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A novel coronavirus has been reported as the causative pathogen of the Coronavirus

disease 2019 (COVID-19) outbreak in Wuhan city, China in December 2019. Due to

the rapid spread of the virus worldwide, it has been announced as a pandemic by

the World Health Organization (WHO). Hospitalized patients in Wuhan were associated

with the Huanan seafood wholesale market where live animals, such as poultry, bats,

snakes, frogs, rabbits, marmots, and hedgehogs are sold in that market which suggests

a possible zoonotic infection. It was suggested that bat is the natural host of SARS-

CoV-2, but the intermediate host is still unclear. It is essential to identify the potential

intermediate host to interrupt the transmission chain of the virus. Pangolin is a highly

suspected candidate as an intermediate host for SARS-CoV-2. Recently, SARS-CoV-2

infection has been reported in cats, dogs, tigers, and lions. More recently SARS-CoV-

2 infection affected minks severely and zoonotic transfer with a variant SARS-CoV-2

strain evidenced in Denmark, Netherlands, USA, and Spain suggesting animal-to-human

and animal-to-animal transmission within mink farms. Furthermore, experimental studies

documented the susceptibility of different animal species to SARS-CoV-2, such as

mice, golden hamsters, cats, ferrets, non-human primates, and treeshrews. It is also

essential to know the possibility of infection for other animal species. This short review

aims to provide an overview on the relation between severe acute respiratory syndrome

coronavirus-2 (SARS-CoV-2) infection and animals.

Keywords: animal, animal model, COVID-19, Intermediate host, SARS-CoV-2, zoonosis

INTRODUCTION

Several pneumonia cases with an unknown cause have been reported in Wuhan city, the capital
of Hubei province, China on December 31st, 2019 (1, 2). The disease was characterized by a
respiratory disorder of variable degree of severity ranged from mild upper respiratory tract illness
to acute respiratory distress syndrome and severe interstitial pneumonia (3). On January 7th, 2020,
a novel coronavirus (nCoV-2019) has been isolated and identified as the causative pathogen of the
coronavirus disease (COVID-19) (4). Later, the International Committee on Taxonomy of Viruses
has named the virus as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) (5). Due to
the rapid spread of the virus in many countries worldwide, theWorld Health Organization (WHO)
announced it as a pandemic on March 11th, 2020 (4). The confirmed cases are 56,623,643 and
mortalities are 1,355,963 in more than 220 countries, as of November 20th, 2020 (4).

Coronaviruses (CoVs) are enveloped +ve-sense, single-stranded RNA viruses classified within
the subfamily Coronavirinae, family Coronaviridae (6). The name coronavirus comes from its
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appearance under electron microscopy as a crown-like structure
(7). CoVs have four genera alpha (α), beta (β), gamma (γ), and
delta (δ) coronaviruses that primarily originate from animals
(8, 9). Mammals, specifically bats, are the natural hosts of α- and
β-CoVs, while pigs and birds are the natural hosts of γ- and δ-
CoVs (10). CoVs have a great ability to mutate which facilitates
their transmission from animals to humans (11). Crossing the
species barrier to infect humans results in outbreaks (7).

SARS-CoV-2 has been classified as a novel member of the β-
coronavirus genus by the whole genome sequencing. It belongs
to the subgenus sarbecovirus of the Coronaviridae family. SARS-
CoV-2 has RNA genome of about 30 kb (12) that encodes 16
non-structural proteins and four structural proteins, including
spike (S), envelope (E), membrane (M), and nucleocapsid (N)
proteins (13, 14). The S protein of CoVs constitutes the spike on
the virion surface, it gives the virion crown-like appearance and
plays a vital role in host range determination, recognition of host
receptors, viral binding, fusion, entry, and tissue tropism, as well
as, the induction of neutralizing antibody and T cell responses
(14–16). The M protein is responsible for the specific shape
of the viral envelope, it forms ribonucleoproteins and mediates
inflammatory reactions in host cells. The E protein is amembrane
polypeptide that acts as an ion channel (viroporin), it promotes
viral pathogenicity while N protein helps viral entry and viral
survival in host cells (16).

