
An overview of recent distributed
algorithms for learning fuzzy models in Big Data
classi�cation

Pietro Ducange1*, Michela Fazzolari2 and Francesco Marcelloni1

Introduction

In the Big Data Era [1], a huge Volume of information is generated at very high speed.

In most cases, such data are collected from different sources, may have different formats

(Variety) and need to be elaborated in almost real time (Velocity) [2]. �is is the so-called

three-V’s model of Big Data and it has been used for the first time by Douglas Laney in

2001 [3], to describe the data management in three-dimensions. �is original three-V

paradigm is still valid, but it has been recently enriched by additional Vs. In fact, Big

Data may be poorly accurate or truthful (Veracity). Moreover, the added-Value that the

analysis of Big Data may offer is already exploited in several contexts such as industrial

applications [4], marketing strategies [5], Cloud Computing and Internet of �ings [6, 7],

and health care [8].

Abstract

Nowadays, a huge amount of data are generated, often in very short time intervals
and in various formats, by a number of different heterogeneous sources such as social
networks and media, mobile devices, internet transactions, networked devices and
sensors. These data, identified as Big Data in the literature, are characterized by the
popular Vs features, such as Value, Veracity, Variety, Velocity and Volume. In particular,
Value focuses on the useful knowledge that may be mined from data. Thus, in the last
years, a number of data mining and machine learning algorithms have been proposed
to extract knowledge from Big Data. These algorithms have been generally imple-
mented by using ad-hoc programming paradigms, such as MapReduce, on specific
distributed computing frameworks, such as Apache Hadoop and Apache Spark. In the
context of Big Data, fuzzy models are currently playing a significant role, thanks to their
capability of handling vague and imprecise data and their innate characteristic to be
interpretable. In this work, we give an overview of the most recent distributed learning
algorithms for generating fuzzy classification models for Big Data. In particular, we first
show some design and implementation details of these learning algorithms. Thereafter,
we compare them in terms of accuracy and interpretability. Finally, we argue about
their scalability.

Keywords: Big Data, Fuzzy models, Data mining, Classification algorithms, Distributed
computing

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco
mmons .org/licen ses/by/4.0/.

SURVEY PAPER

Ducange et al. J Big Data (2020) 7:19

https://doi.org/10.1186/s40537-020-00298-6

*Correspondence:
pietro.ducange@unipi.it
1 Dipartimento di Ingegneria
dell’Informazione, Largo
Lucio Lazzarino, 1, 56122 Pisa,
Italy
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-020-00298-6&domain=pdf

Page 2 of 29Ducange et al. J Big Data (2020) 7:19

Dealing with Big Data to extract useful knowledge and value is not a trivial task. �is

is mainly due to volume, diversity, noisiness, redundancy and complexity features, which

characterize this kind of data. In particular, due to their huge volume, it is impossible

to load all the data into the memory of a single machine. �is prevents the execution of

classical sequential algorithms, including data mining and machine learning procedures

[9].

To this aim, novel distributed implementations of data mining and machine learning

algorithms for Big Data have been proposed, mainly based on the MapReduce paradigm

[10]. For example, Ludwig in [11] and Kim et al. in [12] discuss the design, the imple-

mentation and the experimentation of distributed clustering algorithms. As regards clas-

sification algorithms, very interesting results, in terms of accuracy and scalability, have

been discussed by Bechini et al. in [13] and by Maillo et al. in [14]. Highlights on the

recent advances, challenges and objectives in designing, developing and using data min-

ing and machine learning algorithms for Big Data can be found in the work of Zhou et al.

discussed in [15].

As stated before, the classical data storage and elaboration paradigms are not suitable

for handling Big Data. �us, in the last years practitioners and researchers have experi-

mented new distributed frameworks, specifically developed for large-scale data storage

and processing over a large number of computers, called nodes, which communicate

over a network. Nodes interact in order to achieve a common goal, i.e. to solve a prob-

lem or give insights on a set of data. Each node is an independent unit, with its own CPU

cores, memory and network interface. In distributed computing the components are

located on these networked computers and communicate and coordinate their actions

through messages. Some important characteristics of distributed systems are concur-

rency of components, lack of a global clock and independent failure of components [16].

�e most popular distributed frameworks to manage Big Data are Apache Hadoop [17]

and Apache Spark [18], which are described in detail in "�e MapReduce paradigm and

distributed computing frameworks" section.

�e strategies presented so far are useful to address the Big Data issues connected with

Volume, Velocity and Value. On the other hand, other issues arise due to data Variety

and Veracity, as already mentioned above. To deal with these additional problems, Fer-

nandez et al. in [19] and Hariri et al. in [20] highlighted that fuzzy models are particularly

suitable for handling the variety and veracity of Big Data. Indeed, fuzzy models are based

on the concept of fuzzy logic, which is a many-valued logic in which the truth value of a

variable may assume any real number between 0 and 1. Fuzzy logic is often exploited to

express the concept of partial truth, in contrast with the Boolean logic, which assumes

that the truth values of a variable may only be 0 and 1. �us, fuzzy models have the

ability to deal with data and information that are vague, uncertain and imprecise. �ese

characteristics are often typical of Big Data.

Since 2014, a number of contributions on fuzzy models for Big Data have been pro-

posed in the literature, focusing on different application fields. Most of them regard the

design, implementation and experimentation of fuzzy models for classification [21–30].

�ere also exist some contributions regarding regression tasks [31–33] and descriptive

models, such as fuzzy clustering [34–36], subgroup discovery [37] and the generation of

fuzzy association rules [38].

Page 3 of 29Ducange et al. J Big Data (2020) 7:19

In this paper, we aim to give an overview of distributed algorithms for learning

fuzzy models from Big Data, focusing in particular on classification applications. We

describe and discuss the most relevant algorithms designed and implemented for

generating fuzzy classification models, specifically Fuzzy Rule-Based Classifiers and

Fuzzy Decision Trees. We focus on the works in which actual big datasets were used

in the experiments. As expected, only distributed versions of algorithms for generat-

ing fuzzy models were actually able to deal efficiently with dataset sizes larger than at

least 0.5 GB. �us, in our analysis we considered the distributed versions of the fol-

lowing algorithms:

• �e Chi et al. algorithm for generating Fuzzy Rule-Based Classifiers (FRBCs) [21–

24].

• Fuzzy Associative Classifiers (FACs) [26].

• Evolutionary Fuzzy Classifiers (EFCs) [27–29].

• Fuzzy Decision Trees (FDTs) [25, 30].

In order to evaluate the performance of the aforementioned algorithms, we selected

four popular Big Data classification datasets, whose sizes span up to 8 GB, and ran the

algorithms on these datasets in a computer cluster located at the University of Pisa.

We compared the achieved results considering not only the accuracy of the models,

but also their interpretability. Indeed, although most of the discussed fuzzy classifiers

are very accurate, their complexity, in terms of number of rules or number of nodes

of the fuzzy trees, is very high. As discussed by Gacto et al. in [39], the greater the

complexity, the lower the interpretability. Interpretability is a very important feature

that characterizes fuzzy models, and assumes a special significance in the context of

Big Data, as stated by Fernandez et al. in [19] and by Wang et al. in [40]. Finally, we

discuss some scalability properties of the different distributed learning algorithms.

In conclusion, the main objectives and motivations which support this overview are:

• To describe and discuss the most relevant algorithms designed and implemented

for generating fuzzy classification models, specifically Fuzzy Rule-Based Classifi-

ers and Fuzzy Decision Trees;

• To highlight both the strengths and the weaknesses of the discussed algorithms;

• To allow the reader to appreciate the fast evolution of theses algorithms, in terms

of both their design schemes and frameworks used for implementing and experi-

menting them in classification tasks for big data;

• To compare these algorithms in terms of the performance obtained on a set of

selected real big datasets;

• To give the opportunity to future works of exploiting the discussed approaches

in specific engineering and technological applications, by focusing on the most

promising ones;

• To suggest possible improvements of the discussed algorithms.

�e paper is organized as follows. First, we present the MapReduce paradigm and

some recent distributed computing frameworks for handling Big Data. �en, we

Page 4 of 29Ducange et al. J Big Data (2020) 7:19

describe preliminary concepts about fuzzy systems and we introduce the different

fuzzy classification models considered in this paper. Moreover, we briefly analyze the

most relevant state-of-the-art sequential algorithms for learning fuzzy classification

models. �e central sections of the manuscript describe the details of the distributed

fuzzy versions of these classification models. �e last part of the manuscript includes

three sections: in the first section, we discuss the experimental results in terms of

accuracy and interpretability. In the second section we point out an in-depth analytic

discussion and give some envisions on future research directions. Finally, in the last

section, we draw some conclusions.

The MapReduce paradigm and distributed computing frameworks

In this section, we provide a snapshot of the MapReduce paradigm and the main frame-

works employed in distributed data mining.

�e issues related to Big Data require the adoption of new strategies for elaborating

such data. To this aim, the MapReduce programming paradigm [10, 41] was introduced

and adopted by Google in 2004, becoming the de facto standard for dealing with Big

Data analysis. �e MapReduce paradigm has been proposed to process huge volumes

of data in a scalable way, according to a divide and conquer strategy, that consists in

breaking down a problem into simpler sub-problems of the same type. �e solutions to

the sub-problems are then combined in some way to provide a solution to the original

problem.

At high level, the paradigm divides the computational flow into two main phases,

namely Map and Reduce, organized around 〈key, value〉 pairs.

When the MapReduce execution environment runs a user program, it automatically

partitions the data into a set of independent chunks that can be processed in parallel by

different nodes. In the Map phase, each task is fed by one chunk of data and, for each

〈key, value〉 pair as input, it generates a list of intermediate 〈key, value〉 pairs as output.

