
An Overview of Next-Generation Architectures for
Machine Learning: Roadmap, Opportunities and

Challenges in the IoT Era
Muhammad Shafique*, Theocharis Theocharides‡, Christos-Savvas Bouganis†, Muhammad Abdullah Hanif*,

Faiq Khalid*, Rehan Hafiz§, Semeen Rehman*
* Vienna University of Technology, Vienna, Austria

‡University of Cyprus, Nicosia, Cyprus
†Imperial College London, London, UK

§ Information Technology University, Lahore, Pakistan

Abstract— The number of connected Internet of Things (IoT)
devices are expected to reach over 20 billion by 2020. These range
from basic sensor nodes that log and report the data to the ones
that are capable of processing the incoming information and
taking an action accordingly. Machine learning, and in particular
deep learning, is the de facto processing paradigm for intelligently
processing these immense volumes of data. However, the resource
inhibited environment of IoT devices, owing to their limited energy
budget and low compute capabilities, render them a challenging
platform for deployment of desired data analytics. This paper
provides an overview of the current and emerging trends in
designing highly efficient, reliable, secure and scalable machine
learning architectures for such devices. The paper highlights the
focal challenges and obstacles being faced by the community in
achieving its desired goals. The paper further presents a roadmap
that can help in addressing the highlighted challenges and thereby
designing scalable, high-performance, and energy efficient
architectures for performing machine learning on the edge.

Keywords— Deep Learning, Convolutional Neural Networks,
IoT, Machine Learning.

I. INTRODUCTION
Market analysts forecast that almost 10 billion connected devices

will be utilized by 2018, and that by 2020, this number will surpass 20
billion [1]. These devices collect and aggregate volumes of data, and in
doing so, they are revolutionizing our society in multiple ways; from
healthcare, to social networks, to consumer electronics and many more
[2]. To process these immense volumes of data, machine learning, and
in particular, deep learning via convolutional neural networks, is
emerging as the de facto analysis tool, that powers several aspects of
our Big Data society. Applications spanning from infrastructure (smart
cities, intelligent transportation systems, smart grids, to name a few), to
social networks and content delivery, to e-commerce and smart
factories, and emerging concepts such as self-driving cars, are powered
by machine learning technologies. Some applications require analytics
and trends identification; an abundance of emerging systems however,
especially systems within the IoT paradigm, require real-time action,
based on the data, and typically rely on low-power hardware, and
limited connectivity and bandwidth. As such, computation shifts from
the datacenters and the cloud, to the fog and on the edge; near-sensor
computation and near-sensor intelligence are starting to emerge as
necessities, in order to continue supporting the paradigm shift of our
connected world. This need is further emphasized, as deployment of
sensors and edge devices is typically done over low-bandwidth
connectivity, and thus, communication between the edge/sensor and the
cloud/fog is constrained both in terms of bandwidth but also in terms of
latency.

Deep Convolutional Neural Networks (CNNs), the core computing
paradigm of these systems, has received significant attention in terms
of building systems and architectures which are geared to extract
maximum performance, minimum energy, and maximum reliability.
Unlike traditional computing applications, CNNs are complex
structures that dynamically redirect their computational flow depending
on the input data. Furthermore, there are several steps that are required
prior to processing input data that involve among others dimensionality
reduction algorithms, filtering, etc. As such, traditional Von Neumann
architectures typically employed in modern datacenters, are not
sufficient [3], primarily because of limitations in both performance and
power efficiency [3]. Thus, alternative platforms, led mainly by general
purpose graphics processing units (GPGPUs) have been sought by
academia and industry due to their higher degree of parallelism and
availability of multiple convolution kernel support through the large
number of computing cores embedded in modern GPUs. While
GPGPUs have been indeed successful in driving the industrial push,
their energy requirements are not in line to make them a suitable
compute accessory for resource-constrained IoT paradigm.
Furthermore, due to the connected nature of IoT sensors, security,
reliability, safety, privacy, and trust-worthiness are also desirable
features for the required compute paradigm. There are several industry
and academia initiatives towards custom architectures and systems built
to support the diverse requirements of Machine Learning applications.
Among others, neuromorphic and bio-inspired approaches have
received significant attention [1], but industrial emphasis has been
placed in custom-built architectures, including among others, cognitive-
based architectures such as IBM’s Watson [4], Microsoft’s Brainwave
accelerated with FPGAs [5], and Google’s Tensor Processing
Architecture [6] which is designed for high-volume of low-precision
computations, thus focusing mostly on satisfying the computational
demands of modern ML algorithms. However, such systems are not yet
suitable for near-sensor processing and edge computing. Recent focus
therefore, has shifted in designing low-power, low-bandwidth
architectures, that facilitate near-sensor intelligence, shifting a
significant workload within the sensor, or limited within the fog (i.e.
edge computing). Emerging examples include NVIDIA’s Jetson
architecture that maintains NVIDIAs machine learning ecosystem, but
targets low-power embedded devices. Over the last few years, there
have been significant pushes from both industry and academia to
integrate machine learning in resource-constrained environments,
primarily by domain-specific architectures, but also by designing
custom digital and analog CMOS circuits, as well as post-CMOS
technologies such as memristors. Further, optimization techniques such
as weight quantization, network pruning, autoencoders (Diabolo
networks) [2], and other approaches are the current driving force in
targeting near-sensor and edge scenarios.