SARS-CoV-2 was firstly identified in hospitalized patients
in Wuhan city, Hubei Province, China in December 2019
(2). Those patients were associated with the Huanan seafood
wholesale market where live animals, such as poultry, bats,
snakes, frogs, rabbits, marmots, and hedgehogs are sold in
that market suggesting a possible zoonotic spillover (17, 18).
It was suggested that SARS-CoV-2 originated from bats (19).
Different animal species, such as snake, pangolin, and turtle were
suggested as potential intermediate hosts, however, pangolin was
the highly suspected candidate as its intermediate host (20–
22). Moreover, several animal species have been reported to be
susceptible to SARS-CoV-2 infection either naturally (cats, dogs,
minks, lions, tigers) or after experimental infection (mice, cats,
ferrets, hamsters, primates, treeshrew) (13, 23–32). Also, the high
mutation rates of RNA viruses help them to adapt to a wide range
of hosts (33). Therefore, it is essential to identify the potential
virus reservoir and the possibility of infection for other animal
species. This review aims to provide an overview of the relation
between SARS-CoV-2 and animals.

POSSIBLE ANIMAL RESERVOIRS

It is assumed that SARS-CoV-2 has been originated from animals
and transmitted to humans, then maintained human-to-human
transmission (21). Several animal species have been reported to
be susceptible to SARS-CoV-2 infection. The variety of species
susceptible to SARS-CoV-2 infection indicates that the virus
crosses the species barrier (13). Therefore, many animals either
wild or domestic may be infected and act as intermediate hosts
for SARS-CoV-2 virus (18, 20). Anderson and his colleagues
proposed two possible scenarios for the origin of SARS-CoV-2;

either the virus underwent natural selection in an animal host
before its transmission to humans or the virus underwent natural
selection in humans after being transmitted to humans (34).

It was suggested that bat is the natural host of SARS-
CoV-2, but the intermediate host is still unclear (19). It is
essential to identify the potential intermediate host to interrupt
the transmission chain of the virus. Pangolin is a highly
suspected candidate as an intermediate host for SARS-CoV-
2 (20). Recently, SARS-CoV-2 infection has been reported in
cats, dogs, minks, tigers, and lions (28, 31, 35–37). Furthermore,
experimental studies documented the susceptibility of different
animal species to SARS-CoV-2, such as mice, hamsters, cats,
ferrets, non-human primates, and treeshrews (6, 24, 30, 38, 39).
The natural and experimental infection to animals is shown in
Figure 1.

Bats
It has been reported that bats are the main natural reservoir
host of several CoVs. Among the 1100 different species of
bats, the horseshoe bat [genus Rhinolophus (R.)] is the reservoir
of the SARS-like-CoVs (40). Both SARS and Middle East
respiratory syndrome (MERS) CoVs originated from bats and
passed through the intermediate hosts palm civets and camels,
respectively (12). Therefore, it was suggested that batmight be the
potential origin of SARS-CoV-2. It has been shown that SARS-
CoV-2 was about 96.2% identical to the genetic information
of the bat (R. affinis) SARS-like CoV (RaTG13) based on
genome sequencing and evolutionary analysis (2, 21, 41, 42). The
similarity between SARS-CoV-2 and bat coronavirus suggests
the possibility that SARS-CoV-2 originated from bats (41–44)
like SARS-CoV and MERS-CoV (7). It was hypothesized that
at least two bat species, R. affinis and R. malaynus, might be
the proposed natural hosts of SARS-CoV-2 virus (19). Due to
the lack of direct contact between bats and humans, direct
human infection with bat CoVs is rare. It was assumed that
transmission of SARS-CoV-2 from bats to human passes through
an unknown intermediate host that might facilitate its transfer
to humans (21, 41–43). The analysis of genomic sequences of
CoVs suggested that SARS-CoV-2 was a recombinant virus that
arises between the bat CoV and another coronavirus of unknown
origin (21). Meanwhile, a mutation in S Glycoprotein and N
protein of SARS-CoV-2makes it distinct from bat SARS-like CoV
supporting the hypothesis that SARS-CoV-2 mutated before its
transmission from bats and acquired its ability to infect human
(42). SARS-CoV-2 invades cells mainly through binding of the
virus S protein and host cell receptor, angiotensin-converting
enzyme 2 (ACE2) (45, 46). Although, SARS-CoV-2 recognizes
ACE2 from a variety of animal species, including palm civet,
SARS-CoV-2 acquires the capability to infect humans, as well
as, to transmit among humans (46). The binding affinity of
SARS-CoV-2 to human ACE2 is higher than that of SARS-CoV
(45, 46) which suggests a possibility of cross-species transmission
(47) and the rapid spread of this virus (45, 46). On the other
hand, experimentally infected Egyptian fruit bats showed no
symptoms of the disease, moreover, they did not infect other
bats (48).
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FIGURE 1 | Diagram showing the possible role of animals in the transmission of SARS-CoV-2, potential intermediate hosts, natural and experimental infection of