In the Reduce phase, all the intermediate results are grouped together according to a

key-partitioning scheme, so that each Reduce task processes a list of values associated

with a specific key as input for generating a new list of values as output. Developers are

able to implement parallel algorithms by simply defining Map and Reduce functions. �e

result of the whole MapReduce process is a set of 〈key, value〉 pairs produced by all the

executed Reduce tasks.

In the last years, several projects have been developed to deal with distributed data

storage and elaboration. �e most popular is Apache Hadoop [17],1 which is an open

source project created in 2005 and currently maintained by a global community of con-

tributors. �e Hadoop framework consists of several modules, among which the most

important ones are:

• A distributed storage system, called Hadoop Distributed File System (HDFS), which

supports the storage of large datasets on distributed nodes in a cluster;

1 Apache Hadoop, https ://hadoo p.apach e.org/, accessed: December 2019.

https://hadoop.apache.org/

Page 5 of 29Ducange et al. J Big Data (2020) 7:19

• A parallel processing engine, called Hadoop MapReduce, which was originally

intended to implement the MapReduce paradigm, whereas currently it supports

multiple processing schemes;

• A set of libraries and utilities, included in Hadoop Common and used by other

Hadoop modules;

• A resource-management platform, called Hadoop Yet Another Resource Negotiator

(YARN), developed to manage computer resources in clusters and to use them for

scheduling users’ applications.

As regards data mining tools for Big Data, the library Apache Mahout [42] can be con-

sidered as the main contribution based on Apache Hadoop. Mahaout has been the first

attempt of producing free implementations of distributed and/or scalable machine

learning algorithms for Big Data. It includes many algorithms for machine learning

tasks, such as classification, clustering and pattern discovery.

Although Hadoop is widely spread, it suffers from various limitations that make it not

suitable for certain types of applications. In particular, it supports batch processing only

and employs a two-stage disk-based MapReduce computation engine, which makes it very

inefficient in managing real-time data processing and iterative algorithms. In the recent

years, to overcome these limitations, Apache Spark and Apache Flink have been proposed.

Apache Spark has been developed to overcome the limitations of Hadoop. It is an

open-source distributed general-purpose cluster computing framework with mostly in-

memory data processing engine. �is key feature allows running most of the computa-

tions in memory. �us, Zaharia et al. in [18, 43] proved that Apache Spark performs

faster than Hadoop at least in some specific applications, where the use of iterative algo-

rithms or interactive data mining is required. �e core of Spark is the Resilient Distrib-

uted Dataset (RDD). RDD is an immutable distributed collection of objects, partitioned

across nodes in the cluster, that can be operated in parallel.

Spark is based on a master/slave architecture. A Spark application runs a set of inde-

pendent processes that use as input the RDD: it consists of a coordinator, the Driver, that

communicates with multiple distributed workers, the Executors. �e Driver is in charge

of processing the user’s main function and activates the tasks, which are distributed to

the Executors. Executors run the individual tasks in parallel and send the results back to

the Driver.

�e most popular machine learning library running on Spark is the MLlib library [44],2

which implements several machine learning and data mining algorithms for clustering,

classification, regression, recommendation systems, pattern mining, etc.

Spark is not real-time, but near real-time. �is is one of its main limitations, together

with problems in dealing with small files, the lack of a dedicated file management system

and high memory consumption to run in-memory.

Apache Flink [45]3 tries to overcome these issues. It reduces the complexity, which

has been faced by other distributed data-driven frameworks, by integrating query

optimization, concepts from database systems and efficient parallel in-memory and

out-of-core algorithms, with the MapReduce paradigm.

2 Apache MLlib, http://spark .apach e.org/mllib /, (accessed: December 2019).
3 Apache Flink, https ://flink .apach e.org/, accessed: September 2019.

http://spark.apache.org/mllib/
https://flink.apache.org/

Page 6 of 29Ducange et al. J Big Data (2020) 7:19

Fuzzy classi�cation models: preliminary concepts, architectures and classical

learning algorithms

In this section, we briefly introduce some preliminary concepts regarding fuzzy parti-

tions and the classification model structure of Fuzzy Rule-Based Classifiers (FRBCs),

Fuzzy Associative Classifiers (FACs) and Fuzzy Decision Trees (FDTs). Moreover,

we also provide an overview of the classical sequential model learning methods. Let

X = {X1, . . . ,XF } be the set of attributes and XF+1 be the output of a fuzzy classifi-

cation model. �e output XF+1 is a categorical variable assuming values in the set

Ŵ = {C1, . . . ,Ck , . . . ,CK } of K possible classes Ck . Let Uf , with f = 1, ..., F , be the uni-

verse of the fth attribute Xf . In the following, we assume to have available a training

set TS = {(x1, xF+1,1), . . . , (xN , xF+1,N)} composed of N input-output pairs..

Fuzzy partitions

Most of the approaches discussed in the next sections employ fuzzy partitions. Let

Pf = {Af ,1, . . . ,Af ,j , . . . ,Af ,Tf
} be a partition of Xf consisting of Tf fuzzy sets Af ,j .

Although there exist several types of fuzzy partitions, strong fuzzy partitions [46] are

widely used, because they require few parameters for their definition, thus simplifying

the modeling process. A strong fuzzy partition is an ordered collection of fuzzy sets,

such that:

In Fig. 1, we show an example of a strong fuzzy partition composed of three triangular

fuzzy sets Af ,j , whose membership function is defined by the tuples (af ,j , bf ,j , cf ,j), where

af ,j and cf ,j correspond to the left and right extremes of the support of Af ,j , and bf ,j to the

core.

�e approaches described in the following adopt strong fuzzy partitions of the

attributes.

Fuzzy Rule-Based Classi�ers

An FRBC includes a Rule Base (RB), a Data Base (DB) containing the definition of the

fuzzy sets used in the RB, and a reasoning method. An RB is composed of M rules

expressed as:

(1)∀x ∈ Xf :

Tf∑

j=1

Af ,j(x) = 1

(2)
Rm:IF X1 is A1,jm,1

AND . . .AND XF is AF ,jm,F

THEN XF+1 is Cjmwith RWm

Fig. 1 An example of a strong fuzzy partition

Page 7 of 29Ducange et al. J Big Data (2020) 7:19

where Cjm is the class label associated with the mth rule, and RWm is the rule weight, i.e.,

a certainty degree of the classification in the class Cjm for a pattern belonging to the sub-

space delimited by the antecedent of rule Rm.

Given an input pattern x̂ ∈ R
F , being RF an F-dimensional real space, the strength of

activation (matching degree of the rule with the input) of the rule Rm is usually computed

as:

where Af ,jm,f
(x̂f) is the membership value of x̂f associated with the fuzzy set Af ,jm,f

 . In

this case, we have considered the product as t-norm for implementing the logical con-

junction in the antecedent of the rule expression in (2).

Two different definitions of rule weight RWm are commonly found in the literature

[47]:

1. �e certainty factor:

2. �e penalized certainty factor:

As regards the algorithms discussed in the following, we highlight that the different ver-

sions of the distributed Chi et al. algorithm adopt the penalized certainty factor, while

the Distributed Fuzzy Associative Classifiers adopt the certainty factor. Finally, the dis-

tributed multi-objective evolutionary classifiers adopt no weights. A specific reasoning

method uses the information from the RB and DB to determine the class label for a given

input pattern. Details on different types of rule weights and reasoning methods used in

the literature can be found in the contribution of Cordon et al. in [47].

�e RB and the DB of an FRBC can be generated adopting different algorithms, such

as the Chi et al. algorithm [48] and the Antonelli et al. evolutionary-based algorithms

[49].

Specifically, the RB design process aims to determine the optimal set of rules for man-

aging the classification problem. �e DB design process consists of finding the appropri-

ate number of fuzzy sets for each attribute and their parameters. �e objective of the

design process is to concurrently maximize the classification accuracy and, possibly, the

model interpretability.

As regards the Chi et al. algorithm [48], it is one of the first heuristics adopted for

generating the RB of an FRBC: given a pre-defined DB describing the fuzzy partitions of

each attribute, the algorithm generates a rule for each training pattern. �e antecedent

of a rule is generated considering the list of fuzzy sets, which have been activated by a

certain training input pattern with the highest membership degree. �e consequent is

(3)wm(x̂) =

F∏

f =1

Af ,jm,f
(x̂f),

(4)CFm =

∑
xt∈Cjm

wm(xt)
∑N

t=1
wm(xt)

.

(5)PCFm = CFm −

∑
xt /∈Cjm

wm(xt)
∑N

t=1
wm(xt)

.

Page 8 of 29Ducange et al. J Big Data (2020) 7:19

directly specified by the class of the training pattern. Duplicated rules are removed and

appropriate strategies have been defined for handling rules with the same antecedent

and different consequents and for associating a weight with each rule.

As discussed by Fernandez et al. in [50], Evolutionary Fuzzy Systems (EFSs) are well

known hybrid models, which exploit evolutionary algorithms (EAs) for learning the

parameters of fuzzy models. EAs are able to solve optimization tasks by imitating some

aspects of natural evolution [51]. Learning the RB and the DB of an FRBC can be con-

sidered as an optimization process, where the accuracy of the final model is usually the

fitness function to be optimized. However, in the last decades, interpretability of the

fuzzy models has been often taken into account concurrently with the accuracy, leading

to the so-called Multi-Objective Evolutionary Fuzzy Systems (MOEFSs): more details on

MOEFSs can be found in the works of Ducange et al. and of Fazzolari et al. [52, 53].