This paper, presents an overview of the challenges and
opportunities of mapping machine learning applications to resources

constrained environments, identifying several areas where current state-
of-the-art approaches are still lagging. The paper identifies several
challenges such as power and energy efficiency, performance under
resource-constrained scenarios, reliability, safety and security, and also
the social aspects attached with the integration of artificial intelligence
within our daily activities. Further, the paper identifies several
opportunities in both software and hardware approaches, addressing
optimization opportunities such as quantization and the use of
approximate computing paradigms, and also the opportunities derived
from new technologies and architectures. Further, it presents our view
of the ecosystem that will enable deep learning within the existing IoT
infrastructure, both in terms of the design of such systems, but also for
the tools and methodologies necessary to achieve a holistic intelligent
IoT world. Lastly, the paper presents our anticipated roadmap of how
all these challenges and opportunities blend with existing trends in deep
learning architectures for the IoT domain.

II. CHALLENGES
In the following, we highlight few of the most important challenges

being faced by the system design community in proposing intelligent,
reliable, and resource efficient systems for IoTs.

A. Power and Energy Efficiency
 The performance of Deep Convolutional Neural Networks in

ImageNet [9] challenge triggered an avalanche of research in the area
of deep neural networks. The key reason behind their success and
widespread adaptation across the complete spectrum of AI applications
is their ability to learn high level features directly from raw sensory data
without being explicitly programmed [10].

Figure 1: Number of computations and weight parameters for the popular state-
of-the-art neural network architectures along with their respective accuracy on
ImageNet dataset. The accuracy is reported in terms of Top 5 Error [10]-[14].

State-of-the-art neural networks have shown remarkable potential
in almost all the AI applications. However, this enhanced performance
usually comes at the cost of high computational and memory
requirements. Figure 1 highlights the resource requirements of few of the
state-of-the-art neural networks proposed for image classification. It
can be observed from figure that for all the stated networks, the number
of parameters required to represent the model (i.e., weights) are well
over 1 million and the number of MAC computations are either around
or well over the 1 billion mark. In order to highlight the effect of such
huge computational load on the energy/power efficiency, it is worth
elaborating that each MAC operation is usually coupled with a number
of memory access, e.g., considering no data re-use (i.e. the worst case
scenario), each operation requires three memory reads and one memory
write, which in case of even the simplest of the mentioned DNNs (i.e.,
AlexNet [10]), would result in 2172M memory read and 724M memory
write operations. Note that all the aforementioned factors, i.e., memory
storage, memory accesses, and computations consume a significant
amount of energy and power and thereby render them unsuitable for
resource constraint and battery driven devices.

