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This review is intended to provide a broad outline of the biological and molecular functions
of MYC as well as of the larger protein network within which MYC operates. We present a
view of MYC as a sensor that integrates multiple cellular signals to mediate a broad tran-
scriptional response controlling many aspects of cell behavior. We also describe the larger
transcriptional network linked to MYC with emphasis on the MXD family of MYC antago-
nists. Last, we discuss evidence that the network has evolved for millions of years, dating back

to the emergence of animals.

A BRIEF HISTORY OF MYC

Retroviral Origins

he history of MYC parallels the discovery of
Tother major oncogenes in that it arose from
studies on retroviruses associated with animal
cancers. The experiments of Ellermann and
Bang, and of Rous at the turn of the 20th cen-
tury, demonstrating that chicken leukemias and
sarcomas are transmissible through cell-free fil-
trates, were largely dismissed by the scientific
community (Ellermann and Bang 1908; Rous
1911). Yet over the next 50 years, continuing
reports of cell-free tumor transmission, as well
as the direct isolation of viruses from tumors,
eventually established the principle that many
high-incidence animal tumors arise subse-
quent to viral infection (for a review, see Weiss
et al. 1982). During the 1960s and 1970s four
distinct retroviruses (MH-2, MC29, CMII, and
OK10) were isolated from avian neoplasms and
shown to be capable of transforming mono-

cytes/macrophages in vitro, and inducing my-
elocytomas, endotheliomas, and kidney and liv-
er tumors in chickens (Mladenov et al. 1967;
Graf and Beug 1978). The grouping of these
four viruses based on their transforming prop-
erties turned out to be propitious in that mo-
lecular analyses eventually revealed that they
possess a common genetic element closely cor-
related with cell transformation, but not related
to virus structural genes nor present in other
transforming retroviruses (Sheiness et al. 1978;
Bister and Duesberg 1979; Duesberg and Vogt
1979; Hu et al. 1979). Furthermore, deletions
within this element crippled the transforming
activity of the retrovirus (Ramsay et al. 1980;
Bister et al. 1982). This unique viral oncogene
was called v-myc, for myelocytomatosis (con-
tending names were mcv and mac), and was
shown to be acquired from a highly conserved
cellular gene denoted c-myc (referred to here as
MYC) (Roussel et al. 1979; Sheiness and Bishop
1979).
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Association of MYC with Tumorigenesis

The link between MYC and cancer was greatly
strengthened by the discovery that avian leu-
kosis virus (ALV)-induced B-cell lymphomas
consistently contained retroviral insertions in
the vicinity of the MYC gene (Hayward et al.
1981). Unlike the v-myc-containing retroviruses
described above, the ALV genome lacks any on-
cogenic sequences. However in a small subset of
ALV integration sites within the host genome,
the retroviral enhancer /promoter was found to
be inserted proximal to the MYC locus, result-
ing in MYC overexpression and deregulation
(Fig. 1) (Payne et al. 1982). Therefore, the on-
cogenic properties of MYC are not only mani-
fested by the retroviral-transduced v-myc but
can also occur as a consequence of viral pertur-
bation of the cellular MYC gene. Within the
following year it became clear that the cellular
MYC gene is complicit in neoplasms that lack
any retroviral involvement. Consistent chromo-
somal translocations involving immunoglobu-
lin (Ig) genes had been previously reported in
both mineral oil plasmacytomas in mice and in
human Burkitt’s lymphomas. These transloca-
tions were then shown to juxtapose rearranged
Ig sequences with non-Ig sequences at the trans-
location breakpoints, and it was quickly estab-
lished that the non-Ig sequences originated

from a rearranged MYC locus (Dalla-Favera
et al. 1982a; Shen-Ong et al. 1982; Taub et al.
1982). That MYC is crucial for the genesis of
B-cell lymphomas was shown through the pro-
duction of transgenic mice carrying an Ig en-
hancer linked to MYC (Ep-MYC mice) that rap-
idly develop aggressive B-cell lymphomas with
high penetrance (Adams et al. 1985).

The consistent association uncovered in the
1980s between hematopoietic neoplasms and
MYC gene alterations owing to retroviruses
and chromosomal translocations turned out
to only be the tip of the iceberg. MYC gene
amplification had initially been reported in a
myeloid leukemia cell line (Collins and Grou-
dine 1982; Dalla-Favera et al. 1982b) and was
soon shown to also occur in colon carcinomas
(Alitalo et al. 1983). Moreover, analysis of neu-
roblastomas, a frequent childhood solid tu-
mor arising from the peripheral nervous system,
revealed gene amplifications in a MYC para-
log that was designated N-myc (herein MYCN)
(Kohl et al. 1983; Schwab et al. 1983). The am-
plification of MYCN in neuroblastomas was
associated with poor clinical outcome (Brodeur
et al. 1984). Another MYC family member,
L-myc (MYCLI), was found to be amplified in
small cell lung carcinomas (Nau et al. 1985).
Therefore all three vertebrate MYC family genes
(MYC, MYCN, and MYCLI) are linked to the

MYC locus
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Figure 1. Genetic rearrangements associated with the MYC locus in diverse cancers ( partial list).
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etiology of human cancers. Figure 1 summarizes
several modes of MYC gene family deregulation.
The initial findings during the 1980s of tu-
mor-related genetic alterations in MYC gene
family members opened the gates to a veritable
flood of further studies that have served to firmly
establish an extraordinarily pervasive link be-
tween MYC functions and the generation, pro-
gression, and maintenance of a wide range of
neoplasms (for reviews, see Nesbit et al. 1999;
Vita and Henriksson 2006; Beroukhim et al.
2010). Arguably, deregulation of MYC family
genes underlies the etiology of all cancers.
The predominant alterations, such as viral inser-
tional events, chromosomal translocations, and
gene amplifications that occur in tumor-associ-
ated MYC rarely disrupt or mutate its protein-
coding sequences (Fig. 1). This is in contrast to
many other oncogenes such as Src, Ras, and Abl
in which mutations or deletions within autoin-
hibitory protein domains alleviate inhibition
and trigger oncogenic activity. The overarching
theme in MYC deregulation appears to be events
that uncouple MYC expression from its normal
regulatory constraints, frequently resulting in
high levels of MYC expression coupled with an
inability to modulate this expression in response
to normal cellular and extracellular signals. It is
important to note that, in addition to the dra-
matic cancer-associated rearrangements occur-
ring directly at the MYC locus, polymorphisms
in DNA sequences distal to MYC are known to
exertlong-range effects on MYC regulation (Was-
serman et al. 2010; Wright et al. 2010; Sur et al.
2012; see Cole 2014). Moreover, aberrant MYC
expression can result from defects in signal-trans-
duction pathways that activate or repress MYC
family gene expression at the transcriptional
and posttranscriptional levels (Fig. 2). Among
the pathways that heighten MYC expression and
are frequently mutated in cancers are Wnt-[3-cat-
enin, Sonic hedgehog-Gli, and Notch. For re-
views on the role of MYC family genes in neopla-
sia, see Huang and Weiss (2013), Kuzyk and Mai
(2014), Roussel and Robinson (2013), Gabay
et al. (2014), and Schmitz et al. (2014). Thera-
peutic approaches to cancer through inhibition
of MYC activity are reviewed in Bradner (2014),
Gabay et al. (2014), and Cermelli et al. (2014).

