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Following a long history of informal use in path analysis, causal
diagrams (graphical causal models) saw an explosion of theor-
etical development during the 1990s,1–3 including elaboration
of connections to other methods for causal modelling. The latter
connections are especially valuable for those familiar with some
but not all methods, as certain background assumptions and
sources of bias are more easily seen with certain models,
whereas practical statistical procedures may be more easily
derived under other models. We provide here a brief overview
of graphical causal models,1–6 the sufficient-component cause
(SCC) models of Rothman,7,8 Ch. 2 the potential-outcome
(counterfactual) models now popular in statistics, health, and
social sciences,9–15 and the structural-equations models long
established in social sciences.11–14 We focus on special insights
facilitated by each approach, translations among the approaches,
and the level of detail specified by each approach.

Graphical models
The following is a brief summary of terms and concepts of
causal graph theory; see Greenland et al.4 and Robins5 for more
detailed explanations. Figure 1 provides the graphs used for
illustration below. An arc or edge is any line segment (with or
without arrowheads) connecting two variables. If there is an

arrow from a variable X to another variable Y in a graph, X is
called a parent of Y and Y is called a child of X. If a variable has
an arrow into it (i.e. it has a parent in the graph) it is called
endogenous; otherwise it is exogenous.

A path between two variables X and Y is a sequence of arcs
connecting X and Y. A back-door path from X to Y is a path whose
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Figure 1 Four causal diagrams used in examples. In all four, X and Y
are the exposure and outcome variables under study
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first arc is an arrow pointing to X; there is no back-door path
from X to Y in Figure 1a, whereas in Figure 1c the path X-U-Y
is a back-door path from X to Y. A blocked path (or closed path)
between X and Y is a path that passes from a parent to child and
then back to another parent, i.e. there is a parent-child-parent
sequence in the path; a path that has no such sequence is an
open path.2–4 In Figure 1b, the paths X-U-Z-Y and X-Z-V-Y are
open, but the path X-U-Z-V-Y is not because U-Z-V is a parent-
child-parent sequence.

A directed path is a sequence of arrows such that the child in
the sequence is the parent in the next step. If there is a directed
path from X to Y, X is called an ancestor of Y and Y is called a
descendant of X. A graph is directed if all the arcs in it are arrows;
a graph is acyclic if no directed path forms a closed loop
(equivalently, if no variable is both an ancestor and descendant
of another). A graph that is both directed and acyclic is a DAG;
each graph in Figure 1 is a DAG.

A graph is causal if every arrow represents the presence of an
effect of the parent (causal) variable on the child (affected)
variable. In a causal graph, a directed path represents a causal
pathway, and an X-to-Y arrow represents a direct effect of X on
Y within the graph (an effect not mediated through any other
variable in the graph). Each graph in Figure 1 summarizes causal
relations within a population of individuals, and each variable
represents the states or events among individuals in that popu-
lation. For example, if X is a treatment variable, then the value
of X for an individual is the level of treatment received by the
individual. Absence of a directed path from X to Y in the graph
corresponds to the causal null hypothesis that no alteration of
the distribution of X could change the distribution of Y.

The ‘population’ might contain just one individual, in which
case the graph is a model for effects on that individual.
Furthermore, the ‘individuals’ in the population need not be
persons; they may be administrative entities, natural groupings,
or any other unit of interest. For example, in a study of the
effect of state helmet laws on riding-accident mortality Y among
motorcyclists, the individual units could be states, X could be
helmet-law status, and Z could be helmet-law enforcement
levels. One could also draw an accident-level graph in which X
could be helmet-law status in the accident’s locale, Z indicates
whether the motorcyclist was wearing a helmet, and Y indicates
whether the motorcyclist was killed.

An important result from graph theory is that if one stratifies
(conditions) on a descendant Z of two variables U and X, and U
and X are independent in the total population, then we should
expect U and X to be associated within at least one stratum of Z
(exceptions to this rule involve somewhat contrived
cancellations of effects).2,3 p. 17,4 To illustrate a consequence of
this result, suppose in Figure 1a X represents a 6-month weight
loss regimen that is randomly assigned within a cohort of
cardiovascular patients, with X = 1 for regimen assigned and 
X = 0 for not assigned; Z represents a set of clinical CHD risk
factors (serum lipids, blood pressure) measured at regimen
completion; Y represents death within the year following
completion; and U represents a set of unmeasured genes that
affect death risk both directly and through the clinical factors Z.
Although U affects Y, it is not a confounder of the X-Y
association because it is independent of X.