Computational efficiency gap: In order to illustrate power and
energy requirements of current IoT devices we take an example of a
SoC used for capturing and analyzing images for people with low vision
[54]. The device proposed in [54] is based on a quad core ARM

processor and a Qualcomm Adreno GPU. It is programmed to capture
an image every 30 seconds and analyze it using multiple deep learning
models like object detection, face recognition, visual scene recognition,
etc. For the assumed workload, the device is reported to maintain a
battery life of nearly 17 hours. Although the specified frame rate is
reasonable for a number of applications, it is not suitable for various
other real-time applications like object tracking. Now, to emphasize on
the energy requirements, assuming the same battery capacity and
energy per computation, if we increase the number of frames that are
required to be processed from 2 per min. to 2 per second the device will
run only for 17 mins while in case if we increase the fps to 30 per second
the battery will last only for 68 seconds

To further emphasize on the power and energy efficiency of the
state-of-the-art, Figure 2 highlights few of the competitions where AI
defeated professional humans at different strategic/IQ games. It can be
observed from the figure that even though the competitions resulted in
favor of the AI machines the amount of power consumed by the android
systems is orders of magnitude larger than what is believed to be the
peak operating power of a human brain (i.e., 20W). Therefore, one of
the key challenges is to bridge the gap between the efficiency of
intelligent devices and a human brain to enable the use of such devices
in almost all aspects of the daily life.

B. Performance
Apart from the power and energy requirements, latency is another

parameter which is vital for safety-critical applications like autonomous
driving, where even a fractional delay in processing can trigger a
catastrophic event. To highlight the performance issues being faced in
IoT devices for simulating state-of-the-art deep convolutional neural
networks, we consider an example of real-time object detection using
NVIDIA Jetson TX1, which is considered to be a suitable candidate for
edge processing, i.e., near sensor processing. Table 1 shows the frame
rate achieved for different variants of YOLO algorithm (a state-of-the-
art algorithm for real-time object detection) when simulated on
NVIDIA Jetson TX1. It can be observed from the table that none of the
illustrated models meet the real-time frame rate mark of 30 fps, when
simulated on NVIDIA Jetson TX1 and even the most optimized of the
illustrated, i.e., the Fast YOLO, is able to achieve only 17.85 fps. It is
also worth highlighting that the algorithms which offers higher fps have
slightly lower accuracy than other state-of-the-art. Therefore, there is
significant need for improving the execution time of the state-of-the-art
deep neural networks for resource constraint devices.

Table 1: Results of a few state-of-the-art object detection algorithms on Pascal
VOC2007 dataset. Accuracy is mentioned in mean Average Precision
(mAP)/Intersection of Union (IOU).

Framework fps (NVIDIA Jetson TXI) IOU/mAP.
Fast YOLO 17.85 [52] 52.7 [53]
O-YOLOv2 11.8 [52] 65.1 [52]

YOLOv2 5.4 [52] 67.2 [52]

Latency of a neural network is usually dependent upon a number of
factors, e.g., the number of interdependent layers in a network, the total
number of neurons/computations per layer, latency of memory
accesses, number of memory accesses, and latency of the computing
modules (i.e., adders and multipliers). In most of the cases the intra-
layer independencies are exploited using multi-/many-core systems,
which consumes more power and leads to thermal issues as well. Other
factors like latency of memory accesses and latency of computational
modules can be improved by using specialized application specific
hardware. In the context of the aforementioned discussion, the
following are the key aspects for improving the overall performance of
a neural network:

1. Exploring alternate neural network structures that provide better
accuracy while consuming lesser resources.

Figure 2: An illustration of the advancements in AI and the overall efficiency gap between a human brain and the computational devices [38]

2. Designing specialized hardware accelerators that can maximize
latency by exploiting data reuse and the use of low-latency hardware
modules.

C. Reliability
Reliability is another core issue which has not been in the spotlight

for neural networks. Although, neural networks themselves are not
entirely accurate, there is still a dire need to use reliable platforms for
sensitive applications, e.g., autonomous vehicles, forex predictions,
cancer detection, etc. in order to ensure as much accuracy and reliability
as possible. Alongside this, deep learning is readily being adapted in a
wide range of industrial applications involving data mining & analytics,
where it is usually required to meet certain industrial standards like IEC
61508 [31], which provides reliability specifications for a range of
industrial applications. Therefore, it is essential to ensure reliability in
deep learning based systems as well.