animals. Figure was created with BioRender.com.

Pangolins
The whole genome of pangolin-CoV isolated from Malayan
pangolin (Manis javanica) was highly similar to that of the SARS-
CoV-2 and bat CoV (49). But, the similarity between pangolin-
CoV and SARS-CoV-2 was higher than that with the bat CoV
(50, 51). Moreover, pangolin CoVs shared 5 identical amino acids
with SARS-CoV-2 whereas bat CoV RaTG13 only shared one
amino acid with SARS-CoV-2 suggesting that pangolin could
be a potential intermediate host that might mediate the cross-
species transmission of SARS-CoV-2 (20, 52). Furthermore, the
receptor-binding domain (RBD) of the pangolin-CoV was nearly
identical to that of SARS-CoV-2 with a strong binding ability
to human ACE2 indicating that pangolin was involved in the
recombination of SARS-CoV-2 (49). However, the phylogenetic
analyses support that SARS-CoV-2 did not arise directly from the
pangolin-CoV (52, 53). Therefore, it was suggested that SARS-
CoV-2 originated in bats and transmitted to pangolin where
recombination of pangolin-CoV and bat-CoV-RaTG13-like virus
occurred. Then the recombined virus gets the ability to infect
human cells (12, 20).

Reptiles
Analysis of the structural binding mechanism of SARS-CoV-2
RBD and ACE2 receptors revealed that turtles (Chrysemys picta
bellii, Pelodiscus sinensis, and Chelonia mydas) and snakes might
act as one of the potential intermediate hosts that transmit SARS-
CoV-2 to humans (22, 54). Moreover, evolutionary analysis, as

well as analysis of the codon usage of SARS-CoV-2 suggested
that snakes might be a potential wildlife animal reservoir for
SARS-CoV-2 (21, 22). However, ACE2 of turtle and snake lost
its capability to bind to S protein of SARS-CoV-2, therefore
these reptiles should not be considered as potential hosts for
SARS-CoV-2 (55).

Other Animals
Structural analysis of the binding mechanism of RBD of
SARS-CoV-2 and ACE2 receptors suggests that ACE2 from
fish, amphibians, birds, and mammals can bind to RBD of
SARS-CoV-2 making them possible natural hosts for SARS-
CoV-2 (54). A recent study examined serum samples from
35 different animal species to detect SARS-CoV-2-specific
antibodies using SARS-CoV-2 ELISA kit (56). The serum
samples were collected from poultry (chicken, duck, and
goose), experimental animals (mice, rat, and rhesus monkey),
companion animals (cat and dog), domestic animals (sheep,
pig, horse, and cow), wild animals (leopard cat, masked
civet, mink, ferret, jackal, fox, alpaca, camel, eagle, bamboo
rat, peacock, tiger rhinoceros, porcupine, bear, giant panda,
red pandas, pangolin, weasel, yellow-throated marten, and
wild boar). All serum samples examined had no SARS-
CoV-2-specific antibodies which excluded the possibility of
these animal species as intermediate hosts for SARS-CoV-
2 (56).
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SARS-CoV-2 AND ANIMAL INFECTION

