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Abstract. This paper presents an approach and a tool to increase specification
quality by using a combination of UML and formal languages. Our approach is
based on the expression of the UML class diagram and its annotations into a Z
formal specification. Our tool called RoZ supports this approach by making the
transition between the UML world and the Z world : from an annotated class
diagram, it automatically generates a complete Z specification, the
specifications of some elementary operations and some proof obligations to
validate the model constraints.

1   Introduction

Analysis and design methods for information systems propose graphical
representations in order to express the structural, dynamic and functional aspects of a
system. These aspects are described using models, each model representing a view of
the studied domain. Graphical models facilitate communication with users by
presenting a synthetic view of the system. But they are imprecise and incomplete.
First their semantics can be ambiguous. This is for instance the case for composition
in object-oriented modelling [1]. Moreover all the constraints compelling a system
cannot be described graphically. So a model is generally complemented by constraints
expressed in natural language. This prevents from consistency  checking between the
model and its constraints.

Recently, the Unified Modelling Language, UML [2], has been standardised by the
OMG (Object Management Group). Like previous object-oriented notations, UML
does not enable to express all integrity constraints. Thus some complementary
proposals have been done to better integrate constraint expressions in UML. The first
one [3] proposes to extend the meta-model adding to each class a part where
constraints are written. The second one, the Object Constraint Language (OCL [4])
adds constraints expressed in first order logic to the diagrams. This language makes it
possible to express constraints precisely and without ambiguity. Unfortunately,
current OCL tools do not exploit this preciseness. Therefore we propose to take
advantage of formal method tools to help verify the constraints of such annotated
diagrams. Formal languages have precise notations based on mathematical concepts
which enable to do proofs on specifications. Their use can help to increase
information system quality by providing more precise and consistent models. But as
writing formal specifications seems often difficult and tedious, we propose an
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approach and a tool generating automatically from an annotated UML diagram formal
specifications in Z [5] and proof obligations.

Our tool, called RoZ, is integrated in the Rational Rose environment. It allows the
integration of data specifications expressed in UML with formal annotations in the Z
language. Starting from an annotated specification, the tool automatically produces a
formal specification by translating the UML constructs and merging them with the
annotations expressing predicates not included in the graphical design.

RoZ can also complete the UML class diagram by automatically generating in the
UML environment Z specifications of elementary operations on the classes (attributes
modifications, adding and deleting objects of the class). The tool also allows to record
a guard for each operation and can generate corresponding proof obligations to show
that guards are consistent with the actual pre-conditions of these operations. The Z-
EVES prover [6] (from ORA) can be used to discharge these proof obligations.

The remainder of the paper is organised as follows. In section 2, an overview of
our approach and the principles of our tool RoZ is presented. Section 3 proposes a
guided tour of our tool. Section 4 introduces related work. Finally, section 5 draws the
conclusions and perspectives of this work.

2   RoZ

2.1 Overview of the Approach

The proposed approach (Fig. 1) uses the complementarity of UML diagrams and the
constraints annotating these diagrams to produce a formal specification :
1. From the initial problem, a UML specification is developed. The UML class

diagram is edited as usual in the Rational Rose tool ([7, 8]) and complemented
with annotations that state several constraints on the data and operation
specifications. The annotations must be written in a formalism using first order
logic and set theory in order to be expressible in Z. Actually they could be written
in OCL.

2. This diagram is the starting point of a translation process which produces a formal
specification skeleton. This translation gives a Z semantics for the UML diagram.
Many translations from object-oriented notations into formal notations ([9, 10, 11,
12]) have already been proposed. But using a tool guarantees the strict
correspondence between the UML model and the Z skeleton. In this paper, we will
present the RoZ tool which automatically produces Z specification skeletons based
on the translation rules for the main concepts (class, operation, association,
inheritance, aggregation and composition) of class diagrams presented in [13].

3. The formal skeleton is completed with the annotations. This can also be done
automatically by RoZ thanks to a classification of annotations presented in [14].