Conventional methods for ensuring reliability includes redundancy
based approaches like TMR (Triple Modular Redundancy) and DMR
(Double Modular Redundancy), which are not resource efficient.
Therefore, in order to introduce reliability in a resource efficient manner
following are the key challenges being faced by the system design
community:

1. Identification of sensitive neurons/layers in which errors can
significantly affect the accuracy of the system.

2. Identification of sensitive hardware modules of underlying
hardware used for simulation.

D. SECURITY Vulnerabilities IN MACHINE LEARNING
Due to rapid advancement in computational capability of hardware,

machine learning tools, specially, neural networks are becoming more
popular in handling the processing of large datasets. These tools
perform exceptionally well as compared to the conventional ML
algorithms but possess inherent security vulnerabilities which can be
misused to manipulate them [16]. In machine learning, firstly, a model
is trained and validated based on the available dataset, and then the
obtained trained model is utilized for inference, as shown in Figure 3.
As the process involves many data dependencies and complex
computational process, it makes it vulnerable to several security attacks,
i.e., data poisoning during training and inference stages. Thus, the above
attacks can cause catastrophic impact on the performance, accuracy and
reliability of the deployed machine learning algorithm. Typically, based
on the attacker’s goal, these security attacks can be divided into the
following four categories [17]:

1. Confidence Reduction: This attack introduces the ambiguity in
classification to reduce the confidence level of output classes.

2. Random Misclassification: This attack changes the output
classification to a random output class different from original class.

3. Targeted Misclassification: This attack produces the inputs that
force the output classification to a specific target class.

4. Source/Target Misclassification: This attack forcefully alters the
output classification of a specific input class to specific target class.
However, the strengths and weaknesses of the above-mentioned

security attacks depend upon the attacker’s access and capability to

Figure 3: Security Vulnerabilities in Machine Learning (Neural Networks)

hardware implementation, which in combination with attack types can
be referred as an attack surface. For example, the attack surfaces shown
in Figure 4 and Figure 5, depict the strength and difficulty level of
security attacks during the training and inference stages, respectively.
Therefore, the following subsections discuss possible security
vulnerabilities and state-of-the-art security attacks during the training
and inference stages of a machine learning system design.

Figure 4: Attack Surface for Training Attacks

1) Training
During the training stage, the model parameters are learned using

an available dataset which is assumed to capture the input space of the
system. However, for larger datasets, it is not always feasible to train a
machine learning algorithm locally, especially neural network, because

of limited resources and high non-recurring engineering (NRE) cost
[18]. Therefore, in most of the cases, either training is outsourced or
transfer learning is used, which increases the possibility of security
attacks. Though, multiple security attacks are possible in both the
inference and training stages, the training is the most vulnerable stage,
especially for outsourced training. The security attacks during training
are highly data dependent and their effectiveness is measured based on
the attack types and knowledge of training data, tools and the network
architecture. For example, in Figure 4 the most powerful attack is when
attacker has all the information about training tools, data and algorithm
architecture, thus can alter the output classification of a specific input
class to target class. However, this attack is relatively difficult to realize:
1) in case of large datasets because of the required amount of data
manipulation and 2) without having significant impact on the overall
accuracy of the network.

Several attacks are proposed to report the vulnerabilities in machine
learning tools, especially in neural networks. Most of them are focusing
on training data poisoning to launch different types of attacks, e.g.,
confidence reduction [19], random [20], targeted [20][21] and
source/target misclassifications [20][21]. Similarly, other attacks are
based on the architectural modification that can perform targeted [22]
and source/target misclassifications [23]. Although, these attacks are
very effective but these attacks have some effects on the inference
accuracy which reduces their effectiveness. Therefore, there are many
alternatives which can be explored to generate an effective attack
without reducing the inference accuracy. For example, if training data
is modified based on the architecture knowledge or vice versa, then the
effectiveness of such attacks can be improved. Similarly, if adversary
has access to manipulate the training tools, dataset and the architecture
then it can improve effectiveness and reduce its detection chances at
inference stages. Therefore, in outsourced training several prevention
techniques have been proposed and one of the most commonly used is
encrypting the training data before outsourcing [24].