MOEFSs adopt multi-objective evolutionary algorithms [54], which aim to concurrently

maximize both the accuracy and the interpretability during the evolutionary learning

process of fuzzy models. In the last decade, several MOEFSs have been successfully

experimented for selecting (Ishibuchi et al. in [55]) or learning (Cococcioni et al. in [56])

the set of rules, for optimizing the fuzzy partitions (Botta et al. in [57]) and for concur-

rently learning the RB and the DB of FRBCs (Antonelli et al. in [49] and Fazzolari et al. in

[58]). We recall that MOEFSs return a set of solutions characterized by different trade-

offs between accuracy and interpretability.

Interpretability regards the capability of explaining how decisions have been taken,

using terms understandable to humans. �us, the simplicity of the fuzzy reasoning

method, adopted to deduce conclusions from facts and rules, assumes a special impor-

tance. Moreover, the intepretability is strictly related to the transparency of the model,

namely to the capability of understanding the structure of the model itself. Fuzzy mod-

els, especially FRBCs, can be characterized by a high transparency level, whenever the

linguistic RB is composed of a reduced number of rules and conditions and the fuzzy

partitions have a good integrity. �e integrity of fuzzy partitions depends on some

properties, such as coverage, distinguishability and normality [59]. Several measures

have been proposed in the specialized literature for evaluating the interpretability of an

FRBC, taking into consideration semantic and complexity aspects of both the RB and

the DB (check the contribution of Gacto et al. in [39]).

Fuzzy Associative Classi�ers

As discussed by Baralis et al. in [60] and by Abdelhamid et al. in [61], Associative Classi-

fiers (ACs) integrate a frequent pattern mining algorithm and a rule-based classifier into

a single system. Specifically, first, frequent patterns are extracted from the dataset using

an appropriate mining algorithm. In the classification context, a pattern consists of set

of items, where one item is a class. �ereafter, classification rules are generated from the

frequent patterns, and pruned according to their support, confidence, and redundancy.

In the fuzzy context, for each fuzzy partition Pf of an attribute Xf , the single item is

defined as the couple (Xf ,Af ,j) , where Af ,j is the j-th fuzzy set defined in Pf .

�e mth Fuzzy Classification Association Rule (FCARm) out of the Rule Base

RB = {FCAR1, . . . , FCARM} is expressed as

Page 9 of 29Ducange et al. J Big Data (2020) 7:19

where the consequent Cjm is the class label selected for the rule, the antecedent FAntm

is equal to the antecedent of the rule expression in (2) and RWm is the weight of the

rule. �us, the FCARs that can be generated by using a fuzzy association rule mining

approach are the same as the ones of classical FRBCs. Examples of classification mod-

els based on FCARs can be found in [62, 63]. In [62], Alcala et al. discuss the use of a

fuzzy version of the Apriori algorithm [64] for generating an initial set of FCARs. �en, a

single-objective genetic algorithm is adopted for selecting the most relevant rules along

with the optimization of the fuzzy set parameters. In [63], Segatori et al. introduce a

fuzzy extension of the well known FP-Growth [65], which allows them to quickly mine a

set of FCARs characterized by a high confidence level. In order to reduce the number of

rules in the final RB, an FCARs pruning process, based on redundancy and training set

coverage, is also applied after the first mining step.

Fuzzy Decision Trees

A decision tree is a directed acyclic graph, where each internal (non-leaf) node denotes

a test on an attribute, each branch represents the outcome of the test, and each leaf (or

terminal) node holds one or more class labels. �e topmost node is the root node. In

general, each leaf node is labeled with one or more classes Ck ∈ Ŵ with an associated

weight wk : weight wk determines the strength of class Ck in the leaf node [66]. Given a

training set TS, the structure of a decision tree, in terms of nodes, branches and leaves,

is usually generated using a recursive scheme. First of all, one of the attributes is selected

in the decision node corresponding to the root, taking the overall TS into considera-

tion. �e attribute selection algorithm returns also a set of branches and corresponding

nodes. For each node, a new attribute is selected from the set of the attributes, consider-

ing only the instances of the TS, which satisfy the test associated with the branch. When

no attribute can be selected, the node is denoted as a leaf node. �e attribute selection

algorithm is usually based on a specific metric, such as Gini Index and Information Gain.

More details regarding decision trees can be found in the contribution of Quinlan in

[66].

In [67], Altay et al. discuss some fuzzy extensions of the classical ID3 and SLIQ algo-

rithms [68]. Recently, an incremental algorithm for learning FDT, based on the concept

of Fuzzy Hoeffding Bound and Fuzzy Information Gain, was presented by Pecori et al. in

[69]. Some preliminary experiments have been discussed by the authors: very promising

results in the context of data streams classification have been achieved.

In this paper, we adopt the distributed implementation proposed by Segatori et al. in

[25] of an algorithm for learning a decision tree based on fuzzy information gain: each

attribute is preliminarily partitioned by using strong fuzzy partitions. Figure 2 shows an

example of multi-way FDT, in which we consider two attributes. Each attribute is parti-

tioned with three fuzzy sets. A test branch is always generated for each fuzzy set of the

input variable involved in a test node.

Once the tree has been generated, a given unlabeled instance x̂ is assigned to a class

Ck ∈ Ŵ by following the activation of nodes from the root to one or more leaves. In

classical decision trees, each node represents a crisp set and each leaf is labeled with a

(6)FCARm:FAntm → Cjm with RWm

Page 10 of 29Ducange et al. J Big Data (2020) 7:19

unique class label. It follows that x̂ activates a unique path and is assigned to a unique

class. In FDT, each node represents a fuzzy set. �us, x̂ can activate multiple paths in the

tree, reaching more than one leaf with different strengths of activation, called matching

degrees. Details on how determine the output class label of a given unlabeled instance,

using an FDT, can be found in the work of Segatori et al. [25].

Local and global implementations of the distributed Chi et al. algorithm

Lopez et al. discussed in [22] the first attempt of extending an algorithm for generat-

ing FRBCs for Big Data to a distributed computing venue. Here, the authors discuss the

design and the implementation of a distributed version of the well-known Chi et al. algo-

rithm [48]. �is algorithm has been developed adopting the MapReduce programming

paradigm under the Hadoop framework. Figure 3 gives a snapshot of the implementa-

tion scheme: according to the MapReduce paradigm, the training dataset is split into

chunks which feed the mappers. Each mapper generates an RB from the specific chunk

of the training data, using the classical procedure of the Chi et al. algorithm. �en, a

single reducer combines these RBs for generating the final RB. Two strategies have

been proposed for solving the problem of conflicting rules: both strategies search for

rules with the same antecedent. For each set of rules with the same antecedent, the first

Fig. 2 An example of multi-way Fuzzy Decision Tree

Fig. 3 MapReduce scheme of the Chi-FRBCS-BigData algorithm

Page 11 of 29Ducange et al. J Big Data (2020) 7:19

approach retains the rule with the highest weight. �e second one calculates the aver-

age weight of the rules that have the same consequent. Finally, the rule with the high-

est average weight is kept in the final RB. �e algorithm discussed above is labeled as

Chi-FRBCS-BigData and represents a local distributed implementation of the Chi et al.

algorithm. Indeed, each mapper generates an RB using only the subset of instances pro-

cessed by that specific mapper. �us, the rule weights widely depend on the proportion

and distribution of the classes in the specific subset of training instances. Different RBs

can be generated considering different training dataset partitions and different number

of mappers. Lopez et al. and Fernandez et al., also experimented the Chi-FRBCS-Big-

Data considering imbalanced classification datasets and analyzing the effects of different

granularities of the fuzzy partitions, respectively, in [23, 70].

Recently, an optimized version of the distributed Chi et al. algorithm, denoted as CHI_

BD, has been proposed by Elkano et al. in [24]. �e optimization regards both the gen-

eration of the rules and the architecture of the distributed execution scheme. Figures 4

and 5 resume the MapReduce stages adopted for the improved implementation of the

distributed Chi et al. algorithm.

In Stage 1, an initial RB, which can contain rules with the same antecedent and dif-

ferent consequents, is generated without rule weights. Each mapper generates a pair

< antecedent, consequent > (< ant, cons > in Fig. 4) for each pattern included in its

own TS chunk. �e pairs generated by all the mappers feed the reducers, which group

together all the pairs for generating the initial RB without weights.

Stage 2 generates the final RB, composed of weighted classification rules. To this aim,

each mapper loads its training data chunk and also the initial RB generated in Stage 1.

Each mapper calculates the matching degree of each training pattern of the chunk. In

the reduce phase, for each rule, a reducer sums up the matching degrees generated for

the specific rule by the different mappers. �ereafter, the weights for each consequent

are calculated, ensuring that the overall TS contributes to their values. Only the conse-

quent associated with the highest weight is retained in the final RB.

CHI_BD represents the global counterpart of the local implementation discussed by

Lopez et al. in [22]. Indeed, as stated before, the CHI_BD algorithm ensures that the rule

Fig. 4 MapReduce scheme of the CHI_BD Algorithm: Stage 1

Page 12 of 29Ducange et al. J Big Data (2020) 7:19

weights are calculated considering the overall TS and that their values do not depend on

the data partitions and on the number of adopted mappers. Also the CHI_BD algorithm

has been developed under the Hadoop framework.