The hospitalized patients in Wuhan were associated with
the Huanan seafood wholesale market. In this market, live
animals, such as poultry, bats, snakes, frogs, rabbits, marmots,
and hedgehogs are sold for human consumption suggesting
a possible zoonotic infection (17). It is critical to understand
the susceptibility of animals to SARS-CoV-2 to control the
spread of the virus. Until now, several cases of human-to-animal
transmission during the pandemic have been reported in several
countries worldwide, including Hong Kong, Belgium, Germany,
United States, Spain, Netherlands, Denmark, and France (23, 31,
57). Although there is no evidence that animals had a role in
the spread of the SARS-CoV-2 pandemic (58), there is a raising
alarm that animals may get infected and transmit the virus to
humans (37).

Cats
SARS-CoV-2 infects cat populations in Wuhan during the
COVID-19 outbreak based on detection of SARS-CoV-2 specific
antibodies in 15/102 (14.7%) of sampled cats. Infection to those
cats raised under natural condition upon contact with SARS-
CoV-2 infected patients or SARS-CoV-2 polluted environment
and developed antibody response (32). The later author added
that a higher antibody titer was detected in cats that were living
in close contact with SARS-CoV-2 infected owners. Moreover,
the U.S. Centers for Disease Control and Prevention (CDC)
announced SARS-CoV-2 infection in two pet cats for the first
time in two separate places in New York. Both cats were tested
after showing mild respiratory symptoms. One of them might
receive infection from her infected owner, while the other cat
might receive infection either from asymptomatic household
members or upon contact with an infected individual outside
its home (35, 57). Also, SARS-CoV-2 was detected in the feces
and vomit of two infected pet cat living with infected owners
in Belgium and Hong Kong indicating active replication of the
virus (13, 59, 60). In this respect, SARS-CoV-2 has been reported
to replicate only in the upper respiratory tract of cats and this
replication was not associated with severe disease or death (30).
It is worth to mention that younger cats were more tolerant
to SARS-CoV-2 infection (30). Moreover, cats can transmit
the infection to other cats (61). Therefore, pet cats are more
susceptible to SARS-CoV-2 than dogs, but with mild symptoms
and virus shedding (62).

Dogs
Although dogs have low susceptibility to SARS-CoV-2 infection
(30), two pet dogs fromHong Kong and another fromNorth Italy
were infected with SARS-CoV-2 infection, without symptoms,
due to contact with SARS-CoV-2 infected persons (13, 27, 31,
47, 60). Dogs have ACE2 receptors, similar to human ACE2
(hACE2), that function as SARS-CoV receptors which raises the
possibility that dogs might be a potential intermediate host (47).
Although there is no evidence that infected dogs can transmit the
virus to either animals or humans (31). Recently, Freuling et al.
(63) showed the susceptibility of raccoon dogs to SARS-CoV-2
infection following intranasal inoculation. Virus shedding was

detected in nasal and oropharyngeal swabs of infected dogs at 2nd
day post-infection (dpi). Moreover, infected dogs were capable
to transmit the virus to contact animals which suggested that
raccoon dogsmight be a potential reservoir for SARS-CoV-2 (63).