Figure 5: Attack Surface for Inference Attacks

2) Inference
The inference stage in machine learning algorithms is also

vulnerable and data dependent. Unlike the training stage, the data
poisoning attacks in inference stage are not effective because a
sophisticated preprocessing stage can significantly reduce the
perturbations in real time data. Thus, inference data poisoning based
attacks are the weakest and easy to prevent at inference stages, as shown
by the attack surface in Figure 5. However, highly correlated
perturbations during the inference stage can be generated by combining
the inference data poisoning with training stage poisoning. Therefore,
the possibility of such attacks cannot be ignored because preprocessing
stage can overlook very high correlated perturbations. For example,
Sharif et al. proposed an attack which introduces a glasses shape
perturbation in training dataset and then it uses this knowledge to launch

a misclassification attacks on neural network based face recognition
system. Alternatively, attacker can exploit the data acquisition block to
add data of specific class at the periodic or at specific time intervals to
misclassify the stream of inference dataset [25]. Similarly, the other
possible attacks during the inference stage are to exploit the architecture
or its hardware implementations based on the hardware or architecture
access [26]. Although, such attacks are not easy but in most of the cases,
trained models run at third part hardware which can have the multiple
dormant or active intrusions. These intrusions can exploit the
computations of trained model to launch multiple attacks [27].

Therefore, based on the above discussion the following challenges
are extracted to ensure security and privacy in machine learning based
classification systems.

1. How to ensure protection of the training dataset and its
corresponding labels, especially for outsourced training and transfer
learning?

2. How to the secure the data acquisition during the inference stage?

3. How to detect and prevent the highly correlated data perturbations
in pre-processing stage.

4. How to detect and prevent the dormant and active intrusions in third
party hardware accelerators of machine learning algorithm?

E. Social Aspects and Social Integrations
While artificial intelligence is already revolutionizing our daily

lives, it is still considered a taboo item in our society, and in fact, several
scholars and pioneers advocated against its use[51]. We firmly however
believe that the main reasons for this, are the aforementioned challenges
in reliability and security, as well as the associated ethics issues. Given
that reliability and security are within our grasp as academics and
practitioners, we need to ensure that such technology meets both the
industrial standards as well as governmental regulations, in terms of
security, privacy, safety and reliability. We therefore are obliged to
maintain the highest standards in designing all such devices, tools,
algorithms and methodologies to ensure that society benefits from the
augmented services and quality of life that this revolution is
accompanied with.

III. CURRENT TRENDS
 Most, if not all, state-of-the-art Neural Networks are over-
parameterized. To alleviate the overall computational requirements of
NNs for inference stage a number of optimization techniques have been
proposed which span all the way from software to hardware level.
Figure 6 shows the set of optimization techniques that can be employed
while Figure 8 illustrates the general sequence in which they are
currently being adapted [32][33]. In the forthcoming subsections, we
provide an overview of the state-of-the-art optimization techniques and
the hardware accelerators in section III-A and III-B, respectively.

Figure 6: Possible optimization/approximation knobs for improving power,
energy, performance, and area of underlying ML hardware.

Figure 7: Performance comparison between possible hardware platforms for realizing machine learning algorithms. [7][40]-[50]

Figure 8: Available software and co-design optimization strategies for
improving power and performance efficiency of ML architectures.

A. Optimizations
Early Convolutional Neural Networks such as AlexNet and VGG

exhibited uniform layer connectivity and a large number of parameters
(i.e. weights). Over time, deeper NN architectures such as GoogLeNet,
ResNet, and DenseNet provided improved accuracy results by
employing a larger number of layers and introducing novel
computational structures departing from the uniform layer connectivity
of the early DNNs. At the same time, in an effort to reduce the memory
footprint and computational workload of the NN models, significant
effort was placed on the pruning of the networks, and the quantization
of weights and activation functions. Current results show that a
significant reduction in both computational load and memory footprint
can be achieved with a small impact on the accuracy of the classification
for even up to 8 bits of quantization in certain applications. Currently,
research effort is placed into ternary and even binary NN for improved
performance with limited impact on the quality of the algorithm.

B. Current Architectural Trends
The architecture evolution of the devices for Deep Learning was

coupled with the algorithmic changes introduced in the Machine
Learning community. Early works focused on the utilization of
GPGPUs as an accelerator for the main computational part of the CNNs,
as their SIMD structure and floating-point support was matching well
the computational requirements of the early CNN structures. As the
CNNs became less regular, and optimizations were introduced in the
employed number representation, the research effort was moved to the
design of custom devices tailored on the new requirements.

In the server-graded space, the GPGPU devices were evolved and
began to contain hardened blocks for Machine Learning applications
such as the Nvidia Tesla V100 with Tensor Core technology for the
acceleration of AI workloads. Moreover, new ASICs tailored for
Machine Learning workloads started to appear such as the Tensor
Processing Unit (TPU) from Google, providing inherent support for
fixed-point calculations and later also support for floating point
calculations, and the Lake Crest chip from intel.

