conflict of Interests

No potential con�ict of interests was disclosed.

Acknowledgment

Jurate Daugelaite is funded under the Embark Initiative by an
Irish Research Council (IRC) Grant RS/2012/122. Aisling O’
Driscoll and Dr. Roy D. Sleator are Principal Investigators on
ClouDx-i an FP7-PEOPLE-2012-IAPP project.

References

[1] C. Kemena and C. Notredame, “Upcoming challenges for
multiple sequence alignment methods in the high-throughput
era,” Bioinformatics, vol. 25, no. 19, pp. 2455–2465, 2009.

[2] R. C. Edgar and S. Batzoglou, “Multiple sequence alignment,”
Current Opinion in Structural Biology, vol. 16, no. 3, pp. 368–
373, 2006.

[3] C. Notredame, “Recent evolutions of multiple sequence align-
ment algorithms,” PLoS Computational Biology, vol. 3, no. 8,
article e123, 2007.

[4] Human Genome Project Information, 2013, http://web.ornl
.gov/sci/techresources/Human Genome/home.shtml.

[5] “Home, 1000 Genomes,” 2013, http://www.1000genomes.org/.

[6] G. K. C.O. Scientists, “Genome 10K: a proposal to obtainwhole-
genome sequence for 10, 000 vertebrate species,” Journal of
Heredity, vol. 100, no. 6, pp. 659–674, 2009.

[7] 454 Life Sciences, a Roche Company, 2013, http://www
.454.com/.

[8] Illumina, Inc, 2013, https://www.illumina.com/.

[9] SOLiDTM 4 System, 2013, http://www.appliedbiosystems.com/
absite/us/en/home/applications-technologies/solid-next-
generation-sequencing/next-generation-systems/solid-4-
system.html?CID=FL-091411 solid4.

[10] H. Li and N. Homer, “A survey of sequence alignment algo-
rithms for next-generation sequencing,” Brie	ngs in Bioinfor-
matics, vol. 11, no. 5, pp. 473–483, 2010.

[11] SourceForge.net: jnomics, 2013, http://sourceforge.net/apps/
mediawiki/jnomics/index.php?title=Jnomics.

[12] C. B. Do and K. Katoh, “Protein multiple sequence alignment,”
Methods in Molecular Biology, vol. 484, pp. 379–413, 2008.



12 ISRN Biomathematics

[13] R. C. Edgar, “MUSCLE: a multiple sequence alignment method
with reduced time and space complexity,” BMC Bioinformatics,
vol. 5, article 113, 2004.

[14] S. B. Needleman and C. D. Wunsch, “A general method appli-
cable to the search for similarities in the amino acid sequence
of two proteins,” Journal of Molecular Biology, vol. 48, no. 3, pp.
443–453, 1970.

[15] T. F. Smith and M. S. Waterman, “Identi
cation of common
molecular subsequences,” Journal of Molecular Biology, vol. 147,
no. 1, pp. 195–197, 1981.

[16] I. M. Wallace, G. Blackshields, and D. G. Higgins, “Multiple
sequence alignments,” Current Opinion in Structural Biology,
vol. 15, no. 3, pp. 261–266, 2005.

[17] K. Katoh and H. Toh, “Recent developments in the MAFFT
multiple sequence alignment program,” Brie	ngs in Bioinfor-
matics, vol. 9, no. 4, pp. 286–298, 2008.

[18] D.-F. Feng and R. F. Doolittle, “Progressive sequence alignment
as a prerequisitetto correct phylogenetic trees,” Journal of
Molecular Evolution, vol. 25, no. 4, pp. 351–360, 1987.

[19] W. J. Wilbur and D. J. Lipman, “Rapid similarity searches of
nucleic acid and protein data banks,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 80, no.
3, pp. 726–730, 1983.

[20] R. C. Edgar, “MUSCLE: multiple sequence alignment with high
accuracy and high throughput,” Nucleic Acids Research, vol. 32,
no. 5, pp. 1792–1797, 2004.

[21] F. Sievers, A. Wilm, D. Dineen et al., “Fast, scalable generation
of high-quality protein multiple sequence alignments using
Clustal Omega,” Molecular Systems Biology, vol. 7, article 539,
2011.

[22] N. Saitou and M. Nei, “	e neighbor-joining method: a new
method for reconstructing phylogenetic trees,” Molecular Biol-
ogy and Evolution, vol. 4, no. 4, pp. 406–425, 1987.

[23] I. Gronau and S.Moran, “Optimal implementations of UPGMA
and other common clustering algorithms,” Information Process-
ing Letters, vol. 104, no. 6, pp. 205–210, 2007.

[24] J. D. 	ompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL
W: improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, position-speci
c gap
penalties and weight matrix choice,”Nucleic Acids Research, vol.
22, no. 22, pp. 4673–4680, 1994.

[25] K. Katoh and D. M. Standley, “MAFFT multiple sequence
alignment so�ware version 7: improvements in performance
and usability,” Molecular Biology and Evolution, vol. 30, no. 4,
pp. 772–780, 2013.

[26] T. Lassmann and E. L. L. Sonnhammer, “Kalign—an accurate
and fast multiple sequence alignment algorithm,” BMC Bioin-
formatics, vol. 6, article 298, 2005.

[27] U. Roshan and D. R. Livesay, “Probalign: multiple sequence
alignment using partition function posterior probabilities,”
Bioinformatics, vol. 22, no. 22, pp. 2715–2721, 2006.

[28] B. Morgenstern, “DIALIGN: multiple DNA and protein
sequence alignment at BiBiServ,”Nucleic Acids Research, vol. 32,
supplement 2, pp. W33–W36, 2004.
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