A common approach to analysing effects of weight on health
is to adjust for serum lipids and blood pressure. If weight affects

serum lipids and blood pressure, such adjustment cannot be
justified as confounding control because it removes that part of
the weight effect mediated through serum lipids and blood
pressure.8 Ch. 4 It is often thought that such an analysis estimates
the direct effect of weight, or of a weight-loss regimen. Using
counterfactual models, however, it has been shown that this
rationale fails if the intermediates were also affected by
uncontrolled risk factors; it fails even if the treatment X is
independent of the uncontrolled factors, so that there is no
confounding of the crude X-Y association, as in Figure 1a.16

Graph theory shows this fact more simply: Because Z is a child
of both U and X, one should expect U and X to be associated
within at least one stratum of Z; consequently, within strata of
Z, U becomes a confounder, even though it was not one to begin
with.6 In general, one should expect control of an intermediate
Z to generate confounding when Z and Y share causes other
than X, as in Figure 1a; in such cases the association of Z with Y
is confounded, and so the estimated indirect effect of X on Y
being ‘removed’ by Z-adjustment is confounded.17

Figure 1b gives another example, which has a counter-
intuitive quality and had to wait for graph theory for discovery.
In this graph we ask, ‘is it sufficient to stratify only on Z in order
to unbiasedly estimate the effect of X on Y?’ A common
intuitive answer is ‘Yes,’ because physically preventing indi-
vidual variation in Z would block the effects of U on Y and V 
on X and thus eliminate confounding by U and V (as well as
confounding by Z). But in an observational study U and V
would ordinarily be associated within some strata of Z, because
they both affect Z. Within those strata, U would be associated
with Y (through V) as well as with X, and V would be associated
with X (through U) as well as with Y; consequently, both U 
and V would be confounders and one or the other would have
to be controlled to remove the confounding.2,4

One can recognize the insufficiency of controlling Z alone
given Figure 1b in more traditional ways: The association of Z
with Y given X is confounded by V; because adjustment for Z
alone depends on this confounded association, one might
conclude correctly that such adjustment could mislead, and that
adjustment for V as well as Z would remedy the problem. But
graphical theory also shows that adjustment for U rather than V
would also suffice: because the V-X association produced by Z-
adjustment is mediated entirely through U, U-adjustment
eliminates confounding by V within Z strata.

The preceding examples illustrate how causal graphs supply
simple visual methods to check for confounding and for suffi-
ciency of confounder adjustment. Some basic results are: (1) an
open back-door path from X to Y can produce an association
between X and Y, even if X has no effect on Y, and so can produce
confounding; (2) adjustment for certain variables can produce
open back-door paths, and so produce confounding; (3) the X-Y
association will be unconfounded if the only open paths from X
to Y are directed paths from X to Y (so that the only sources of
X-Y association are effects of X on Y).2,3 Ch. 3,4 These results
lead to general criteria for identifying sets of variables sufficient
for control of confounding given a graph.2,3 Ch. 3,4

Potential-outcome (counterfactual) models
Graphs display broad qualitative assumptions about causal
directions and independencies in a population. Although it is
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surprising how much can be deduced from such assump-
tions,1–6 the deductions are only qualitative (e.g. confounding
present or absent in a particular stratification). Usually, how-
ever, more precise deductions are needed, and such deductions
require a quantitative model that specifies in detail what would
happen under alternative possible patterns of intervention or
exposure. One class of quantitative models originating with
Neyman and Fisher in the early 20th century9 are the
counterfactual or potential-outcome models.8 Ch. 4,9–12,15 These
models formalize notions of cause and effect found in much of
philosophy and epidemiology,15,18,19 such as this passage from
MacMahon and Pugh: ‘… an association may be classed
presumptively as causal when it is believed that, had the cause
[exposure] been altered, the effect [outcome] would have
changed’.19 p. 12 A key feature of this description is its
counterfactual element: It refers to what would have happened if,
contrary to fact, the exposure had been something other than
what it actually was.