4. The formal specification is used to realise consistency checks with a Z prover, Z-
EVES. First, the mutual consistency of the constraints can be checked. Secondly,
operation guards can be designed to verify that operations do not violate
constraints ([15]). The theorems to prove the validity of operations guards can be
automatically generated by RoZ. Thanks to the translation process, this reasoning
done on the formal specification can be reported to the UML diagram and to its
annotations.
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Fig. 1. the proposed approach

2.2 RoZ Principle

RoZ is an extension of the Rational Rose tool to integrate UML and Z notations. The
Rose environment is used to build the UML models which are completed by formal
annotations in Z. The annotations are expressed into forms. A form should contain all
the information mandatory to complete Z skeletons. So each form corresponds to a
kind of annotation. It is attached to the class diagram element that it complements. In
the Rose environment, a pre-defined form is associated to each element of a diagram.
We would like to modify these forms in order to add the fields needed to complete
formal specifications. But this being impossible in Rose 4.0, we use the standard Rose
forms.

From a class diagram and the information contained in its forms, RoZ uses Rose
scripts to :
•  generate Z specifications
From a UML class diagram and its annotations, a complete Z specification can be
generated in a file. We choose to express Z specifications in the Latex style in order to
be able to use Z tools such as Z-EVES.
•  generate elementary operations
The main idea is that for some concepts, there are operations which always exist. For
instance, a class has always operations to modify its attributes. Moreover if the class
is concrete, there are also operations to add or remove an instance to or from the class
instances. So for concrete classes, the specification of these operations can be
generated automatically.
•  generate theorems to validate operation guards
From a UML class diagram, elementary operations and a Z formal specification can
be generated automatically. Data must often respect constraints which are not taken
into account by the code generated automatically and only implicitly taken into
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Fig. 2. Rose interface - the access control class diagram

account in the specification. So it is interesting to ``design'' guards which will be
evaluated before the operation execution and which can avoid to execute an operation
violating the constraints. From the Z specification produced from the UML diagram,
it is possible to prove that the proposed guards guarantee data integrity. So for each
identified guard, a theorem is generated ([15]). The theorems demonstration uses a
semi-automatic proof tool Z-EVES.

3   Guided Tour of RoZ

In this section, the functionalities of RoZ are illustrated on a simplified version of an
access control system. We show how to describe a class diagram and its annotations
in RoZ. Then we use RoZ to generate some elementary operations, to generate a
complete Z specification from the diagram and its annotations and to generate
theorems to validate operation guards.

3.1 Construction of a Class Diagram Example in RoZ

To illustrate the use of RoZ, we describe a simplified version of the access control
system presented in [16]. This model (Fig. 2) features two classes : “PERSON” and
“GROUP”. Each person has four attributes: his last and first names, the set of his
telephone numbers and the number of his magnetic card. Each group is characterised
by a name (e.g. “Accounting Department”) and a code (e.g. “AccD”). One can note
that the types of the attributes are expressed in the Z style. For instance, the “tel”
attribute is multi-valuated i.e. it corresponds to a set of telephone numbers (\finset
tel).

The PersonGroupRel association links each person to one group.

This class diagram does not express the full specification of the application data.
Three additional constraints complement this diagram :
1. Every person has at least one telephone number.
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Fig. 3. the forms for “tel” and “Person”

2. The card number is a key of persons.
3. The telephone numbers of the members of a given group have the same prefix.

The UML class diagram of the access control system is built in a class diagram
window of the Rose environment. This diagram can be complemented by the
expression of the constraints. The constraints are expressed in the Z Latex syntax in
the “Documentation” field of the forms.

The first constraint (every person has at least one telephone number) holds on the
attribute “tel”. So it is written in the field “Documentation” of the attribute “tel” (Fig.
3). It is expressed in Z that the set of telephone numbers cannot be empty :

tel ≠∅

This is expressed in the Z Latex style:

tel \neq \empty

The second constraint (the card number is a key of persons) means that two
different persons have distinct card numbers. It is a comparison between existing
objects of the class, so it is in the field documentation of the class “PERSON”  (Fig.
3) :

∀ p1,p2 : Person | p1≠p2 • p1.cardnb ≠ p2.cardnb

Finally we have to express the third constraint (the telephone numbers of the
members of a given group have the same prefix.). This constraint is related to the
relationship between “PERSON” and “GROUP”, so it is expressed in the
“Documentation” field of “PersonGroupRel” (Fig. 4). Let us consider that we have
defined a “prefix” function which gives the prefix of a telephone number. The
constraint states that for two persons which belong to the same group, each telephone
number of their sets of telephone numbers have the same prefix :



422      S. Dupuy, Y. Ledru, and M. Chabre-Peccoud

Fig. 4. the form «PersonGroupRel»

∀ p1,p2 : Person |

GroupOfPerson(p1)=GroupOfPerson(p2) •

∀ t1 : p1.tel • ∀ t2 : p2.tel •

prefix(t1) = prefix(t2)

As we illustrate it for constraints on classes and on associations, each form contain
a kind of constraints, defining so a constraint classification. This classification covers
the main concepts of a UML class diagram. In particular, we propose different kinds
of constraints for inheritance (constraints on the super-class, on the subclass or on
inheritance relationship) which can be explicitly expressed in some RoZ forms. Then
our translation into Z guarantees that constraints on a super-classes are inherited by its
subclasses.