Minks
Minks are the first intensively farmed species to be affected
by the COVID-19 outbreak indicating a higher susceptibility
of mustelids to SARS-CoV-2 (64). Several mink farms have
been attacked by SARS-CoV-2 at first in the Netherlands, then
in Denmark, USA, and Spain (23, 65, 66). It was suspected
that viral infection was transmitted from an infected farm
worker to minks (28). Infected minks developed signs of
respiratory disease ranging from watery nasal exudate to severe
respiratory distress together with gastrointestinal disorders (23,
62, 67). Minks presented moderate to severe signs were found
dead, and the necropsy finding showed severe pneumonia
(67). The histopathological picture included severe diffuse
interstitial pneumonia, alveolar damage, pulmonary edema, and
inflammatory cellular infiltration. Viral antigen was detected in
nasal conchae, trachea, and epithelial cells, while the viral RNA
was detected in nasal conchae, throat swabs, lung, and rectal
swabs (28, 67). Genetic and epidemiological studies reported
infection of farm workers after the outbreak in mink farms
indicating animal-to-human and animal-to-animal transmission
within mink farms (68, 69). It is worth to mention that SARS-
CoV-2 isolated from mink (MT396266) was highly similar to
human SARS-CoV-2 (44). There are arising worries of spreading
of SARS-CoV-2 among wild mustelids as they might become
permanent reservoirs of the virus (64).

Other Animals
A Malayan tiger at Bronx Zoo, New York, USA was tested
positive for SARS-CoV-2 as the first case of animal infection
in USA. This tiger was the first infected tiger anywhere in the
world and the first case of human to non-domestic animal
transmission (36, 60). Later, the infection has been detected
in four tigers and three lions (37, 70) indicating that different
feline species are susceptible to SARS-CoV-2 infection (60).
It was suspected that the tiger received infection from an
infected asymptomatic employee (13, 36, 70). On the other hand,
Ulrich et al. (71) reported that cattle had low susceptibility to
SARS-CoV-2 infection. While pigs and several poultry species
including chickens, turkeys, ducks, geese, and Japanese quail
were not susceptible to SARS-CoV-2 infection (30, 48, 72, 73).
Furthermore, rabbit and guinea pig housed with COVID-19
patients were tested negative for SARS-CoV-2 infection (74).

ANIMAL MODELS FOR STUDYING
SARS-CoV-2

There is an urgent need for animal models that mimic the clinical
and pathological characteristics of human SARS-CoV-2 infection
to help to study its pathogenesis. These models will help to
assess the efficacy of vaccine trials, proper dose, route of vaccine
delivery. In addition to assessing the therapeutic potential and
safety of the novel antiviral treatment (24, 75–77). The ideal
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animal model should presents similar clinical characteristics to
the disease in humans, such as the active infection, clinical
symptoms in humans, virus shedding, transmission to naïve
animals, and host immune response (26, 75, 76). The available
animal models for SARS-CoV-2 are listed in Table 1.

Rodents
Mice

Mouse models are useful tools to evaluate vaccines and
antiviral therapeutics. Although several mouse models have
been described as potential models for COVID-19, none of
these models recapitulated all characteristics of COVID-19 in
humans (91).

SARS-CoV-2 has a very low binding affinity to ACE2 of
commercially available mice strains compared with that in
humans. Experimentally infected laboratorymice neither showed
weight loss nor a high level of viral RNA at day 10 post-infection
indicating inefficient replication of the virus (78). Therefore,
laboratory mice cannot be used as animal models to test vaccine
or antiviral drugs (78, 92). Delivery of hACE2 receptor to
commercially available mice using adenovirus vector enhanced
their susceptibility to SARS-CoV-2 lung infection, clinical
disease, and pathology (78, 79). Infected hACE2-transducedmice
showedweight loss, hunching, ruffled fur, and difficulty breathing
at 2 dpi. The gross lesions included vascular congestion and
hemorrhage at 5 dpi (79) with detection of high viral titer in the
lung tissue together with extensive immune cellular infiltration,
mostly neutrophils, in lung alveoli and around blood vessels
with alveolar edema and necrotic debris (78, 79). These findings
indicated that the viral infection is localized entirely in the
lungs. It is worth to mention that recovered mice developed
protective immunity against reinfection (25). Development of
SARS-CoV-2-susceptible mouse model using adenovirus vector
in commercially available strains is an easily reproducible murine
model for SARS-CoV-2 within a short time, which may hasten
the process of virus identification, and vaccine development.