Suppose we have a population of individual units under
study (e.g. mice, people, counties) indexed by i = 1,…,N, a
treatment or exposure variable X with J + 1 levels (or actions)
x0, x1,…,xJ, and an outcome variable of interest Y (such as an
indicator for ‘death by age 70’). The standard potential-outcome
model for a non-contagious outcome assumes that:

(a) Each individual could have received any one of the treat-
ment levels; this rules out (for example) having men in the
population for an analysis of hysterectomy effects.

(b) For each individual i and treatment level xj, at the time of
treatment assignment the outcome that individual i would have
if the individual gets treatment level xj exists, even if the
individual does not in fact get xj; this value is called the potential
outcome of individual i under treatment xj.

The variable Y represents a generic variable for the actual
outcome under the treatment actually given. Assumption (b)
can be recast as stating that, for each individual i and each
exposure level xj, one can also define a potential-outcome
(potential-response) variable Yij representing the outcome of
the individual under that exposure. Thus, if Y is an indicator for
‘death by age 70’, Yij will be an indicator for ‘death by age 70 of
individual i if that individual is given treatment xj’.

If individual i gets treatment xj, Yij will equal the indicator for
the actual outcome of individual i; but otherwise it may be quite
different from that actual outcome. Such a difference is taken as
the effect of actual treatment relative to treatment xj. More
generally, the choice of treatment is said to have had no effect
on Y for individual i if Yij = Yik for every possible pair of treat-
ment levels xj and xk; otherwise, if Yij ≠ Yik for some pair of
treatment levels xj and xk, treatment choice could have had an
effect, or could have caused a change in the actual outcome of
individual i (from Yik to Yij). Treatment choice is said to have
had no effect on the population if it had no effect on any
individual in the population.

In addition to (a) and (b), most applications also assume that
the potential outcomes of each individual are independent 
of the treatments and outcomes of other individuals. This
assumption is not always correct (e.g. in vaccine trials), but the
model can be generalized to allow for violations.20 A
controversial aspect of assumption (b) is that it requires each
potential outcome Yij remain a meaningful quantity even when
individual i does not get treatment xj. Even if one accepts this

idea, the only Yij that can be observed for individual i is the one
corresponding to the treatment actually received by that indi-
vidual; the remaining Yij can only be estimated, not observed.
People routinely estimate such quantities in day-to-day life 
(e.g. ‘if I had only bought Microsoft stock when it was first
issued, my net worth would be millions of dollars’). The prob-
lems attributed to modelling such quantities (such as the need
for untestable assumptions in estimating causal effects) are in
reality unpleasant intrinsic problems of causal inference that 
are obscured by other approaches; we believe it is a virtue of 
the counterfactual approach that it makes such problems
explicit.15,21

Potential-outcome models are not inherently deterministic
(as is often mistakenly claimed), because the potential out-
comes (the Yij) may be parameters of probability distributions
(e.g. expected age at death) rather than directly observable
events (e.g. actual age at death).21 This flexibility can be 
seen in the probabilistic notations based on the ‘set’ and ‘do’
operators in Pearl,2,3 which can be used to represent effects in
a single individual instead of a population. Furthermore,
potential-outcome models are not limited to person-level
analyses; for example, the ‘individuals’ in the model may be
social units or aggregates (although the associations observed
among these aggregates may be confounded by person-level
effects).22

One way of summarizing the scope of potential-outcome
models is that they represent the limit of what one could learn
about individual causes and effects from perfect crossover trials.
For example, if X and Y represent completely reversible
exposure and outcome variables (e.g. as might occur with X
indicating a nasal irritant and Y a sneezing probability), we
could estimate an individual’s Yi1 and Yi0 (sneezing probabilities
when irritant present and absent) through a series of trials on
the individual that alternated X = 1 with X = 0, provided there
were no carry-over effects or temporal variations in the
sneezing responses (as represented by the potential outcomes).
When such trials cannot be performed, as is usual in human
studies, we could still estimate the population distribution of Yij
(the outcome when X = xj) by treating a random sample from
that population with xj. By repeating such experiments for
various treatment levels (or by randomizing a random sample
to different treatment levels) we can estimate how the
population outcome distribution would vary with treatment
distribution.9,11,15,21