In the embedded systems space, specialized ASICs have appeared
with emphasis on low power such as the Myriad 2 chip from Movidius,
and a number of projects from academia such as Eyeriss [7], and
Cnvlutin [8]. In parallel to the above approaches, effort has also focused
on Field-Programmable Gate Arrays, which are reprogrammable

ASICs that can be customized for a specific CNN instance providing
high performance with respect to the CPU and GPU counterparts under
a power budget.

Towards the easy programmability of the above systems, a number
of SW tools have been developed that can help researchers and
practitioners to map CNNs on the above devices without extensive
knowledge of the underlying architecture, and at the same time to obtain
highly-performing systems. Examples include Intel’s Deep Learning
Framework for targeting Intel devices, the cuDNN library from Nvidia
for targeting cuda-enabled GPUs, the reVision stack from Xilinx for
targeting FPGAs, where a number of tools have also appeared from
academia such as fpgaConvNet [28], FP-DNN [29], and FINN [30].

Figure 7 provides a summary of efficiency and the computational
capability of various state-of-the-art hardware platforms and machine
learning accelerators. It can be observed from the figure that application
specific hardware provides the best efficiency in terms of computations
per watt. However, the state-of-the-art high-end GPUs provides highest
computation capability which when coupled with their easy
programmability makes them a highly suitable candidate for the
development stage. The region of efficiency, in terms of computations
per watt, is also highlighted in the figure, which is expected to be
covered by future neuromorphic devices.

IV. FUTURE DIRECTIONS AND ROADMAP OF DEEP
LEARNING FOR IOTS

A. Alternate Neural Network Structures
As recently highlighted by Sabour et al. in [34], the state-of-the-art

neural networks have less levels of structure. However, systems that
possess the capability of solving complex problems are known to have
a well-defined hierarchy. Such system are also expected to be robust to
small changes. For example, in case of image classification, changes in
the orientation of an image like tilt and rotation usually leads to
misclassification in conventional CNN based systems. However, using
nested sets of layers [34], it is possible to learn more complex patterns
and to design highly robust systems. These alternate neural network
architectures are also expected to have lesser number of parameters as
compared to the state-of the-art. This can be highlighted using the fact
that GoogLeNet v1, which is constructed using relatively well-
structured inception modules, uses lesser number of parameters than
VGG for providing better classification accuracy. Thus, in the light of
the above discussion, there is a significant need for improving the
structure of neural networks in order to build highly intelligent and
resource efficient systems.

B. Approximate and Near Threshold Computing
Approximate and near threshold computing are the emerging

computing paradigms for designing ultra-low power computing
devices. The core principle of these paradigms lies within improving
area, power, performance, and/or energy at the cost of reduced quality.
Although these paradigms have shown remarkable potential in

designing resource efficient systems for multimedia applications, they
have yet to show their potential in designing highly resource efficient
ML systems for in-/near-sensor computing in IoTs.

C. Emerging Technologies
With Moore’s law reaching its end at a rapid pace, emerging

technologies like Nano-wires, Memristors, Spintonic devices [37], etc.
are anticipated to be the beginning of a new era of computing. These
technologies are expected to offer highly resource efficient solutions
which can be useful for improving the computational capability of edge-
devices under a defined energy/power or performance constraint. Nano-
wires based 3D-stacked architectures [36] are an example of such
futuristic devices, where a sea of accelerators are connected with a high-
speed dense memory through high-bandwidth nano-wires. These
technologies are particularly helpful for designing neuromorphic
devices that are based on digital, analog, or analog and digital mixed
circuits.

D. Distributed Learning and Inference
Distributed computing is also getting popular for simulating neural

networks in IoTs based systems [35]. The main concept behind
distributed computing in IoTs is to enable fine-grained energy-/latency-
aware distribution of the computations across the complete stack of the
IoT system, i.e., starting from the edge all the way to the cloud. This is
usually done in order to optimize the overall processing time or the
energy consumption of in-/near-sensor devices. Such algorithms when
coupled with the aforementioned developments can significantly be
beneficial for achieving optimal/near-optimal improvements in the
overall performance and efficiency of the systems.

