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Abstract. The article surveys the main techniques and results
of the spectral theory of periodic operators arising in mathemat-
ical physics and other areas. Close attention is paid to studying
analytic properties of Bloch and Fermi varieties, which influence
significantly most properties of such operators.

The approaches described are applicable not only to the stan-
dard model example of Schrödinger operator with periodic elec-
tric potential −∆ + V (x), but to a wide variety of elliptic periodic
equations and systems, equations on graphs, ∂-operator, and other
operators on abelian coverings of compact bases.

Many important applications are mentioned. However, due to
the size restrictions, they are not dealt with in details.
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Introduction

Elliptic PDEs with periodic coefficients, notably the stationary
Schrödinger operator −∆ + V (x) with a periodic potential V , have
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been intensively studied in physics and mathematics literature for close
to a century, due to their crucial role in the solid state theory (e.g.,
see books and surveys [13, 26, 162, 162, 239, 295, 296]). In spite of
that, some important questions have remained unresolved. The in-
terest in periodic elliptic (and sometimes parabolic) equations and
systems received a strong boost in the last decades, due to new ap-
plications in areas such as photonic crystals and other metamateri-
als [172], fluid dynamics [51,291], carbon nanostructures [158], inverse
scattering method of solving integrable systems [221, 222], and lately
topological insulators [25]. When the author was preparing his intro-
ductory lectures at the Newton Institute in January 2015 [177], he
discovered that there was no comprehensive source devoted to the the-
ory of periodic elliptic PDEs and their applications. There are sev-
eral books and surveys completely or partially devoted to this topic
(e.g., [8, 24, 37, 85, 120, 125, 156, 170, 171, 239, 258, 275, 278]), but none
of them collects all useful techniques (e.g., the analytic geometry of
Bloch and Fermi varieties) and is up to date. Thus, the idea was born
to expand the lectures to this survey that would contain the main tech-
niques and results of the spectral theory of periodic operators arising
in mathematical physics and other areas. These are applicable not
only to the standard model example of Schrödinger operator with pe-
riodic electric potential −∆ + V (x), but to a wide variety of elliptic
periodic equations and systems, equations on graphs, ∂-operator, and
other operators on abelian coverings of compact bases. Close attention
is paid to studying analytic properties of Bloch and Fermi varieties,
which influence significantly most properties of such operators.

There are many important applications of what is discussed. How-
ever, the author realized at this stage that even a large survey cannot
do justice to such applications, and even to many details of techniques
employed. Thus, several sections (especially toward the end of the
text) contain mostly hints and pointers to the literature. The task of
more detailed and comprehensive discussion is postponed till the third
iteration of my lectures, which is a monograph in preparation. The
same applies to the bibliography of this survey, which is necessarily
extensive, but far from being comprehensive, and many references are
given through secondary sources (books and surveys).

The author is indebted to many colleagues, co-authors, and former
and current students for their publications, discussions, and encour-
agement, which have made possible over the years my work on this
subject. The list of these people is so long, that I have decided, with
apologies to many, to postpone it to the monograph planned. In here, I



4 PETER KUCHMENT

express gratitude to the people who influenced my work in this area the
most, M. Birman, L. Ehrenpreis, S. Krein, V. Palamodov, B. Simon,
L. Zelenko, and V. Zhikov. I take full responsibility for all errors that
are inevitably present in this text.

Thanks also go to the NSF for the support through the DMS Grant
# 1517938 and to the Isaac Newton Institute, where the large part of
this text was written.

1. 1D - a brief sketch

In this section, we will survey briefly what is commonly called Flo-
quet (or Floquet-Lyapunov) theory [112, 196, 197], the main tool in
studying periodic linear ODEs and systems of ODEs. Its basics can be
found in many ODE textbooks, e.g. in [9,10,45,46]. There are also nice
books dedicated to (mostly spectral theory of) the periodic ODEs of
the second order, see e.g. [12,85,198], [275, Ch. XXI] and [239, Section
XIII.16] (see also [84] for the case of singular potentials). I want to
attract the reader’s attention to the not sufficiently well known amaz-
ing treatise [287], which contains an enormous amount of information
concerning periodic ODEs and systems of ODEs, including Hamilton-
ian and canonical systems, parametric resonance, stability domains,
various applications, etc. Here, we will touch upon a few basics things
only.

1.1. Euler’s theorem. Consider a linear system of ODEs

(1.1)
dx

dt
= Cx, t ∈ R, x ∈ Cn,

with a constant n× n matrix C. Then all solutions look as follows:

x(t) = eCtx0,

where x0 is the initial value of x(t). One thus obtains the following
Euler’s theorem [95], which can be found in any ODE textbook:

Theorem 1.1. All solutions of (1.1) are linear combinations of the
exponential-polynomial solutions of the form

(1.2) x(t) = eiλt
∑

j∈Z,j≥0

pjt
j,

where iλ is an eigenvalue of C and the sum is finite.
If C has no Jordan blocks, then only j = 0 is present in (1.2).

Floquet-Lyapunov theory, sketched below, generalizes this result to
the case of systems with periodic coefficients.
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1.2. Floquet-Lyapunov theory. Let us consider a linear system of
ODEs

(1.3)
dx

dt
= A(t)x, t ∈ R, x ∈ Cn,

with a 1-periodic n× n matrix function A(t). As promised before, we
will not dwell here on imposing weakest conditions on the entrees of
the matrix [287, Ch. II], assuming that they are continuous. Let X(t)
be the n× n matrix fundamental solution of (1.3). In other words,
if

ej = (0, .., 0, 1︸︷︷︸
jth entry

, 0, ...0)

is the standard basis of Cn and xj(t) - the solution of (1.3) such that
xj(0) = ej, then X(t) has each xj(t) as the jth column. One thinks
of X(t) as the operator that shifts by time t along the trajectories. In
particular, when the value of t coincides with the period (i.e., is equal
to 1 under our assumption), we introduce the following

Definition 1.2. The matrix

(1.4) M := X(1)

of the shift by the period 1 along the trajectories of the system is said
to be the monodromy matrix of the equation (1.3).

The main result of the Floquet theory is the following

Theorem 1.3. Floquet theorem
There exists a 1-periodic matrix function P (t) and a constant matrix
C, such that

(1.5) X(t) = P (t)eCt.

Remark 1.4. Notice that

(1.6) M = X(1) = eC .

Corollary 1.5. Any solution of (1.3) is a linear combination of Flo-
quet solutions

(1.7) x(t) = eikt
∑

j∈Z+

pj(t)t
j,

where the sum is finite, coefficients pj(t) are 1-periodic, and eik are the
eigenvalues of the monodromy matrix M .

When the monodromy matrix does not have Jordan blocks, only the
term with j = 0 is present. In this case, the solution is x(t) = eiktp(t)
with a 1-periodic function p(t) and is sometimes called a Bloch solu-
tion.
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Definition 1.6. The eigenvalues z := eik of the monodromy matrixM
are called Floquet multipliers and numbers k - quasimomenta or
crystal momenta (the latter names coming from solid state physics
[13]).

Remark 1.7. One notices that the value of a quasimomentum k is de-
fined only modulo 2πZ-shifts1.

In fact, the following, stronger than Theorem 1.3, result holds:

Theorem 1.8. Lyapunov reduction theorem. There exists a pe-
riodic invertible matrix-function B(t) such that the substitution x(t) =
B(t)y(t) reduces the system (1.3) to the one with a constant matrix C:

dy

dt
= Cy(t).

1.3. Hill operator. Studying higher order ODEs with periodic coeffi-
cients can be reduced to the case of first order systems. It is, however,
useful to consider the special case of the so called Hill operator:

(1.8) H = −d
2u

dx2
+ V (x)

with a “nice” real 1-periodic potential V on R. Again, we will overkill
assuming continuity of V , although much weaker conditions suffice (see,
e.g., [84, 85, 198, 239, 287]). The domain of the operator will be, by
definition, the Sobolev space H2(R). Defined this way, the operator is
self-adjoint [85]2.

1.3.1. Monodromy, discriminant, and such. We will be interested in
the spectral problem for the Hill operator:

(1.9) Hu = λu.

In accordance to the general Floquet theory approach, we consider the
fundamental system of two (analytic in λ) solutions φ(x, λ), ψ(x, λ):

(1.10) φ(0, λ) = ψ′
x(0, λ) = 1, φ′

x(0, λ) = ψ(0, λ) = 0.

This enables is to consider the monodromy matrix

(1.11) M(λ) :=

(
φ(1, λ) ψ(1, λ)
φ′
x(1, λ) ψ′

x(1, λ)

)
.

1See the discussion of dual lattices and quasimomenta in Section 2.
2It is not hard to show that if one defines the operator on the space C∞

0
(R), it

will be essentially self-adjoint, with the only self-adjoint extension described above.
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The determinant detM(λ) is the Wronskian of this fundamental system
of solutions, evaluated at t = 1. Since the Wronskian is constant in
time and equal to 1 at t = 0, we conclude that

(1.12) detM(λ) = 1.

Thus, since we are interested in the eigenvalues of the monodromy
matrix, all the pertinent information is contained in the trace of M :

(1.13) ∆(λ) := TrM(λ) = φ(1, λ) + ψ′
x(1, λ),

which is called the discriminant, or the Lyapunov function of the
Hill operator (1.8).

Thus, all Floquet multipliers z, being the eigenvalues of M , can be
found from the secular equation

(1.14) z2 −∆(λ)z + 1 = 0.

Its roots provide Floquet multipliers and quasimomenta for a given λ:

(1.15) eik = z = 0.5
(
∆(λ)±

√
∆(λ)2 − 4

)
.

It is now easy to come up with the following result (a compilation of
various statements from standard books, e.g. [85, 287]):

Theorem 1.9.

(1) If |∆(λ)| < 2, then
• the Floquet multipliers are complex, distinct, of the absolute

value 1, and complex conjugate to each other.
• In particular, the quasimomentum is real and if k is a

quasi-momentum, then −k is3.
• All solutions are bounded.
• The Lyapunov exponent4 is equal to zero.

(2) If |∆(λ)| = 2, then
• The two Floquet multipliers coincide and are equal to 1 or
−1.

• Quasimomentum is either k = 0, or k = π ( mod 2π).
• All solutions are bounded or polynomially bounded.
• The Lyapunov exponent is equal to zero.

(3) If |∆(λ)| > 2, then

3This observation also follows from the fact that, due to the potential being real
and for real λ, complex conjugate of a solution is a solution as well. In physics
terms, this is a reflection of the time reversibility of the dynamical system with
the Hill operator as the Hamiltonian.

4The Lyapunov exponent characterises the maximal possible rate of the expo-
nential growth of solutions.
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• the Floquet multipliers are real, distinct, and reciprocal to
each other.

• Quasimomenta are complex.
• Solutions grow exponentially.
• The Lyapunov exponent is positive and equal to |ℑk|.

Let us look at the case of the free operator (i.e., with zero potential).
The straightforward calculation shows then that the free discriminant is
∆0(λ) = 2 cos(

√
λ). In particular, it is an entire function of exponential

order 1/2, i.e.

|∆0(λ)| ≤ CeC|λ|1/2 .

Its graph looks as shown in Fig. 1. The properties of the discriminant

Figure 1. The graph of the free discriminant.

in presence of a periodic potential have also been studied thoroughly
(see, e.g., [85, 198]). As in the free case, it is an entire function of
exponential order 1/2:

|∆(λ)| ≤ CeC|λ|1/2 .

The Figure 2 gives an idea of its behavior.

Figure 2. Discriminant for a periodic Hill equation.

Notice that the extrema of the free discriminant are located exactly
on the boundary of the horizontal strip |∆| ≤ 2. They get shifted in
the periodic case (without any new ones being created), but cannot
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move into the interior of this strip (see detailed considerations, e.g.,
in [85]). In particular, the pieces of the function ∆(λ) between its
consecutive hits of the lines ∆ = ±2, are monotonic. We will provide
a simple explanation of this monotonicity a little bit later. The reader
will see later on that absence of any analog of this monotonicity in
higher dimensions is responsible for significant changes in some spectral
properties in comparison with 1D.

Definition 1.10. The segments where |∆(λ)| ≤ 2 (shown in red in the
figure below) are called the stability zones or spectral bands. The
segments between the bands are called instability zones or spectral
gaps.

Figure 3. Stability zones (spectral bands), shown in
red, are separated by the instability zones (spectral gaps)

.

Remark 1.11. Thus, we conclude that the spectral bands are character-
ized by the quasimomentum being real and Lyapunov exponent being
equal to zero. Correspondingly, the spectral gaps are characterized by
the complex quasimomentum and positive Lyapunov exponent.

1.3.2. Spectrum of the Hill operator. So far, the name “spectral band”
was not explicitly related to the spectrum of the Hill operator H =
−d2/dx2+V (x). It is not hard to show (which will explained later on in
the higher dimensions), that the spectrum σ(H) indeed coincides with
the union of all spectral bands. E.g., existence of bounded generalized
solutions inside the spectral bands allows one to show that the bands do
belong to the spectrum. Indeed, cutting off these solutions at infinity
provides approximate eigenfunctions. On the other hand, one can show
that inside the gaps there is no spectrum.

We now collect some important features of the spectrum:

Theorem 1.12.

(1) There exists a sequence of real numbers

(1.16) a1 < b1 ≤ b2 < a2 ≤ a3 < .... 7→ ∞
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(ends of the spectral bands) such that the spectrum σ(H) coin-
cides with the union of all spectral bands Ij

(1.17) σ(H) =
⋃

j∈Z+

Ij,

where

(1.18) I1 = [a1, b1], I2 = [b2, a2], I3 = [a3, bs], ....

(2) The spectral bands have finite lengths and do not overlap, but
might touch.

(3) Generically w.r.t. the potential, all gaps are present
(open), i.e. there are no equalities in (1.16), so the bands do
not touch [256].