Distributed Fuzzy Associative Classi�ers

�e recent contribution discussed by Segatori et al. in [26] introduces a novel distributed

algorithm for generating FRBCs based on ACs. �e algorithm discussed in the follow-

ing, labeled as Distributed Fuzzy Associative Classifier based on Fuzzy Frequent Pattern

(DFAC-FFP) mining, adopts the fuzzy definition of support and confidence to determine

the strength of a classification rule. For a generic FCARm , fuzzy support and confidence

are defined as:

where TSjm = {xn | (xn, yn) ∈ TS, yn = Cjm} is the set of TS instances labelled with

class Cjm , wm(xn) is the matching degree, as defined in formula (3), of rule FCARm , and

wFAntm(xn) is the matching degree of all the rules whose antecedent is equal to FAntm.

In order to generate a set of FCARs, the following procedures are sequentially exe-

cuted during the DFAC-FFP learning process:

• Distributed fuzzy partitioning: A strong fuzzy partition is directly generated on each

continuous attribute using a distributed approach based on fuzzy entropy;

• Distributed Fuzzy Classification Association Rule (FCAR) Mining: A distributed

fuzzy frequent pattern mining algorithm extracts frequent FCARs with confidence

and support higher than a given threshold;

• Distributed FCAR pruning: �e mined FCARs are pruned by means of two dis-

tributed rule pruning phases based on redundancy and training set coverage.

(7)fuzzySupp (FAntm → Cjm) =

∑
xn

∈ TSjmwm(xn)

N

(8)fuzzyConf (FAntm → Cjm) =

∑
xn

∈ TSjmwm(xn)
∑

xn
∈ TS wFAntm(xn)

Fig. 5 MapReduce scheme of the CHI_BD Algorithm: Stage 2

Page 13 of 29Ducange et al. J Big Data (2020) 7:19

For the sake of brevity, in this work we omit the description of the implementation of

the distributed fuzzy partitioning algorithm. Details on this algorithm can be found in

[26]. However, the distributed FCAR mining and pruning procedures may be applied

whenever an initial partition Pf for each attribute Xf has been previously defined.

Each stage of the DFAC-FFP has been implemented using the MapReduce paradigm

on the Apache Spark framework.

Figure 6 shows the three MapReduce stages of distributed FCAR mining, namely

distributed fuzzy counting, distributed fuzzy FP-growth and distributed rule selection

stages.

�e first MapReduce stage takes as inputs the fuzzy partitions and the TS chunks, and

outputs a list of fuzzy sets Af ,j whose fuzzy support is larger than threshold minSupp. In

detail, each mapper produces, for each fuzzy set Af ,j of each fuzzy partition Pf , the list

of membership degrees µf ,j(xr,f) calculated for each rth input pattern of the specific TS

chunk. Each reducer receives in input a fuzzy set Af ,j and the corresponding list of mem-

bership degrees, calculated by each mapper, and calculates the fuzzy support as follows:

where N is the total number of instances of the TS. Only the fuzzy sets whose fuzzy sup-

port is higher than minSupp are retained and included in the list of frequent fuzzy items.

�e second MapReduce stage is based on a distributed version of the Fuzzy FP-growth

algorithm. FP-growth is a well known frequent pattern mining algorithm, introduced

by Han et al. in [65], which allows handling high dimensional datasets. Indeed, it first

extracts the frequent items, and sorts them by descending frequencies. �ereafter, such

a dataset of frequent items is compressed into a frequent pattern tree, called FP-tree.

Finally, frequent patterns are recursively mined by extracting from the FP-tree a set of

projected datasets, each one associated with a frequent item or a pattern fragment. In

the work discussed in [26], Segatori et al. proposed a distributed implementation of the

Fuzzy FP-growth algorithm introduced by the same authors in [63]. Each mapper takes

in input a chunk of the training set and the list of frequent fuzzy items Af ,j and outputs

item-projected objects. �ese objects feed reducers, which first build the item-projected

datasets, and then generate local conditional FP-trees. From the local conditional FP-

trees, FCARs are mined, retaining only the ones whose support, confidence and χ2 val-

ues exceed the relative thresholds.

�e last MapReduce stage is in charge of selecting, from the set of very specialized

FCARs mined by the Fuzzy FP-growth algorithm, the top H non-redundant FCARs per

class. To this aim, each mapper is fed by a block of FCARs previously generated and

outputs pairs containing the rule and the consequent class. Each reducer processes all

the rules with the same class label, outputting the most relevant ones. Details on item-

projected objects and datasets and on the FCAR relevance measures can be found in the

work of Segatori et al. in [63].

Figure 7 shows the two MapReduce stages of the distributed FCAR pruning.

In the first stage, the pruning of the set of FCARs is carried out on the basis of fuzzy

support and fuzzy confidence thresholds. Each mapper is fed by a TS chunk and by the

list of FCARs generated during the distributed FCAR mining approach. For each FCARm

(9)fuzzySupp (Af ,j) =

∑N
t=1 µf ,j(xt,f)

N

Page 14 of 29Ducange et al. J Big Data (2020) 7:19

F
ig

. 6
 M

ap
Re

d
u

ce
 s

ch
em

e
o

f t
h

e
d

is
tr

ib
u

te
d

 F
C

A
R

m
in

in
g

Page 15 of 29Ducange et al. J Big Data (2020) 7:19

and for each input pattern xr in the TS chunk, the matching degree wm(xr) is calculated

and produced as output of each mapper. Each reducer calculates the actual fuzzy sup-

port and confidence of a specific FCARm , given the list of the wm(xr) computed by the

different mappers. Only the rules, whose values of fuzzy support and confidence are

higher than specific thresholds, are retained and taken into consideration for the next

stage. In the second MapReduce stage, only the rules characterized by a training cover-

age higher than a threshold are inserted into the final RB. Each mapper is fed by a train-

ing data chunk and by the set of rules previously generated: it calculates the training set

coverage and returns the most covered rules (see [26] for more details). �e reducers

generate the final RB considering only the rules, identified by the mappers, which satisfy

the coverage criteria.

Distributed Evolutionary Fuzzy Systems

To the best of our knowledge, the first distributed version of an EFS can be found in

[28], where Fernandez et al. discuss a distributed evolutionary rule selection approach.

Specifically, this approach is carried out inside each mapper of the Chi-FRBCS-BigData,

previously introduced by the authors and discussed in "Local and global implementa-

tions of the distributed Chi et al. algorithm" section. Indeed, in each mapper, after the

generation of rules by means of the classical Chi et al. algorithm, a single objective evo-

lutionary algorithm selects the most relevant rules. �e optimized fitness function is a

linear combination of the accuracy and the measure of complexity of the RB. �e algo-

rithm is implemented under the Apache Spark framework and experimented consider-

ing imbalanced classification datasets.

As discussed by Fernandez et al. in [19] and by Wang et al. in [40], in the context of Big

Data, the interpretability of fuzzy models assumes a special relevance. If an interpret-

able and transparent model can be derived from a big dataset, the model itself may be

considered as a sort of “visualization tool”, which may allow us to understand the phe-

nomena hidden behind the data. �us, in 2017, the first distributed MOEFS for Big Data

classification was discussed by Ferranti et al. in [27]. �e algorithm, denoted as Distrib-

uted Pareto Archived Evolution Strategy with Rule and Condition Selection (DPAES-

RCS) is a distributed implementation on the Apache Spark environment of the Pareto

Archived Evolution Strategy with Rule and Condition Selection (PAES-RCS), introduced

by Antonelli et al. in [49]. PAES-RCS learns the RB of a set of FRBCs through a Rule and

Condition Selection (RCS) strategy: an initial set of rules is generated by means of heu-

ristics, such as the Chi et al. algorithm or a decision tree, and the most relevant rules and

conditions are selected during the evolutionary learning process. In DPAES-RCS the ini-

tial set of rules is generated exploiting a distributed version of the C4.5 algorithm [66],

available in the MLib of Spark, which is a well known algorithm for the generation of

classical decision trees. �e parameters of the fuzzy sets are learnt concurrently with the

RB. Recently, a novel version of DPAES-RCS, called DPAES-FDT-GL has been presented

by Barsacchi et al. in [29]. Here, the initial rule set is generated adopting the distributed

FDT discussed in "Distributed Fuzzy Decision Trees" section and introduced by Segatori

et al. in [26]. Moreover, during the evolutionary learning process also the granularity of

the fuzzy partitions is concurrently learnt with the RB and the parameters of the fuzzy

sets.

Page 16 of 29Ducange et al. J Big Data (2020) 7:19

F
ig

. 7
 M

ap
Re

d
u

ce
 s

ch
em

e
o

f t
h

e
d

is
tr

ib
u

te
d

 F
C

A
R

p
ru

n
in

g

Page 17 of 29Ducange et al. J Big Data (2020) 7:19

Figure 8 shows the scheme of the distributed learning process by means of PAES-RCS.

Once the initial set of rules has been learned, for instance using a distributed FDT learn-

ing algorithm as discussed in "Distributed Fuzzy Decision Trees" section, two solutions

are randomly generated and inserted into an archive of non-dominated solutions. �e

RBs of the two initial solutions contain a random number of rules. Moreover, for each

rule, a random number of conditions is selected. �e fuzzy partitions are strong fuzzy

partitions composed of a random number of fuzzy sets (between a minimum and a max-

imum value) and a random distribution of the cores along the universe of definition. At

each iteration, two solutions are randomly selected from the archive and mating opera-

tors, namely crossover and mutation operators, are applied for generating two offspring

solutions. A two dimensional fitness function is calculated for each offspring, consider-

ing the interpretability, in terms of total number of conditions in the RB, and the accu-

racy of the FRBCs associated with each solution. All the previously discussed steps of the

algorithm and the calculation of the interpretability can be easily executed by a sequen-

tial driver program. On the other hand, the accuracy needs to be calculated by using a

distributed approach, when the amount of data is very huge. Indeed, the overall TS must

be scanned for computing the accuracy. �us, the TS is divided into chunks and a num-

ber of Computing Units (CUs) are in charge of calculating the output of the classifier,

associated with each offspring, and return the number of patterns correctly classified.