Overview of MYC and Its Interactome

MYC-ENCODED PROTEINS

In 1977, an avian cell line transformed by the
v-myc-containing retrovirus MC29 was found
to produce an unusual viral-related protein of
110,000 kDa (Bister et al. 1977). This protein
represented the fusion of a truncated retrovirus
core protein precursor with the MYC protein
(Mellon et al. 1978; Rettenmier et al. 1979). At
the time, all retroviral oncoproteins were known
to be localized to the cytoplasm or the plasma
membrane. Therefore, it was something of a
surprise to find the MC29 virus MYC-contain-
ing protein predominantly localized to the cell
nucleus (Abrams et al. 1982; Donner et al. 1982;
Hann et al. 1983). Later work showed that all
cellular MYC family proteins are also nuclear.
These early studies suggested MYC to be rather
unique among retroviral oncoproteins and
pointed to a potentially direct involvement in
gene regulation and nuclear function. Subse-
quently, a large number of distinct oncoproteins
were discovered to be localized to the nucleus
and, like MYC, involved in transcription (e.g.,
MYB, FOS, and JUN).

MYC Protein Organization

The overall organization of MYC proteins is
similar among MYC paralogs and, to a lesser
extent, its orthologs throughout evolution. As
diagrammed in Figure 3A for human MYC, the
439 amino acid protein sequence contains sev-
eral highly conserved regions that are function-
ally important. These regions are organized in
roughly the same way in the MYCN and MYCL1
proteins, whereas many of the sequences outside
of the conserved regions are divergent among
the three paralogs. In broad terms, MYC pro-
teins can be thought of as possessing (1) a large
unstructured amino-terminal region contain-
ing the conserved regions known as MYC boxes
(MBI, MBII) involved in transcriptional activa-
tion; (2) a middle segment rich in proline, glu-
tamic acid, threonine, and proline residues
(PEST) as well as two conserved MYC boxes
(MBIII and MBIV), and a nuclear localization
sequence; and (3) an ~100-amino-acid carboxy-
terminal region comprising the basic helix-
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Figure 2. The MYC pathway. Diagrammed is a partial list of environmental signals that lead to changes in MYC
expression. The several levels at which MYC, RNA, and MYC protein are known to be regulated are indicated.
Cellular readouts related to transcriptional and nontranscriptional activities ascribed to MYC protein are listed.

loop-helix leucine zipper (bHLHZ) domain.
MYC family proteins and the other proteins
in the extended network (see Fig. 5) form a re-
lated subgroup within the much larger class of
bHLHZ transcription factors (see below) (Las-
sar et al. 1989; Murre et al. 1989; Skinner et al.
2010).

MYC Heterodimerization and DNA Binding

Dimerization among proteins of the bHLHZ
class is typically mediated through the two
HLHZ interfaces, which interact to form a stable
four-helix bundle. The resulting dimer specifi-
cally binds DNA through formation of induced-
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fit helices by the basic regions that straddle the
DNA double helix and make specific base con-
tacts within the major groove of DNA (Ferre-
D’Amare et al. 1993, 1994). In the case of MYC,
homodimerization does not occur under phys-
iological conditions, but a highly specific inter-
action with the small bHLHZ protein named
MAX results in stable heterodimer formation
with specific DNA-binding activity (Figs. 3C
and 4) (Blackwood and Eisenman 1991; Black-
wood et al. 1992; Nair and Burley 2003). Heter-
odimerization with MAX is essential for MYC

Cite this article as Cold Spring Harb Perspect Med 2014;4:a014357

Figure 3. MYC, MNT, and MAX protein organization. Schematic representation of human: (A) MYC protein
with its major domains and interacting partners. In blue are major functionally characterized transcriptional-
binding partners of MYC, and in yellow major E3 ligases involved in MYC turnover. (B) MNT, as a representative
of MXD family proteins. (C) MAX protein. Alternative splicing generates several MAX isoforms. The predom-
inantly expressed MAX proteins (151 and 160 residues in length) differ by a nine-amino-acid segment proximal
to the amino terminus (shaded box). In addition, in AMAX, the carboxy-terminal 61 amino acids (including the
last leucine in the HLHZip) are replaced by five residues before terminating within an alternative exon. Also
indicated are casein kinase IT (CKII) phosphorylation sites that block Max homodimerization, but not hetero-
dimerization with MYC. MB, MYC boxes; SID, SIN3-interacting domain (see O’Shea and Ayer 2013 for

association with E-box DNA sequences (5'-
CACGTG-3’) and stimulation of transcription
at promoter-proximal E boxes (Kretzner et al.
1992; Amati et al. 1993). Furthermore, the
MYC-MAX dimeric HLHZ region presents a
large solvent-accessible surface area (~1000 A)
forming a platform for binding by other factors,
such as Miz-1 and SKP2 (Peukert et al. 1997;
Cheng et al. 1999; Nair and Burley 2003; von
der Lehr et al. 2003). The structural studies in-
dicate that MYC-MAX bHLHZ dimers can oli-
gomerize to form tetramers (Nair and Burley
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Figure 4. X-ray structures of (left) MYC—MAX (PDB: 1NKP), and (right) MXD1-MAX (PDB: INIW) bHLHZ
dimers bound to E-box (5'-CACGTG-3") DNA sequences at 19-nm and 20-nm resolution, respectively (Nairand
Burley 2003). (Image created with the PYMOL Molecular Graphics System, Version 1.5.0.4, Schrédinger, LLC.)