(4) Finite gap (finite zone) potentials, i.e. those that lead to
finitely many open gaps only, are very special and can be all
described [81, 82, 221, 223].

(5) There are no open gaps if and only if the potential is constant
(the famous Borg’s theorem [35]).

(6) The rate of the gaps’ sizes decay determines smoothness of
the potential [84, 199, 200]. For instance, C∞ potentials corre-
spond to the gap size decaying faster than algebraically.

(7) There are isospectral potentials. The sets of isospectral finite-
zone potentials form tori [203, 204, 223].

1.3.3. Dispersion relation. We will introduce now the important notion
of the dispersion relation for the Hill operator. It is rarely discussed in
mathematics literature devoted to periodic ODEs, but it is central in
solid state physics and crucial for the higher dimension considerations.

The dispersion relation describes the spectral parameter λ as a (mul-
tiple valued) function of the crystal momentum k:

Definition 1.13. The dispersion relation (or the Bloch variety
BH) of the Hill operator H is the subset of Rk ×Rλ defined as follows:

(1.19)
BH := {(k, λ) ∈ R2 |Hu = λu has a 6= 0 Bloch-Floquet
solution u(x) = eikxp(x) with the quasi-momentum k}

The complex dispersion relation (or complex Bloch variety)
BH,C is defined analogously, only allowing both k and λ to be complex.

One immediately obtains the following statement:

Theorem 1.14.

(1) The dispersion relation is 2π-periodic with respect to k.
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(2) The real dispersion relation is even with respect to k. The
complex one is invariant with respect to the mapping (k, λ) 7→
(−k, λ). (Indeed, due to the potential being real, the complex
conjugate of a Floquet solution is also a Floquet solution.)

(3) The spectrum of the operator H coincides with the projection of
its (real) dispersion relation onto the spectral axis.

(4) If the branches of the multiple valued function k ∈ R 7→ λ ∈ R

are labeled in increasing order (λ1(k) ≤ λ2(k) ≤ ...), then the
range of the jth branch is the jth spectral band of H.

(5) In terms of the discriminant, the dispersion relation (both in
the real and complex incarnations) is described as the set of all
(correspondingly real or complex) solutions (k, λ) of the equation

(1.20) ∆(λ)− 2 cos k = 0.

In other words, it is the graph of the multiple-valued function

(1.21) λ = ∆−1(2 cos k).

Formula (1.21) is less useful than (1.20), due to its multiple valued
(and branching) nature. On the other hand, the function F (λ, k) :=
∆(λ) − 2 cos k is an entire function in C2 of a finite exponential order
(equal to 1 in the Hill’s case). In particular, one can make the following
observation, which gains prominence in PDE situation:

Proposition 1.15. The dispersion relation of the Hill operator is a
principal (i.e., of co-dimension one) analytic subset in C2.

Let us look at the case of the free operator. Then the dispersion
relation boils down to cos

√
λ = cos k, or to the union of infinitely

many parabolic branches

(1.22) λ = (k + 2nπ)2, n ∈ Z,

see Fig. 4. Due to the periodicity with respect to k, it is customary
to draw the dispersion relation over the interval [−π, π] (later on, this
interval will acquire the name of a Brillouin zone) only. In fact, due
to the evenness, one can, without loosing any information, restrict to
[0, π] (reduced Brillouin zone) only (see Fig. 5).

One can see that the seeming complexity of the dispersion relation
even in the free case, is an illusion, since one observes a single period
view of a periodic sequence of parabolas.

Let us see how the picture gets perturbed when a small periodic po-
tential V (x) is turned on (Fig. 6). You see that under this perturbation
some gaps are opening. However, it seems that over [0, π] each branch
is monotonic. Let us see why this is indeed true:
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Figure 4. The dispersion relation (over the whole
quasi-momentum line) of the free operator.

Figure 5. The dispersion relation of the free operator
over one period.

Lemma 1.16.

(1) Each branch λj(k) of the dispersion relation is monotonic over
[0, π].

(2) In particular, the spectral band edges occur only at k = 0 and
k = π, i.e. for periodic or anti-periodic problems for the Hill
operator.

Proof. Indeed if this were not true, taking into account the evenness
with respect to k, one would have situation like in Fig. 7. If we pick
the value of λ at the level shown, we will find four values of k where
this level is reached. This means that the equation Hu = λu has four
independent solutions. The ODE being of the second order, this is
impossible. �



AN OVERVIEW OF PERIODIC ELLIPTIC OPERATORS 13

Figure 6. The dispersion relation in presence of a potential.

Figure 7. Non-monotonicity is impossible.

The same argument shows impossibility of band overlaps, as in Fig.
8:

Thus, one concludes:

Lemma 1.17. The spectral bands of the Hill operator do not overlap
(although they might touch).

Remark 1.18. Notice that the conclusions about monotonicity, band
edges occurring at k = 0 and k = π only, and absence of band overlap
were drawn from the fact that the second order ODE cannot have
more than two independent solutions. One can wonder, whether this
is just an artifact of our proof, or something deeper. For instance, this
counting cannot be used for PDEs. And indeed, we will see that for
PDEs all these claims are in general incorrect.
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Figure 8. No band overlap.

We formulate now without proofs some additional spectral proper-
ties:

Theorem 1.19.

(1) The pure point and singular continuous spectra of the Hill op-
erator are empty. Thus, the spectrum is absolutely continu-
ous [85, 171, 239]5.

(2) The dispersion relation, as an analytic set, is irreducible (mod-
ulo the 2π shifts of the quasi-momentum). In other words, any
open part of the dispersion relation uniquely determines the
whole of it. To put it still differently, the smooth part of BH

is connected [166] (see also [16]).
(3) The Bloch variety (which is analytic, as we know), is generically

not algebraic (e.g., [203, 204]).

2. Lattices in Rn

Switching to the multi-periodic case, we need first to go through
some basics concerning lattices.

Definition 2.1. A (Bravais) lattice Γ in Rn is the set of all integer
linear combinations of n linearly independent vectors a1, ..., an (see Fig.
9:

(2.1) Γ = {γ ∈ Rn | γ =
n∑

j=1

γjaj, γj ∈ Z}.

We will identify Γ with the corresponding group of shifts of Rn.

5We will discus this at length for the PDE case.
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Figure 9. Lattices and fundamental domains (shaded).

Definition 2.2. The dual (reciprocal) lattice to Γ, Γ∗ in (Rn)∗ is
defined as follows:

(2.2) Γ∗ = {k ∈ (Rn)∗ | 〈k, γ〉 ∈ 2πZ for any γ ∈ Γ}.
The original lattice Γ is sometimes called the real lattice.

In particular, when Γ = Zn and the duality is coming from the
standard Euclidean scalar product, then Γ∗ = 2πZn.

Figure 10. Real and reciprocal lattices.

Definition 2.3. We fix a fundamental domain W (Wigner-Seitz
cell) of (the real lattice) Γ in Rn, i.e. a domain such that its Γ-shifts
may intersect only along their boundaries and cover the whole space
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(See Fig. 9, 11)6. We will work only with connected fundamental
domains.

Figure 11. More lattices and fundamental domains.

We will also fix a fundamental domain B of (the reciprocal lattice)
Γ∗ in (Rn)∗, which we will call the Brillouin zone. One of the options
(standard in physics) is to choose the set of all points such that the
origin is the closest point to them in Γ∗ (Fig. 12).

Figure 12. Brillouin zones.

The particular choice of a lattice does not matter in many, and does
matter in some results, but for the sake of simplicity, we will assume,
unless noted otherwise, that

(2.3) Γ = Zn,Γ∗ = 2πZn,W = [0, 1]n,B = [−π, π]n.
We also introduce two tori that correspond to the two lattices

(2.4) T := Rn/Γ and T∗ := (Rn)∗/Γ∗,

equipped with normalized Haar measures on both. E.g., under our
standard choice (2.3), the measures are correspondingly dx and (2π)−ndk.

Note that under our assumption that Γ = Z, the torus T∗ can be
considered as the unit torus in Cn:

(2.5) T∗ = {(z1, ..., zn) ∈ Cn | |z1| = ... = |zn| = 1}.
As usual, Γ - (Γ∗ -) periodic functions on Rn (on (Rn)∗) can be

identified with functions on the torus T (T∗).

6A fundamental domain is clearly not defined uniquely.
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Fourier series (FS) identify L2(T) with the l2 space on Γ∗:

(2.6) f(x) 7→ {fk :=
∫

T

f(x)e−ik·xdx}k∈Γ∗

Analogously with L2(T∗) and l2 on Γ.
One can consider (as it will be extremely useful for us) vector-valued

Fourier series. Namely, letH be a Hilbert space and L2(T,H), l2(Γ∗,H)
be the spaces of H-valued L2- functions on T and Γ∗ correspondingly
and the Fourier Series expansion is defined as in (2.6). The following
theorem restates standard results concerning Fourier series:

Theorem 2.4.

• The FS expansion is (up to a constant factor) an isometry of
L2(T,H) onto l2(Γ∗,H).

• A function ∈ L2(T,H) is infinitely differentiable if and only if
its Fourier coefficients fk decay faster than any power of k.

• A function ∈ L2(T,H) allows analytic continuation into a com-
plex neighborhood of T (see (2.5)) if and only if its Fourier co-
efficients fk decay exponentially.

3. Periodic operators

From now on, we will be interested in studying linear elliptic PDEs
with periodic coefficients. Our main “test” example is the Schrödinger
operator in L2(R

n):

(3.1) H = −∆+ V (x),

with a “sufficiently nice” real electric potential V , periodic with respect
to the group Γ = Zn (and thus the dual lattice is Γ∗ = 2πZn). The
domain of H is the Sobolev space H2(Rn). The reader in most cases
will not be misled thinking just of this operator.

In fact, many other periodic operators of mathematical physics arise
in applications and need to be studied. The techniques described in
this survey work (sometimes with some caveats) for them as well. We
will from time to time address some of those, but so far we just briefly
describe some examples worthy of studying (and being studied):

• Although we assumed above a “nice” (continuous or even smooth)
potential V (x), this condition is a severe overkill (e.g., L2,loc

usually suffices). However, the main issues already arise in the
smooth case. So, unless specified otherwise, coefficients in
all operators will be assumed smooth (albeit in practical
applications they often are even discontinuous).
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• The Schrödinger operator (3.1) is self-adjoint, howevermany of
the techniques and results do not require self-adjointness.
For instance, when we will discuss absolute continuity of the
spectrum, the question does not make sense in non-self-adjoint
case. However, we will see that the equivalent statement, ab-
sence of the pure point spectrum, can be stated and holds in
the non-self-adjoint setting as well.

• More general Schrödinger operators are also of interest and
present much more difficulties in studying them. These are,
first of all, the magnetic Schrödinger operator

−∆+ iA(x) · ∇+ V (x)

with periodic magnetic and electric potentials A(x) and V (x).
Even more difficulties one encounters in presence of peri-

odic metric:

−∇ · g(x)∇+ iA(x) · ∇+ V (x),

where g(x) is a periodic positive definite matrix-function.
• Periodic elliptic operators of higher than second order
are also of some interest. Here, one should beware that such
operators, unlike the 2nd order ones, might not obey even the
weakest uniqueness of continuation laws, which influences the
validity of some of the results (e.g., absence of the pure point
spectrum).

• Periodic elliptic systems (including overdetermined ones) can
also been considered, first of all the Maxwell operator (in its
2nd order incarnation):

(3.2) ∇× ε−1(x)∇×,
where ε(x) is a periodic positively definite scalar function (or
tensor) and ∇× is the curl operator.

Here one encounters an additional difficulty, since this op-
erator is not elliptic by itself, but only as a member of an
elliptic complex of operators.

• The natural mapping Rn 7→ T is a normal abelian covering
of the (compact) torus T. The techniques that we will con-
sider, as well as many results, apply to periodic operators
on coverings

M 7→ N,

subject to the following three conditions:
(1) The base N is compact.
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(2) The deck group Γ of the covering is finitely generated and
virtually abelian7.

(3) The operator on M is “elliptic” in the sense that being
pushed down toN , it is a Fredholm operator in appropriate
spaces.

In particular, periodic operators on abelian coverings of
compact Riemannian manifolds, analytic manifolds, and
even graphs, succumb gladly to the theory.

• Elliptic periodic boundary value problems are important
in various applications (e.g., waveguides and photonic crystals).
Here periodicity is imposed on the shape of the domain, coef-
ficients of the operator, and boundary conditions. Some issues
easily resolved for operators in the whole space become much
harder in this new setting.

• Ellipticity condition can be weakened to hypoellipticity, e.g.
parabolicity, although the known results are much weaker here
(see Section 9.1 and [171, and references therein]).

Non-hypoelliptic periodic equations, e.g. important time
periodic hyperbolic or non-stationary Schrödinger equa-
tions require different techniques, due to lack of Fredholmity
(see, e.g. [284–286] and Section 9.1).

• Some, but not all, studies carry over to periodic elliptic pseudo-
differential operators (ΨDOs) (see [171] and [261]).

4. Floquet transform and direct integral decomposition

Our main tools in 1D were the spectral analysis of the monodromy
operator and the Lyapunov reduction theorem. Both of them rely
upon the propagator along the solutions of the Cauchy problem. This
raises some hopes that an analog of the 1D Floquet theory might work
for time-periodic PDEs of evolution type (parabolic, hyperbolic, non-
stationary Schrödinger), where such propagators are nicely defined.
And indeed, sometimes this does happen, although, surprisingly (and
shamefully) some basic issues remain still unresolved (see some de-
tails in Section 9.1). However, for non-evolution (e.g., elliptic) periodic
PDEs using such propagators is all but impossible . One thus has to
resort to a different technique, which we outline below.