A practical aspect of potential-outcome models arising from
assumption (b) is that any potential outcome Yij not observed
(whether because treatment xj was not given to i, or because 
of censoring) can be viewed as a quantity to be estimated or
imputed from observed covariates and outcomes.9,23 This idea
underlies most methods of model-based standardization of
effect estimates,8, Ch. 21 and leads to numerous methods 
for confounder control based on the relation of actual treat-
ment X to the potential outcomes predicted from various
models.23 Some effect measures do not require that assump-
tions (a) and (b) apply to all individuals in the study. For
example, if unexposed (X = 0) individuals are used only to
estimate the distribution of the Yi0 among the exposed (X = 1),
as in many occupational studies, we need not assume that the
unexposed could have been exposed or that Yil is meaningful
for the unexposed.15
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Multifactorial causation and the sufficient-
component cause model

The graphical and potential-outcome models can be used to
portray the presence, though not the mechanics, of causal
interactions. Consider for example the synergism between
phenylketonuria (PKU)(X = 1) and significant phenylalanine
consumption (SPC)(Z = 1) in inducing brain damage (Y = 1): In
some people, these two factors together are necessary and
sufficient to produce damage.19 This synergism can be
represented in basic graphs1–6 by including a variable XZ that
indicates their joint presence (XZ = 1 if X = Z = 1 are both
present, XZ = 0 otherwise), then drawing an arrow from XZ to
Y. To represent the synergism in a potential-outcome model, we
may define four damage indicators Yixz for each individual i; the
subscript x is 1 with PKU present, 0 with PKU absent, while z is
1 with SPC present, 0 with SPC absent. The synergism then
corresponds to Yill = 1 but Yi10 = Yi01 = Yi00 = 0.8 Ch. 18

Because potential outcomes are quantities specific to
individuals in the modelled population, they provide more
detail than arrows in graphs. For example, the individuals
affected by X and those affected by Z may be one and the same,
or may not overlap at all. The graph X → Y ← Z would hold if
the population were composed entirely of individuals with Yi11
= Yi10 = Yi01 = 1 and Yi00 = 0; in this case, if everyone had their
actual X and Z equal to 0, everyone would be affected by
changes in X or changes in Z. But the same graph would hold if
the population was half individuals with Yi11 = Yi10 = 1, Yi01 =
Yi00 = 0 (individuals affected only by changes in X) and half
individuals with Yi11 = Yi01 = 1, Yi01 = Yi00 = 0 (individuals
affected only by changes in Z). Like the graph, the potential-
outcome models can be extended to include effects of X on Z as
well as the effects on Y; doing so reveals many distinctions not
captured by simply adding an arrow from X to Z in the graph.16

Such examples show that potential-outcome models are
logically finer (distinguish more situations) than graphical
models of the same variables; this fineness leads to greater
notational complexity.

Consideration of causal mechanisms leads to models that are
logically finer than either potential-outcome models or graphs.
Best known among epidemiologists is Rothman’s sufficient-
component cause (SCC) model.7,8 Ch. 2 In this model, two
factors are said to be causal cofactors, and have a (potential for)
synergism, if they are components of the same causal mech-
anism; the presence of both cofactors is necessary for the
mechanism to operate and so produce the outcome under
study. This definition refers to mechanisms; thus, the basic units
of analysis are the mechanisms that determine the potential
outcomes of individuals, rather than individuals. Many different
sets of mechanisms will lead to the same pattern of potential
outcomes for an individual; hence, many different SCC models
will lead to the same potential-outcome model.8 Ch. 18,25 As
with potential-outcome models, however, SCC models are not
inherently deterministic, because the component causes may be
random events24 and because the outcome affected by the
completion of a sufficient cause may be a probability parameter
rather than an observable event.

The SCC model employs a pie-chart representation of causal
mechanisms, in which each slice represents a necessary
component of the mechanism.7 To illustrate, suppose we are

considering mechanisms for angiosarcoma induction in just one
individual i. Figure 2 gives an illustration of two distinct SCC
models for the disease-causing mechanisms within this
individual. The U in the figure represent sets of unmeasured
cofactors that would be present regardless of this individual’s 
X or Z status. Model (a) posits that there are two mechanisms
that can lead to disease in this individual, neither of which
involve synergism of X levels and Z levels, while model (b)
posits three such mechanisms, all of which show synergism of
X levels and Z levels. Nonetheless, under both models this
individual will get the disease unless X = 0 and Z = 0; in other
words, under either SCC model the individual’s potential
outcomes would be Yi11 = Yi10 = Yi01 = 1 and Yi00 = 0. Thus,
even if we could conduct a perfect crossover trial on the
individual and so observe the individual’s outcome under all
four X-Z combinations, we would still be unable to determine
which SCC model was correct.