2003) but the physiological relevance of this
higher-order form has not been unambiguously
validated (Walhout et al. 1997; Vervoorts and
Luscher 1999; Lebel et al. 2007).

MAX also homodimerizes, albeit weakly,
relative to its heterodimerization with MYC.
Moreover phosphorylation of MAX, while not
interfering with its heterodimerization with
MYGC, inhibits MAX homodimerization in vivo
(Berberich and Cole 1992), a finding consis-
tent with the result that enforced MAX expres-
sion blocks MYC biological activity, probably
through competition for E-box-binding sites
(Lindeman et al. 1995; Canelles et al. 1997). Sev-
eral alternatively spliced forms of MAX are
expressed, one of which, AMAX, lacks the 62-
residue carboxy-terminal region but retains
the entire bBHLHZ except for the last leucine of
the Zipper (Fig. 3C) (Blackwood and Eisenman
1991; Makela et al. 1992). Induction of an alter-
native splicing factor, following activating EGFR
mutation in glioblastoma, generates AMAX,
which dimerizes with MYC and augments MYC-
transforming activity (Makela et al. 1992; Babic
et al. 2013). The mechanism underlying the el-
evated MYC activity is unknown but we surmise
that the carboxyl terminus of MAX normally

permits association of a negative regulatory fac-
tor with the heterodimer.

Although many biological functions of MYC
family proteins appear to be dependent on their
interaction with MAX, there is considerable
evidence for MAX-independent activities of
MYC (Hopewell and Ziff 1995; Steiger et al.
2008; Gallant 2013). Furthermore, MYC pro-
teins, with or without MAX, can be detected
at non-E-box DNA sequences through interac-
tion with other DNA-binding proteins includ-
ing NF-Y, and subunits of RNA polymerase III
(Izumi et al. 2001; Gomez-Roman et al. 2003;
Steiger et al. 2008; Sabo and Amati 2014). Per-
haps such MAX-independent activities of MYC
are the basis for the connection between MAX
loss-of-function mutations and human pheo-
chromocytomas (Comino-Mendez et al. 2011).

MYC Box Functions

Of the highly conserved MYC box regions with-
in MYC family proteins, MBI and MBII are the
best characterized (Fig. 3A). MBI serves as a
phosphodegron and is involved in the ubiqui-
tylation and proteasomal degradation of MYC.
MYC proteins are very unstable with half-lives
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of 20—30 min in many normal cells (Hann and
Fisenman 1984). However, the exact half-lives
of MYC family proteins are dependent on phys-
iological context, and, in many tumors, stabi-
lization of MYC contributes to its deregulation
(Salghetti et al. 1999; Gregory and Hann 2000;
Sears et al. 2000; Cartwright et al. 2005). Mul-
tiple ubiquitin ligases have recently been shown
to control MYC stability (see Farrell and Sears
2014). One of these ubiquitin ligases, FBW7,
regulates MYC and MYCN stability in response
to phosphorylation of Serine 62 and Threonine
58 within MBI (Welcker et al. 2004a,b; Yada et al.
2004). Interestingly many human B-cell lym-
phomas contain point mutations in MBI that
block FBW7 binding and augment MYC stabil-
ity (Bahram et al. 2000). MBI mutations have
been shown to increase oncogenicity in several
tumor models (Hemann et al. 2005; Wang et
al. 2011b; B Freie and RN Eisenman, unpubl.).
Conversely, tumorigenic phenotypes associated
with Fbw7 mutations have been linked, for ex-
ample in lymphoid and myeloid leukemias, to
increased MYC protein stability. However, this
ligase has many regulatory proteins as substrates
and it is unclear to what extent they also con-
tribute to Fbw7 oncogenicity (Welcker and
Clurman 2008; King et al. 2013).

MBII, the most studied region within the
MYC transactivation domain (TAD), functions
as a hub for binding to multiple key interactors
including components of histone acetyltransfer-
ase (HAT) complexes such as TRAPP-GCNS5,
Tip60, and Tip48 (McMahon et al. 1998) to pro-
mote histone acetylation and gene activation.
MBII is important for most known MYC activ-
ities (Stone et al. 1987). Moreover, MBII is in-
volved in MYC protein turnover because it is a
docking site for SKP2, one of several E3 ligases,
in addition to Fbw7, involved in the degradation
of MYC (Kim et al. 2003; von der Lehr et al.
2003) (see Farrell and Sears 2014 for a detailed
discussion of mechanisms underlying MYC
degradation).

The MBI-MBII TAD region is also involved
in association with other effectors of MYC ac-
tivity such as the bromodomain protein BRD4
and the P-TEFb (cyclin T1, CDK9) transcrip-
tional pause-release complex (Eberhardy and

Overview of MYC and lIts Interactome

Farnham 2002; Kanazawa et al. 2003; Gargano
et al. 2007; Wu et al. 2013; Rahl and Young
2014). In addition to MBI and MBII, there are
conserved sequences within the central regions
of MYC that are considered to be functionally
important (Fig. 3). These include a nuclear lo-
calization signal (NLS), as well as MBIII and
MBIV implicated in MYC cellular-transforming
activity, transcription, and apoptosis (Herbst
et al. 2004, 2005; Cowling et al. 2006).

MYC as a Sensor and Effector of Cellular
Information

MYC normally functions as a sensor, integrat-
ing multiple cellular signals and mediating a
transcriptional response that drives cell growth
and proliferation and impacts differentiation,
survival, and pluripotency. This concept of
MYC function derives from extensive research
relating to, first, how the abundance of the MYC
protein is controlled, and second, the molecular
functions of the MYC protein (outlined in Fig.
2) (see Levens 2013). Control of MYC gene ex-
pression and the production and fate of MYC
protein occurs at nearly every level known to
molecular biology. As mentioned above, activa-
tion of MYC transcription is an end point for a
broad range of signal-transduction pathways.
Transcription factors harnessed by these path-
ways bind to the MYC promoter to regulate
transcription initiation and elongation, depen-
dent on cellular context and chromatin confor-
mation (Liu and Levens 2006; Wierstra and
Alves 2008). Other factors appear to control
MYC mRNA stability, export, and translation.
At the level of the MYC protein, further regula-
tion is exerted through posttranslational modi-
fication (Hann 2006) as well as multiple ubig-
uitin ligases, which together act as arbiters of
MYC stability (see Farrell and Sears 2014). Sim-
ply put, MYC is under extraordinarily tight reg-
ulation by the cell. A corollary of this is that
defects in regulation can, and do, occur at
many levels, leading to the increased abundance
and inappropriate expression of MYC typical of
many cancers (see Huang and Weiss 2013;
Roussel and Robinson 2013; Gabay et al. 2014;
Schmitz et al. 2014). Our increasing knowledge
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of key regulatory events has led, and will con-
tinue to lead, to therapeutic approaches aimed
at subverting MYC production (Gustafson and
Weiss 2010; Dawson et al. 2011; Delmore et al.
2011; Mertz et al. 2011; Zuber et al. 2011; Loven
et al. 2013; Puissant et al. 2013; Bradner 2014).