4.1. Floquet transform. As we have recalled above, Fourier series
transform functions of γ ∈ Γ (even with values in a Hilbert space) into

7I.e., contains a finite index abelian subgroup.
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functions of z ∈ T∗:

{fγ}γ∈Γ 7→ f̂(z) :=
∑

γ∈Γ

fγz
γ =

∑

γ∈Γ

fγe
ik·γ,

with standard L2 isometry and Paley-Wiener type theorems being pre-
served. Here k ∈ Rn and z belongs to the unit torus T∗.

Let now f(x) be a function in L2
loc(R

n). We cover Rn by the shifted
copies of the fundamental domain W :

(4.1) Rn =
⋃

γ∈Γ

(W + γ),

cut f into the corresponding pieces f |W−γ and then shift them all back
to the original W :

(4.2) fγ(x) := f |W−γ(x− γ).

If we restrict here x to being in the Wigner-Seitz cell W , we get a
function on Γ with values in the Hilbert space L2(W ):

(4.3) γ ∈ Γ 7→ fγ ∈ L2(W ).

Now summing the (vector-valued) Fourier series, we arrive to our main
tool:

Definition 4.1. The Floquet transform8 UΓ acts as follows:

(4.4) f(x) 7→ UΓf(x, k) :=
∑

γ∈Γ

fγ(x)e
ik·γ =

∑

γ∈Γ

fγ(x)z
γ.

In other words, this is just the sum of the Fourier series, whose co-
efficients are the pieces of f over shifted copies of the fundamental
domain.

Here, as before, z = (z1, ..., zn) := (eik1 , ..., eikn) is the Floquet multi-
plier corresponding to the crystal momentum k = (k1, ..., kn). We will
also abuse notations, writing

UΓf(x, z) =
∑

γ∈Γ

fγ(x)z
γ

.

8Neither the name “Floquet transform” is commonly accepted, nor Floquet in-
troduced this transform. Various other names have been suggested: Bloch trans-
form, Gelfand transform, Zak transform, and probably some others. Here we see
an instance of the so called Arnold principle: If a notion bears a personal name,
then this name is not the name of the discoverer [11, as well as everywhere on the
Web]. (See also the Berry Principle: the Arnold Principle is applicable to itself.)
However, it is handy in writing to use a name, rather than pointing one’s finger to
a formula. Thus, the author chose Floquet, since this transform is very natural for
Floquet theory. Hopefully, no one will object to it.
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It will be convenient to extend UΓf(x, k) from x ∈ W to the whole
Rn just by removing the restriction to W − γ in (4.2), which results in

(4.5) f(x) 7→ UΓf(x, k) :=
∑

γ∈Γ

f(x− γ)eik·γ =
∑

γ∈Γ

f(x− γ)zγ.

If this is done, then one observes the following useful properties:

UΓf(x+ γ, k) = UΓf(x, k)e
ik·γ, γ ∈ Γ,(4.6)

UΓf(x+ γ, z) = UΓf(x, k)z
γ, γ ∈ Γ,(4.7)

UΓf(x, k + k′) = UΓf(x, k), k
′ ∈ Γ∗.(4.8)

The first two equations, (4.6) and (4.7), say that, being considered on
the whole space Rn, UΓf(x, k) is Γ-automorphic with respect to Γ
with the character eik·γ (this is also called cyclic property, quasi-
periodicity, or Floquet property). The last one, (4.8) claims Γ∗-
periodicity with respect to k.
One can get easily some inversion formulas for the Floquet transform.

Indeed, it is enough to find the Fourier coefficients of UΓf(x, k) with
respect to k and place them where they belong, i.e. on the shifted
copies of the fundamental domain. This leads to the following inversion
formula:

(4.9) f(x) =

∫

T∗

UΓf(x+ γ, k)eik·γdk, x ∈ W − γ, for any γ ∈ Γ.

On the other hand, if we consider the Fourier coefficients fγ as the
shifted copies of f in the whole space Rn, then just the zero’s coefficient
recovers the whole function:

(4.10) f(x) =

∫

T∗

UΓf(x, k)dk, x ∈ Rn.

If one compares the two inversion formulas, one might have a feeling
that something is wrong. However, a brief consideration, which uses
(4.6) shows that the formulas are indeed equivalent.

4.2. Plancherel and Paley-Wiener type theorems. Now, appli-
cation of Theorem 2.4 to H = L2(W ) leads to the following range
theorems for the Floquet transform:

Theorem 4.2.

• UΓ is isometry from L2(Rn) onto L2(T∗, L2(W )).
• UΓf(·, k) is infinitely differentiable on T∗ as a function with

values in L2(W ) iff the norms ‖f‖W+γ decay when ‖γ‖ 7→ ∞
faster than any power of ‖γ‖.



22 PETER KUCHMENT

• UΓf(·, k) is analytic in a complex neighborhood of T∗ as a func-
tion with values in L2(W ), iff the norms ‖f‖W+γ decay expo-
nentially fast when ‖γ‖ 7→ ∞.

Dealing with differential operators, we will be also interested in the
behavior of Sobolev spaces Hs(Rn) under the Floquet transform. This
seems to be a piece of cake, just replacing everywhere L2 with Hs.
Well, not so fast:

Proposition 4.3. UΓ is an isometry from Hs(Rn) onto a proper
subspace of L2(T∗, Hs(W )).

Oops! what is wrong with Sobolev spaces? The answer is not hard
to figure out. Indeed, if one takes an arbitrary function F (x, k) in
L2(T∗, Hs(W )), its alleged pre-image under the Floquet transform can
be, as we have figured out before, recovered by taking Fourier coeffi-
cients of F and distributing them to the appropriate shifts of the fun-
damental domain W . The resulting function is, by construction, in Hs

inside of each of the shifted copies of W . Moreover, the sum of squares
of their Hs norms is finite. The problem is that there is nothing en-
forcing the smoothness across the boundary between two adjacent cells.
This explains why there is no surjectivity of the Floquet transform in
this setting.

Fortunately, it is not hard to fix this and describe the range of the
transform explicitly. Clearly some boundary conditions are needed to
glue the pieces together. And indeed these are easy to establish for
instance when s = 2 (or any s ∈ Z+). It is, however, easier to avoid
this and to adopt a much more telling (and applicable for any s ≥ 0)
view. The clue on how to do this comes from the automorphicity
property (4.6, 4.7). We introduce the following

Definition 4.4. For any k ∈ Cn, the space Hs
k(W ) as the space of

restrictions to the fundamental domain W of Hs
loc-function on Rn that

are automorphic with the given k:

(4.11) Hs
k(W ) := {f |W | f ∈ Hs

loc(R
n) s.t.f satisfies (4.6)}

Another useful object is a k-dependent smooth linear bundle over T.
Let us fix k ∈ Cn and consider first the trivial linear bundle E := Rn×C

over Rn. We define a (k-dependent) Γ-action on E as follows:

(4.12) For any γ ∈ Γ and (x, c) ∈ E, τk(γ)(x, c) := (x+ γ, eik·xc).

Definition 4.5. We denote by Ek the linear bundle over the torus
T obtained by factoring out the action τk of Γ on the bundle E.

Now the following claims are immediate to obtain:
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Proposition 4.6. Let s ≥ 0. Then, for any k,

(1) Hs
k is a closed subspace in Hs(W ).

(2) H0
k = L2,k = L2(W ).

(3) Hs
k+k′ = Hs

k for any k′ ∈ Γ∗.
(4) A function u belongs to Hs

k if and only if it can be represented
as

(4.13) u(x) = eik·xv(x) with v(x) being Γ− periodic, i.e. v ∈ Hs(T).

(5) Moreover, Hs :=
⋃

kH
s(k) is an analytic Banach vector sub-

bundle of the trivial bundle Cn ×Hs(W ) over Cn.
(6) There is a natural correspondence between Γ-automorphic func-

tions on Rn with a quasi-momentum k and sections of the linear
bundle Ek over T.

(7) Under this correspondence, elements of Hs
k correspond to Hs-

sections of the bundle Ek.
(8) Due to periodicity, the operator H preserves the Γ-automorphicity.

In particular, H defines an elliptic operator H(k) on sections
of the bundle Ek.

Remark 4.7.

• In the particular case when H is the Laplacian −∆, the oper-
ators −∆(k) are called twisted Laplacians. We can call the
operators H(k) twisted Schrödinger operators, or (more
common) Bloch Hamiltonians.

• The advantage of dealing with the family of operators H(k)
rather than the single operatorH is that eachH(k) is an elliptic
operator in sections of a bundle over a compactmanifold T and
thus has purely discrete spectrum, unlike the operatorH, whose
spectrum is continuous.

• For the operator H = −∆ + V (x), the corresponding H(k)
acts by the same differential expression on W with the domain
H2

k , i.e. with the cyclic boundary conditions. In this view,
the domain of the operator analytically rotates with k, while
the differential expression of H stays the same. One of its ad-
vantages is that the domain Hs

k of the operator is Γ∗-periodic
with respect to k, so it can be considered as depending on the
Floquet multiplier z = (eik1 , ..., eikn) only.

• Alternatively, according to (4.13), the operator H(k) can be
considered as acting, for all k, on periodic functions on T. This
is achieved by commuting with an exponent:

(4.14) e−ik·x ◦ (−∆+ V (x)) ◦ eik·x.
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This leads to the following differential expression for H(k)

(4.15) −∆− 2ik · ∇+ k2 + V (x)

acting on the torus T, i.e., on Γ-periodic functions. The advan-
tage of this representation is the explicit polynomial dependence
of the differential expression on the quasi-momentum and the
domain being fixed. On the other hand, explicit periodicity in
k is lost.

There are advantages and disadvantages of both represen-
tations. It is thus recommended to choose them judiciously,
depending on the problem.

• The latter representation can be generalized to any periodic

differential operator L(x,D), where D := −1

i

∂

∂x
:

(4.16) L(k) = L(x,D + k).

We can now formulate the exact range theorem for the Floquet trans-
form in Sobolev spaces:

Theorem 4.8.

• UΓ is isometry from Hs(Rn) onto the space L2(T∗,Hs) of the
L2-sections of the bundle Hs.

• The section UΓf(·, k) is infinitely differentiable on T∗ iff the
norms ‖f‖Hs(W+γ) decay when ‖γ‖ 7→ ∞ faster than any power
of ‖γ‖.

• The section UΓf(·, k) is analytic in a complex neighborhood of
T∗ iff the norms ‖f‖Hs(W+γ) decay exponentially fast when ‖γ‖ 7→
∞.

4.3. Direct integral decomposition. We can summarize the results
of previous sections as the following direct integral decompositions
of functional spaces and of the operator H:

(4.17) L2(Rn) =

⊕
∫

T∗

L2(W ), Hs(Rn) =

⊕
∫

T∗

Hs
k, H =

⊕
∫

T∗

H(k).

We will not get into any deeper discussions of the direct integral tech-
nique (see, e.g. [55,75,113,220,239,245]), since in our situations this is
usually not required.

5. Dispersion relation and all that

As there is in general no analog of the 1D discriminant in higher
dimensions, the dispersion relation takes the lead. Its definition and
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many properties are analogous to the ones in 1D, although some im-
portant distinctions do arise.

5.1. Dispersion relation = Bloch variety.

Definition 5.1. The (real) dispersion relation (or the (real) Bloch
variety BH) of the periodic Schrödinger operator9 H is the subset of
Rn

k × Rλ defined as follows:

(5.1)
BH := {(k, λ) ∈ Rn+1 |Hu = λu has a 6= 0 Bloch-Floquet
solution u(x) = eik·xp(x) with the quasi-momentum k}

The complex dispersion relation (or complex Bloch variety) is
defined analogously, only allowing both k and λ to be complex, i.e.
BH,C ⊂ Cn+1. As we will see later on, the ability of considering the
complex Bloch variety turns out to be very important.

5.2. Dispersion relation and the spectrum. Let us assume that
k ∈ Rn. The operator H(k) being a self-adjoint elliptic operator in
sections of a linear bundle on the torus, implies

Lemma 5.2. For any k ∈ Rn, the operator H(k) is bounded below and
has a discrete (real) spectrum

(5.2) σ(H(k)) = {λj(k)|λ1(k) ≤ λ2(k) ≤ ... ≤ λd(k), .... 7→ ∞}.
Definition 5.3. The function k 7→ λj(k) is called the jth band func-
tion.

Remark 5.4. Notice that for complex quasimomenta k, the spectrum is
also discrete [5, pp.180-190], although labeling them becomes an issue.

The following statements are routine, due to the direct integral ex-
pansion (4.17) of the operator, perturbation theory [157], and some
standard properties of analytic Fredholm operator-functions (e.g., [171,
282,292]):

Theorem 5.5.

(1) The band functions are continuous and piece-wise analytic.
(2) The graph of the multiple-valued mapping

(5.3) k ∈ Rn 7→ σ(H(k))

coincides with the dispersion relation (Bloch variety) BH of H.

9The definition stays the same for other periodic operators,
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(3) The latter claim also holds in the complex case, i.e. the graph
of the multiple-valued mapping

(5.4) k ∈ Cn 7→ σ(H(k))

coincides with the complex dispersion relation (complex Bloch
variety) of H.

(4) The dispersion relation is Γ∗-periodic with respect to k and thus
it is sufficient (and common) to consider it only over the Bril-
louin zone B.

(5) The dispersion relation is symmetric (even) with respect to the
mapping k 7→ −k. (This fails if the potential is not real.)

(6) The spectrum σ(H) is the range of the (real) dispersion relation,
i.e.

σ(H) =
⋃

k∈B

σ(H(k))(5.5)

= {λ ∈ R | ∃k ∈ Rn, such that λ ∈ σ(H(k)}(5.6)

= {λ ∈ R | ∃k ∈ Rn, j ∈ Z+, such that λ = λj(k)}.(5.7)

The last statement of the theorem is a very general claim about
spectra of direct integrals of operators (see, e.g., [171, 239]).
The following remark is often very useful:

Lemma 5.6. Let S be a dense subset of the Brillouin zone B. Then

(5.8) σ(H) =
⋃

k∈S

σ(H(k)).

