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Abstract— The number of connected Internet of Things (IoT) 
devices are expected to reach over 20 billion by 2020. These range 
from basic sensor nodes that log and report the data to the ones 
that are capable of processing the incoming information and 
taking an action accordingly. Machine learning, and in particular 
deep learning, is the de facto processing paradigm for intelligently 
processing these immense volumes of data. However, the resource 
inhibited environment of IoT devices, owing to their limited energy 
budget and low compute capabilities, render them a challenging 
platform for deployment of desired data analytics. This paper 
provides an overview of the current and emerging trends in 
designing highly efficient, reliable, secure and scalable machine 
learning architectures for such devices. The paper highlights the 
focal challenges and obstacles being faced by the community in 
achieving its desired goals. The paper further presents a roadmap 
that can help in addressing the highlighted challenges and thereby 
designing scalable, high-performance, and energy efficient 
architectures for performing machine learning on the edge.  

Keywords— Deep Learning, Convolutional Neural Networks, 
IoT, Machine Learning. 

I.  INTRODUCTION 
Market analysts forecast that almost 10 billion connected devices 

will be utilized by 2018, and that by 2020, this number will surpass 20 
billion [1]. These devices collect and aggregate volumes of data, and in 
doing so, they are revolutionizing our society in multiple ways; from 
healthcare, to social networks, to consumer electronics and many more 
[2]. To process these immense volumes of data, machine learning, and 
in particular, deep learning via convolutional neural networks, is 
emerging as the de facto analysis tool, that powers several aspects of 
our Big Data society. Applications spanning from infrastructure (smart 
cities, intelligent transportation systems, smart grids, to name a few), to 
social networks and content delivery, to e-commerce and smart 
factories, and emerging concepts such as self-driving cars, are powered 
by machine learning technologies. Some applications require analytics 
and trends identification; an abundance of emerging systems however, 
especially systems within the IoT paradigm, require real-time action, 
based on the data, and typically rely on low-power hardware, and 
limited connectivity and bandwidth. As such, computation shifts from 
the datacenters and the cloud, to the fog and on the edge; near-sensor 
computation and near-sensor intelligence are starting to emerge as 
necessities, in order to continue supporting the paradigm shift of our 
connected world. This need is further emphasized, as deployment of 
sensors and edge devices is typically done over low-bandwidth 
connectivity, and thus, communication between the edge/sensor and the 
cloud/fog is constrained both in terms of bandwidth but also in terms of 
latency. 

Deep Convolutional Neural Networks (CNNs), the core computing 
paradigm of these systems, has received significant attention in terms 
of building systems and architectures which are geared to extract 
maximum performance, minimum energy, and maximum reliability. 
Unlike traditional computing applications, CNNs are complex 
structures that dynamically redirect their computational flow depending 
on the input data. Furthermore, there are several steps that are required 
prior to processing input data that involve among others dimensionality 
reduction algorithms, filtering, etc. As such, traditional Von Neumann 
architectures typically employed in modern datacenters, are not 
sufficient [3], primarily because of limitations in both performance and 
power efficiency [3]. Thus, alternative platforms, led mainly by general 
purpose graphics processing units (GPGPUs) have been sought by 
academia and industry due to their higher degree of parallelism and 
availability of multiple convolution kernel support through the large 
number of computing cores embedded in modern GPUs. While 
GPGPUs have been indeed successful in driving the industrial push, 
their energy requirements are not in line to make them a suitable 
compute accessory for resource-constrained IoT paradigm. 
Furthermore, due to the connected nature of IoT sensors, security, 
reliability, safety, privacy, and trust-worthiness are also desirable 
features for the required compute paradigm. There are several industry 
and academia initiatives towards custom architectures and systems built 
to support the diverse requirements of Machine Learning applications. 
Among others, neuromorphic and bio-inspired approaches have 
received significant attention [1], but industrial emphasis has been 
placed in custom-built architectures, including among others, cognitive-
based architectures such as IBM’s Watson [4], Microsoft’s Brainwave 
accelerated with FPGAs [5], and Google’s Tensor Processing 
Architecture [6] which is designed for high-volume of low-precision 
computations, thus focusing mostly on satisfying the computational 
demands of modern ML algorithms. However, such systems are not yet 
suitable for near-sensor processing and edge computing. Recent focus 
therefore, has shifted in designing low-power, low-bandwidth 
architectures, that facilitate near-sensor intelligence, shifting a 
significant workload within the sensor, or limited within the fog (i.e. 
edge computing). Emerging examples include NVIDIA’s Jetson 
architecture that maintains NVIDIAs machine learning ecosystem, but 
targets low-power embedded devices. Over the last few years, there 
have been significant pushes from both industry and academia to 
integrate machine learning in resource-constrained environments, 
primarily by domain-specific architectures, but also by designing 
custom digital and analog CMOS circuits, as well as post-CMOS 
technologies such as memristors. Further, optimization techniques such 
as weight quantization, network pruning, autoencoders (Diabolo 
networks) [2], and other approaches are the current driving force in 
targeting near-sensor and edge scenarios. 