As this example and more realistic ones26–28 show, there are
severe limits to the detail about causal mechanisms that can be
distinguished using only ordinary (‘black-box’) randomized trials
and epidemiological studies of exposure-disease relations.26–29

Although discrimination among mechanisms can be import-
ant,28,29 it will usually require direct observations of inter-
mediate steps or of biomarkers for hypothesized mechanisms.

Structural-equations models
Informal use of graphs initially developed as an intuitive aid for
structural-equations modelling (SEM), in which a web or
network of causation is modelled by a system of equations and
independence assumptions.3 Ch. 1,13 Each equation shows how
an individual response (outcome, affected, dependent) variable
changes as its direct (parent) causal variables change. Again, the
‘individual’ may be any unit of interest, such as a person or
aggregate. In the system, a variable may appear in no more than
one equation as a response variable, but may appear in any
other equation as a causal variable. A variable appearing as a
response in the system is said to be endogenous (within the
system); otherwise it is exogenous.

Figure 2 Two distinct sufficient-component cause (SCC) models for
the set of mechanisms within an individual; each leads to the same
potential-outcome model
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A causal graph is a qualitative schematic for a class of
structural-equations models. For example, Figure 1a is a
schematic for the linear system

Z = αZ + βUZu + βXZx (1a)

Y = αY + βUYu + βXYx + βZYz (1b)

in which u, x, z are specific values of U, X, Z, αZ and αY are
unmeasured individual-specific (random) disturbances of Z and
Y, and αZ, αY, U and X are assumed to be jointly independent of
one another in the study population. Figure 1a is also a
schematic for the very different system

Z = αZ + βUZu + βXZx + βUXZux (2a)

ln(Y) = αY + βUYu + βXYx + βZYz (2b)

with αZ, αY, U and X again assumed jointly independent.
System 2 differs from system 1 in that a product term is added
to the Z equation, and the Y equation is log-linear instead of
linear. Nonetheless, both systems share the properties indicated
by Figure 1a: U and X are the two exogenous variables
(indicated by their lack of parents); U and X directly affect the
two endogenous variables Z and Y, and Z directly affects Y
(indicated by the arrows from U and X to Z and Y, and from 
Z to Y); and the exogenous variables and random disturbances
are jointly independent of one another (indicated by the absence
of connections among the variables other than the arrows just
described).

Structural equations can be viewed as formulas for
computing potential outcomes under various actions.2,3 Ch. 1

For example, if X represents a treatment regimen, equation 1a
asserts that the potential value of Z for any individual in the
study population will trace out a linear function of X as the
individual’s values of X changes but U remains constant: an
individual’s Z will change by βXZ units if we increase X by one
unit while U remains constant (because αZ is constant for the
individual). Equation 1a also asserts that Z will not vary with Y
if U and X remain constant. It is such within-individual causal
interpretations that distinguish structural equations from
ordinary regression equations (which represent only associations
of actual outcomes with actual values of the covariates as one
moves across individuals).3 Ch. 5,8 Ch. 20 Structural-equations
models (complete systems such as 1 and 2 above) combine
potential-outcome models for the endogenous variables with
independence assumptions about exogenous variables.

Structural equations with unknown parameters go beyond
graphs by specifying the functional form of effects, but do not
provide the exact values of effects; thus, they are algebraic but
not fully quantified representations of causal relations. The
equations can also be given a general non-parametric form that
does not impose structure beyond that in the corresponding
graph, and so is logically equivalent to that graph.2,3 Ch. 1 For
example, Figure 1a corresponds to

Z = fZ(u,x,αZ) (3a)

Y = fY(u,x,z,αY) (3b)

with αZ, αY, U, X assumed jointly independent. The functions fZ
and fY are left unspecified, although statistical analysis will

usually require some restrictions on fZ and fY, such as
smoothness of dose-response and additivity of effects on a
particular scale. Equations 3a and 3b may be interpreted as
alternative notations for the potential outcomes corresponding
to Z and Y. For example, fY(u,x,z,αY) may be interpreted as the
potential outcome yiuxz, with the individual identifier i replaced
by a ‘random’ source of inter-individual variation αY. Thus,
non-parametric structural equation models provide a bridge
between graphical and potential-outcome models.2