A driver program collects the results provided by each CU and calculates the accuracy.

Finally, the driver program updates the archive of non-dominated solutions consider-

ing the two offspring solutions. �e multi-objective evolutionary learning scheme ter-

minates when a stopping condition is reached (usually, a maximum number of fitness

evaluations is fixed and adopted as stopping condition). �e final archive contains a set

of non-dominated FRBC characterized by different trade-offs between accuracy and

interpretability.

More details regarding the chromosome coding, the mating operators and the PAES-

RCS learning scheme can be found in the contributions of Ferranti et al. in [27] and of

Barsacchi et al. in [29].

Distributed Fuzzy Decision Trees

As discussed in "Fuzzy classification models: preliminary concepts, architectures and

classical learning algorithms" section , an FDT can be recursively generated consid-

ering an initial partition Pf for each input variable Xf . In the work of Segatori et al.

in [25], authors discuss a distributed implementation of an FDT learning scheme,

considering the MapReduce paradigm under the Apache Spark framework. Similar

to DFAC-FFP, the proposed algorithm includes an initial distributed fuzzy discre-

tization step for each input variable, based on fuzzy entropy. Also in this case, we

skip the description of the initial fuzzy discretization. On the other hand, the dis-

tributed FDT learning scheme discussed in the following can be applied whenever an

initial strong fuzzy partition is available for each input variable.

Two types of FDTs are considered by the authors, namely multi-way and binary

decision trees. As regards multi-way decision trees (see Fig. 2), the splitting points

are generated considering a branch for each fuzzy set of the selected attribute. On

the other hand, binary trees consider just a two-way splitting point for the specific

Page 18 of 29Ducange et al. J Big Data (2020) 7:19

F
ig

. 8
 D

is
tr

ib
u

te
d

 m
u

lt
i-

o
b

je
ct

iv
e

ev
o

lu
ti

o
n

ar
y

le
ar

n
in

g
 s

ch
em

e
b

as
ed

 o
n

 P
A

ES
-R

C
S

Page 19 of 29Ducange et al. J Big Data (2020) 7:19

selected variable. In this case, as shown in Fig. 9, for the selected attribute the split-

ting point is identified considering two fuzzy sets created by applying the union

operator among the fuzzy sets of the specific partition. The best splitting point

is directly generated by the attribute selection algorithm. Both for multi-way and

binary decision trees, the attribute selection algorithm is based on the fuzzy infor-

mation gain. More details on fuzzy entropy, fuzzy information gain and the distrib-

uted fuzzy discretization can be found in the paper of Segatori et al. [25].

Figure 10 shows the scheme of the MapReduce implementation of the FDT learn-

ing approach. The scheme is valid both for multi-way and binary decision trees. A

MapReduce stage is re-iterated for the identification of the attributes to be selected

and of their splitting points (in the case of binary splitting). At each iteration the

set of nodes identified at the previous iteration is taken into consideration (set R

of nodes) and, for each of them, the selected attribute and the splitting points are

returned. Each mapper is fed by a TS chunk and by the list of nodes to be split. For

each node, each mapper calculates a vector of statistics, considering the contribu-

tion of the handled TS chunk. The statistics calculated by the mappers are then used

by the reducers for calculating the fuzzy information gain, selecting the new input

variables and determining the splitting points. The algorithm stops when the set R

of current nodes is composed only by leaves. A node is identified as a leaf if the fol-

lowing conditions are satisfied [25]: (i) the node contains only instances of the same

class, (ii) the node contains a number of instances lower than a fixed threshold, (iii)

the tree has reached a maximum fixed depth and (iv) the fuzzy information gain is

lower than a fixed threshold. Recently, an improved fuzzy partitioning algorithm,

which exploit the probability integral transform, has been introduced in [30]. This

new partitioning algorithm allows reducing the complexity of the multi-way decision

trees generated using the distributed FDT learning scheme discussed above. This

approach has been labeled as FMDTl , where l is the number of partitions considered

for each attribute.

Fig. 9 An example of fuzzy binary splitting

Page 20 of 29Ducange et al. J Big Data (2020) 7:19

Experimental results: some discussions

�e distributed implementations of the fuzzy classification models discussed in the pre-

vious sections have been experimented by their authors on a number of public bench-

mark datasets. Most of these datasets can be retrieved from the UCI4 and the LIBSVM5

repositories.

In order to compare the results achieved by the different distributed learning algo-

rithms discussed so far, we performed a number of experiments, adopting the source

codes publicly available and the ones developed at the University of Pisa. Table 1 sum-

marizes the algorithms analyzed in this work, specifying their names, their acronyms

and the reference papers. We skipped the single-objective EFS because it was designed

for imbalanced binary datasets. As regards the values of the parameters of each specific

algorithm, we adopted the best setup suggested in the paper in which each algorithm

was introduced and experimented.

We executed all the algorithms on the same cluster located at the University of Pisa.

�e cluster consists of one master equipped with a 4-core CPU (Intel Core i5 CPU 750 ×

2.67 GHz), 8 GB of RAM and a 500 GB Hard Drive, and four slave nodes equipped with

a 4-core CPU with Hyperthreading (Intel Core i7-2600K CPU × 3.40 GHz, 8 threads),

16 GB of RAM and a 1 TB Hard Drive. All nodes are connected by a Gigabit Ethernet (1

Fig. 10 MapReduce scheme of the distributed FDT learning approach

4 Available at https ://archi ve.ics.uci.edu/ml/datas ets.php.
5 Available at www.csie.ntu.edu.tw/~cjlin /libsv mtool s/datas ets/.

https://archive.ics.uci.edu/ml/datasets.php
http://www.csie.ntu.edu.tw/%7ecjlin/libsvmtools/datasets/

Page 21 of 29Ducange et al. J Big Data (2020) 7:19

Gbps) and run Ubuntu 12.04. �e training sets were stored in the HDFS (Hadoop Dis-

tributed File System).

In Table 2 we show four datasets that have been considered in our experimental analy-

ses and that have been also discussed in most of the papers where the models have been

proposed. �e chosen datasets represent three different categories, namely datasets

with only real-valued attributes (Susy and Higgs), with both real-valued and categorical

attributes (KDD) and with only categorical values (Poker Hand). Moreover, these data-

sets are characterized by different numbers of input/output instances (up to 11 millions)

and input variables (from 10 to 41). Furthermore, for each dataset, the size in terms of

memory occupancy (up to 8.04 GB) is also reported in Table 2.

Tables 3 and 4 show the results achieved by the classifiers considered in this paper

on the four selected big datasets. We recall that both SUS and HIG datasets are bal-

anced binary classification datasets. KDD is a slightly imbalanced classification data-

set, where the minority class is distributed in more or less 20% of the instances, thus

the percentage of correctly classified instances can be considered as a good accuracy

measure. We also experimentally verified that the minority class instances in the

training set folds are enough to induce the generation of classifiers able to accurately

distinguish the two classes. As regards the interpretability measure, we adopt the

number of rules for the FRBCs, generated by means of Chi-FRBCS-BigData, Chi_BD,

DFAC-FFP, DPAES-RCS and DPAES-FDT-GL, and the number of leaves for the FDTs

(we considered just multi-way FDTs).

In the tables, we show the average results of a fivefold stratified cross validation.

As shown in Table 3 and Figure 11, on the KDD dataset all the algorithms perform

well in terms of accuracy. On the other datasets, the FDTs perform always better than

the FRBCs. Regarding FRBCs, both the local and global versions of the distributed

Chi et. al algorithm achieve the worst results. On Sus dataset, the accuracies achieved

Table 1 Algorithms used in the experimental comparison

Name Acronym References

Local distributed Chi for Big Data Chi-FRBCS-BigData [22, 23, 70]

Global distributed Chi for Big Data CHI_BD [24]

Distributed Fuzzy Associative Classifier based on Fuzzy Frequent Pattern DFAC-FFP [26]

Distributed PAES with Rule and Condition Selection DPAES-RCS [27]

Distributed PAES with Fuzzy Decision Tree and Granularity Learning DPAES-FDT-GL [29]

Multi-way Fuzzy Decison Tree Multi-way FDT [25]

Multi-way Fuzzy Decison Tree with Improved Fuzzy Partitioning FMDTl [30]

Table 2 Datasets used in the experimental comparison

Datasets

Name # Instances # Attributes # Classes # Size

Higgs (HIG) 11,000,000 28 (real: 28) 2 8.04 GB

Kddcup 2 (KDD_2) 4,856,151 41 (real: 26, cat: 15) 2 476 MB

Susy (SUS) 5,000,000 18 (real: 18) 2 2.4 GB

Poker Hand (POK) 10,000,000 10 (cat: 10) 10 24.6 MB

Page 22 of 29Ducange et al. J Big Data (2020) 7:19

by the remaining algorithms are similar. On HIG dataset, DFAC-FFP and DPAESs

achieve accuracies up to 5% lower than the ones achieved by FDTs. On POK dataset,

DFAC-FFP achieves accuracies similar to FDTs, while the accuracies of the DPAESs

are considerably lower than the ones obtained by FDTs, although higher than the

ones achieved by Chi-FRBCS-BigData and CHI_BD algorithms.