In other words, if for some reason one wants to avoid some excep-
tional values of k (e.g., k = 0 causes troubles for the Maxwell operator),
one can avoid them by choosing an appropriate dense subset of quasi-
momenta.

We can now define the spectral bands of the operator H:

Definition 5.7. The segment

(5.9) Ij := range(λj) = {λ ∈ R | ∃k ∈ Rn such that λ = λj(k)}
is the jth band of the spectrum σ(H).

Due to Γ∗-periodicity with respect to k, one can also write

(5.10) Ij = {λ ∈ R | ∃k ∈ B such that λ = λj(k)}.
Corollary 5.8.

(1) Each band Ij is a finite closed interval, both of whose endpoints
tend to infinity when j → ∞.



AN OVERVIEW OF PERIODIC ELLIPTIC OPERATORS 27

(2) The bands cover the whole spectrum:

(5.11) σ(H) =
⋃

j∈Z+

Ij.

(3) The bands can10 overlap.

As it was in 1D, it is easy to check that for the free operatorH = −∆,
BH is the union of the paraboloid λ = k2 and its Γ∗-shifts. One can
deduce from this (which requires sometimes highly non-trivial work
involving number theory (e.g., [232, 235,258])) the following:

Theorem 5.9. Consecutive spectral bands of the free operator
overlap, and thus the spectrum of the free operator has no
gaps. Moreover, the length of the overlap tends to infinity when one
goes up along the spectrum.

This is in a stark contrast with 1D, where the bands do not overlap
(touching in the worst case).
In Fig. (13) one finds an example of the dispersion relation for a

non-zero potential:

Figure 13. The dispersion relation of a non-free oper-
ator, drawn over a Brillouin zone.

5.3. Born-Karman approximation. A very useful way of obtaining
the dispersion relation (and thus the spectrum) of a periodic operator
is due to Born and Von Karman (see, e.g., [13]).

We will assume, as before, that Γ = Zn (although the approach
works for any lattice).

10And, as we will see, usually do.
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Theorem 5.10. Consider for an integer N the cube QN := [−N,N ]n ∈
Rn and define the operator H(N) acting as the differential expression
of H on QN with periodic boundary conditions (i.e., on the cube QN

folded onto a large torus). Then

(5.12) σ(H) = lim
N→∞

σ(H(N)) =
⋃

N∈Z+

σ(H(N)),

where the limit is taken with respect to the Hausdorff distance.

Indeed, let us denote by QB the subset of the Brillouin zone consist-
ing of all quasi-momenta with components that are rational multiples
of π. Then, it is a rather straightforward exercise to see that

⋃

N∈Z+

σ(H(N)) =
⋃

k∈QB

σ(H(k)).

Now, using Lemma 5.6, one proves Theorem 5.10.

Remark 5.11. Another important observation is that this theorem is
more than just the claim about Hausdorff convergence of spectra, or
density of states convergence. Indeed, such claims hold also for other
“reasonable” choices of boundary conditions (e.g., Dirichlet), or other
choices of large domains instead of large cubes assembled from the
fundamental unit cubes [263]. In those cases, however, one can often
see spurious spectra appearing outside σ(H), but disappearing in
the limit. In the Born-Karman case, though, this does not happen,
since σ(H(N)) ⊂ σ(H) for any N .

5.4. Analytic properties of the dispersion relation BH. We will
explore now analytic properties of the dispersion relation of the oper-
ator H. Consider the complex Bloch variety

(5.13) BH,C ⊂ Cn+1.

Theorem 5.12. ( [168, Lemma 8 of $4], [171, Theorem 4.4.2], see
also [165])

(1) There exists an entire function f(k, λ) on Cn+1, such that
(a)

(5.14) |f(k, λ)| ≤ Cpe
(|k|+|λ|)p

for any p > n. (Similar statement holds for more general
elliptic periodic operators, with the exponent p depending
on the dimension and order of the operator [171].)

(b)

(5.15) BH,C = {(k, λ) ∈ Cn+1 | f(k, λ) = 0}.
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(2) If p > n+ 1, one can make sure that f is Γ∗-periodic w.r.t. k.

In particular, BH,C is a Γ∗-periodic complex analytic sub-variety
of Cn+1 of co-dimension 1.

An easier statement, without estimates on growth of the function
f , can be obtained from the analytic Fredholm theory (e.g., [171, 282,
292]). The proof of theorem as stated uses the theory of regularized
determinants in Shatten-von Neumann classes [83, 127,257].

5.5. Floquet variety. It is natural to reduce BH with respect to its
Γ∗-periodicity (i.e., using Floquet multipliers z = eik instead of crystal
momenta k). We thus introduce the following (not commonly adopted)
notion:

Definition 5.13. The Floquet variety FH of H is defined as follows:
(5.16)
FH := {(z, λ) ∈ (C∗)n×C | z = eik = (eik1 , ..., eikn), where (k, λ) ∈ BH,C},
where C∗ is the punctured complex plane C∗ := C \ {0}.

In other words, (z, λ) ∈ FH , iff there exists a non-zero Floquet solu-
tion of Hu = λu with the Floquet multiplier z.

5.6. Non-algebraicity. As we have seen already, in the free case, BH

is the union of Γ∗-shifts of a single paraboloid. Thus, we get

Proposition 5.14. In the free case,

(1) All irreducible components of the Bloch variety BH are algebraic
(shifted paraboloids). In particular, the Bloch variety BH is
irreducible modulo Γ∗-shifts.

(2) The Floquet variety FH is irreducible.

It is thus interesting to ask what to expect in terms of algebraicity
and irreducibility in the non-free periodic case.

In general, the irreducible components of neither Bloch, nor Flo-
quet variety are algebraic. There exist, however, examples of non-
selfadjoint periodic operators H with algebraic components
of BH (see [170, Theorem 11] and [171, Theorem 4.1.2]).

In discrete problems, the Floquet varieties are algebraic [24,
169], since the corresponding operators H(z) are finite Laurent series
with respect to z: ∑

j∈Zn

Hjz
j,

where the sum is finite and Hj are matrices of a finite size.
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A more interesting (and as we will see later, important) question is
about irreducibility of the Bloch variety in higher dimensions, which is
addressed in the next sub-section.

5.7. Irreducibility. It is conjectured that the analog of the statement
(2) of Proposition 5.14 holds in higher dimensions:

Conjecture 5.15. The Bloch variety of the self-adjoint periodic Schrödinger
operator H = −∆+ V (x) is irreducible modulo Γ∗.

Proving this conjecture seems to be extremely hard. It has been
proven in dimension 2 by a tour de force in [165].

A much weaker conjecture formulated below is already non-trivial:

Conjecture 5.16. The Bloch variety BH for a periodic elliptic second
order operator H with sufficiently “decent” coefficients does not have
any flat components λ=const.

We will see later on, how important is the resolution of this conjec-
ture for the spectral theory. That is why it has attracted attention of
many mathematicians and has been proven in many cases (albeit still
not in its full generality), see Section 6.3.

We provide here an easy to complete sketch of the proof of the fol-
lowing well known result, due to L. Thomas [272], although he did not
formulate the statement in this form (see also [239]):

Theorem 5.17. [272] Let V ∈  L∞(Rn) be periodic. Then the Bloch
variety of the Schrödinger operator −∆+V (x) has no flat components
λ = λ0. (Notice that it is not assumed that the potential V is real.)

Proof. Suppose that this is incorrect, i.e. there exists λ0 ∈ C such that
the equation −∆(k)u+ V u = λ0u has a non-trivial 1-periodic solution
u for anyk ∈ Cn. Absorbing the spectral parameter into the potential,
we can assume that λ0 = 0. Thus, we conclude that

∆(k)u = V u has a non-trivial solution u for any k ∈ Cn.

Let C = ‖V ‖L∞
. Then ‖V u‖L2(T) ≤ C‖u‖L2(T) and thus

‖∆(k)u‖L2(T) ≤ C‖u‖L2(T)

for any k (with a non-trivial u depending on k).
Let us now pick quasimomentum with a large imaginary part and

judiciously chosen real part. Namely, assuming that Γ = Zn (analogous
consideration works for any lattice), let

k = (0.5 + i2a, 0, ..., 0), a ∈ R.
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Expansion of the periodic function u into Fourier series easily leads to
the estimate

‖∆(k)u‖L2(T) ≥ |a|‖u‖L2(T).

If a > C, we get a contradiction, unless ‖u‖ = 0, which we assumed
does not happen. �

The assumption of boundedness of the potential is an overkill (see,
e.g. [239]).

In fact, a stronger statement holds:

Theorem 5.18. Under the same conditions as in Theorem 5.17, for
any λ0 ∈ R, the level set of the dispersion relation:

(5.17) Fλ0
= {k ∈ Rn |H(k)u = λ0u has a non-zero solution }

has measure zero in Rn.

We will see later that this leads to the absolute continuity of the
spectrum of the periodic Schrödinger operators, which was the main
goal in [272]. Due to this relation, the statements of Theorems 5.17
and 5.18 have been extended in the last three decades to a large variety
of scalar and matrix periodic operators of mathematical physics (Pauli,
Dirac, Magnetic Schrödinger, Maxwell, see Section 6.3 and references
therein), although the proof of the whole Conjecture 5.16 remains elu-
sive.

We need first the following auxiliary statement:

Lemma 5.19. Let a(k) be a real analytic function on Rn. If the mea-
sure of the zero set of a is positive, then the function vanishes identi-
cally.

The author has tried to find in various real analytic geometry sources
this result stated explicitly, but has failed so far. It can be derived from
the Weierstrass Preparatory Theorem (e.g., [136]). It is also a direct
corollary of the Lojasiewicz’s result on existence of Whitney stratifi-
cation of real analytic sets [195], as well as of the desingularization
theorems by Bierstone and Milman [27,28], which seems to be quite an
overkill in both cases.

Now, Theorem 5.18 becomes a simple corollary of Theorem 5.17.
Indeed, the level set of dispersion relation, is the set of real zeros of
the real analytic function f(k, λ0) on Rn (see Theorem 5.12 for the
definition of the function f). Thus, if this set has a positive measure,
then, according to Lemma 5.19, the function vanishes identically, and
thus f(k, λ0) = 0 for all k ∈ Cn. This is impossible according to
Theorem 5.17.
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One should notice that for periodic elliptic operators of orders higher
than 2 neither of these conjectures holds true. E.g., there are examples
of such operators of the 4th order whose Bloch variety is reducible, and
moreover, has a flat irreducible component [171, pp. 135–136].

Let us address another issue of irreducibility. We have seen that in
the free case any non-zero Γ∗-shift of an irreducible component Σ of
BH produces another component, different from Σ. In other words,
irreducible components are not invariant with respect to any non-zero
Γ∗-shifts. It seems that in presence of a generic periodic potential the
situation is different.

Conjecture 5.20. For a generic potential, unless an irreducible com-
ponent Σ ⊂ BH is algebraic, there exists a non-zero Γ∗-shift that leaves
it invariant.

If this conjecture is correct, then perturbation of the free operator by
a periodic potential not only deforms the paraboloids, but also connects
them together.

5.8. Extrema. Since, according to (5.5) – (5.7) the edges of the spec-
trum occur at extrema of the band functions, studying these extrema
is an important task.

5.8.1. Location. In 1D, as we have seen, the extrema of the dispersion
relation λ(k) occur only at k = 0 and k = π in the first Brillouin zone,
which was due to the monotonicity of band functions on the reduced
Brillouin zone.

Let us try to look at the points k = 0 and k = π in a different light.
The reciprocal lattice Γ∗ is invariant with respect to the symmetry
group generated by its shifts and “time reversion” k 7→ −k. One
discovers then that the points k = 0, π are exactly the fixed points of
some of these symmetries inside of the reduced Brillouin zone.

In higher dimensions, the symmetry group can be larger. If one looks
at the free case, one discovers that critical points of these overlapping
paraboloids do occur at some symmetry points as well. Most computa-
tions for periodic Schrödinger and Maxwell operators also showed this
effect. This has led to the following

formerly popular belief: For −∆+ V (x), the extrema of
dispersion relation must be attained at fixed points k ∈ B of some

symmetries (probably at the highest symmetry points).
Thus, computing the dispersion only around the symmetry points

gives the correct spectrum as a set.
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No monotonicity (or any other) reason for this claim exists. Some nu-
merical evidence against it have been around, but not widely known
and/or believed. This claim was discussed and disproved ana-
lytically in [97, 137]. It is also discussed in [137] why in practice the
extrema are indeed often located at the symmetry points.

5.8.2. Generic structure of spectral edges.
After discussing the possible locations of the extrema, we move to

the probably more important question of their structure. The following
complications can (and do) occur at a spectral edge value c:

A: The extremal value c is attained by more than one band func-
tion.

B: The extremum c of a single band function λj is non-isolated
(i.e., a “Mexican hat” type picture occurs).

C: The extremum is isolated, but degenerate (i.e., the Hessian of
λj(k) at the extremum point is degenerate).

Although all of the above can occur, the general belief is that generi-
cally they do not.

Conjecture 5.21. Generically (with respect to the potentials and other
free parameters of the operator), the extrema of band functions

(1) are attained by a single band;
(2) are isolated;
(3) are non-degenerate, i.e. have non-degenerate Hessians.

In other words, one conjectures that generically near a spectral edge
the dispersion relation looks like a single parabolic shape, i.e. resembles
the dispersion relation at the bottom of the spectrum of −∆. As we
will see later (Section 7), then various analogs of the properties of the
Laplacian would be applicable to a generic periodic elliptic operator.

Why would one conjecture this? Well, existence of a degenerate
extremum of the dispersion relation is an analytic equality type re-
striction. Then it is natural to think that it should either hold almost
never, or for (almost) all operators. It is hard to believe that such a
restriction for all periodic potentials exists.