Once formed, MYC proteins function pre-
dominantly in transcriptional regulation. None-
theless, MYC transcriptional activity in stan-
dard reporter assays is considerably weaker
than many other well-studied transcription fac-
tors. Initial studies focused on identifying what
were expected to be a small number of MYC—
MAX regulated genes. Over time, the number of
these MYC “target genes” continued to grow
awkwardly large. Although most targets are ac-
tivated, a substantial fraction were shown to be
repressed by MYC. Eventually, application of
methods to detect sequences directly bound by
MYC in mammalian and Drosophila cells led to
identification of >15% of genomic locias MYC
targets (Fernandez et al. 2003; Orian et al. 2003).
A disproportionate number of bound genes ap-
pear to be involved in cell growth (i.e., transla-
tion, ribosome biogenesis, and metabolic pro-
cesses) (Zeller et al. 2006). This fit well with
microarray expression profiling studies, with ge-
netic analyses, and with other work showing
that MYC, in addition to regulating RNA poly-
merase II transcribed genes, is directly involved
in RNA polymerase I and RNA polymerase III
transcription (see Campbell and White 2014).
Several classes of microRNAs were also found to
be regulated by MYC (see Psathas and Thomas-
Tikhonenko 2014). The notion emerged of a
MYC “signature” encompassing groups of tar-
get genes devoted to growth and pluripotency
(Kimetal. 2010; Jietal. 2011). Analysis of target
genes indicates that MYC binding results in
hyperacetylation of histones, consistent with
MYC’s recruitment of HATs (Martinato et al.
2008). However MYC—-MAX interacts with a
bewildering variety of other factors with diverse
activities (chromatin remodelers, demethyl-
ases, antipausing factors, as well as other tran-
scription factors such as MIZ-1 and the estrogen
receptor) (see Hann 2014). One implication of
this is that MYC’s precise molecular function in
transcriptional activation and repression may be

dependent on the particular factors recruited by
MYC, the constellation of other transcription
factors proximal to the binding site, and the
chromatin context of the target gene (Cheng
et al. 2006; Guccione et al. 2006; Eilers and Fi-
senman 2008).

Recent studies have challenged this poly-
functional view of MYC, as well as the concept
of a restricted MYC signature. This work pro-
vides evidence that MYC is bound at every active
gene in a given cell type and functions to in-
crease transcription at these loci by recruitment
of a complex that abrogates transcriptional
pausing downstream from the transcription
start site (TSS) and thereby promotes transcrip-
tional elongation (Rahl et al. 2010; Lin et al.
2012; Nie et al. 2012). In this view, MYC acts
solely as an amplifier of ongoing gene expres-
sion, and the apparent repression of target genes
is owing to the normalization procedure used or
to events occurring as an indirect or secondary
response to MYC’s stimulation of elongation
(Loven et al. 2012). Not surprisingly, this re-
adjusted concept of MYC function has evoked
considerable debate (see Levens 2013; Wiese
et al. 2013; Rahl and Young 2014; Sabo and
Amati 2014). Many other reviews in the litera-
ture examine MYC biological function in the
light of these contrasting views.

Although MYC clearly has a major function
in transcriptional regulation it is important to
note that several distinct nontranscriptional ac-
tivities of MYC have been reported. MYC was
found to directly promote DNA replication by
recruiting licensing factors to origins of repli-
cation and collaborating with the Werner DNA
helicase to accelerate S-phase entry (Domin-
guez-Sola et al. 2007; Robinson et al. 2009;
Dominguez-Sola and Gautier 2014). Another
nontranscriptional activity of MYC derives
from the cleavage of full-length MYC protein
by calpain protease to remove the NLS and the
entire bHLHZ domain (Fig. 3A). MYC-Nick,
the resulting large amino-terminal segment of
MYC, is predominantly cytoplasmic and influ-
ences cell morphology, differentiation, and sur-
vival at least in part through acetyltransferases
bound to MBII (Conacci-Sorrell et al. 2010; M
Conacci-Sorrell and RN Eisenman, unpubl.).
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BEYOND MYC: THE EXTENDED MAX-MLX
NETWORK

The heterodimeric interactions between the
bHLHZ domains of MYC family proteins and
MAX are striking in terms of both their speci-
ficity and evolutionary conservation (Black-
wood and Eisenman 1991; Gallant et al. 1996;
Nair and Burley 2003) (and see below). How-
ever, although MYC does not participate
in dimerization with bHLHZ proteins other
than MAX, there is considerable evidence
that MAX dimerizes with another group of
bHLHZ proteins: the MXD family and MGA.
Moreover, a MAX-like bHLHZ protein known
as MLX, specifically heterodimerizes with
MondoA (MLXIP) and ChREBP (MondoB or
MLXIPL) as well as with a subset of MXD family
proteins. Taken together, the multiple interac-
tions of MAX and MLX appear to constitute an
extended network through which MYC, MXD,
and Mondo gene families mediate a broad tran-
scriptional response to mitogenic, growth ar-
rest, and metabolic signals (diagrammed in
Fig. 5) (see O’Shea and Ayer 2013).

Mitogenic stimuli

—

*.
.H

>

INN

Arrest/dlfferentlatlon

/‘\
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The MXD Protein Family: Antagonists
and Enablers of MYC Function

The MXD (originally called MAD) proteins
were initially identified in protein interaction
screens aimed at discovering novel dimerization
partners for MAX (Ayer et al. 1993; Zervos et al.
1993). This family of bHLHZ proteins com-
prises MXD1-MXD4 and the more distantly
related MNT (Hurlin et al. 1995b, 1997; Meroni
et al. 1997). In addition, MAX binds to MGA,
the largest protein in the MAX network and
perhaps the most unusual in that it possesses
both T-domain and bHLHZ DNA-binding mo-
tifs (Hurlin et al. 1999).