As with potential-outcome models, structural-equations
models extend beyond deterministic outcomes, although the
details of such extensions are rather technical. In the systems
above, Z and Y may represent parameters of individual outcome
distributions, rather than the observable outcome events. For
example, Z and Y may represent expected values; the structural
equations are then mixed models with random intercepts αZ
and αY. A common equivalent practice adds mean-zero
‘random errors’ εZ and εY to the Z and Y equations; Z and Y then
remain observable outcomes, but the random errors are not
separable from αZ and αY without repeated observations of all
variables on each individual. It is also possible to treat the β
coefficients as random.

Graphical versus algebraic representations
As an illustration of the differing insights obtained from
graphical and algebraic representations of causation, Figure 1c
diagrams a situation in which Z is an instrumental variable for
estimating X effects: Z affects X, but is unassociated with the
confounder U and is unassociated with Y except through 
X.3 Sec. 7.4.5 Such variables occur in randomized trials, in which
Z is the assigned (intended) treatment. Many patients do not
fully comply, and instead take (or receive) a different level of
treatment, X; this received-treatment variable is affected by
unmeasured factors U that are also risk factors (or close
correlates of risk factors) for the outcome under study. Standard
intent-to-treat analyses examine only the Z association with Y
and so are estimating the effect of treatment assignment, rather
than a physiologic effect of received treatment X. Can we also
estimate the latter effect? The answer is yes, provided we can
make further (not necessarily unique) quantitative
assumptions. The graph makes clear that we should not expect
the crude X-Y association to equal the X-Y effect, because of
confounding by U. The graph also shows, however, that there is
no confounding of the Z effects on X or Y (as would be expected
if Z was randomized); hence the crude Z-X and Z-Y associations
will equal the Z-X and Z-Y effects. These facts alone can allow
one to put bounds on the X-Y effect,3, Sec. 8.4 although one or
both bounds may be beyond any plausible range for the
effect.30

Suppose we go beyond Figure 1c by assuming the linear
structural relations

X = αX + βUXu + βZXz (4a)

Y = αY + βUYu + βXYx (4b)

with αX, αY, U, Z jointly independent. As noted long ago by
economists,31 this model would allow us to unbiasedly estimate
βXY from the simple regressions of X on Z and Y on Z. First,
because αX, U, and Z are independent, there would be no
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confounding of the simple βZX estimate obtained from
regressing X on Z alone. Second, we can substitute 4a into 4b 
to get

Y = αY + βUYu + βXY(αX + βUXu + βZXz)

= (αY + αXβXY) + (βUY + βUXβXY)u + βZXβXYz

= δY + δUYu + δZYz, (5)

where δY ≡ αY + αXβXY, δUY ≡ βUY + βUXβXY, and δZY ≡ βZXβXY.
Because of the independence assumptions, there would be no
confounding of the simple δZY estimate obtained from regres-
sing Y on Z alone; therefore, the ratio of the simple δZY and βZX
estimates will consistently estimate

δZY/βZX = βZXβXY/βZX = βXY, (6)

which is just the effect of X on Y in system 4. This ratio is an
example of an instrumental-variables estimate of effect;3 Sec. 3.5,30–32

one can also easily derive this estimate for binary X, Y, and Z by
specifying potential outcomes directly.30,32 In either approach,
it is important to remember that equation (6) is based on the
linearity assumptions seen in system 4, as well as on the direc-
tional assumptions in Figure 1c.