The common idea is that generically, the dispersion relation probably
behaves like the spectrum of a “generic” family of self-adjoint matrices.
This has been conjectured in various forms by several authors (e.g.,
[16,48]), but has never been proven (or even formulated) in any rigorous
form.

Although the validity of the conditions (1)-(3) of the Conjecture 5.21
is often assumed in mathematics and physics literature (it is involved
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with the definition of effective masses in solid state physics, homoge-
nization, Green’s function asymptotics, Liouville type theorems, An-
derson localization, etc., see Section 7)), the conjecture remains largely
unproven.

Let us mention what is known in this regard.
The following well known result by Kirsch and Simon [161] estab-

lishes the conjecture (in a stronger form) at the bottom of the spectrum
of a Schrödinger operator with periodic electric potential:

Theorem 5.22. [161] Let

H = −∆+ V (x)

be a periodic Schrödinger operator in Rn. Then the bottom of the spec-
trum of H is attained by the non-degenerate minimum at k = 0 of the
lowest eigenfunction λ1 only.

Regretfully, the arguments of [161] are not applicable in the case of
an internal spectral edge. J. Ralston [164]:

Theorem 5.23. The claim (1) of Conjecture 5.21 holds for a generic
Scrödinger operator with periodic electric potential.

The conjecture has not been established even in the discrete situa-
tion, except for the following partial result:

Proposition 5.24. [78] Let H be the periodic Laplace-Beltrami type
operator11 on a Z2-periodic graph Γ, having just two vertices (atoms)
per a fundamental domain. Then the set of parameters (vertex and
edge weights) for which the dispersion relation has a degenerate ex-
tremum is a (semi-)algebraic subset of co-dimension 1 in the space of
all parameters.

In principle, if the conjecture were proven for the discrete case, one
could attempt the following bootstrap procedure to carry the result
over to the continuous case (such a procedure was used for a different
purpose in [137]):

A. prove the result for discrete periodic graphs
⇒ B. carry it over to periodic quantum graphs, using the known

relations between the two (e.g., [24])
⇒ C. fatten the graph (e.g., [24,173]) to extend to the full dimension.

Here the main difficulty arguably lies in the first step A.
An interesting example of a discrete Z2-periodic problem with de-

generate (non-isolated) band edges was constructed by Filonov [105].

11See [24,44] for the explicit form of such operators.
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A direct approach to the continuous case, skipping the discrete one,
would be desirable.

Allowing change of the lattice of periods to a sub-lattice, possibility
of removing degenerate edges by perturbation of potential was shown
in 2D in [110]. It seems that isolated nature of extrema was recently
established in 2D by Filonov and Kachkovskii [106].

5.9. Dirac cones. When two branches of the dispersion relation meet,
they often form a conical junction point, called a Dirac cone or some-
times a “diabolic point.” The former name reflects the fact that the
conical structure resembles the one for the dispersion of a 2D massless
Dirac equation.

Figure 14. Dirac cones for the tight-binding model of graphene.

Such conical structures are usually unstable under perturbation of
parameters of the operator (the potential). However, it has been no-
ticed that if the structure has honeycomb lattice symmetry, preserved
under perturbation, this protects the cone from splitting. Thus, in par-
ticular, such a cone mandatorily arises in the dispersion relation of the
famous graphene, which explains its amazing electric properties (see,
e.g., [158]).

The observation of the mandatory appearance of Dirac cones in
honeycomb-symmetric structures was first made (way before graphene

Figure 15. Dirac cones for the honeycomb structure.

came into play) for the tight binding model of the discrete honeycomb
lattice [281], which provides an approximate picture of the graphene’s
first two dispersion bands. An infinite-band quantum graph model,
which has an infinite-dimensional freedom of choosing honeycomb–
symmetric potentials was considered in [182], where detailed structure
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of the spectrum and dispersion relation, including in particular pres-
ence of Dirac cones, was described12. For 2D Schrödinger operators
with honeycomb-symmetric potentials, existence and stability of Dirac
cones was established in [23, 98, 133]. The Schrödinger operator with
honeycomb lattice of point scatterers was considered in [190].

One can say, however, that the story does not end here, since pres-
ence of stable Dirac cones (including very interesting non-isotropic
ones) has been observed for more general 2D (graphyne) structures,
which lack honeycomb symmetry. See, e.g. [89] for physics discussion
and [76, 77] for quantum graph studies of a simplest graphyne. So far,
there is no complete understanding of this phenomenon (analogous to
the one provided in [23,98,133] for the honeycomb case).

5.10. Fermi surfaces. The notion of the Fermi surface is among the
central ones in the solid state theory, as one can see from any solid
state textbook, e.g. [13, 40, 162, 296]. There are plenty of books and
databases dedicated to Fermi surfaces of various crystals, e.g. [56, 57,
99, 138, 295–297]. The reason is that many physical properties of, e.g.,
metals depend upon the geometry of its Fermi surface. We will try to
show that hard questions about the analytic geometry of Fermi surfaces
are intimately related to some basic spectral and other properties of the
relevant operator. Answering these questions is usually extremely hard
(see, e.g., the book [125], and a shorter survey [124], devoted solely to
studying the surface for a discrete periodic Schrödinger operator on
Z2).

To define a Fermi surface, let us consider the (real or complex) dis-
persion relation BH as the graph of the multiple valued function

k ∈ Cn 7→ σ(H(k)).

Definition 5.25. The Fermi surface Fλ,H of H at a scalar value λ is
the λ-level set of the dispersion relation. I.e.,

Complex Fermi surface is:

Fλ,H,C := {k ∈ Cn | (k, λ) ∈ BH,C}
= {k ∈ Cn |H(k)u = λu has a non-zero solution}.

Real Fermi surface for a real λ is:

Fλ,H := {k ∈ Rn | (k, λ) ∈ BH}
= {k ∈ Rn |H(k)u = λu has a non-zero solution}.

An obvious statement is:

12The article [182] also contained the detailed spectral analysis of quantum graph
models of all possible carbon nanotubes.
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Lemma 5.26. The Fermi surface is Γ∗-periodic.

The following result follows from its analog for the Bloch variety BH :

Theorem 5.27. Fλ,H is the zero set of an entire function f(k) of the
same exponential order as for BH (see Theorem 5.12).

The following reformulation of Theorem 5.18 is useful:

Theorem 5.28. At any energy level λ ∈ R, the real Fermi surface
either has measure zero in Rn, or it coincides with the whole Rn (and
thus the complex Fermi surface at this level is Cn).

Remark 5.29.

(1) In physics, the name Fermi surface is used only for a specific
real level of the energy λ, the so called Fermi level λF [13,
40, 162, 296]. It is convenient for us, though, to consider Fermi
surfaces at arbitrary levels.

(2) The definition of the Fermi surface seems to be rather innocu-
ous. Just to impress on you its possible complexity, Fig. 16
presents the Fermi surface of Niobium (Nb). One can find more

Figure 16. The Fermi surface of Niobium (Nb)

(often more complex) pictures of Fermi surfaces at URL [99].

Conjecture 5.30. The Fermi surface for H = −∆+V (x) is irreducible
(modulo Γ∗) for λ ∈ R, except for a discrete set of values of λ.

This conjecture has been proven for discrete Schrödinger on Z2 [124,
125]. In the case of continuous Schrödinger operator with periodic
electric potential in dimensions n = 2, 3 and separable potential V (x) =∑
Vj(xj), as well as in 3D for potential U(x1, x2) + V (x3), where the

axis xj are oriented along the basis vectors of Γ [185].
As we will see later, the “esoteric” question of irreducibility of the

Fermi surface is closely related to the question of absence of impurity
eigenvalues embedded into the continuous spectrum.
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5.11. Bloch bundles. Let S ⊂ σ(H) be a subset consisting of m
spectral bands and surrounded by spectral gaps. We will call such a
subset a composite band (see Fig. 5.11). Let us surround S with a

Figure 17. A composite band composed of three spec-
tral bands.

contour Γ (Fig. 5.11) and introduce the corresponding m-dimensional
spectral projector for H(k):

P (k) :=
1

2πi

∮

Γ

(ζ −H(k))−1dζ.

Projector P (k) depends analytically on k in a complex neighborhood
of T∗ in Cn. Its range forms the so called Bloch bundle over this
neighborhood, which corresponds to the composite band S. Sections
of this bundle form the invariant subspace for H that corresponds to
S ⊂ σ(H).

This bundle over the torus T∗ can be topologically non-trivial (e.g.,
in presence of magnetic potential [273] or in the case of topological
insulators [25]).

As we have seen, the bundle is defined and analytic in a complex
neighborhood of the torus. We are sometimes interested in its analytic
triviality. The question arises whether there are additional analytic
obstructions to this. The following result is a simple incarnation of the
Oka’s principle [132,136]:

Theorem 5.31. (e.g., [176]) Topological triviality of the Bloch bundle
over T∗ is equivalent to its analytic triviality in a complex neighborhood.

Indeed, there is a neighborhood of the torus that is the product of
1D complex domains. Then it is a Stein manifold, and the above result
is a part of the famous Grauert’s theorem [131] for such manifolds.

A variety of results on sufficient conditions of triviality of Bloch
bundles are known, see e.g. [176, 228] and references therein (see also
[292] for the survey of techniques of Banach bundles).
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5.12. Analyticity in the space of parameters. An often very useful
thing to do is to add to the spectral parameter λ and quasimomenta k
an infinite-dimensional space P of parameters of the periodic operator
(i.e., an appropriate Banach space of periodic potentials). Then the
Fermi and Bloch varieties can be defined in this extended space. When
the space of parameters is defined properly, it is usually straightforward
to prove the following:

Meta-theorem Bloch and Fermi surfaces are analytic subsets in the
enlarged space Cn+1 × P (respectively Cn × P ).

5.13. Inverse problems. Inverse spectral problems are known to arise
frequently and have been studied a lot for periodic ODEs (e.g., [1, 82,
189,203,221] and references therein).

The periodic PDEs in this regard are much trickier and there are not
that many results available. We look here at a few examples.

5.13.1. Borg’s theorem. The famousBorg’s uniqueness theorem for

the Hill operator − d2

dx2
+ q(x) with periodic potential q says:

Theorem 5.32. [35] TFAE:

(1) The potential is constant.
(2) There are no spectral gaps.
(3) [16]There exists an entire function, whose graph λ = f(k)

belongs to the dispersion relation.

The equivalence 1. ⇔ 2. fails miserably in dimensions n > 1! In
fact, as we will see later, for any sufficiently small bounded periodic
potential V (x) in Rn with n > 1, the Schrödinger operator −∆+V (x)
has no gaps in the spectrum. Moreover, when the gaps do appear, there
are only finitely many of them, which is clearly not enough to recover
the potential whatsoever. Spectral gaps in higher dimensions do not
provide nearly as much information as in the ODE case. However, the
equivalence 1. ⇔ 3. probably still holds:

Conjecture 5.33. TFAE:

(1) The potential is constant.
(2) There exists an entire function, whose graph λ = f(k) belongs

to the dispersion relation.

In 2D, the conjecture was proven by Knörrer and Trubowitz [165].

5.13.2. Floquet rigidity. Let us consider the Schrödinger operator H =
−∆ + V (x) with the potential periodic with respect to a lattice Γ
and the corresponding Bloch operators H(k), which have, as we know,
discrete spectra.
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Definition 5.34.

• The periodic spectrum is defined as follows:

(5.18) σ0(H) := σ(H(0)) = spectrum of H on Γ-periodic functions.

• The k-spectrum is defined as follows:

(5.19)
σk(H) := σ(H(k))

= spectrum on Bloch functions with quasimomentum k.

Clearly, the union over all k of the graphs of these spectra forms the
Bloch variety for H.

Definition 5.35.

• The Γ-periodic potentials V and W are isospectral, if

(5.20) σ0(−∆+ V ) = σ0(−∆+W ).

• The Γ-periodic potentials V and W are Floquet isospectral,
if

(5.21) σk(−∆+ V ) = σk(−∆+W ), ∀k ∈ Rn.

One is interested in understanding when two potentials are isospec-
tral, or even Floquet isospectral. These questions have been understood
well in 1D (see, e.g., [203]), while for n ≥ 2 problems are far from being
resolved.

There are simple examples of isospectral potentials. For instance,
one easily observes

Lemma 5.36.

(1) Potentials V (x) and W (x) = V (±x + a), for any a ∈ Rn, are
Floquet isospectral.

(2) If the lattice Γ is invariant with respect to an orthogonal trans-
formation O of Rn. Then the potentials V (x) and V (Ox) are
isospectral.

Imposing the following condition on the lattice Γ, one eliminates the
second option in the lemma above:

Definition 5.37. A lattice Γ has a simple length spectrum, if

(5.22) If γ1, γ2 ∈ Γ and |γ1| = |γ2|, then γ2 = ±γ1.
One other option is to use the well known results on 1D isospectrality.

Indeed, let v(s) and w(s) be smooth 1-periodic functions of one variable
and δ be a vector such that

(5.23) {δ · γ | γ ∈ Γ} = Z.
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It is easy to establish [93, 94] that if 1D potentials v and w are
isospectral, then the “ridge” n-dimensional potentials v(δ · x)
and w(δ · x) are isospectral. One wonders whether there are any
other options for isospectrality (Floquet isospectrality)13.
Many significant results on multi-dimensional isospectrality were ob-

tained by Eskin-Ralston-Trubowitz in [93, 94] (see also an overview
in [92]), mostly under conditions of analyticity of the potentials and
the simplicity of the length spectrum (5.22). See also preceding and
following works of various authors with additional results and related
discussions in [90, 91,93,128–130,134,135,152–154,276].

We present below a few results of [93, 94]14.