The experimentally infected transgenic mice expressing
hACE2 receptors showed no clear symptoms, except weight
loss in aged mice only (6, 80). Virus replication was detected
in trachea, lungs, and brain together with lymphocytes and
monocytes infiltration in the alveolar interstitium in both young
and aged transgenic mice (6) with viral RNA detection in feces
of aged mice only (6, 80). This indicated the high susceptibility
of hACE2 transgenic mouse model intranasal infection of SARS-
CoV-2 and this model resembled the mild cases of COVID-19,
but not the severe and lethal cases (6, 80). However, the very
limited availability of these transgenic mice together with the
high costs are the major limitations of this model.

Gu et al. (81) generated a mouse-adapted SARS-CoV-2 strain,
MASCp6, by serial passage of a SARS-CoV-2 clinical isolate in
aged BALB/c mice. The infected young and aged mice developed
mild to moderate pneumonia with no significant weight loss.
A stable viral replication in the trachea and lung of young,
and aged BALB/c mice was observed. Aged mice expressed
interstitial pneumonia with thickened alveolar septa, damaged
alveoli, focal hemorrhage and exudate, and injured blood vessels.
The lung damage and inflammatory responses in this model

resembled those in COVID-19 patients. Therefore, this animal
model could be an economic, convenient, and effective mouse
model to evaluate vaccines and therapeutics against SARS-CoV-2
infection (81).

Hamsters

Golden Syrian hamster (Mesocricetus auratus) is considered
as an excellent model supporting the replication of SARS-
CoV infection (93). Both the clinical and histopathological
findings of the SARS-CoV-2-infected hamster closely resembled
the manifestations of human upper and lower respiratory
tract infection with virus shedding in respiratory droplets
and feces. Infected hamsters showed progressive weight loss,
rapid breathing, lethargy, hunched back, and ruffled furs
(24, 82). Micro-CT imaging showed severe lung abnormalities,
such as peribronchial ground-glass opacity at 2 dpi that
converted into multilobular ground-glass opacity with patches
of lung consolidation at 7–8 dpi (83). The histopathological
findings included focal inflammation in the lung, diffuse
alveolar destruction, pulmonary edema, alveolar hemorrhage,
mononuclear inflammatory cell infiltration, and alveolar collapse
at 2–3 dpi. Lung consolidation increased at 4–6 dpi with severe
pulmonary hemorrhage. Virus titer was detected at a high
level in the nasal turbinates, trachea, and lungs at 2–7 dpi
(24, 82, 83, 94). On the other hand, the virus was transmitted to
naïve hamsters in close contact with infected ones and via aerosol
(24, 82). Furthermore, the Syrian hamster ACE2 protein showed
a high binding affinity to the Spike protein of SARS-CoV-2
(24, 95). It is worth to mention that infected hamsters developed
immunity against reinfection (83). Taken together, the Syrian
hamster is highly susceptible to SARS-CoV-2 and it could be a
suitable model simulating the clinical, pathological, virological,
and immunological features of SARS-CoV-2-infection
(24, 83, 95).

Chinese hamsters (Cricetulus griseus) are highly susceptible to
SARS-CoV-2 infection, they showed a similar course of disease
and lung histopathology to that reported in Syrian hamsters
(84). However, Chinese hamsters showed milder and prolonged
pneumonia than that reported in Syrian hamsters indicating
slower recovery than Chinese hamsters. The considerably smaller
size of the Chinese hamster than the Syrian hamster makes it a
more suitable animal model to study SARS-CoV-2 (84).

Cats
Experimentally infected cats with SARS-CoV-2 were
asymptomatic but expressed viral RNA in the nasal turbinate,
trachea, lung, and small intestine indicating that the virus
replicated well in the upper respiratory tract of those cats
(30, 96). Viral RNA was also detected in tonsils, lymph nodes,
spleen, bone marrow, liver, kidney, heart, and olfactory bulb (96).
The histopathological features in juvenile cats included massive
lesions in the epithelium of the nose and trachea, and lungs
indicating efficient replication of the virus in younger cats than
older ones (30). Also, multifocal lymphocytic and neutrophilic
infiltration were reported in the lamina propria and submucosa
of the trachea and bronchi (96). Moreover, SARS-CoV-2 was
transmitted from an infected cat to a non-infected one through
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TABLE 1 | The available animal models for SARS-CoV-2.