As regards the complexities, we have to consider that the high accuracies of the

FDTs are supported by very complex models, constituted by a huge number of param-

eters (number of leaves). Especially for the multi-way FDT, the generated models are

up to four orders of magnitude more complex than the one generated by DPAES-

RCS and DPAES-FDT-GL. Even though the complexities associated with the mod-

els generated by FMDT5 are lower than the ones generated by the multi-way FDT,

DPAES-RCS and DPAES-FDT-GL result to be the most interpretable models for Big

Data classification tasks. Moreover, DPAES-RCS and DPAES-FDT-GL achieve results

similar to DFAC-FFP (except for the POK dataset), with a complexity smaller by two

orders of magnitude. More details on the interpretability of DPAES-RCS and DPAES-

FDT-GL can be found in the works of Ferranti et al. [27] and of Barsacchi et al. [29].

In these two papers, some examples of actual interpretable and transparent RBs and

DBs, regarding real world classification problems, are shown and discussed in depth.

It is worth noticing that, in some of the papers in which the algorithms discussed

in this paper have been introduced, some comparisons with non-fuzzy classifica-

tion models have been carried out. For instance, Segatori et al. in [26] demonstrate

that DFAC-FFP generates models characterized by accuracies similar to the ones

Table 3 Experimental comparison: average accuracies on the test set

Algorithm Dataset

HIG SUS KDD POK

Chi-FRBCS-BigData 55.89 55.75 99.93 51.78

CHI_BD 57.81 65.36 99.91 52.22

DFAC-FFP 66.00 78.26 99.99 76.65

DPAES-RCS 65.00 78.12 99.94 60.22

DPAES-FDT-GL 65.03 78.60 99.88 61.80

Multi-way FDT 71.25 79.63 99.98 77.17

FMDT5 72.32 78.97 99.98 76.21

Table 4 Experimental comparison: average complexities

Algorithm Dataset

HIG SUS KDD POK

Chi-FRBCS-BigData 24,058 678 1020 813,193

CHI_BD 624,358 9355 5498 52,652

DFAC-FFP 9365 10,970 890 5712

DPAES-RCS 30.2 28 21.8 50

DPAES-FDT-GL 14 14.6 10.8 41.6

Multi-way FDT 920,942 758,064 630 28,561

FMDT5 2987 2865 96 1873

Page 23 of 29Ducange et al. J Big Data (2020) 7:19

generated by two distributed non fuzzy ACs, namely MRAC and MRAC+, intro-

duced by Bechini et al. in [13]. On the other hand, the fuzzy AC models are more

compact than MRAC and MRAC+. Segatori et al. in [25], compared the distributed

FDTs with non-fuzzy Distributed Decision Trees (DDTs), available in the Spark Mlib.

Results show that, in most datasets, the distributed FDTs achieve better accuracies

than DDTs. As regards the complexities, the binary FDT are comparable with DDTs

in terms of number of leaves and nodes, while multi-way FDTs are the most com-

plex classification models. As regards DPAES-RCS, Ferranti et al., in [27], show that

this algorithm achieves performances, in terms of accuracy, comparable with the ones

achieved by DDTs. Obviously, the interpretabilty of the classification models gener-

ated by DPAES-RCS is much higher than the one of DDTs, both at complexity and

semantic levels. Indeed, the rules that can be derived from DDTs are not linguistic

rules, thus they are very hard to read and interpret.

Another important aspect to take into consideration when dealing with distributed

algorithms is the scalability. To this aim, Chu et al. in [71] suggest to adopt the speedup

σ as the main metrics for evaluating the scalability in parallel and distributed computing.

According to the speedup definition, the efficiency of a program using multiple CUs is

calculated comparing the execution time of the parallel implementation against the cor-

responding sequential version. For most of the distributed fuzzy classification models

discussed in this work, authors carried out a scalability analysis. Specifically, for CHI_

BD, DFAC-FFP, DPAES-RCS, and the Multi-way FDT, authors calculated different val-

ues of speedups, varying the number of CUs from 4/8 to 24/32. �ese algorithms have

shown an almost linear behavior for the speedup of the classification model learning

process. �is means that, whenever needed, additional CUs can be used to effectively

Fig. 11 Accuracy comparison among the different fuzzy classification models

Page 24 of 29Ducange et al. J Big Data (2020) 7:19

reduce the runtimes. As an example, in Fig. 12, we show the speedup trend of the

DPAES-RCS algorithm, extracted from the paper of Ferranti et al. [27].

Discussion and future directions

After the analysis that we have provided till now, we can state that a set of effective algo-

rithms and tools are available for approaching the problem of generating fuzzy classifi-

cation models from Big Data. In Table 5, for each discussed algorithm, we highlight its

strengths and its weaknesses.

�e analysis of the results has highlighted that FDTs are the most accurate classifica-

tion models. However, these models are characterized by a high complexity level. On

the other hand, the FRBCs generated by a distributed multi-objective learning scheme,

based on the DPAES-RCS algorithm, are characterized by an optimal trade-off between

their interpretability and their accuracy. As counterpart, these interpretable models are

generated by means of EAs, which are, in general, characterized by a quite long execu-

tion time. Finally, the fuzzy classification models discussed in this work are not able to

deal with streaming data. Indeed, once a specific fuzzy classification model has been

generated, it cannot be adapted with new training data, which may reflect some changes

of the domain context.

We envision that the future directions in the context of fuzzy classification models for

Big Data will regard: (i) enhancing the interpretability of the rules and of the fuzzy parti-

tions, both at semantic and complexity levels, (ii) handling data streams [72] moving

towards a more general granular computing framework [73, 74]; and (iii) reducing the

computation efforts for generating compact and accurate solutions. �e three aforemen-

tioned challenges should be conducted in parallel as much as possible. Indeed, inter-

pretable models, able to extract knowledge in almost real-time from huge amount of

streaming and heterogeneous data, will be the actual added values for future research

activities on classification tasks for Big Data.

Additional efforts can also be done with respect to the fields of application of fuzzy

classification models. In fact, recent developments in several fields such as, cyber-phys-

ical systems [75, 76], cyber-security [77], and learning analytics [78], have increased

the amount of collected data to an enormous scale. �ese data are inherently uncer-

tain due to noise, incompleteness, and inconsistency, thus they require the adoption of

Fig. 12 The speedup trend of DPAES-RCS

Page 25 of 29Ducange et al. J Big Data (2020) 7:19

appropriate techniques to manage them. With the increase of the amount, variety, and

speed of data, also the inherent uncertainty increases consequently. Moreover, the inter-

pretability of fuzzy models may accomplish with one of the most recent and relevant

requirements of Artificial Intelligence (AI)-based applications, namely the explainabil-

ity. Indeed, eXplainable AI (XAI) [79, 80] refers to all methods and techniques in the

application of AI that allow users to understand how, given specific inputs, AI systems

produce the corresponding outputs. Several application domains consider model inter-

pretability to be fundamental and require appropriate trade-offs between accuracy and

interpretability.

Conclusions

In this work, we have briefly discussed the main design and implementation issues

regarding the most recent fuzzy models for handling classification tasks on Big Data.

Specifically, we have analyzed different distributed implementations of learning

Table 5 Algorithms used in the experimental comparison, strengths and weaknesses

Algorithm Strengths Weaknesses

Chi-FRBCS-BigData The first distributed algorithm proposed in
the literature for learning a fuzzy model in
big data classification

 Employs a local search, thus the structure
of the final model depends on how data
chunks are generated

 Adopts a single reducer for fusing the rules
generated by a distributed mapping stage

 Generates a large number of rules

Generally achieves accuracies lower than the
comparison algorithms

CHI_BD Global search: unlike Chi-FRBCS-BigData,
employs a global search, thus the struc-
ture of the final model does not depend
on how data chunks are generated

Generates a large number of rules

Generally achieves accuracies lower than the
comparison algorithms

DFAC-FFP Includes a fuzzy discretization algorithm Generates a large number of rules

The generated models are very accurate The input variables may be partitioned with
a large number of fuzzy sets, thus the
interpretability of the fuzzy partitions may
be low

DPAES-RCS Optimizes concurrently the rule bases and
the parameters of the fuzzy sets

Adopts a pre-fixed number of fuzzy set for
each input variable

Generates solutions characterized by good
trade-off between accuracy and interpret-
ability

Is very slow with respect to the other
algorithms (it is based on evolutionary
optimization)

Even the most accurate solutions are char-
acterized by a reduced number of rules

DPAES-FDT-GL Adds to the strengths of the PAES-RCS algo-
rithm the capability of optimizing also the
number of fuzzy sets for each attribute

Is very slow with respect to the other
algorithms (it is based on evolutionary
optimization)

Multi-way FDT Includes a fuzzy discretization algorithm Is characterised by a low interpretability
of the final models because of the large
number of rules generated

Is very fast for generating the models

The fuzzy classification models are very
accurate

FMDTl Adds to the strengths of the Multi-way FDT
algorithm the capability of reducing the
model complexity

The final models are still characterised by a
low interpretability because of the large
number of rules

Page 26 of 29Ducange et al. J Big Data (2020) 7:19

algorithms for generating the model structure of FRBCs and FDTs. Most of the discussed

learning algorithms, specifically the ones regarding FRBCs, are extensions to the parallel

and distributed environment of well-known sequential approaches for generating the RB

and the fuzzy set parameters from data. In particular, we have discussed the distributed

versions of the classical Chi algorithm, of an FAC and of some EFCs. As regards FDT,

we have briefly resumed the steps of a novel distributed learning process, which exploits

an attribute selection and splitting algorithm based on fuzzy information gain. We have

drawn a comparison among the discussed distributed fuzzy classification algorithms, by

considering the results obtained on four popular classification datasets for Big Data, in

terms of accuracy and scalability. Moreover, for each algorithm, we identified its benefits

and limitations.