This paper, presents an overview of the challenges and 
opportunities of mapping machine learning applications to resources 



constrained environments, identifying several areas where current state-
of-the-art approaches are still lagging. The paper identifies several 
challenges such as power and energy efficiency, performance under 
resource-constrained scenarios, reliability, safety and security, and also 
the social aspects attached with the integration of artificial intelligence 
within our daily activities. Further, the paper identifies several 
opportunities in both software and hardware approaches, addressing 
optimization opportunities such as quantization and the use of 
approximate computing paradigms, and also the opportunities derived 
from new technologies and architectures. Further, it presents our view 
of the ecosystem that will enable deep learning within the existing IoT 
infrastructure, both in terms of the design of such systems, but also for 
the tools and methodologies necessary to achieve a holistic intelligent 
IoT world. Lastly, the paper presents our anticipated roadmap of how 
all these challenges and opportunities blend with existing trends in deep 
learning architectures for the IoT domain. 

II. CHALLENGES 
In the following, we highlight few of the most important challenges 

being faced by the system design community in proposing intelligent, 
reliable, and resource efficient systems for IoTs. 

A. Power and Energy Efficiency 
 The performance of Deep Convolutional Neural Networks in 

ImageNet [9] challenge triggered an avalanche of research in the area 
of deep neural networks. The key reason behind their success and 
widespread adaptation across the complete spectrum of AI applications 
is their ability to learn high level features directly from raw sensory data 
without being explicitly programmed [10].  

 
Figure 1: Number of computations and weight parameters for the popular state-
of-the-art neural network architectures along with their respective accuracy on 
ImageNet dataset. The accuracy is reported in terms of Top 5 Error [10]-[14]. 

State-of-the-art neural networks have shown remarkable potential 
in almost all the AI applications. However, this enhanced performance 
usually comes at the cost of high computational and memory 
requirements. Figure 1 highlights the resource requirements of few of the 
state-of-the-art neural networks proposed for image classification. It 
can be observed from figure that for all the stated networks, the number 
of parameters required to represent the model (i.e., weights) are well 
over 1 million and the number of MAC computations are either around 
or well over the 1 billion mark. In order to highlight the effect of such 
huge computational load on the energy/power efficiency, it is worth 
elaborating that each MAC operation is usually coupled with a number 
of memory access, e.g., considering no data re-use (i.e. the worst case 
scenario), each operation requires three memory reads and one memory 
write, which in case of even the simplest of the mentioned DNNs (i.e., 
AlexNet [10]), would result in 2172M memory read and 724M memory 
write operations. Note that all the aforementioned factors, i.e., memory 
storage, memory accesses, and computations consume a significant 
amount of energy and power and thereby render them unsuitable for 
resource constraint and battery driven devices. 

Computational efficiency gap: In order to illustrate power and 
energy requirements of current IoT devices we take an example of a 
SoC used for capturing and analyzing images for people with low vision 
[54]. The device proposed in [54] is based on a quad core ARM 

processor and a Qualcomm Adreno GPU. It is programmed to capture 
an image every 30 seconds and analyze it using multiple deep learning 
models like object detection, face recognition, visual scene recognition, 
etc. For the assumed workload, the device is reported to maintain a 
battery life of nearly 17 hours. Although the specified frame rate is 
reasonable for a number of applications, it is not suitable for various 
other real-time applications like object tracking. Now, to emphasize on 
the energy requirements, assuming the same battery capacity and 
energy per computation, if we increase the number of frames that are 
required to be processed from 2 per min. to 2 per second the device will 
run only for 17 mins while in case if we increase the fps to 30 per second 
the battery will last only for 68 seconds 

To further emphasize on the power and energy efficiency of the 
state-of-the-art, Figure 2 highlights few of the competitions where AI 
defeated professional humans at different strategic/IQ games. It can be 
observed from the figure that even though the competitions resulted in 
favor of the AI machines the amount of power consumed by the android 
systems is orders of magnitude larger than what is believed to be the 
peak operating power of a human brain (i.e., 20W). Therefore, one of 
the key challenges is to bridge the gap between the efficiency of 
intelligent devices and a human brain to enable the use of such devices 
in almost all aspects of the daily life.  