Theorem 5.38. If the length spectrum of Γ is simple and Γ-periodic
potentials V and W are analytic, then

• If they are isospectral, then they are Floquet isospectral.
• Let k0 ∈ Rn be such that cos(2πk0 · γ) 6= 0 for all γ ∈ Γ.

If σk0(−∆ + V ) = σk0(−∆ +W ), then V and W are Floquet
isospectral.

This result shows that (under appropriate conditions) the whole Flo-
quet spectrum (i.e., the whole Bloch variety) has an overdetermined
information, and the fiber of BH over an appropriate quasimomentum
k0 carries as much information as the whole BH .
It is natural to look in the “horizontal,” i.e. along quasimomenta,

direction. In particular,

does the knowledge of a single band function λj(k) determine
the whole dispersion relation (Bloch variety)?

In fact, the Conjecture 5.15 (proven in 1D and 2D) implies, if correct,
that even any open part of a single branch λj(k) uniquely
determines the dispersion relation.

Let now V be a C∞ Γ-periodic potential with the Fourier series
expansion

(5.24) V (x) =
∑

δ∈Γ∗

aδe
iδ·x.

13One can easily achieve Floquet isospectrality by allowing complex potentials
[171, Theorem 4.1.2].

14The sophisticated techniques used in [93, 94] to prove the results involved,
in particular, the spectral invariants extracted from the heat and wave kernel
asymptotics.
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Definition 5.39. Let γ ∈ Γ. The reduced potential Vγ(x) is defined
as follows:

(5.25) Vγ(x) =

1∫

0

V (x+ sγ)ds =
∑

δ·γ=0

aδe
iδ·x.

Another important observation in [92–94] concerns the relations be-
tween the Floquet spectra of the original and reduced potentials:

Theorem 5.40. For any γ ∈ Γ, the Floquet spectrum σk(−∆ + V )
determines uniquely σk(−∆+ Vγ) .

Let now δ ∈ Γ∗ be such that there exists γ0 ∈ Γ for which δ · γ = 2π.
Then one can introduce the 1D directional potential

(5.26) Vδ(s) :=
∞∑

n=−∞

anδe
ins

Theorem 5.41. The Floquet spectrum σk(−∆+V ) determines uniquely
the Floquet spectra the 1D spectral problem

(5.27)

(
= |δ|2 d

2

ds2
+ Vδ(s)

)
u(s) = λu(s)

for any directional potential Vδ.

The isospectrality of potentials V (±x+a) suggests a question whether
under some conditions one can prove that, modulo shifts, the number
of isospectrality classes is finite. A variety of important results of this
type can be found in [94].

6. Spectral structure of periodic elliptic operators

As we have seen, both in 1D and in higher dimensions, periodic
elliptic operators have band-gap structure of their spectra. There are,
however, significant differences between ODE and PDE cases. We make
the comparison in the table below:

n = 1 n > 1
band overlaps none frequent

gaps generically all open many gapless potentials
no gaps constant potential all small potentials

free operator bands touch to cover R+ overlap to cover R+

The rest of this section is devoted to discussing various spectral prop-
erties of periodic operators, such as the band-gap structure of the spec-
trum, the qualitative structure of the spectrum, eigenfunction expan-
sions, etc.
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6.1. Spectral gaps. We start with considerations of spectral gaps:
their existence, number, and ways of creating them.

6.1.1. Existence of gaps. As we have discussed already, according to
the Borg’s theorem, in 1D every non-constant periodic potential creates
spectral gaps. This is manifestly incorrect higher dimensions:

Theorem 6.1. If the L∞(Rn)-norm of a periodic potential V (x) is
sufficiently small, the Schrödinger operator H = −∆ + V (x) has no
spectral gaps.

This is an immediate consequence of Theorem 5.9, if one considers
H as a perturbation of the free operator −∆.

6.1.2. Maximal abelian coverings and Sunada’s no gap conjecture. Con-
sider the standard covering Rn 7→ T (= Rn/Zn). Its deck group is Zn,
which coincides with H1(T,Z). It can also be understood as the quo-
tient of the universal cover of the torus by the commutator subgroup
of the fundamental group π1(T).

Definition 6.2. The maximal abelian covering of a compact man-
ifold X is the covering Y 7→ X with the deck group H1(X,Z), obtained
as the quotient of the universal cover ofX by the commutator subgroup
of the fundamental group π1(X).

The following monotonicity result holds [264]:

Theorem 6.3. Let Y 7→ X be a Riemannian covering with an amenable
deck group. Then

σ(−∆X) ⊂ σ(−∆Y ),

where ∆M denotes the Laplace-Beltrami operator on a Riemannian
manifold M .

Thus, the spectrum of the Laplacian on the maximal abelian covering
is the largest (and thus has the fewest gaps) among all abelian coverings
of the same base. The following, still not proven, no gap conjecture
has been formulated by T. Sunada [265,266]:

Conjecture 6.4. Let Y 7→ X be the maximal abelian covering of a
compact Riemannian manifold X of a constant negative curvature.
Then the spectrum of the Laplace-Beltrami operator −∆Y on Y has
no gaps.

Analogous conjecture has been formulated in the graph case, where
the base graphX is assumed to be regular (i.e., degrees of all its vertices
are the same). The graph version of the conjecture was proven for all
regular graphs of even degree [142] and for various examples of regular
graphs of odd degree [142,167], e.g., the so called K4 graph X.
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6.1.3. Number of gaps. Bethe-Sommerfeld conjecture. What about the
possible number of spectral gaps, if they exist at all? In 1D, the state-
ment (3) of Theorem 1.12 shows that generically the number of gaps is
infinite.

The situation is quite different in dimensions n > 1, as the following
old Bethe-Sommerfeld Conjecture (BSC) [26] shows:

Conjecture 6.5. When n > 1, there can only be a finite number of
gaps in the spectrum of any periodic Schrödinger operator

−∆+ V (x)

in Rn.

By now, after several decades of efforts, the conjecture has been
proven in its full generality. The story started with wonderful works
by Dahlberg and Trubowitz [59] and by Skriganov [258, and references
therein], where some conditions on the lattice and/or dimension were
imposed, and culminated in the work of Parnovski [232] (see some
further generalizations in [235]), along the way absorbing contributions
of other experts [20,88,156,188,214,215,231,233,234,260,277,280]. The
results also cover the case of magnetic potentials.

Remark 6.6.

(1) A stronger version of BSC- for any second order periodic
elliptic operator, is still not proven, except for

H = (−∆)m + lower order periodic terms.

(2) The Maxwell operator case is mostly unresolved, except in a
simplest instance [280].

(3) The validity of BSC for periodic waveguide systems has not
been established and is sometimes questioned.

(4) For periodic graphs/quantum graphs the statement of BSC does
not hold [24].

6.1.4. Gap creation. Presence of gaps is necessary in many instances.
E.g., they are responsible for properties of semi-conductors. Fortu-
nately, such materials exist already in nature. The situation is different,
for instance, when one tries to create the so called photonic crystals,
where the operator of interest is Maxwell in a periodic medium and one
needs to create such a medium with spectral gaps [149,172]. We know
by now that periodicity, although leading to the band-gap structure of
the spectrum, does not guarantee existence of gaps. We thus address
here briefly how spectral gaps can be “engineered”.
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Let us address first the Schrödinger operator −∆ + V (x). We have
just said, engineering gaps is not such a hot issue in this case. It also
happens to be rather easy to create spectral gaps. Indeed, the following
procedure can be easily made precise: creating a local potential well,
one can create a bound state (eigenvalue) below the spectrum of the
Laplacian. Now, repeating periodically copies of the well at large dis-
tances from each other will lead to spreading of this eigenvalue into a
thin spectral band at a distance from the spectrum of the free operator,
and thus creating a periodic medium with a spectral gap.

The potential well technique fails for Maxwell and some other opera-
tors, when local perturbation cannot lower the bottom of the spectrum.
Another deficiency here is that the resulting gaps are rather hard to
manipulate.

An another approach is creating very high contrast media, which
succeeds in creating spectral gaps for periodic Maxwell operators [100–
102,104] as well as for Laplace-Beltrami operators on abelian coverings
of compact Riemannian manifolds [141,238, and references therein]. A
two-scale homogenization approach has also been developed by Zhikov
[294].

The high contrast approach also has its deficiencies. First of all,
it is still hard to manipulate the locations and sizes of spectral gaps.
Besides, the high contrast frequently requires non-physical values of
material parameters.

The moral is that in higher dimensions it often is very hard to create
and manipulate the spectral gaps arising due to Bragg scattering (i.e.,
due to the periodicity of the medium).

A different promising mechanism of opening resonant gaps ex-
ists. The author has learned it first from Pavlov’s work [236], although
the idea probably has been around for a longer time (Arnold principle
again). The idea is that spreading small identical resonators through-
out the medium tends to create spectral gaps around the eigenvalues of
the resonator. No periodicity is required. Regretfully, in the continu-
ous case, this idea apparently has never been made precise. It has been
implemented (as the so called decoration procedure), in its simplest
incarnations in the graph [246] and quantum graph cases [174]. In
practice, a more involved “spider decoration” procedures are desirable
(see discussion in [24,174]), which are at an initial stage of development
(see, e.g., [224]). One can compare this with the more elaborate zig-
zag decoration procedure, used to create expander graphs (which
boils down to controlling the size of the principal spectral gap) [240].

Resonant gaps can also be used to create “slowing down light” optical
media (e.g., [139,178,288]).
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Figure 18. A decorated graph (left). An antenna im-
plementing the concept(right).

6.2. Eigenfunction expansion. Let us recall that

(6.1) λ1(k) ≤ λ2(k) ≤ λ3(k) ≤ . . .

is the sequence of eigenvalues of the operator H(k), listed for k ∈ Rn

(with their multiplicity) in a non-decreasing order.
The standard perturbation theory (e.g., [157]) implies that

each λj(k) is a continuous, piece-wise analytic function of k.

By definition of λj, for each λj(k) the operator H has a generalized
(since it is not square-summable) Bloch eigenfunction ψ(x) with the
quasi-momentum k (i.e., ψ(x) = eik·xp(x) with a Γ-periodic function
p(x)):

(6.2) Hψ = λj(k)ψ.

The question is whether the eigenfunction ψ (and thus the correspond-
ing periodic function p) can be chosen with a nice dependence of k.
Whenever the multiplicity of the eigenvalue λj(k) stays constant near
a point k0, one can choose the Bloch eigenfunction analytically de-
pending on k. See, e.g., [171, 292] for this standard fact. However,
whenever the band functions collide and thus the multiplicity changes,
one cannot extend the Bloch eigenfunction even continuously w.r.t. k.
However, cutting along these thin bad sets of quasimomenta, one can
establish the following

Lemma 6.7. [282] There exists a null-set Z ⊂ T∗ and a sequence
ψj(k) of Bloch eigenfunctions, analytic on T∗ \ Z that form an or-
thonormal basis in L2(W ) for k ∈ T∗ \ Z.

This immediately leads to the eigenfunction expansion of any func-
tion f(x) ∈ L2(Rn) into Bloch eigenfunctions:

Theorem 6.8. ( [119], see also [193]) Let f ∈ L2(Rn) and

(6.3) UΓf(·, k) =
∑

j

fj(k)ψj(·, k)
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be the expansion of its Floquet transform into the basis ψj. Then

(6.4) ‖f‖2L2 =
∑

j

‖fj‖2L2(T∗).

In other words,

Theorem 6.9. The operator H is unitarily equivalent to the orthog-
onal direct sum of operators of multiplication by piece-wise analytic
continuous functions λj(k) in L2(T∗).

6.3. Absolutely continuous, pure point, and singular continu-
ous parts of the spectrum. According to Theorem 6.9, one needs
to understand the spectrum of the operator A acting in L2(T∗) as mul-
tiplication by a continuous piece-wise analytic function a(k)

(6.5) (Af)(k) = a(k)f(k).

Theorem 6.10. The following holds:

(1) The singular continuous spectrum of the operator A is empty:

(6.6) σsc(A) = ∅.
(2) The pure point spectrum consists of all values λ such that the

λ-level set of a(k) has positive measure. In particular, if there
is no positive measure “flat piece” a = const, then σpp(A) = ∅
and thus the whole spectrum is absolutely continuous:

σ(A) = σac(A).

(3) For each λ ∈ σpp(A), the function a(k) is constant on an open
set.

We thus get the following result:

Corollary 6.11. For any periodic self-adjoint elliptic operator H, one
has:

(1) The singular continuous spectrum is empty: σsc(A) = ∅.
(2) The pure point spectrum consists of all values λ such that the

λ-level set of some of λj(k) has positive measure.
(3) If the pure point spectrum is non-empty, then at least one of the

band functions λj is constant on an open set.
(4) The pure point spectrum consists of all values λ0, such the com-

plex Bloch variety BH,C contains the flat component λ = λ0.

The last statement of this theorem follows from analyticity of the
Bloch variety (Theorem 5.12), which forces any small piece of a con-
stant branch to extend to the whole flat component. Since Theorem
5.17 prohibits such a situation for the Schrödinger operator −∆+V (x),
one reaches the following conclusion:
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Theorem 6.12. [272] Under the conditions of Theorem 5.12, the spec-
trum of the Schrödinger operator with periodic potential is absolutely
continuous.

As it was the case with Theorem 5.17, here the condition of bound-
edness of the periodic potential is a significant overkill (see, e.g., [239]).
One, however, should not get over-excited about dropping conditions
on the coefficients in the highest order terms, since when they are going
below guaranteeing weak uniqueness of continuation property, one can
get point spectrum, as it was shown by Filonov [103]. We will return
to this discussion a little but further in the text.