MXD Proteins Interact with the mSin3
Corepressor

In several respects the MXD proteins mirror the
MYC family in that they do not homodimerize
or bind DNA as monomers, whereas as hetero-
dimers with MAX they specifically bind E-box
sequences (Fig. 4). However, unlike MYC-
MAX, which generally stimulates transcription,

Metabollc flux

7@ ChREBP

N7

E box

Target genes

Figure 5. Diagram of the extended MAX—MLX network. Double-headed arrows indicate individual interactions

between network components.
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the binding of MXD-MAX heterodimers to
promoter-proximal E boxes results in transcrip-
tional repression. The transcriptional repres-
sion activity of MXD proteins is derived from
their ability to bind the large corepressor com-
plex known as mSIN3 (Ayer et al. 1995; Hurlin
et al. 1995b; Schreiber-Agus et al. 1995; Hurlin
et al. 1997). All MXD family proteins possess a
conserved amino acid sequence (the mSin3 in-
teraction domain, SID) near their amino termi-
ni that directly interacts with one of four paired
amphipathic a-helical (PAH) domains within
mSIN3 (Fig. 3B). The solution structure of the
mSin3-PAH2:MXD1-SID interface has been
solved and has provided a model for the speci-
ficity of this critical interaction (Brubaker et al.
2000; Cowleyetal. 2004). There is some evidence
that this interaction is regulated. For example, in
the case of MNT, phosphorylation through the
ERK pathway has been reported to block its as-
sociation with mSIN3 (Popov et al. 2005).

mSIN3 acts as a scaffold that interacts with
numerous factors, including class I histone de-
acetylases (HDAC1 and HDAC?2), whose ability
to deacetylate histones H3 and H4 in active
chromatin is frequently associated with tran-
scriptional silencing (Hassig et al. 1997; Laherty
etal. 1997; Zhang et al. 1997). The functions of
other proteins recruited by the mSin3 corepres-
sor complex are less clear, but several of these
have also been linked to repression and may
further regulate the activities of the MXD family
(Alland et al. 1997; Heinzel et al. 1997; Nomura
et al. 1999; Shiio et al. 2006).

Antagonism between MYC and MXD

Recruitment of the Sin3-HDAC corepressor by
the MXD family contrasts with MYC’s associa-
tion with the TRRAP-GCNS5 coactivator, and
other HATS, and suggests that MYC and MXD
possess opposing functions. In principle, MYC
and MXD may act as antagonists at three levels:
(1) competition for available MAX to form het-
erodimers, (2) competition between hetero-
dimers for E-box-binding sites, and (3) activa-
tion versus repression at bound genes. There is
considerable biological evidence from overex-
pression studies that MYC and MXD family pro-

teins are functionally antagonistic. Overexpres-
sion of MYC drives growth and proliferationina
wide range of cell types, whereas enforced ex-
pression of MXD family members generally ar-
rests growth and proliferation in normal and
MYC-transformed cells (Lahoz et al. 1994;
Chen et al. 1995; Hurlin et al. 1995b, 1997; Kos-
kinen et al. 1995; Roussel et al. 1996; Iritani et al.
2002; Marcotte et al. 2003). Murine lymphoid
cells provide a good example of the opposing
effects of MYC and MXD on growth. In primary
T cells, MYC is required for the growth and pro-
liferation of immature thymocytes and for anti-
genic activation (Dose et al. 2006; Wang et al.
2011a). These events are significantly inhibited
byectopic MXD1 expression, as is the expression
of a large number of MYC-induced growth-re-
lated genes (Iritani et al. 2002). Moreover, over-
expression of the sole Drosophila MXD ortholog
dMnt inhibits the growth and proliferation of
cells in the wing-imaginal disc, functions known
to be linked to dMyc activity (Johnston et al.
1999; Loo et al. 2005; Gallant 2013). To date
there has been only limited analysis of geno-
mic-binding sites occupied by MXD proteins;
however, in both Drosophila and vertebrate cells
there appears to be considerable overlap be-
tween MYC and MNT sites (Orian et al. 2003;
Toyo-oka et al. 2006). Therefore, MXD proteins,
at least when overexpressed, appear to possess
the capacity to block MYC activity at shared
binding sites. It will be interesting to determine
whether, and how, MXD antagonism is exerted
on MYC’s activity as a transcriptional amplifier.

Regulation of MYC and MXD Expression

An interesting issue is how the apparent antag-
onism between MYC and MXD is manifested
during normal and tumor cell growth. Impor-
tantly, the expression patterns of MYC and the
different MXD family members are dependent
on cell cycle and differentiation status (Queva
et al. 1998) (for a summary, see a review by
Hooker and Hurlin 2006). Although MYC levels
are nearly undetectable during quiescence, MYC
RNA and proteins are rapidly induced upon
cell-cycle entry and remain relatively constant
during cell-cycle progression (Kelly et al. 1983;
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Hann et al. 1985). In contrast, MXDI, 2, and 4
are present in resting cells and decrease upon
mitogen-induced cell-cycle entry, when MYC
is induced. Importantly, MYC is down-regulat-
ed in many cell types during terminal differen-
tiation, a time during which MXDI, 2, and 4
proteins are expressed. Thus, MYC is largely as-
sociated with proliferation, whereas MXD1, 2,
and 4 expression is characteristic of nonprolif-
erating cells consistent with findings from the
overexpression studies mentioned above (e.g.,
Lahoz et al. 1994; Hurlin et al. 1995a; Iritani
et al. 2002). MXD3 and MNT are interesting
exceptions to this inverse pattern of MYC and
MXD expression in that they are both expressed
during cell proliferation. MNT is present, co-
incident with MYC, throughout the cell cycle
and persists following differentiation, whereas
MXD3 expression is restricted to cells in S phase
(Queva et al. 2001; Yun et al. 2007).