B. Performance  
Apart from the power and energy requirements, latency is another 

parameter which is vital for safety-critical applications like autonomous 
driving, where even a fractional delay in processing can trigger a 
catastrophic event. To highlight the performance issues being faced in 
IoT devices for simulating state-of-the-art deep convolutional neural 
networks, we consider an example of real-time object detection using 
NVIDIA Jetson TX1, which is considered to be a suitable candidate for 
edge processing, i.e., near sensor processing. Table 1 shows the frame 
rate achieved for different variants of YOLO algorithm (a state-of-the-
art algorithm for real-time object detection) when simulated on 
NVIDIA Jetson TX1. It can be observed from the table that none of the 
illustrated models meet the real-time frame rate mark of 30 fps, when 
simulated on NVIDIA Jetson TX1 and even the most optimized of the 
illustrated, i.e., the Fast YOLO, is able to achieve only 17.85 fps. It is 
also worth highlighting that the algorithms which offers higher fps have 
slightly lower accuracy than other state-of-the-art. Therefore, there is 
significant need for improving the execution time of the state-of-the-art 
deep neural networks for resource constraint devices.  

Table 1: Results of a few state-of-the-art object detection algorithms on Pascal 
VOC2007 dataset. Accuracy is mentioned in mean Average Precision 
(mAP)/Intersection of Union (IOU). 

Framework fps (NVIDIA Jetson TXI) IOU/mAP. 
Fast YOLO 17.85 [52] 52.7 [53] 
O-YOLOv2 11.8 [52] 65.1 [52] 

YOLOv2 5.4 [52] 67.2 [52] 

Latency of a neural network is usually dependent upon a number of 
factors, e.g., the number of interdependent layers in a network, the total 
number of neurons/computations per layer, latency of memory 
accesses, number of memory accesses, and latency of the computing 
modules (i.e., adders and multipliers). In most of the cases the intra-
layer independencies are exploited using multi-/many-core systems, 
which consumes more power and leads to thermal issues as well. Other 
factors like latency of memory accesses and latency of computational 
modules can be improved by using specialized application specific 
hardware. In the context of the aforementioned discussion, the 
following are the key aspects for improving the overall performance of 
a neural network: 

1. Exploring alternate neural network structures that provide better 
accuracy while consuming lesser resources.  



 
Figure 2: An illustration of the advancements in AI and the overall efficiency gap between a human brain and the computational devices [38] 

2. Designing specialized hardware accelerators that can maximize 
latency by exploiting data reuse and the use of low-latency hardware 
modules. 

C. Reliability 
Reliability is another core issue which has not been in the spotlight 

for neural networks. Although, neural networks themselves are not 
entirely accurate, there is still a dire need to use reliable platforms for 
sensitive applications, e.g., autonomous vehicles, forex predictions, 
cancer detection, etc. in order to ensure as much accuracy and reliability 
as possible. Alongside this, deep learning is readily being adapted in a 
wide range of industrial applications involving data mining & analytics, 
where it is usually required to meet certain industrial standards like IEC 
61508 [31], which provides reliability specifications for a range of 
industrial applications. Therefore, it is essential to ensure reliability in 
deep learning based systems as well.  

Conventional methods for ensuring reliability includes redundancy 
based approaches like TMR (Triple Modular Redundancy) and DMR 
(Double Modular Redundancy), which are not resource efficient. 
Therefore, in order to introduce reliability in a resource efficient manner 
following are the key challenges being faced by the system design 
community:  