REFERENCES
[1] Gartner Inc., https://www.gartner.com/newsroom/id/3598917, Available Online,

November 2017.
[2] LeCun, Y., et al. (2015). Deep learning. Nature, 521(7553), 436-444.
[3] Chen, Y., et al. (2017). Hardware for machine learning: Challenges and

opportunities. 2017 IEEE Custom Integrated Circuits Conference , 1-8.
[4] David A. Ferrucci. 2011. IBM's Watson/DeepQA. In Proceedings of the 38th annual

international symposium on Computer architecture. ACM, USA
[5] Caulfield, A. M., et al. (2016, October). A cloud-scale acceleration architecture. In

Microarchitecture (MICRO), (pp. 1-13). IEEE.
[6] K. Sato, et al., “An in-depth look at Google’s first Tensor Processing Unit (TPU)”,

available online, https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-
at-googles-first-tensor-processing-unit-tpu, November 2017.

[7] Y.-H. Chen et al., “Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow
for Convolutional Neural Networks,” in ISCA, 2016.

[8] J. Albericio et al., “Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network
Computing,” in ISCA, 2016.

[9] Russakovsky, Olga, et al. "Imagenet large scale visual recognition challenge."
International Journal of Computer Vision 115.3 (2015): 211-252.

[10] Krizhevsky, Alex, et al.. "Imagenet classification with deep convolutional neural
networks." Advances in neural information processing systems. 2012.

[11] Sze, Vivienne, et al. "Efficient processing of deep neural networks: A tutorial and
survey." arXiv preprint arXiv:1703.09039 (2017).

[12] K. He, et al., “Deep Residual Learning for Image Recognition,” in CVPR, 2016.
[13] K. Simonyan et al., “Very Deep Convolutional Networks for Large-Scale Image

Recognition,” in ICLR, 2015
[14] C. Szegedy et al., “Going Deeper With Convolutions,” in CVPR, 2015.
[15] (Accessed on 13th Nov 2017.). URL https://github.com/jcjohnson/cnn-

benchmarksAccessedon13thNov2017.
[16] Melis, Marco, et al. "Is deep learning safe for robot vision? adversarial examples

against the icub humanoid." arXiv preprint arXiv:1708.06939 (2017).
[17] Papernot, Nicolas, et al. "The limitations of deep learning in adversarial settings."

Security and Privacy (EuroS&P), IEEE European Symposium on. IEEE, 2016.
[18] Zhang, Xinyang et al. "Modular Learning Component Attacks: Today's Reality,

Tomorrow's Challenge." arXiv preprint arXiv:1708.07807 (2017).
[19] Papernot, Nicolas, et al. "Practical black-box attacks against machine learning." Asia

Conference on Computer and Communications Security. ACM, 2017.
[20] Gu, Tianyu, et al.. "BadNets: Identifying Vulnerabilities in the Machine Learning

Model Supply Chain." arXiv preprint arXiv:1708.06733 (2017).

[21] Sharif, Mahmood, et al. "Accessorize to a crime: Real and stealthy attacks on state-
of-the-art face recognition." Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2016.

[22] Collobert, Ronan, et al. "A unified architecture for natural language processing:
Deep neural networks with multitask learning." International conference on Machine
learning. ACM, 2008.

[23] Szegedy, Christian, et al. "Intriguing properties of neural networks." arXiv preprint
arXiv:1312.6199 (2013).

[24] Gilad-Bachrach, Ran, et al. "Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy." ICML. 2016.

[25] Hosseini, Hossein, et al. "Attacking Automatic Video Analysis Algorithms: A Case
Study of Google Cloud Video Intelligence API." arXiv preprint arXiv:1708.04301
(2017).

[26] Liu, Yingqi, et al. "Trojaning Attack on Neural Networks." (2017). Department of
Computer Science Technical Reports. Paper 1781.

[27] Liu, Yuntao, et al. "Neural Trojans." arXiv preprint arXiv:1710.00942 (2017).
[28] Stylianos I. Venieris et al. “fpgaConvNet: A Framework for Mapping Convolutional

Neural Networks” on FPGAs. FCCM 2016: 40-47
[29] Y. Guan et al. “FP-DNN: An Automated Framework for Mapping Deep Neural

Networks onto FPGAs with RTL-HLS Hybrid Templates,” in FCCM, 2017.
[30] Y. Umuroglu et al. “FINN: A Framework for Fast, Scalable Binarized Neural

Network Inference,” in FPGA, 2017.
[31] IEC 61508 2016. Functional Safety and IEC 61508. (2016). Retrieved Oct. 2016

from http://www.iec.ch/functionalsafety/
[32] Han, Song, et al. "Deep compression: Compressing deep neural networks with

pruning, trained quantization and huffman coding." arXiv preprint
arXiv:1510.00149 (2015).