Using the same principle, forms can also be exploited to write operation
specifications. This kind of form use is illustrated with the specification of the
“ChangeLastname” operation in the next subsection.

This annotated UML diagram will be the basis for the generation of a specification
(sect. 3.3).

3.2 Generation of Elementary Operations

In information systems, some operations associated to classes or associations are very
often used. They enable to create or delete an object or a link, or to modify an
attribute value. Their systematic generation has been studied in [17, 18].
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Fig. 5. Post-condition for «ChangeLastname»

RoZ uses the same principle to generate the specification of all the elementary
operations of the diagram classes : for each attribute of a given class, a modification
operation is generated. Moreover if the class is concrete, the specification of
operations adding or deleting an object to/from the class objects are added.

The generation of elementary operations does not take into account the eventual
constraints on a diagram. In order to check that an operation is consistent with the
constraints, we must validate its guard by proving a theorem generated by RoZ (see
3.4)

For example, for the class “PERSON”, the operations “ChangeLastname”,
“ChangeFirstname”, “ChangeTel”, “ChangeCardnb”, “AddPerson” and
“RemovePerson” are generated automatically by RoZ (Fig. 5). The specification of
these operations is contained in their form.

For instance, let us consider “ChangeLastname” which modifies the last name of a
person. In the operation part of “PERSON”, one can see the  operation signature :
“ChangeLastname” has an argument “newlastname” which is the input parameter of
the operation. In the “PostConditions” (Fig. 5) tab of the “ChangeLastname”
operation, the post condition of the operation is written as a Z Latex style : it means
that the new value of the attribute “lastname” is the argument of the operation
“newlastname” and that the others attributes of “PERSON” are unchanged by the
operation. RoZ also fills the “Semantics” tab with the key-word intension operation
which signifies that “ChangeLastname” is an operation on the attributes of the class.

3.3 Generation of a Z Specification

RoZ automatically generates the Z schema skeletons corresponding to a UML class
diagram. The Z skeletons are produced by translation of the concepts (class,
association, inheritance…) of the diagram. In order to complete these specification
skeletons, you must add information like the definition of the types of the attributes
and the constraints on the class diagram. In sections 3.1 and 3.2, we have shown how
constraints and operation specifications can be included in the RoZ environment.
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On the contrary, we did not find a place global to the model to express type
definitions in the Rose standard forms. So type are not defined in the RoZ
environment, but in a file containing them. In the example of access control system,
we have to define the types NAME, TEL, DIGIT8, GROUPCODE and
GROUPNAME. Moreover the third constraint (the telephone numbers of the
members of a given group have the same prefix.) requires the declaration of the prefix
function.

So from the class diagram and the annotations, RoZ generates a complete Z
specification. For example, from the class “PERSON” and its annotations, RoZ
generates two Z schemas (“PERSON” and “PersonExt”). A Z schema is a data
specification structure composed of two parts: the declarations which constitute the
local variable lexicon and the predicates expressing constraints on these variables.
The “PERSON” schema defines the attributes of the class and the “PersonExt” one
describes the set of existing persons. These schemas include the constraints expressed
in the “Documentation” fields of “PERSON” and “tel”. The constraint on the
telephone numbers (constraint 1) is expressed in the Z schema defining attributes,
while the key constraint (constraint 2) is defined in the Z schema representing the
existing objects of “PERSON”.

    

3.4 Theorems Generation

At this point, we have produced a Z specification and we can start to investigate the
properties of our model. Let us consider the operation “ChangeTel” which changes
the value of the “tel” attribute and corresponds to the following instruction :

tel := newtel?