1. Identification of sensitive neurons/layers in which errors can 
significantly affect the accuracy of the system.  

2. Identification of sensitive hardware modules of underlying 
hardware used for simulation. 

D. SECURITY Vulnerabilities IN MACHINE LEARNING 
Due to rapid advancement in computational capability of hardware, 

machine learning tools, specially, neural networks are becoming more 
popular in handling the processing of large datasets. These tools 
perform exceptionally well as compared to the conventional ML 
algorithms but possess inherent security vulnerabilities which can be 
misused to manipulate them [16]. In machine learning, firstly, a model 
is trained and validated based on the available dataset, and then the 
obtained trained model is utilized for inference, as shown in Figure 3. 
As the process involves many data dependencies and complex 
computational process, it makes it vulnerable to several security attacks, 
i.e., data poisoning during training and inference stages. Thus, the above 
attacks can cause catastrophic impact on the performance, accuracy and 
reliability of the deployed machine learning algorithm. Typically, based 
on the attacker’s goal, these security attacks can be divided into the 
following four categories [17]:  

1. Confidence Reduction: This attack introduces the ambiguity in 
classification to reduce the confidence level of output classes. 

2. Random Misclassification: This attack changes the output 
classification to a random output class different from original class. 

3. Targeted Misclassification: This attack produces the inputs that 
force the output classification to a specific target class.  

4. Source/Target Misclassification: This attack forcefully alters the 
output classification of a specific input class to specific target class.  
However, the strengths and weaknesses of the above-mentioned 

security attacks depend upon the attacker’s access and capability to  

 
Figure 3: Security Vulnerabilities in Machine Learning (Neural Networks) 

hardware implementation, which in combination with attack types can 
be referred as an attack surface. For example, the attack surfaces shown 
in Figure 4  and Figure 5, depict the strength and difficulty level of 
security attacks during the training and inference stages, respectively. 
Therefore, the following subsections discuss possible security 
vulnerabilities and state-of-the-art security attacks during the training 
and inference stages of a machine learning system design.  

 
Figure 4: Attack Surface for Training Attacks 

1) Training 
During the training stage, the model parameters are learned using 

an available dataset which is assumed to capture the input space of the 
system. However, for larger datasets, it is not always feasible to train a 
machine learning algorithm locally, especially neural network, because 



of limited resources and high non-recurring engineering (NRE) cost 
[18]. Therefore, in most of the cases, either training is outsourced or 
transfer learning is used, which increases the possibility of security 
attacks. Though, multiple security attacks are possible in both the 
inference and training stages, the training is the most vulnerable stage, 
especially for outsourced training. The security attacks during training 
are highly data dependent and their effectiveness is measured based on 
the attack types and knowledge of training data, tools and the network 
architecture. For example, in Figure 4 the most powerful attack is when 
attacker has all the information about training tools, data and algorithm 
architecture, thus can alter the output classification of a specific input 
class to target class. However, this attack is relatively difficult to realize: 
1) in case of large datasets because of the required amount of data 
manipulation and 2) without having significant impact on the overall 
accuracy of the network.  

Several attacks are proposed to report the vulnerabilities in machine 
learning tools, especially in neural networks. Most of them are focusing 
on training data poisoning to launch different types of attacks, e.g., 
confidence reduction [19], random [20], targeted [20][21] and 
source/target misclassifications [20][21]. Similarly, other attacks are 
based on the architectural modification that can perform targeted [22] 
and source/target misclassifications [23]. Although, these attacks are 
very effective but these attacks have some effects on the inference 
accuracy which reduces their effectiveness. Therefore, there are many 
alternatives which can be explored to generate an effective attack 
without reducing the inference accuracy. For example, if training data 
is modified based on the architecture knowledge or vice versa, then the 
effectiveness of such attacks can be improved. Similarly, if adversary 
has access to manipulate the training tools, dataset and the architecture 
then it can improve effectiveness and reduce its detection chances at 
inference stages. Therefore, in outsourced training several prevention 
techniques have been proposed and one of the most commonly used is 
encrypting the training data before outsourcing [24].  

 
Figure 5: Attack Surface for Inference Attacks 

2) Inference 
The inference stage in machine learning algorithms is also 

vulnerable and data dependent. Unlike the training stage, the data 
poisoning attacks in inference stage are not effective because a 
sophisticated preprocessing stage can significantly reduce the 
perturbations in real time data. Thus, inference data poisoning based 
attacks are the weakest and easy to prevent at inference stages, as shown 
by the attack surface in Figure 5. However, highly correlated 
perturbations during the inference stage can be generated by combining 
the inference data poisoning with training stage poisoning. Therefore, 
the possibility of such attacks cannot be ignored because preprocessing 
stage can overlook very high correlated perturbations. For example, 
Sharif et al. proposed an attack which introduces a glasses shape 
perturbation in training dataset and then it uses this knowledge to launch 

a misclassification attacks on neural network based face recognition 
system.  Alternatively, attacker can exploit the data acquisition block to 
add data of specific class at the periodic or at specific time intervals to 
misclassify the stream of inference dataset [25]. Similarly, the other 
possible attacks during the inference stage are to exploit the architecture 
or its hardware implementations based on the hardware or architecture 
access [26]. Although, such attacks are not easy but in most of the cases, 
trained models run at third part hardware which can have the multiple 
dormant or active intrusions. These intrusions can exploit the 
computations of trained model to launch multiple attacks [27].   