Differentiation

Induction of MXD1 occurs during terminal dif-
ferentiation in a wide range of cell types includ-
ing myeloid, muscle, epidermal, and neuronal
cells (Ayer and Eisenman 1993; Larsson et al.
1994; Hurlin et al. 1995a; Queva et al. 1998;
Loo et al. 2005). During the transition from
proliferation to differentiation, MYC—MAX het-
erodimers are replaced by MXD1-MAX com-
plexes (Ayer and Eisenman 1993; Hurlin et al.
1995a; Xu et al. 2001). Because both hetero-
dimer pairs specifically bind E-box DNA se-
quences, it has been surmised that the hetero-
dimer switch during differentiation results in
a switch from activation to repression of MYC
target genes, an idea supported by findings of
decreased histone acetylation and down-regula-
tion of gene expression at several gene promot-
ers known to be regulated by MYC (Bouchard
et al. 2001; Xu et al. 2001; Iritani et al. 2002).
However, as a systematic study of MXD family
binding to genomic DNA has not yet been per-
formed, the full extent to which the widespread
stimulation of gene expression mediated by
MYC is actually suppressed by MXD1 (or the
other MXD family members) during differenti-
ation remains to be determined.

Overview of MYC and Its Interactome

Genetic deletion studies support the view
that MXD1 and MXD2 restrain MYC activity.
Targeted deletion of MXD1I in mice produced a
surprisingly mild phenotype. Overall embryon-
ic and adult development was normal but an
increased frequency of immature granulocyte
progenitors was apparent (Foley et al. 1998).
This was owing to impaired cell-cycle exit of
granulocytic precursors resulting in delayed on-
set of terminal differentiation. The precursors
were additionally found to be more sensitive to
apoptosis induced upon cytokine removal, en-
abling the mice to retain nearly normal levels of
mature granulocytes. Mice with MXD2 (origi-
nally called Mxi1) deletions also developed nor-
mally but displayed a hyperplastic phenotype in
multiple tissues and ectopic proliferation within
several organs as well as a marked sensitivity to
neoplasia following chemical carcinogen treat-
ment (Schreiber-Agus et al. 1998; for a review,
see Foley and Eisenman 1999). MXD3 null mice
are phenotypically normal, although several tis-
sues show an enhanced sensitivity to apoptotic
stimuli (Queva etal. 2001). The relatively minor
effects of the MXD1 and MXD2 single gene
deletions on embryogenesis may be owing to
the fact that they are normally expressed dur-
ing a period (i.e., differentiation) when MYC is
strongly down-regulated. Therefore, they may
not directly oppose MYC activity but rather
function along with other differentiation factors
to repress growth and proliferation genes that are
stimulated by MYC before differentiation. In
contrast, constitutive deletion of MNT, which
is induced by mitogenic stimuli and coexpressed
with MYC, results in early postnatal lethality
(Toyo-oka et al. 2004; Link et al. 2012). Redun-
dancy among MXD paralogs may also contrib-
ute to the mild phenotypes of the single-gene
MXD1-4 knockouts. However, null mutation
of the single MXD ortholog in Drosophila also
displayed only a modest effect on growth (Loo
etal. 2005) suggesting redundancy cannot fully
explain the mild single knockout phenotypes.

Oncogenesis

Because deregulated MYC is fundamental to
the establishment and maintenance of many
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tumor types, it seemed likely that MXD fami-
ly members could act as tumor suppressors
by antagonizing MYC function. Perhaps the
most likely contender for tumor suppression
activity is MXD2, as its constitutive deletion in
mice results in widespread hyperplasia and a
tumor-prone phenotype (Schreiber-Agus et al.
1998). MXD?2 is located on human chromo-
some 10q24, a region deleted in a broad spec-
trum of human tumors and that also contains
the PTEN tumor suppressor. Loss of heterozy-
gosity in the MXD2 region, and potentially in-
activating mutations in the remaining MXD2
allele, were reported in a subpopulation of pros-
tate cancer cells (Eagle et al. 1995; Prochownik
et al. 1998). However, a series of extensive fol-
low-up studies were unable to corroborate these
findings (Bartsch et al. 1996; Edwards et al.
1997; Kuczyk et al. 1998). To date there is no
compelling evidence that MXD1—-4 act as tu-
mor suppressors. Perhaps the loss of MXD pro-
teins that are normally expressed during arrest
and differentiation is simply irrelevant in the
context of the high levels of deregulated MYC
that drive tumor initiation. This may not be the
case for MGA and MNT, which appear to act as
tumor suppressors.

Potentially inactivating mutations in MGA
have been recurrently detected in chronic lym-
phocytic leukemia (Edelmann et al. 2012; De
Paoli et al. 2013) and recent studies on MNT
show that it functions as both an antagonist
and enabler of MYC’s oncogenic activities. There
have been few studies on MGA, but it has been
found associated with two different repression
complexes (Ogawa et al. 2002; Tahiliani et al.
2007), and in zebrafish the MGA ortholog regu-
latesbmp2b/swirl during gastrulation (ST Dou-
gan, pers. comm.). MNT, as mentioned above, is
generally coexpressed with MYC in proliferating
cells and MNT null mice display developmental
defects and die soon after birth (Toyo-oka et al.
2004). Murine embryonic fibroblasts (MEFs)
derived from these mice, or in which MNT has
been depleted, resemble cells with activated
MYC in that they show marked increases in pro-
liferation rate, enhanced expression of known
MYC-regulated genes, and are prone to apopto-
sis (Hurlin et al. 2003; Nilsson et al. 2004). Mice

with conditional MNT deletions in mammary
epithelium or T cells show hyperproliferation of
these cell types and frequently develop mamma-
ry adenocarcinomas and T-cell lymphomas, re-
spectively, late in life (Dezfouli et al. 2006; Toyo-
oka et al. 2006). Additionally, in metastatic
tumor cells under hypoxic conditions, hypox-
ia-inducible factors (HIF-1a and HIF-2a) in-
duce a microRNA (miR-210), resulting in
MNT down-regulation and an MYC-dependent
bypass of cell-cycle arrest (Zhang et al. 2009).