The automatically generated specification for this operation is :
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In this specification, newtel? is the input parameter. The last predicate constraints
the new value of the “tel” attribute (denoted by tel’) to be equal to the input
parameter. The remaining predicate expresses that the other attributes keep their
initial value. The first line of the declaration part ∆PERSON expresses that the effects
of this operation are limited to change an object of type “PERSON”.

Its actual pre-condition can be computed from the text of the specification and the
constraints listed in the included schemas. When specifications get complex, it is
good software engineering practice to state these pre-conditions more explicitly. For
the “PERSONChangeTel” operation, we identify the pre-condition

newtel? ≠ ∅
This pre-condition depends only on the constraint concerning the “tel” attribute

because the “PERSONChangeTel” operation only changes an object of type
“PERSON” and is not promoted at the level of existing objects of “PERSON”. So we
do not have to take into account constraints on the existing objects of “PERSON” or
on the association with “GROUP”. These constraints will be considered for alternate
versions of this operation which promote “PERSONChangeTel” at the level of the
existing persons and for the operations on the “PersonGroupRel” association. For
these alternate versions, the precondition become more complex in order to consider
the key of " PERSON"  and the telephone number prefix constraint.

We guess that the pre-condition (newtel? ≠ ∅ ) is strong enough to imply the
actual pre-condition of the operation. This predicate states that the new set of
telephone numbers must not be empty. We add it to the field “Pre Conditions” of the
operation “ChangeTel”:

newtel? \neq \empty

Then RoZ is used to generate a theorem to validate proposed pre-conditions for
each operation. It uses the information given in the operation form to generate the
following proof obligation for “ChangeTel” (Fig. 6):

\begin{theorem}{ PERSONChangeTel \_Pre}

\forall PERSON ;newtel? : \finset TEL |

newtel? \neq \empty @

\pre PERSONChangeTel

\end{theorem}

It means that the proposed pre-condition (newtel? � �) is stronger than the
computed pre-condition (pre PERSONChangeTel).
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If you want to prove the theorems generated, you can use any Z standard prover.
We use the Z-EVES theorem prover because it offers a high level of proof
automation. For instance, the pre-condition theorem for “ChangeTel” is proved
automatically using the following commands :

try lemma PERSONChangeTel\_Pre;

prove by reduce;

which demonstrates that the proposed pre-condition is correct.

4   Related Work

Two kinds of environments have been proposed to couple different kinds of notations.
In the first one [19], the various specifications are developed independently and some
consistency rules are defined to check the consistency between them. These tools
have the advantage of being formalism-independent. But the consistency rules do not
guarantee that the specifications are semantically equivalent. So if you use such tools
to couple UML and formal specifications, you cannot be sure that the formal
specifications are equivalent to the UML ones. The reasoning done on the formal
specifications cannot be reported to the UML ones. The other kind of tools are based
on some translation from a formalism to another one so as to have equivalent versions
of the specifications. As this is the approach we have chosen, the following
paragraphs develop the characteristics of such tools and a comparison with ours.

Some tools are based on meta-CASE such as GraphTalk ([20, 21, 18]). A meta-
CASE is a tool intended to build other tools. Others, like ours, propose to extend
existing environments. In particular, the Rational Rose tool is used to make the link
between UML and VDM++ ([22]) and UML and Z ([23]). Using a meta-CASE
enables to build exactly the desired environment. But its development is much longer

                                                                

Fig. 6. Generation of theorems
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than the extension of an existing tool and rarely reaches the standard of dedicated
environments. Moreover, using a “standard” environment enables to keep close to the
practice of conceptual modellers.

Another criterion of comparison is the way of coupling the different kinds of
specifications. [21] and [23] propose multi-modelling environments in which the
different kinds of specifications are available in the same modelling tool. Graphical
and formal specifications are thus developed in parallel. In this approach, the different
formalisms used must be mastered to be able to add constraints to formal
specifications or to specify operations.

Another approach consists in automatically generating the formal specifications
into a file. The main advantage is to have a file that can be used by the tools for
formal notations. That is what is proposed in [24]. But [24] does not specify how the
formal skeleton generated in the file can be complemented and how the model is
updated taking into account the code added to the skeleton.

Our proposal goes on a little further by proposing to perform all the modelling
work (diagrams and annotations) in the UML environment. Only the strictly
necessary formal specifications are seen to permit their exploitation. This one depends
on the level of mastery of the formal language. It is not necessary to know the details
of the formal language to have a documentation with formal specification. But the
verification of the formal specifications by proving operation pre-conditions for
instance, requires a higher degree of expertise.