Since the famous work [272] by L. Thomas, all proofs of the ab-
solute continuity of the spectra of periodic elliptic operators followed
the same scheme: proving absence of flat components in the disper-
sion relation (Bloch variety). Due to the usually hard technical work
of many researchers (Birman & Suslina, Danilov, Derguzov, Filonov,
Friedlander, Klopp, Kuchment & Levendorskii, Morame, Simon, Shen,
Shterenberg, Sobolev, Thomas, and many others), absolute continuity
of the spectrum has been proven for many (but still not all) sec-
ond order scalar elliptic periodic operators, as well as periodic Pauli,
Dirac, and in some cases Maxwell operators, see [30,33,61–71,111,114,
122,123,155,163,171,179,239,247–249,252,259,272,274] and references
therein. However, the following conjecture still remains unproven, even
under assumption of infinite differentiability of the coefficients of the
operator:

Conjecture 6.13. The spectrum of any self-adjoint second order pe-
riodic elliptic scalar operator with “nice” (e.g., smooth) coefficients is
absolutely continuous.

In all works, except [114], the proof goes analogously to the one of
Theorem 5.17: dominating in the Fourier domain the lower order terms
by the principal part, which gets increasingly hard in presence of vari-
able coefficients in the first order terms (magnetic potential) and it does
not look feasible at all to treat variable coefficients in the principal part
of the operator. The least technical approach, which beautifully avoids
these domination estimates and thus allows for variable coefficients in
the second order terms, was due to L. Friedlander [114]. Regretfully,
it requires some symmetry condition on the operator , which seems to
be superfluous, but no one has succeeded in removing it.

There are also quite a few, often even more demanding, results on
absolutely continuity for operators in periodic waveguides, on periodic
systems of cures and surfaces, etc. [22,72,96,107–109,116,150,151,170,
254,262,268,269].
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Remark 6.14. Absolute continuity of the spectrum fails for some pe-
riodic elliptic operators of higher order.

Indeed, the Plis’ example [237] of a 4th order elliptic operator which
fails unique continuation property, i.e. has a compactly supported
eigenfunction, can be easily massaged to produce a periodic example,
where σpp 6= ∅ [171].

This relation to the uniqueness of continuation theorems does not
seem accidental. As we have already mentioned, Filonov [103] con-
structed an example of a 2nd order periodic elliptic operator with non-
empty pure point spectrum, with the leading coefficients falling just
below what is needed for the weak uniqueness of continuation to hold.
Another evidence of this is the following result:

Theorem 6.15. [171, Theorems 4.1.5 and 4.1.6] Existence of an L2-
eigenfunction for a periodic elliptic operator is equivalent to existence
of a (different) super-exponentially decaying eigenfunction, i.e. such
that

(6.7) |u(x)| ≤ Ce−|x|γ ,

with some γ > 1 (depending on the order of the operator and dimension,
see details in [171, proof of Theorem 4.1.6]).

Existence of such a solution must violate some “unique continuity
at infinity” property. Regretfully, the only such result known, due
to Froese&Herbst& M.&T. Hoffman-Ostenhof [117] and independently
Meshkov [205], is not strong enough to lead to new absolute continuity
theorems. E.g., it does not allow variable coefficients in the terms of
the first and second orders.

Another confirmation of the relation with the uniqueness of contin-
uation comes from equations on discrete or quantum graphs, where it
does not hold. And sure enough, one can find compactly supported
eigenfunctions for 2nd order elliptic periodic operators on such graphs
(see [24, and references therein] and Fig. 19).

Figure 19. A compactly supported eigenfunction on a
quantum graph.
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6.3.1. Density of states. An important object in spectral theory and
solid state physics is the so called density of states of a self-adjoint
periodic elliptic operator H. Here is the idea: consider an “appropri-
ate” sequence of expanding when N → ∞ domains VN ⊂ Rn, eventu-
ally covering the whole space. After imposing “appropriate” boundary
conditions on these domains, one can consider the counting function of
eigenvalues λj of the resulting operator with discrete spectrum:

(6.8) #{λj < λ}.
Now one normalizes this function by the volume of the domain VN and
takes the limit when n→ ∞:

Definition 6.16. The integrated density of states (IDS) of the
operator H is

(6.9) ρ(λ) := lim
N→∞

1

|VN |
#{λj < λ}.

One certainly wonders whether the limit exists and is independent
of the choice of the expanding domains VN and boundary conditions
imposed. Under appropriate conditions on those, the answer is a “yes”
to both questions (see for instance [263] where this is done even in
almost periodic situation and [2] for a more general discussion).

Without listing the conditions, we just acknowledge that, assuming
that the lattice is transformed to Zn, this is true when one picks VN as
the sequence of cubes {x ∈ Rn ||xj| ≤ N, j = 1, . . . , n} for N ∈ Z+ and
one imposes periodic boundary conditions on those (recall our previous
discussion of Born-Karman conditions).

Then a simple calculation shows that the density of states can be
described in terms of the dispersion relation λj(k) as follows:

Theorem 6.17.

(6.10) ρ(λ) =
∑

j

µ{k ∈ T∗ |λj(k) < λ},

where µ is the previously defined Haar measure on the torus T∗.

Due to the analytic nature of the band functions we have studied,
one gets

Corollary 6.18.

(1) The IDS is a piecewise analytic function of λ.
(2) Unless a flat band function λ = const is present, the IDS is

continuous.
(3) Singularities of the IDS can arise if λ is a singular or critical

value of the dispersion relation (Van Hove singularities).
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The Figure 20 illustrates such possibilities:

Figure 20. Dispersion relation (left), IDS (center), and
a surface plot of the dispersion relation.

Definition 6.19. The density of states is the Radon-Nikodim de-
rivative of the IDS with respect to the Lebesque measure:

(6.11) g(λ) :=
dρ

dλ
.

Theorem 6.20.

(6.12) g(λ) = (2π)−n
∑

j

∫

λj=λ

ds

|∇kλj|
.

Noticing that in (6.12) one encounters the integral of a holomorphic
form over a real cycle on the Fermi surface Fλ, allows one to use pow-
erful techniques of SCV (see [120]), which we are unable to address
here.

6.4. Wannier functions. Bloch functions clearly are analogs for the
periodic case of plane waves eiξ·x, localized in Fourier domain. Standard
Fourier transform converts the plane waves into delta functions, which
are localized in the physical space. One wonders whether there is an
analog of the delta function basis for the periodic situation, and if yes,
whether such functions are useful. The answer is a “yes” for both
questions, although new non-trivial issues arise here.

The functions in question are called Wannier functions, which are
used frequently in numerical computations in solid state physics and
photonic crystal theory [38, 39, 201], since they lead to nice discretiza-
tions, close to the tight-binding models. One expects (in analogy with
the plane waves and delta functions) that they could arise as inverse
Floquet transforms w.r.t. the crystal momentum, of Bloch functions.

Let us try to be more precise.
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Definition 6.21. Suppose that we have a Bloch function φk(x) that
depends “sufficiently nicely” on the quasi-momentum k. The corre-
sponding Wannier function is defined as follows:

(6.13) w(x) :=

∫

T∗

φk(x)dk.

Standard Fourier series argument shows that smoothness of φk

with respect to k translates into decay of w(x). For instance,
infinite differentiability implies that the L2-norm of w(x) on a cube de-
cays faster than algebraically with the shift of the cube. Analogously,
analyticity of φk would produce exponential decay of the Wannier func-
tion.

Suppose now that one has a multiple band S consisting of m bands
of the spectrum, which is separated from the rest of the spectrum by
gaps. As it was discussed in Section 5.11, one obtains anm-dimensional
analytic Bloch bundle over T∗. If this bundle is analytically trivial, it
has an analytic basis of Bloch functions: φk,1, ...., φk,m. It is a simple
exercise to see (e.g., [176]) that the corresponding exponentially decay-
ing Wannier functions wj =

∫
T∗
φK, jdk and all their Γ-shifts form a

basis (which can also be made orthonormal under appropriate choice
of Bloch functions) in the spectral subspace of the operator H that
corresponds to the isolated part of the spectrum S.
This construction does not work, if the Bloch bundle is not analyt-

ically trivial. An incarnation of Oka’s principle, due to Grauert [131],
shows that the only obstacle is topological: if the Bloch bundle is
topologically trivial, then it is automatically analytically trivial (see
also [292] for the related discussions). For a while this issue had not
been understood and there was a belief that nice Wannier bases al-
ways exist, till Thouless showed [273] that in presence of magnetic
terms in a periodic Schrödinger operator, the Bloch bundle can be
non-trivial (such non-triviality also arises in topological insulators). A
lot of effort has been concentrated on establishing sufficient conditions
of the triviality, as well as on efficient finding the Wannier bases (see,
e.g., [176, 201,202,219,228,229, and references therein]).

In the presence of the topological obstacle, however, no basis of even
slowly decaying Wannier functions exists [176]. However, it was shown
that instead of the (non-existing) analytic basis of the bundle, one can
always find a “nice” Parseval frame (i.e., overdetermined system) of ex-
ponentially decaying Wannier functions [176]. Rather crude estimates
on the number of extra functions needed is also provided in [176]. How-
ever, in dimensions up to 4, instead of m families of Wannier functions,
one only needs (m+ 1) [14].
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6.5. Impurity spectra. Consider now the periodic Schrödinger oper-
ator H = −∆+V (x). An important and frequently studied issue is the
existence and properties of the impurity spectrum arising when a lo-
calized (compactly supported or sufficiently fast decaying) perturbation
W (x) is added to the potential. The well known theorem claims that
only eigenvalues of finite multiplicity can appear, leaving the otherwise
absolutely continuous spectrum unchanged (see, e.g. [126, Section 18
and references therein]).

Since V is periodic and thus has band-gap structure of the spectrum,
these eigenvalues have two options: to appear in the spectral gaps, or
embed into the AC spectrum (embedded eigenvalues), see Fig.21.
The general wisdom is that when the perturbation decays sufficiently

Figure 21. Impurity eigenvalues on a band-gap struc-
tured spectrum.

fast, embedded eigenvalues cannot arise, while if the decay is not fast
enough, one can indeed have them. In the case when the background
potential V is equal to zero, starting with the famous work by von
Neumann and Wigner [279], many results of this nature have been
obtained, see e.g. a nice survey in [86].

If, however, the background periodic potential is present, the issue is
far from being resolved. The results of expected type, i.e. confirming
the “general wisdom,” were obtained in the ODE case by Rofe-Beketov
[241–244].

Although similar answers are expected in the higher dimension case,
proving them happens to be really hard. Some results, rather weak,
but instructive were obtained by Vainberg and the author [184–186].
E.g., the following theorem was proven:

Theorem 6.22. [184,185] Let n ≤ 4 and the perturbation W (x) decay
exponentially. If for a given λ ∈ σ(H) the Fermi surface at that level
is irreducible (modulo periodicity), then λ /∈ σpp(H +W ).
In particular, if all Fermi surfaces are irreducible, no embedded eigen-
values can arise.

Remark 6.23. Notice that irreducibility of the Fermi surface at a level
does not depend on the impurity potential W .

As our previous discussion has indicated, it is very hard to establish
irreducibility of the Fermi surface, although for a second order periodic
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ODE it is automatic. One wonders whether the irreducibility condition
of this theorem is just an artifact of the techniques used in the proof.
It is possible, but does not seem to be very likely. The proof indicated
that reducibility could in principle lead to a situation similar to the
waveguide theory, where impurity eigenvalues can get embedded. And
indeed, there are examples of a periodic fourth order ODE [230] and
of second order multi-periodic quantum graph operators [250] where
reducible Fermi surfaces arise and impurity eigenvalues can be embed-
ded.

In the graph case, due to non-trivial topology, embedded eigenvalues
can and do arise. However,

Theorem 6.24. [186] In the graph case, embedded eigenvalues might
arise, but in the case of irreducible Fermi surface, the corresponding
eigenfunction must be supported “close” to the support of the perturba-
tion. (See details in [186].)

It is interesting to note that in the reducible case, eigenfunctions can
spread and indeed have unbounded support [250].

7. Threshold effects

The name threshold effects (as coined by Birman and Suslina), is
used here for the features that depend upon the infinitesimal structure,
or maybe just on a finite jet, of the dispersion at a spectral edge. And
there are quite a few of those. A popular now days example is of
graphene, where the Dirac cones lead to conductance as if governed by
the massless Dirac equation [158]. We will not dwell on this particular
example, but rather list a number of other important relations.

Regretfully, in order to keep the (already excessive) length of the
text in check, the author can afford only brief pointers rather than any
detailed discussion or formulation of the results.

7.1. Homogenization. Homogenization is an effective medium the-
ory for (long) waves in a highly oscillating periodic (or even random)
medium. It is probably the best known threshold effect. Indeed, find-
ing the homogenized (effective medium) operator is, roughly, equiva-
lent to determining the second order jet of the dispersion relation at
the bottom of the spectrum (see, e.g. [6,7,21,50,52–54,148] and refer-
ences therein). It is sometimes a highly non-trivial procedure (e.g., for
Maxwell operator).



AN OVERVIEW OF PERIODIC ELLIPTIC OPERATORS 55

While the usual homogenization leads to a homogeneous medium
(which gave the name to the area), and so cannot address finite spec-
tral gaps, more sophisticated approaches (see, e.g. [115, 140, 294]) can
achieve this and more.

It is natural to ask whether there is a version of homogenization that
occurs near the spectral edges of the internal gaps, where the parabolic
shape of the dispersion relation might resemble the one at the bottom
of the spectrum. This indeed happen to be the case, as it was shown
in a series of works by Birman and Suslina [29, 31,32,34].

7.2. Liouville theorems. The classical Liouville theorem says that
Any harmonic function in Rn of polynomial growth of order N is a
polynomial of degree N . The dimension of this space is

(
n+N
N

)
−

(
n+N − 2
N − 2

)
.

S. T. Yau posed a problem [289] of generalizing this theorem to har-
monic functions on noncompact manifolds of nonnegative curvature,
which was resolved by Colding and Minocozzi [47] (there were also
partial contributions from various researchers, in particular P. Li, see
the references in [191,192]). Thus, finite-dimensionality of the spaces of
harmonic functions of a given polynomial growth, as well as estimates
(rather than exact formulas) for their dimensions were obtained.