In conclusion, through this work we have provided a clear description of the current

background in the field of fuzzy models for big data. Moreover, we have carried out an

accurate analysis on research challenges and gaps. Finally, we have suggested areas for

further investigation for supporting researchers in positioning their works.

Abbreviations

AC: Associative Classifier; CU: Computing Unit; DB: Data Base; DDT: Distributed Decision Tree; DFAC-FFP: Distributed
Fuzzy Associative Classifier based on Fuzzy Frequent Pattern; DPAES-RCS: Distributed Pareto Archived Evolution Strategy
with Rule and Condition Selection; EA: Evolutionary Algorithm; EFC: Evolutionary Fuzzy Classifier; EFS: Evolutionary Fuzzy
System; FAC: Fuzzy Associative Classifier; FCAR : Fuzzy Classification Association Rule; FDT: Fuzzy Decision Tree; FRBC:
Fuzzy Rule-Based Classifier; HDFS: Hadoop Distributed File System; MOEFS: Multi-Objective Evolutionary Fuzzy System;
PAES-RCS: Pareto Archived Evolution Strategy with Rule and Condition Selection; RB: Rule Base; RDD: Resilient Distributed
Dataset; YARN: Yet Another Resource Negotiator.

Acknowledgements

Not applicable.

Authors’ contributions

PD, MF and FM contributed equally to the analysis and the selection of the materials for the survey and to writing of the
manuscript. All authors read and approved the final manuscript.

Funding

This work was partially supported by Tuscany Region, in the context of the projects Talent and Sibilla in the framework of
regional program “FESR 2014-2020”, and by the Italian Ministry of Education and Research (MIUR), in the framework of the
CrossLab project (Departments of Excellence).

 Availability of data and materials

The datasets adopted in this study are available in the UCI repository, at https ://archi ve.ics.uci.edu/ml/datas ets.php.

Competing interests

The authors declare that they have no competing interests.

Author details
1 Dipartimento di Ingegneria dell’Informazione, Largo Lucio Lazzarino, 1, 56122 Pisa, Italy. 2 Istituto di Informatica e Tele-
matica - Consiglio Nazionale delle Ricerche (IIT-CNR), Via Giuseppe Moruzzi, 1, 56124 Pisa, Italy.

Received: 17 September 2019 Accepted: 21 February 2020

References

 1. John Walker S. Big data: a revolution that will transform how we live, work, and think. London: Taylor & Francis; 2014.
 2. Anuradha J, et al. A brief introduction on big data 5vs characteristics and hadoop technology. Procedia Comput Sci.

2015;48:319–24.
 3. Laney D. 3-d data management: controlling data volume, velocity, and variety. META Group Res Note. 2001;6:6.
 4. Wan J, Tang S, Li D, Wang S, Liu C, Abbas H, Vasilakos AV. A manufacturing big data solution for active preventive

maintenance. IEEE Trans Ind Inform. 2017;13(4):2039–47.
 5. Ducange P, Pecori R, Mezzina P. A glimpse on big data analytics in the framework of marketing strategies. Soft Com-

put. 2018;22(1):325–42.
 6. Al-Ali A, Zualkernan IA, Rashid M, Gupta R, Alikarar M. A smart home energy management system using iot and big

data analytics approach. IEEE Trans Consum Electron. 2017;63(4):426–34.

https://archive.ics.uci.edu/ml/datasets.php

Page 27 of 29Ducange et al. J Big Data (2020) 7:19

 7. Stergiou C, Psannis KE. Recent advances delivered by mobile cloud computing and internet of things for big data
applications: a survey. Int J Netw Manage. 2017;27(3):1930.

 8. Wang Y, Kung L, Wang WYC, Cegielski CG. An integrated big data analytics-enabled transformation model: applica-
tion to health care. Inf Manage. 2018;55(1):64–79.

 9. Han J, Kamber JPM. Data Mining. Concepts and techniques. In: Data management systems, 3rd edn. Burlington:
Morgan Kaufmann; 2012.

 10. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Comm ACM. 2008;51(1):107–13.
 11. Ludwig SA. Mapreduce-based fuzzy c-means clustering algorithm: implementation and scalability. Int J Mach

Learn Cybern. 2015;6(6):923–34.
 12. Kim Y, Shim K, Kim M-S, Lee JS. DBCURE-MR: an efficient density-based clustering algorithm for large data using

mapreduce. Inf Syst. 2014;42:15–35.
 13. Bechini A, Marcelloni F, Segatori A. A MapReduce solution for associative classification of big data. Inf Sci.

2016;332:33–55.
 14. Maillo J, Ramírez S, Triguero I, Herrera F. KNN-IS: an iterative spark-based design of the k-nearest neighbors classi-

fier for big data. Knowl Based Syst. 2017;117:3–15.
 15. Zhou L, Pan S, Wang J, Vasilakos AV. Machine learning on big data: opportunities and challenges. Neurocomput-

ing. 2017;237:350–61.
 16. Coulouris G, Jean Dollimore TK. Distributed systems: concepts and design. London: Pearson Education; 2009.
 17. Apache Hadoop. https ://hadoo p.apach e.org/. Accessed Jan 2016.
 18. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: cluster computing with working sets. In: Pro-

ceedings of the 2nd USENIX conference on hot topics in cloud computing, vol. 10. 2010. p. 10.
 19. Fernández A, Carmona CJ, del Jesus MJ, Herrera F. A view on fuzzy systems for big data: progress and opportuni-

ties. Int J Comput Intell Syst. 2016;9(sup1):69–80.
 20. Hariri RH, Fredericks EM, Bowers KM. Uncertainty in big data analytics: survey, opportunities, and challenges. J

Big Data. 2019;6(1):44.
 21. Lopez V, del Rio S, Benitez JM, Herrera F. On the use of mapreduce to build linguistic fuzzy rule based classifica-

tion systems for big data. In: Fuzzy systems (FUZZ-IEEE), 2014 IEEE international conference on, IEEE. 2014. pp.
1905–12.

 22. del Río S, López V, Benítez JM, Herrera F. A MapReduce approach to address big data classification problems
based on the fusion of linguistic fuzzy rules. Int J Comput Intell Syst. 2015;8(3):422–37.

 23. López V, del Río S, Benítez JM, Herrera F. Cost-sensitive linguistic fuzzy rule based classification systems under
the MapReduce framework for imbalanced big data. Fuzzy Sets Syst. 2015;258:5–38.

 24. Elkano M, Galar M, Sanz J, Bustince H. CHI-BD: a fuzzy rule-based classification system for big data classification
problems. Fuzzy Sets Syst. 2017;348:75–101.

 25. Segatori A, Marcelloni F, Pedrycz W. On distributed fuzzy decision trees for big data. IEEE Trans Fuzzy Syst.
2018;26(1):174–92.

 26. Segatori A, Bechini A, Ducange P, Marcelloni F. A distributed fuzzy associative classifier for big data. IEEE Trans
Cybern. 2018;48(9):2656–69.

 27. Ferranti A, Marcelloni F, Segatori A, Antonelli M, Ducange P. A distributed approach to multi-objective evolution-
ary generation of fuzzy rule-based classifiers from big data. Inf Sci. 2017;415:319–40.

 28. Fernandez A, Almansa E, Herrera F. CHI-SPARK-RS: an spark-built evolutionary fuzzy rule selection algorithm in
imbalanced classification for big data problems. In: 2017 IEEE international conference on fuzzy systems (FUZZ-
IEEE), IEEE. 2017. pp. 1–6.

 29. Barsacchi M, Bechini A, Ducange P, Marcelloni F. Optimizing partition granularity, membership function param-
eters, and rule bases of fuzzy classifiers for big data by a multi-objective evolutionary approach. Cogn Comput.
2019;11:367–87.

 30. Elkano M, Uriz M, Bustince H, Galar M. On the usage of the probability integral transform to reduce the complex-
ity of multi-way fuzzy decision trees in big data classification problems. In: 2018 IEEE international congress on
Big Data. 2018. pp. 25–32.

 31. Márquez A, Márquez F, Peregrín A. A scalable evolutionary linguistic fuzzy system with adaptive defuzzification
in big data. In: 2017 IEEE international conference on fuzzy systems (FUZZ-IEEE), IEEE. 2017. pp. 1–6.

 32. López S, Márquez AA, Márquez FA, Peregrín A. Evolutionary design of linguistic fuzzy regression systems with
adaptive defuzzification in big data environments. Cogn Comput. 2019;11:388–99.

 33. Cózar J, Marcelloni F, Gámez JA, de la Ossa L. Building efficient fuzzy regression trees for large scale and high
dimensional problems. J Big Data. 2018;5(1):49.

 34. Bharill N, Tiwari A, Malviya A. Fuzzy based scalable clustering algorithms for handling big data using apache
spark. IEEE Trans Big Data. 2016;2(4):339–52.

 35. Wu J, Wu Z, Cao J, Liu H, Chen G, Zhang Y. Fuzzy consensus clustering with applications on big data. IEEE Trans
Fuzzy Syst. 2017;25(6):1430–45.

 36. Hidri MS, Zoghlami MA, Ayed RB. Speeding up the large-scale consensus fuzzy clustering for handling big data.
Fuzzy Sets Syst. 2018;348:50–74.

 37. Pulgar-Rubio F, Rivera-Rivas A, Pérez-Godoy MD, González P, Carmona CJ, del Jesus M. MEFASD-BD: multi-
objective evolutionary fuzzy algorithm for subgroup discovery in big data environments-a mapreduce solution.
Knowl Based Syst. 2017;117:70–8.