The data described above are consistent
with the notion that MNT opposes MYC func-
tion. Yet that antagonism acts to favor MYC-
induced tumorigenesis because the dominant
physiological activity of MNT is to oppose the
proapoptotic activity elicited by MYC (Link
et al. 2012). In biological settings where MYC
protein levels are elevated, cell survival becomes
increasingly dependent on MNT as shown by
the fact that even a small increase in MYC abun-
dance compromises cell survival in the absence
of MNT. The lowered threshold for MYC-in-
duced apoptosis caused by loss of MNT is tied
to the aberrant accumulation of reactive oxy-
gen species (ROS) (Link et al. 2012). Therefore,
as proposed for MYC-induced neoplasia (Vafa
etal. 2002), tumors generated as a consequence
of MNT deletion may arise owing to ROS-
induced oxidative damage to DNA and muta-
tions that suppress apoptosis (see Kuzyk and
Mai 2014). These studies suggest that although
MNT can antagonize both MYC-stimulated
proliferation and apoptosis, its prosurvival
function is critical for MYC-driven tumorigen-
esis. Comprehensive analysis of genomic bind-
ing by MYC and MXD family proteins will
be required to more fully understand the func-
tional relationships among these transcription
factors.

Expanding the Network: MLX and Its
Dimerization Partners

MLX is a MAX-like bBHLHZ class protein ini-
tially discovered as a dimerization partner for a
subset of MXD family proteins, namely, MXD1,
MXD4, and MNT (Billin et al. 1999; Meroni
et al. 2000). MXD—-MLX heterodimers interact
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with mSIN3, bind E-box DNA sequences, and
repress transcription, apparently acting similar-
ly to MXD-MAX dimers. MLX does not ap-
pear to associate with MAX or MYC family pro-
teins; however, further analysis revealed two
other MLX dimerization partners: MondoA
and ChREBP (Fig. 5) (Billin et al. 2000). Both
MondoA and ChREBP are cytoplasmic-nu-
clear shuttling proteins whose nuclear accumu-
lation is triggered by glucose-derived metabo-
lites (Stoltzman et al. 2008; Peterson et al. 2010).
MondoA-MLX and ChREBP-MLX dimers
bind E-box sequences and regulate genes in-
volved in glucose and glutamine metabolism,
processes important for the biology of normal
and cancer cells. Therefore, MondoA and
ChREBP heterodimers with MLX act as nutri-
ent-sensing transcription factors, and there is
considerable evidence indicating that they are
critical regulators of cell metabolism. For a de-
tailed discussion of these proteins and their
functions see O’Shea and Ayer (2013).

Implications of an Extended
MYC Network

The existence of an extended MYC network
(Fig. 5) has potentially important implications
for understanding MYC functions, the most ob-
vious of which is that MYC does not act alone
but within the context of a larger protein inter-
actome. It is also predicted that changes in the
abundance of individual network components
will have an impact on the activity of all of the
network factors through competition for avail-
able MAX and MLX as well as for DNA-binding
sites. Although initial studies suggested that
MAX, a highly stable protein, is present in excess
relative to MYC (Blackwood et al. 1992), more
recent work indicates that, at least in some bio-
logical settings, MYC and MNT compete for
binding to limiting amounts of MAX (Walker
et al. 2005). MAX availability is further modu-
lated by the turnover of MXD family proteins,
which are regulated through ubiquitin-me-
diated proteasomal degradation and display
short half-lives (Zhu et al. 2008). In contrast,
MondoA and ChREBP are stable proteins and
tight regulation of their transcriptional activity

Overview of MYC and lIts Interactome

occurs through their nuclear accumulation in
response to changes in metabolic flux (see
O’Shea and Ayer 2013). Moreover, not all net-
work members are equal when it comes to di-
merization with MAX. A live cell bimolecular
fluorescence complementation analysis report-
ed different apparent binding affinities for MAX
among MXD proteins compared with MYC and
differences in subnuclear localization patterns
between MYC-MAX and MXD-MAX hetero-
dimers (Grinberg et al. 2004). Although the
consequences of these differences in binding
and localization are unknown, variation in
binding efficiencies are nonetheless compatible
with the idea that modulations in the levels of
individual family members may have distinct
effects on network activity. The possibility that
even relatively small changes in the abundance
of individual factors may have network-wide
consequences perhaps accounts in part for the
extraordinary degree of regulation of MYC ex-
pression shown at transcriptional, posttran-
scriptional, and posttranslational levels (Fig.
2) (see Levens 2013; Farrell and Sears 2014).
There is also evidence for regulatory cross
talk among network members. To begin with, it
has long been known that MYC negatively au-
toregulates its own expression. This appears to
occur through an evolutionarily conserved cir-
cuitry involving the Polycomb complex that can
be abrogated during tumorigenesis (Grignani
et al. 1990; Penn et al. 1990; Goodliffe et al.
2005; Kaur and Cole 2013). Cross-regulation
may also extend to other MYC family members
as well as other network components (Rosen-
baum et al. 1989). MYC, complexed with MIZ-
1, has been shown to repress MXD4 in erythro-
leukemia cells (Kime and Wright 2003). MYC
also appears to up-regulate MondoA and
ChREBP, factors that in turn influence MYC-
driven metabolic reprogramming during tumor
progression (Lin et al. 2009; Kaadige et al. 2010;
Sloan and Ayer 2010; P Carroll, D Diolaiti,
L McFerrin et al., unpubl.). Increased abundance
of MondoA and ChREBP would be expected to
sequester MLX, potentially blocking the forma-
tion of MXD—MLX dimers. At present, there is
no information as to whether MXD-MLX and
MXD-MAX heterodimers differ functionally.
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However, recruitment of MLX into MondoA
and ChREBP heterodimers would likely increase
competition between MYC and coexpressed
MXD proteins for available MAX. Perhaps it is
an imbalance in the network that is responsible
for the hereditary pheochromocytomas that
arise in association with inactivating mutations
in MAX (Comino-Mendez et al. 2011). We are
clearly still at an early stage in understanding the
ramifications of network function. We expect
that genetic studies involving alterations in the
levels of network members combined with chro-
matin immunoprecipitation analyses of hetero-
dimer binding to DNA will be required to un-
derstand the dynamics of the integrated MYC
network in greater detail.

EVOLUTION OF A METAZOAN GENE
NETWORK

The MAX and MLX networks have been pri-
marily characterized in mice, humans, and Dro-
sophila. Annotation of these proteins indicates
that network orthologs have overlapping func-
tions (e.g., mammalian MYC regulates growth
and proliferation, whereas Drosophila dMyc
predominantly drives growth) (for reviews, see
Brown et al. 2008; Bellosta and Gallant 2010;
Gallant 2013). Despite this functional overlap,
these species differ considerably in complexity
and number of members in the extended net-
work. A survey of the animal kingdom reveals
these networks all radiated from a common core
set of proteins that emerged before animal di-
vergence (Fig. 6) (McFerrin and Atchley 2011).
Strikingly, MAX and MLX network members
span all known Metazoan lineages, emphasizing
the importance of these ancient transcription
factors.