Therefore, based on the above discussion the following challenges 
are extracted to ensure security and privacy in machine learning based 
classification systems.  

1. How to ensure protection of the training dataset and its 
corresponding labels, especially for outsourced training and transfer 
learning? 

2. How to the secure the data acquisition during the inference stage?  

3. How to detect and prevent the highly correlated data perturbations 
in pre-processing stage.  

4. How to detect and prevent the dormant and active intrusions in third 
party hardware accelerators of machine learning algorithm?   

E. Social Aspects and Social Integrations 
While artificial intelligence is already revolutionizing our daily 

lives, it is still considered a taboo item in our society, and in fact, several 
scholars and pioneers advocated against its use[51]. We firmly however 
believe that the main reasons for this, are the aforementioned challenges 
in reliability and security, as well as the associated ethics issues. Given 
that reliability and security are within our grasp as academics and 
practitioners, we need to ensure that such technology meets both the 
industrial standards as well as governmental regulations, in terms of 
security, privacy, safety and reliability.  We therefore are obliged to 
maintain the highest standards in designing all such devices, tools, 
algorithms and methodologies to ensure that society benefits from the 
augmented services and quality of life that this revolution is 
accompanied with.  

III. CURRENT TRENDS 
 Most, if not all, state-of-the-art Neural Networks are over-
parameterized. To alleviate the overall computational requirements of 
NNs for inference stage a number of optimization techniques have been 
proposed which span all the way from software to hardware level. 
Figure 6 shows the set of optimization techniques that can be employed 
while Figure 8 illustrates the general sequence in which they are 
currently being adapted [32][33]. In the forthcoming subsections, we 
provide an overview of the state-of-the-art optimization techniques and 
the hardware accelerators in section III-A and III-B, respectively.  

 
Figure 6: Possible optimization/approximation knobs for improving power, 
energy, performance, and area of underlying ML hardware. 



 
Figure 7: Performance comparison between possible hardware platforms for realizing machine learning algorithms. [7][40]-[50]

 
Figure 8: Available software and co-design optimization strategies for 
improving power and performance efficiency of ML architectures. 

A. Optimizations 
Early Convolutional Neural Networks such as AlexNet and VGG 

exhibited uniform layer connectivity and a large number of parameters 
(i.e. weights). Over time, deeper NN architectures such as GoogLeNet, 
ResNet, and DenseNet provided improved accuracy results by 
employing a larger number of layers and introducing novel 
computational structures departing from the uniform layer connectivity 
of the early DNNs. At the same time, in an effort to reduce the memory 
footprint and computational workload of the NN models, significant 
effort was placed on the pruning of the networks, and the quantization 
of weights and activation functions. Current results show that a 
significant reduction in both computational load and memory footprint 
can be achieved with a small impact on the accuracy of the classification 
for even up to 8 bits of quantization in certain applications. Currently, 
research effort is placed into ternary and even binary NN for improved 
performance with limited impact on the quality of the algorithm. 

B. Current Architectural Trends 
The architecture evolution of the devices for Deep Learning was 

coupled with the algorithmic changes introduced in the Machine 
Learning community. Early works focused on the utilization of 
GPGPUs as an accelerator for the main computational part of the CNNs, 
as their SIMD structure and floating-point support was matching well 
the computational requirements of the early CNN structures. As the 
CNNs became less regular, and optimizations were introduced in the 
employed number representation, the research effort was moved to the 
design of custom devices tailored on the new requirements.  

In the server-graded space, the GPGPU devices were evolved and 
began to contain hardened blocks for Machine Learning applications 
such as the Nvidia Tesla V100 with Tensor Core technology for the 
acceleration of AI workloads. Moreover, new ASICs tailored for 
Machine Learning workloads started to appear such as the Tensor 
Processing Unit (TPU) from Google, providing inherent support for 
fixed-point calculations and later also support for floating point 
calculations, and the Lake Crest chip from intel. 