[33] Han, Song, et al. "EIE: efficient inference engine on compressed deep neural
network." Proceedings of the 43rd International Symposium on Computer
Architecture. IEEE Press, 2016.

[34] Sabour, Sara, Nicholas Frosst, and Geoffrey E. Hinton. "Dynamic Routing Between
Capsules." Advances in Neural Information Processing Systems. 2017.

[35] Eduardo Cuervo et al., “Maui: making smartphones last longer with code offload”.
Conference on Mobile systems, applications, and services, ACM, 2010.

[36] M. M. Sabry et al., "Energy-Efficient Abundant-Data Computing: The N3XT
1,000x," in IEEE Computer, vol. 48, no. 12, pp. 24-33, Dec. 2015.

[37] C-SPIN: http://cspin.umn.edu/ Accessed on 7th December 2017.
[38] Another Way Of Looking At Lee Sedol vs AlphaGo:

https://jacquesmattheij.com/another-way-of-looking-at-lee-sedol-vs-alphago:
Accessed on 7th December 2017.

[39] Du, Zidong, et al. "ShiDianNao: Shifting vision processing closer to the sensor."
ACM SIGARCH Computer Architecture News. Vol. 43. No. 3. ACM, 2015.

[40] B. Moons, et al., “Envision: A 0.26-to-10 tops/w subwordparallel dynamic-voltage-
accuracy-frequency-scalable convolutional neural network processor in 28nm
fdsoi,” International Solid-State Circuits Conference (ISSCC), 2017, pp. 246–257.

[41] Chen, Tianshi, et al. "Diannao: A small-footprint high-throughput accelerator for
ubiquitous machine-learning." ACM Sigplan Notices. Vol. 49. No. 4. ACM, 2014.

[42] K. He, et al. “Deep Residual Learning for Image Recognition,” in CVPR, 2016.
[43] K. Simonyan et al., “Very Deep Convolutional Networks for Large-Scale Image

Recognition,” in ICLR, 2015
[44] C. Szegedy, W et al., “Going Deeper With Convolutions,” in CVPR, 2015.”
[45] Park, Seong-Wook, et al. "An energy-efficient and scalable deep learning/inference

processor with tetra-parallel MIMD architecture for big data applications." IEEE
transactions on biomedical circuits and systems 9.6 (2015): 838-848.

[46] Kim, Joo-Young, et al. "A 201.4 GOPS 496 mW real-time multi-object recognition
processor with bio-inspired neural perception engine." IEEE Journal of Solid-State
Circuits 45.1 (2010): 32-45.

[47] Nvidia Infrence Accelerator: http://www.nvidia.com/object/accelerate-
inference.html Accessed on 7th December 2017.

[48] Liu, Daofu, et al. "Pudiannao: A polyvalent machine learning accelerator." ACM
SIGARCH Computer Architecture News. Vol. 43. No. 1. ACM, 2015.

[49] Jouppi, Norman P., et al. "In-datacenter performance analysis of a tensor processing
unit." International Symposium on Computer Architecture. ACM, 2017.

[50] Startix V FPGAs: https://www.altera.com/products/fpga/stratix-series/stratix-
v/overview.html, Accessed on 7th December 2017

[51] Stephen Hawking, BBC News, http://www.bbc.com/news/technology-30290540,
Accessed on 7th December 2017

[52] Shafiee, Mohammad Javad, et al. "Fast YOLO: A Fast You Only Look Once System
for Real-time Embedded Object Detection in Video." arXiv preprint
arXiv:1709.05943 (2017).

[53] [2] Liu, Wei, et al. "Ssd: Single shot multibox detector." European conference on
computer vision. Springer, Cham, 2016.

[54] Mathur, Akhil, et al. "DeepEye: Resource Efficient Local Execution of Multiple
Deep Vision Models using Wearable Commodity Hardware." (2017).