The origin of the MAX and MLX networks
dates to over 500 million years ago, with the
protein and DNA interactions of these tran-
scription factors predating the origin of animals.
In the choanoflagellate Monosiga brevicollis, an
ancestor of animals that can grow as a uni- or
multicellular organism, MYC and MAX hetero-
dimerize, localize to the nucleus, and bind E
boxes (Young et al. 2011). MYC and MAX sim-
ilarly heterodimerize and target E boxes in the

early diploblastic cnidarian Hydra, where Myc
shows oncogenic potential and is specifically ac-
tivated in all proliferating cell types (Hartl et al.
2010). MAX, MYC, MXD, MLX, and Mondo
sequences have also been identified in the Placa-
zoan Trichoplax adhaerens, considered the sim-
plest animal with the smallest known genome.

Network Divergence

Within the animal kingdom, lineage-specific
radiation and deletion of MAX and MLX net-
work components (based on conservation of
bHLHZ domains) gives rise to four main net-
work configurations: Core, Diptera, Nematode,
and Vertebrate (numbered 1-4 in Fig. 6). The
core network, consisting of MYC, MAX, MNT,
MXD, MLX, and Mondo proteins, is the basis
from which other animal networks evolved.
Nematodes show extensive divergence, presum-
ably owing to a massive gene reduction and
rearrangement (Witherspoon and Robertson
2003; Denver et al. 2004; Coghlan 2005), and
contain two MAX orthologs (MxI-1 and Mxl-
3), a single MLX ortholog (Mxl-2), a MXD-like
protein (MDL-1), and a MYC and Mondo-like
protein (MML-1). MxI-1 and Mxl-3 apparently
heterodimerize with MDL-1, whereas Mxl-2
binds MML-1 (Yuan et al. 1998; Gallant 2006;
Pickett et al. 2007). Hence, the MLX network is
conserved in nematodes, but it is not known if
the antagonistic transcriptional regulation char-
acteristic of MYC and MNT is performed by
MDL-1 and MML-1.

The Diptera lineage, including fruit flies
and mosquitoes, possesses a minimal network
in that these organisms contain single orthologs
of MYC, MAX, MNT, MLX, and Mondo (Mio)
(Gallant et al. 1996; Peyrefitte et al. 2001; Loo
et al. 2005; Billin and Ayer 2006). A Drosophila
mutation originally designated diminutive
(dm), resulting in abnormally small body size
and female sterility (Bridges 1935), was later
shown to correspond to the locus encoding
the MYC ortholog (Gallant et al. 1996;
Schreiber-Agus et al. 1997). Extensive studies
in Drosophila have shown that dMyc is closely
linked to multiple signaling pathways and acts
as an essential regulator of growth, prolifera-
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tion, and apoptosis, whereas dMnt antagonizes
dMyc to negatively regulate cell growth and
body size (Johnston et al. 1999; Loo et al.
2005; Bellosta and Gallant 2010; Gallant 2013;
Johnston 2014). Furthermore, a homologous
ubiquitin ligase system in flies and mammals
regulates dMyc abundance in response to phos-
phorylation of a conserved degron similar to
vertebrate MBI (Moberg et al. 2004; Welcker
et al. 2004b; Yada et al. 2004; Galletti et al.
2009). dMlx and its MondoA /ChREBP-like di-
merization partner Mio have been identified in
Drosophila and recently shown to regulate sugar
sensing and utilization (Havula et al. 2013;
Musselman et al. 2013). The existence of this
pared-down MAX-MLX network in Droso-
philawill continue to provide an excellent mod-

el for dissecting basic network functions (see
Gallant 2013; Johnston 2014).

In contrast, two whole genome duplication
(WGD) events, occurring either before or dur-
ing vertebrate divergence (Dehal and Boore
2005), formed the MYC (MYC, MYCN,
MYCL1), MXD (MXDl-4, MNT), and
Mondo (MondoA, MondoB/ChREBP) protein
families. Only a single copy of MAX and MLX
exists in vertebrates despite multiple duplication
events, suggesting that the regulation of these
proteins is highly controlled by natural selec-
tion. Another MAX network member, MGA,
also arose during vertebrate divergence and is
predicted to be a fourth MYC family member
because of its bHLHZ domain similarity (Hur-
lin et al. 1999; McFerrin and Atchley 2011). In
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addition, MYC has experienced subsequent and
independent duplication events. Old world pri-
mates, but not prosimians, showa duplication of
MYCLI denoted MYCL2 (DePinho et al. 1987;
Morton et al. 1989; Arnason et al. 1998) that is
intronless and presumably arose through a re-
verse transcription event. Similarly, the murine
lineage has an additional MYC family member,
S-MYC, presumably formed by a MYCN ¢cDNA
sequence reintegrating into the genome (Sugi-
yama et al. 1989, 1999; Doskocil 1996). Another
MYC homolog, B-MYC, exists in the mamma-
lian lineage and lacks the carboxy-terminal
bHLHZ sequence (Ingvarsson et al. 1988; Asker
et al. 1995). Although B-MYC cannot dimerize
with MAX or bind DNA, it appears to associate
with other MYC amino-terminal-binding pro-
teins (Burton et al. 2006). Targeted deletion of
B-MYC in mice leads to increased MYC levels
accompanied by apoptosis and decreased sper-
matogenesis (Turunen et al. 2012).

Based on the homologous bHLHZ domain
that defines the interaction among network
members, each of the MAX, MLX, MYC,
MNT, MXD, Mondo, and MGA orthologous
protein groups distinctly cluster, with paralogs
forming distinguishable subgroups and orthol-
ogous sequences generally reflecting species di-
vergence (Fig. 6). Nematodes are the exception,
with more divergent but clearly related PHLHZ
sequences. This indicates that the protein and
DNA interactions of network members are
largely conserved in animals. Moreover, other
functional domains including the MYC boxes
(MBI-IV) and Mondo conserved regions (see
O’Shea and Ayer 2013) have been preserved
throughout animal evolution (McFerrin and
Atchley 2012). The level of sequence and func-
tional conservation of network members, even
in the most primitive animals, implies that the
MAX and MLX networks are involved in fun-
damental cellular functions dating back mil-
lions of years to the emergence of animals.
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