In the embedded systems space, specialized ASICs have appeared 
with emphasis on low power such as the Myriad 2 chip from Movidius, 
and a number of projects from academia such as Eyeriss [7], and 
Cnvlutin [8]. In parallel to the above approaches, effort has also focused 
on Field-Programmable Gate Arrays, which are reprogrammable 

ASICs that can be customized for a specific CNN instance providing 
high performance with respect to the CPU and GPU counterparts under 
a power budget.  

Towards the easy programmability of the above systems, a number 
of SW tools have been developed that can help researchers and 
practitioners to map CNNs on the above devices without extensive 
knowledge of the underlying architecture, and at the same time to obtain 
highly-performing systems. Examples include Intel’s Deep Learning 
Framework for targeting Intel devices, the cuDNN library from Nvidia 
for targeting cuda-enabled GPUs, the reVision stack from Xilinx for 
targeting FPGAs, where a number of tools have also appeared from 
academia such as fpgaConvNet [28], FP-DNN [29], and FINN [30]. 

Figure 7 provides a summary of efficiency and the computational 
capability of various state-of-the-art hardware platforms and machine 
learning accelerators. It can be observed from the figure that application 
specific hardware provides the best efficiency in terms of computations 
per watt. However, the state-of-the-art high-end GPUs provides highest 
computation capability which when coupled with their easy 
programmability makes them a highly suitable candidate for the 
development stage. The region of efficiency, in terms of computations 
per watt, is also highlighted in the figure, which is expected to be 
covered by future neuromorphic devices. 

IV. FUTURE DIRECTIONS AND ROADMAP OF DEEP 
LEARNING FOR IOTS 

A.  Alternate Neural Network Structures 
As recently highlighted by Sabour et al. in [34], the state-of-the-art 

neural networks have less levels of structure. However, systems that 
possess the capability of solving complex problems are known to have 
a well-defined hierarchy. Such system are also expected to be robust to 
small changes. For example, in case of image classification, changes in 
the orientation of an image like tilt and rotation usually leads to 
misclassification in conventional CNN based systems. However, using 
nested sets of layers [34], it is possible to learn more complex patterns 
and to design highly robust systems. These alternate neural network 
architectures are also expected to have lesser number of parameters as 
compared to the state-of the-art. This can be highlighted using the fact 
that GoogLeNet v1, which is constructed using relatively well-
structured inception modules, uses lesser number of parameters than 
VGG for providing better classification accuracy. Thus, in the light of 
the above discussion, there is a significant need for improving the 
structure of neural networks in order to build highly intelligent and 
resource efficient systems. 

B. Approximate and Near Threshold Computing 
Approximate and near threshold computing are the emerging 

computing paradigms for designing ultra-low power computing 
devices. The core principle of these paradigms lies within improving 
area, power, performance, and/or energy at the cost of reduced quality. 
Although these paradigms have shown remarkable potential in 



designing resource efficient systems for multimedia applications, they 
have yet to show their potential in designing highly resource efficient 
ML systems for in-/near-sensor computing in IoTs.  

C. Emerging Technologies 
With Moore’s law reaching its end at a rapid pace, emerging 

technologies like Nano-wires, Memristors, Spintonic devices [37], etc. 
are anticipated to be the beginning of a new era of computing. These 
technologies are expected to offer highly resource efficient solutions 
which can be useful for improving the computational capability of edge-
devices under a defined energy/power or performance constraint. Nano-
wires based 3D-stacked architectures [36] are an example of such 
futuristic devices, where a sea of accelerators are connected with a high-
speed dense memory through high-bandwidth nano-wires. These 
technologies are particularly helpful for designing neuromorphic 
devices that are based on digital, analog, or analog and digital mixed 
circuits. 

D. Distributed Learning and Inference 
Distributed computing is also getting popular for simulating neural 

networks in IoTs based systems [35]. The main concept behind 
distributed computing in IoTs is to enable fine-grained energy-/latency-
aware distribution of the computations across the complete stack of the 
IoT system, i.e., starting from the edge all the way to the cloud. This is 
usually done in order to optimize the overall processing time or the 
energy consumption of in-/near-sensor devices. Such algorithms when 
coupled with the aforementioned developments can significantly be 
beneficial for achieving optimal/near-optimal improvements in the 
overall performance and efficiency of the systems. 
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