For instrumental variables, algebraic modelling led to
discovery of assumptions (plausible in some settings) that are
sufficient for estimating the effects of interest from the given
data. Nonetheless, by focussing our attention on basic qualitative
relations, graphs can help identify fallacies in causal inference.
Some examples were given in our discussion of Figures 1a and
1b; as another example, some epidemiologists still believe
(mistakenly) that an extraneous factor cannot induce selection
bias unless it is a risk factor for disease. Consider a case-control
study of magnetic-field exposure X and childhood leukaemia Y,
with U representing socioeconomic factors and S selection. It
has been argued (though disputed) that socioeconomic factors
have little or no effect on childhood-leukaemia risk (as opposed
to diagnosis or mortality); there is evidence, however, that
those factors are associated with magnetic fields and with
participation.33,34 Because of the case-control design,
leukaemia is also strongly associated with selection. Figure 1d
summarizes this background. It shows that S is a descendant of
both U and Y; hence, because the study data must be limited to
those selected (the S = 1 stratum), we should expect U and Y to
be associated in those data even if U has no effect on Y.
Consequently, U would have to be controlled in order to ensure
an unbiased estimate of the X-Y effect. Such control could not
be accomplished if U were unmeasured or poorly measured.
(Note however that if X itself affected selection, there would be
no way to remove the resulting selection bias through control
of a covariate.)

Discussion
What population should be modelled?

When using models in data analysis, it is essential to consider
the distribution of exposure and confounders in the combined
study population of all treatment (or exposure) groups that are
under comparison, not in some specific target group of policy
interest. Furthermore, in a population-based case-control study

this population will be the source population of cases and
controls, not just the subjects selected into the study.8 Ch. 7 For
example, a study of vinyl chloride effects may have as its target
only workers actually exposed; nonetheless, to evaluate
confounding one needs to include the unexposed group (as well
as exposed group) in the population being modelled. Even
though the target comprises only those exposed (X = 1), an
unexposed population is needed for comparison, and whether
or not an extraneous factor (indicated by U = 1) is a confounder
depends on whether or not the factor is associated with the
exposure in the entire (exposed plus unexposed) study
population.8 Ch. 8 This pivotal U-X association can only be
represented in a model for relations in the entire population
(among the exposed, X is always 1 and so cannot be associated
with anything).

What is a causal variable?

A controversial issue in all theories of causation is whether a
variable must be manipulable to be considered potentially
causal. For modelling purposes, some authors would restrict the
label ‘causal’ to variables that represent interventions or
actions,35 or at most allow only mutable variables (those
susceptible to intervention) as potentially causal.3 Such restric-
tions exclude as causal those variables regarded as immutable or
defining characteristics of individuals, such as the birthdate and
genetic sex of persons, but allow as causal such variables as
perceived age and sex. Even when technology advances enough
to allow alteration of a previously immutable characteristic (e.g.
through genetic engineering), some authors would only label as
‘causal’ the intervention that alters the characteristic.35

In potential-outcome models, the levels of immutable
variables may be represented by strata (i.e. subpopulations) but
not by interventions (i.e. not by xj). In graphical and structural
models, immutable variables may appear as exogenous vari-
ables, and so are not distinguished from manipulable exogenous
variables. This practice is more in accord with ordinary usage of
‘causal’; it is useful because all the graphical rules for assessing
bias sources and covariate control continue to apply when
including immutable variables.3 Ch. 3 The distinction between
mutable and immutable variables remains important, however,
as it leads to refinement of vague concepts like ‘race’ into
multiple variables that have very different implications for health
outcomes (e.g. mutable variables such as ethnic identification,
and immutable variables such as ancestry).36

A more severe problem arises when variables that are not
interventions are treated as interventions for planning
purposes.36 A common example is estimation of ‘the effect’ of
eliminating a disease (e.g. lung cancer) on life expectancy. This
effect is quite dependent on how the disease is eliminated; for
example, if it is eliminated by chemoprevention or vaccination,
there may be occasional fatal side effects, or there may be causal
or preventive effects on other potentially fatal diseases. Careful
consideration of the ambiguities inherent in ‘disease elimination’
should lead instead to estimation of the effect of specific inter-
ventions designed to reduce or eliminate the disease burden.36

Conclusions
Of the four causal modelling methods reviewed here, SCC
models (the only ones originating in epidemiology) stand apart
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KEY MESSAGES

• There are now at least four major classes of causal models in the health-sciences literature: Causal diagrams
(graphical causal models), potential-outcome models, structural-equations models, and sufficient-component
cause models.

• Causal diagrams can provide an easily understood depiction of qualitative assumptions behind a causal analysis,
while potential-outcome and structural-equations models can depict more detailed quantitative assumptions
about responses of units comprising the study population.

• Sufficient-component cause models differ from the other models in that they depict more elaborate qualitative
assumptions about causal mechanisms within population units.
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