 38. Fernandez-Bassso C, Ruiz MD, Martin-Bautista MJ. Fuzzy association rules mining using spark. In: International
conference on information processing and management of uncertainty in knowledge-based systems. Springer.
2018. pp. 15–25.

 39. Gacto MJ, Alcalá R, Herrera F. Interpretability of linguistic fuzzy rule-based systems: an overview of interpretabil-
ity measures. Inf Sci. 2011;181(20):4340–60.

 40. Wang H, Xu Z, Pedrycz W. An overview on the roles of fuzzy set techniques in big data processing: trends, chal-
lenges and opportunities. Knowl Based Syst. 2017;118:15–30.

https://hadoop.apache.org/

Page 28 of 29Ducange et al. J Big Data (2020) 7:19

 41. Dean J, Ghemawat S. Mapreduce: a flexible data processing tool. Commun ACM. 2010;53(1):72–7.
 42. Lyubimov D, Palumbo A. Apache Mahout: Beyond MapReduce. 1st ed. South Carolina: CreateSpace Independ-

ent Publishing Platform; 2016.
 43. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, Franklin MJ, Shenker S, Stoica I. Resilient distrib-

uted datasets: a fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX
conference on networked systems design and implementation. NSDI’12. Berkeley, CA, USA: USENIX Association;
2012. p. 15–28.

 44. Meng X, Bradley J, Yavuz B, Sparks E, Venkataraman S, Liu D, Freeman J, Tsai D, Amde M, Owen S, Xin D, Xin
R, Franklin MJ, Zadeh R, Zaharia M, Talwalkar A. Mllib: machine learning in apache spark. J Mach Learn Res.
2016;17(1):1235–41.

 45. Carbone P, Katsifodimos A, Ewen S, Markl V, Haridi S, Tzoumas K. Apache flink: stream and batch processing in a
single engine. Bull IEEE Comput Soc Tech Comm Data Eng. 2015;36(4)28–38.

 46. Guillaume S, Charnomordic B. Fuzzy inference systems: an integrated modeling environment for collaboration
between expert knowledge and data using FisPro. Expert Syst Appl. 2012;39(10):8744–55.

 47. Cordón O, del Jesus MJ, Herrera F. A proposal on reasoning methods in fuzzy rule-based classification systems.
Int J Approx Reason. 1999;20(1):21–45.

 48. Chi Z, Yan H, Pham T. Fuzzy algorithms: with applications to image processing and pattern recognition. In:
Advances in fuzzy systems–applications and theory. vol. 10. World Scientific, Singapore. 1996.

 49. Antonelli M, Ducange P, Marcelloni F. A fast and efficient multi-objective evolutionary learning scheme for fuzzy
rule-based classifiers. Inf Sci. 2014;283:36–54.

 50. Fernandez A, Lopez V, del Jesus MJ, Herrera F. Revisiting evolutionary fuzzy systems: taxonomy, applications,
new trends and challenges. Knowl Based Syst. 2015;80:109–21.

 51. Khan GM. Evolutionary computation. In: Evolution of artificial neural development. 2018. pp. 29–37.
 52. Ducange P, Marcelloni F. Multi-objective evolutionary fuzzy systems. In: International workshop on fuzzy logic

and applications. Springer. 2011. pp. 83–90.
 53. Fazzolari M, Alcalá R, Nojima Y, Ishibuchi H, Herrera F. A review of the application of multi-objective evolutionary

fuzzy systems: current status and further directions. IEEE Trans Fuzzy Syst. 2013;21(1):45–65.
 54. Deb K. Multi-objective optimization. In: Burke EK, Kendall G, editors. Search methodologies. Berlin: Springer;

2014. p. 403–49.
 55. Ishibuchi H, Yamamoto T. Fuzzy rule selection by multi-objective genetic local search algorithms and rule evalu-

ation measures in data mining. Fuzzy Sets Syst. 2004;141(1):59–88.
 56. Cococcioni M, Ducange P, Lazzerini B, Marcelloni F. A pareto-based multi-objective evolutionary approach to the

identification of mamdani fuzzy systems. Soft Comput. 2007;11(11):1013–31.
 57. Botta A, Lazzerini B, Marcelloni F, Stefanescu DC. Context adaptation of fuzzy systems through a multi-objective

evolutionary approach based on a novel interpretability index. Soft Comput. 2009;13(5):437–49.
 58. Fazzolari M, Alcalá R, Herrera F. A multi-objective evolutionary method for learning granularities based on

fuzzy discretization to improve the accuracy-complexity trade-off of fuzzy rule-based classification systems:
D-MOFARC algorithm. Appl Soft Comput. 2014;24:470–81.

 59. Antonelli M, Ducange P, Lazzerini B, Marcelloni F. Learning knowledge bases of multi-objective evolution-
ary fuzzy systems by simultaneously optimizing accuracy, complexity and partition integrity. Soft Comput.
2011;15(12):2335–54.

 60. Baralis E, Garza P. I-prune: Item selection for associative classification. Int J Intell Syst. 2012;27(3):279–99.
 61. Abdelhamid N, Ayesh A, Thabtah F, Ahmadi S, Hadi W. MAC: a multiclass associative classification algorithm. J Inf

Knowl Manage. 2012;11(02):1250011.
 62. Alcala-Fdez J, Alcala R, Herrera F. A fuzzy association rule-based classification model for high-dimensional prob-

lems with genetic rule selection and lateral tuning. IEEE Trans Fuzzy Syst. 2011;19(5):857–72.
 63. Antonelli M, Ducange P, Marcelloni F, Segatori A. A novel associative classification model based on a fuzzy

frequent pattern mining algorithm. Expert Syst Appl. 2015;42(4):2086–97.
 64. Zhang C, Zhang S. Association rule mining: models and algorithms. Berlin: Springer; 2002.
 65. Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation. In: SIGMOD Rec. vol. 29. New york:

ACM. 2000. pp. 1–12.
 66. Quinlan JR. Induction of decision trees. Mach Learn. 1986;1(1):81–106.
 67. Altay A, Cinar D. In: Kahraman C, Kabak Ö, editors. Fuzzy decision trees. Cham: Springer; 2016. pp. 221–61.
 68. Witten IH, Frank E, Hall MA, Pal CJ. Data mining: practical machine learning tools and techniques. Burlington:

Morgan Kaufmann; 2016.
 69. Pecori R, Ducange P, Marcelloni F. Incremental learning of fuzzy decision trees for streaming data classification.

In: 2019 conference of the international fuzzy systems association and the European society for fuzzy logic and
technology (EUSFLAT 2019). Paris: Atlantis Press. 2019/08.

 70. Fernández A, del Río S, Bawakid A, Herrera F. Fuzzy rule based classification systems for big data with MapRe-
duce: granularity analysis. Adv Data Anal Classif. 2016;11:711–30.

 71. Chu C-T, Kim SK, Lin Y-A, Yu Y, Bradski G, Olukotun K, Ng AY. Map-reduce for machine learning on multicore. In:
Advances in neural information processing systems. 2007. pp. 281–8.

 72. Pecori R, Ducange P, Marcelloni F. Incremental learning of fuzzy decision trees for streaming data classification.
In: 2019 conference of the international fuzzy systems association and the European society for fuzzy logic and
Technology (EUSFLAT 2019). Atlantis Press. 2019.

 73. Pedrycz W. Granular computing: analysis and design of intelligent systems. Boca Raton: CRC Press; 2016.
 74. Antonelli M, Ducange P, Lazzerini B, Marcelloni F. Multi-objective evolutionary design of granular rule-based

classifiers. Granul Comput. 2016;1(1):37–58.
 75. Xu LD, Duan L. Big data for cyber physical systems in industry 4.0: a survey. Enterp Inf Syst. 2019;13(2):148–69.
 76. Mohammadi M, Al-Fuqaha A, Sorour S, Guizani M. Deep learning for iot big data and streaming analytics: a

survey. IEEE Commun Surv Tutor. 2018;20(4):2923–60.

Page 29 of 29Ducange et al. J Big Data (2020) 7:19

 77. Kayes A, Rahayu W, Dillon T, Chang E, Han J. Context-aware access control with imprecise context characteriza-
tion through a combined fuzzy logic and ontology-based approach. In: OTM confederated international confer-
ences “On the move to meaningful internet systems”. Springer. 2017; pp. 132–53.

 78. Pecori R, Suraci V, Ducange P. Efficient computation of key performance indicators in a distance learning univer-
sity. Inf Discov Deliv. 2019;47:96–105.

 79. Adadi A, Berrada M. Peeking inside the black-box: a survey on explainable artificial intelligence (xai). IEEE Access.
2018;6:52138–60.

 80. Fernandez A, Herrera F, Cordon O, del Jesus MJ, Marcelloni F. Evolutionary fuzzy systems for explainable artificial
intelligence: why, when, what for, and where to? IEEE Comput Intell Mag. 2019;14(1):69–81.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	An overview of recent distributed algorithms for learning fuzzy models in Big Data classification
	Abstract
	Introduction
	The MapReduce paradigm and distributed computing frameworks
	Fuzzy classification models: preliminary concepts, architectures and classical learning algorithms
	Fuzzy partitions
	Fuzzy Rule-Based Classifiers
	Fuzzy Associative Classifiers
	Fuzzy Decision Trees

	Local and global implementations of the distributed Chi et al. algorithm
	Distributed Fuzzy Associative Classifiers
	Distributed Evolutionary Fuzzy Systems
	Distributed Fuzzy Decision Trees
	Experimental results: some discussions
	Discussion and future directions
	Conclusions
	Acknowledgements
	References