Moreover, tools like [22, 23] allow modifications of the model from both the UML
and the formal method environments. We have chosen to use Rose as the only
interface to the model which means that any update of the Z specifications should be
done by modifying the corresponding model or annotations.

5   Conclusion and Perspectives

In this article, we present RoZ, an automate tool for specification and illustrate its use
on a simple example. The RoZ tool aims at increasing system quality by adding
precision to the system specification. It exploits the standard Rose environment to
make UML notations and formal annotations live together: the class diagram provides
the structure of Z formal skeleton while details are expressed in forms attached to the
diagram. RoZ offers the following possibilities:
•  automatic generation of Z formal specifications from an annotated UML class

diagram,
•  generation in Rose of the specifications of elementary operations on classes,
•  generation of proof obligations to validate operation guards.

5.1 Advantages

An important characteristics of RoZ is that all the modelling work (diagrams and
annotations) is realised in Rose to be as close as possible to the usual practitioner
working environment. So the environment is employed as usual and some information
can complement the diagrams when necessary. Our ambition is that it does not require
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to have a deep understanding of Z to be able to have complete Z specification. In
particular, we expect that many constraints can be expressed be adapting similar ones
from other RoZ diagrams (see 3.2).

The main advantage of RoZ is that it automatically realises some tedious work.
First, it generates formal specifications from annotated UML diagrams. Secondly, it
creates elementary operations on classes. Finally, it generates proof obligations. This
automation limits human efforts of designers to write precise specifications and to
check them.

Moreover RoZ offers guidance to know where to express each kind of annotation.
In particular, the definition of the tool gives rise to a classification of integrity
constraints on class diagrams. So each kind of constraints is expressed in a specific
form. This helps the user to know where to write constraints and how to complement
a class diagram.

Finally, it is important to have synchronised evolutions of the UML and Z
specifications. Our tool allows to always have equivalent versions of the UML and
the Z specifications. As all the modelling work is made in the UML environment, a
specification change is made in this environment, and  the corresponding Z
specification is generated again accordingly. The consistency of the constraints may
be checked against this new version and corrected.

The classification of annotations and the synchronised versions of UML and Z
specifications facilitate specification evolutions by providing a clear framework about
where changes must be made.

5.2 Future Work

Currently, RoZ only considers static constraints. It does not enable to express
dynamic constraints. This is due to the fact that Z is intended to express invariant
constraints. In order to take into account other constraints, RoZ must be extended to
translate dynamic aspects of UML diagrams into other formal languages such as
Lustre [25], more appropriate for dynamic aspects.

Moreover annotations written in the prototype are currently in the Z Latex style
which is not intuitive. But all annotations expressed in a formalism close to first order
logic could be easily integrated into Z specifications. Particularly using OCL can be a
way to get closer to practitioner uses. As OCL and Z are close formalisms,
annotations could be written in OCL and automatically translated into Z before their
integration in the Z skeletons. So RoZ can be an easily usable tool for people knowing
UML and its constraints language, OCL.

We can also imagine to simplify the writing of constraints by developing an
interface which would propose a list of “standard” constraints. For instance, one could
choose in the list, the key constraint. Then one would just have to give the name of
the key attribute(s) and the corresponding constraint would be automatically written
in Z. This knowledge would enable to produce more relevant elementary operations,
by avoiding for instance to generate operations modifying a key attribute. This could
also be avoided by extending Rose to express more characteristics about attributes
such as the modification permission defined in [26].

Another way of improving the generation of elementary operation could be to
consider elementary operations of other concepts. As we do it for classes, we can
generate the elementary operations of associations. This would enable to consider
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dependencies between classes related to association cardinalities. For example, if the
cardinality of the association between the A and B classes is 1, this means that if you
create (res. delete) an object, a, of A, you must create (res. delete) an object of B
linked to a.

Finally, proof is a very important task, even if it is a difficult one, since it can
reveal errors or unsuspected problems. Currently RoZ generates proof obligations, but
it does not provide any help in order to prove them. This help can be to increase proof
automation by using domain knowledge. We are currently working on the definition
of proof patterns for elementary operations in order to help the designer to validate
the system.

Although RoZ is only at its initial development step, we hope that it can bring a
useful help in the improvement of specifications quality.
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