On the other hand, a wonderful observation was made by Avellaneda
and Lin [15] and Moser and Struwe [216]: the spaces of polynomially
growing solutions of periodic divergence type second order elliptic equa-
tions in Rn are finite-dimensional. Moreover, their dimensions coincide
with those of harmonic polynomials. Homogenization techniques were
used in both cases, which restricted the consideration to the bottom
of the spectrum only. In Pinchover and author’s works [180, 181] a
wide range generalization of this result was obtained: for an elliptic
periodic operator on an abelian covering of a compact manifold (or
graph) it was shown that validity of Liouville theorem at some energy
level λ is equivalent to the corresponding Fermi surface consisting of
finitely many points (i.e., essentially being at a spectral edge). More-
over, dimensions of the spaces of polynomially growing solutions were
explicitly computed in terms of the lowest order non-trivial germ of the
dispersion equation at the corresponding spectral edge.

7.3. Green’s function. Another threshold effect is the behavior of
the Green’s function (the Schwartz kernel of the resolvent) near and
at spectral edges. There are well known general resolvent exponential
decay estimates with the exponential rate depending upon the distance
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to the spectrum, e.g. the Combes-Thomas estimates [19,49]. However,
being applied to self-adjoint periodic elliptic operators, these estimates
are not very precise. Indeed, first of all, one expects the exponential
decay to be direction-dependent, while the operator estimates men-
tioned above would provide only an isotropic estimate. Moreover, at
the bottom of the spectrum the dispersion relation of periodic non-
magnetic Schrödinger operator has, as it has been mentioned before,
a non-degenerate parabolic extremum [161], i.e. resembles the one for
the Laplace operator. Thus, one can hope that at least near the spec-
trum the decay should resemble the one for the Laplacian case, i.e.
involving an additional algebraically decaying factor. Moreover, at the
edge of the spectrum one expects (in dimensions three and higher)
some algebraic decay. And indeed, principal terms were found for the
asymptotics of the Green’s functions of such operators below the spec-
trum in [17, 18, 217] (see also a simplified derivation for the discrete
case in [283]). These results confirm the expectation.

One can ask the same question near and at the edges of the in-
ternal gaps of the spectrum, as long as the dispersion relation has a
non-degenerate (parabolic) extremum there. Results of this type were
obtained in the recent works [159,160,183].

Going inside the spectral bands, it is also natural to mention here
the results on the absorption principle for periodic elliptic operators,
see [120–122,218].

8. Solutions

In this section we provide a very brief overview, with pointers to the
literature, of various results concerning solutions of homogeneous and
inhomogeneous periodic elliptic equations.

8.1. Floquet-Bloch expansions. The Euler’s theorem [95], mentioned
in Section 1.1 claims that all solutions of homogeneous constant coef-
ficient linear ODEs (or systems of those) are linear combinations of
exponential-polynomial solutions. This classical theorem has an ex-
tremely non-trivial generalization to the case of constant coefficient
PDEs (sometimes called Erenpreis’ Fundamental Principle), see
the books [87, 225, 226] devoted to its proof and applications. Here
instead of finite linear combinations of exponential-polynomial solu-
tions, one needs to involve the integrals over the characteristic variety
of the operator, which in turn relies upon commutative algebra, al-
gebraic geometry, and several complex variables techniques. One can
ask the natural question whether there is an analog of this result for
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periodic elliptic PDEs, providing expansions into Bloch-Floquet solu-
tions. If yes, one expects it to be much harder to prove, due to the
non-algebraic nature of the situation (i.e., of the Fermi surface, which
replaces the characteristic variety). Nevertheless, somewhat more re-
strictive than in the constant coefficient case, such results have been
obtained in [168, 171, 175, 187, 227]. Most of the book [171] is devoted
to their proofs. Regretfully, probably due to a more restricted nature
of these results, they do not seem to have much of consequence. Thus,
we do not address them in any detail here.

8.2. Generalized eigenfunctions and Shnol’-Bloch theorems.
One of the consequences of the Floquet theory is that for periodic
elliptic operators H detecting whether λ is in the spectrum is equiv-
alent to existence of a non-trivial Bloch solution u with a real quasi-
momentum k of the equation Hu = λu. Since the solution is not square
integrable, we would call it a generalized eigenfunction. Since one
can easily come up with a generalized eigenfunction (just an exponent)
of Laplace operator for arbitrary λ ∈ C, it is clear that existence of
a growing generalized eigenfunction does not mean being on the spec-
trum. However, Bloch solutions with real quasimomenta are bounded,
one can ask whether presence of a bounded generalized eigenfunction
detects the spectrum. This is indeed the case and the following Bloch
theorem (probably never proven by Bloch) holds:

Theorem 8.1. [171, and references therein] Existence of a non-trivial
bounded solution of a periodic elliptic equation Hu = λu implies exis-
tence of a Bloch solution with a real quasi-momentum, and thus λ ∈
σ(H).

Indeed, a stronger type of result is known, the so called Shnol’
Theorem [58,126,171,251,255], which holds also in non-periodic case.
Its simplest version is:

Theorem 8.2. If for any ǫ > 0 there exists a non-trivial generalized
eigenfunction uǫ with the estimate

(8.1) |uǫ(x)| ≤ eǫ|x|,

then λ ∈ σ(H).

Moreover, the following stronger version holds:

Theorem 8.3. If for some a > 0 there exists a non-trivial generalized
eigenfunction u with the estimate

(8.2) |uǫ(x)| ≤ ea|x|,
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then dist (λ, σ(H)) ≤ C
√
e2a − 1, where C depends only on the operator

H.

The detailed (although somewhat outdated) discussion of the Shnol’
type can be found in [126, Section 54].

In the periodic elliptic case one can formulate a stronger version [171,
Theorem 4.3.1]:

Theorem 8.4. Let L(x,D) be a scalar periodic elliptic operator with
smooth coefficients in Rn. If Lu = 0 has a non-zero solution satisfying
the inequality

(8.3) |f(x)| ≤ Cea
∑

|xj |

for some a > o, then it also has a Bloch solution with a quasimomentum
k such that ℑkj ≤ a for all j = l, ..., n, that is, a Bloch solution that
also satisfies (8.3).

In other words, there is a complex quasi-momentum vector, whose
distance to the unit torus (and thus dist (λ, σ(H))) can be estimated
from above.

Remark 8.5. The Shnol’ theorem stated with the point-wise estimates
like in (8.3) fails in non-euclidean situation. E.g., the hyperbolic Lapla-
cian has a bounded generalized eigenfunction for λ = 0, although 0
is not in the spectrum. Analogous situation occurs for operator on
trees. However, analysis of the proof (e.g., in [126]) shows that in fact
only an integrated (L2) estimate of growth is used, which implicitly
incorporates the rate of the ball volume growth. Thus, there is an L2-
version that holds even when the volume of the ball grows exponentially
(see [24, Section 3.2] for the graph case).

8.3. Positive solutions. As it was shown in [3, 4], positive solutions
of a periodic elliptic second order equation in Rn (or on a co-compact
abelian covering) allow integral expansions into positive Bloch solutions
(see also [171, Section 4.6] for the description of this result, as well
as [194] for the case of nilpotent co-compact covering).

8.4. Inhomogeneous equations. It is well known in the theory of
periodic ODEs (e.g., [12,287]) that unique solvability of inhomogeneous
equations in L2 or in the space of bounded functions is equivalent
to absence of Floquet multipliers of absolute value one (equivalently,
absence of Bloch solutions with real quasimomenta). A simple PDE
analog of this result (as well as solvability in the spaces of exponentially
decaying functions) also holds [171, Section 4.2].
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9. Miscellany

9.1. Parabolic time-periodic equations. Some fluid dynamics prob-
lems of stability of periodic flows [290, 291] lead naturally to the task
of developing an analog of Floquet theory (e.g., completeness of and
expansion into Floquet solutions) for parabolic time periodic problems
in Banach and Hilbert spaces:

(9.1)
dx

dt
= A(t)x, x(0) = x0, A(t+ 1) = A(t).

The simplest, albeit already important and non-trivial example is the
heat equation

(9.2)
du

dt
= ∆xu+ b(x, t)u

with time periodic function b(x, t) in an infinite cylinder, with Dirichlet
or Neumann boundary conditions. Embarassingly enough, there is no
general result guaranteeing existence of at least one Floquet solution
of (9.2), even less completeness of such solution. Forget the Lyaponov
theorem!

Only in one spatial dimension an impressive result of this kind for
(9.2) is achieved in beautiful works by Chow, Lu, and Mallet-Paret
[41, 42], where inverse scattering method is used. Nothing comparable
is available in higher dimensions, unless severe restrictions are imposed
on the periodic term [171, Ch. 5 and references therein]. What seems
to be the problem? After all, these equations are hypoelliptic, and
the general Floquet theory techniques to a large extent applies to such
equations [171, Ch. 3]! The thing is that the general operator the-
ory approach to parabolic periodic equations does not work nearly as
nicely as it does for the elliptic case. Namely, as it was discovered by
Miloslavskíı there are extremely nice abstract periodic equations (9.1)
with constant highest order terms, which have no Floquet solutions at
all (see [206–213] as well as [171, Ch. 5] for the results and discussion).
The positive results known ( [206–213] and [171, Ch. 5 and references
therein]) require very strong restrictions on periodic terms, such as
b(x, t) in (9.2). The author hopes that the “patological” non-existence
of Floquet solutions does not hold for (9.2) (all known counterexam-
ples are abstract parabolic equations). The similar difficulty is also
encountered in the Floquet theory for evolution equations (9.1) with a
bounded operator coefficient A(t) (see [60])

Time periodic hyperbolic and Schrödinger type equations have also
been attracting a lot of attention in physics (e.g., [43,118,293]). How-
ever, most of the analytic theory described before fails here and other
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techniques are required and are being developed. See, e.g. the survey
by Yajima [286] and references therein, as well as, e.g. [144–147, 270,
271,284,285].

9.2. Photonic crystals. Photonic crystals are artificial periodic opti-
cal media that are optical analogs of semiconductors, which bring about
major technological advances (see [80,149,172] for a nice physics intro-
duction and bibliography, as well as [79,172] for mathematics surveys).
The main equation to study here is Maxwell operator with periodic
coefficients. Floquet theory for this operator works in many regards in
parallel with the elliptic equations considered in this article, with some
notable analytic and numerical quirks (see, e.g. [100–102, 172, 214] for
details and references).

9.3. Waveguides. Periodic waveguides form one of the important ap-
plications of the Floquet theory. Here one considers boundary value
problems in periodically shaped domains, where the boundary con-
ditions and the governing equations are also periodic. In some ap-
plications, such as quantum waveguides or photonic crystal waveg-
uides, one has to deal also with problems on zero-width surface or
curve systems, or where the waves rather being confined to the in-
terior of a waveguide, leak (being evanescent) into the surrounding
space. Many spectral problems here (e.g., absolute continuity of the
spectrum) happen to be much harder in the waveguide situations and
are not completely understood, in spite of significant progress achieved
[36,72–74,116,143,171,253,254,262,267–269].
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transientes, Ann. Inst. H. Poincaré Probab. Statist. 24 (1988), no. 4, 507–569.
MR MR978023 (90h:60082)

[18] Martine Babillot, Asymptotics of Green functions on a class of solvable Lie
groups, Potential Anal. 8 (1998), no. 1, 69–100. MR MR1608646 (99g:60133)



62 PETER KUCHMENT

[19] J. M. Barbaroux, J. M. Combes, and P. D. Hislop, Localization near band
edges for random Schrödinger operators, Helv. Phys. Acta 70 (1997), no. 1–
2, 16–43, Papers honoring the 60th birthday of Klaus Hepp and of Walter
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[199] V. A. Marchenko and Ĭ. V. Ostrovs′kĭı, Approximation of periodic potentials
by finite zone potentials, Vestnik Khar′kov. Gos. Univ. (1980), no. 205, 4–40,
139. MR 643352 (84b:34032)



AN OVERVIEW OF PERIODIC ELLIPTIC OPERATORS 73

[200] V. A. Marchenko and I. V. Ostrovsky, Corrections to the article: “Approxi-
mation of periodic by finite-zone potentials” [Selecta Math. Soviet. 6 (1987),
no. 2, 101–136; see MR0910538 (88f:00011)], Selecta Math. Soviet. 7 (1988),
no. 1, 99–100, Selected translations. MR 967083 (89j:34033)

[201] N. Marzari, I Souza, I., and D. Vanderbilt, An introduction to maximally-
localized wannier functions, Highlight of the Month, Psi-K Newsletter 57
(2003), no. 4, 129–168.

[202] N. Marzari and D. Vanderbilt, Maximally localized generalized wannier func-
tions for composite energy bands, Phys. Rev. B 56 (1997, NUMBER = 20,
PAGES = 12847–12865,).

[203] H. P. McKean and E. Trubowitz, Hill’s operator and hyperelliptic function
theory in the presence of infinitely many branch points, Comm. Pure Appl.
Math. 29 (1976), no. 2, 143–226. MR 0427731 (55 #761)

[204] H. P. McKean and P. van Moerbeke, The spectrum of Hill’s equation, Invent.
Math. 30 (1975), no. 3, 217–274. MR 0397076 (53 #936)

[205] V. Z. Meshkov, On the possible rate of decrease at infinity of the solutions of
second-order partial differential equations, Mat. Sb. 182 (1991), no. 3, 364–
383, (In Russian. English transl. in Math. USSR-Sbornik.). MR MR1110071
(92d:35032)
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I, Teor. Funktsĭı Funktsional. Anal. i Prilozhen. (1990), no. 53, 100–108.
MR 1077229 (91k:47126a)

[213] , An abstract integro-differential equation with a periodic coefficient.
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