Animal model Clinical symptoms Histopathological features Viral titer Advantages Disadvantages References

Mice - Wild type mice - No weight loss - Low level of viral RNA at

10 dpi

- Inefficient virus replication (78)

- hACE2-

transduced mice

- Weight loss in the

first week

- Extensive neutrophil infiltration

in lung alveoli and around

blood vessels

- High viral titers in the

lung tissue

- Easily reproducible using

adenovirus vector in

commercial mouse strains

- Can be generated within

short time.

- Variation in hACE2 expression

from mouse-to-mouse

- Mild bronchial inflammation

associated with delivery

of Adenovirus

(78, 79)

- Transgenic mice

expressing hACE2

- Weight loss in aged

mice only

- Lymphocytes and monocytes

infiltration in the alveolar

interstitium in young and aged

transgenic mice

- Viral replication in lungs of

young and aged

transgenic mice

- Viral RNA in feces of aged

mice only

- High susceptibility of

hACE2 transgenic mice to

intranasal infection of

SARS-CoV-2

- This model mimics the

mild cases of COVID-19

- Do not develop severe

disease.

- No extrapulmonary picture of

disease

- Limited availability of the

transgenic mice and the

high costs

(6, 80)

- Mouse-adapted

SARS-CoV-2 strain

(MASCp6) in aged

BALB/c mice

- Mild to moderate

pneumonia

- No significant weight loss

- Interstitial pneumonia with

thickened alveolar septa,

damage alveoli

- Focal hemorrhage

and exudate

- Injured blood vessels.

- Viral replication in the

trachea and lung of young

and aged BALB/c mice

- Resemble lung damage

and inflammatory

responses in COVID-19

patients

- Economical, convenient,

and effective model to

evaluate vaccines

and therapeutics

- Do not develop

severe disease.

(81)

Hamster - Syrian

Golden hamster

- Progressive weight loss

- Rapid breathing

- Lethargy, hunched back,

and ruffled furs

- Focal inflammation in the lung

- Diffuse alveolar destruction

- Pulmonary edema, and

alveolar hemorrhage

- Mononuclear inflammatory

cell infiltration

- Lung consolidation

- High level of virus titer in

the nasal turbinates,

trachea, and lungs at

2–7 dpi

- Easy to handle

- High susceptibility to

infection due to high

binding affinity of ACE2

protein to the Spike of

SARS-CoV-2

- Develop severe

pneumonia similar to

human patients

- Infected hamsters

develop immunity

against reinfection

(24, 82, 83)

- Chinese hamster - Has a similar course of

disease as in Syrian

hamster

- Milder and prolonged

pneumonia than in

Syrian hamster

- Has a similar histopathological

picture of the disease as in

Syrian hamster

- The same as

Syrian hamser

- Highly susceptible to

SARS-CoV-2 infection

- More suitable than Syrian

hamster due to its

smaller size

(84)

- Cats - Experimentally infected

cats are asymptomatic

- Massive lesions in the nasal

and tracheal epithelium,

and lungs

- Viral RNA in the nasal

turbinate, trachea, lung,

and small intestine

- Easy transmission

between cats

(30, 85)

(Continued)
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TABLE 1 | Continued

Animal model Clinical symptoms Histopathological features Viral titer Advantages Disadvantages References

- Ferrets - Fever

- Loss of appetite

- Occasional coughs

- Reduced activity

- Severe lymphoplasmacytic

perivasculitis and vasculitis

- Mild peribronchitis in the lungs,

- Inflammatory cell infiltration in

the alveolar septa and lumen

- Viral RNA in the nasal

turbinate, tonsils, and soft

palate

- Virus shedding urine and

fecal samples

- High susceptibility to

SARS-CoV-2 infection

- Active transmission from

infected ferrets to naïve

ones through direct

contact and occasionally

airborne transmission

- Mild symptoms

- Low virus titer in lungs

(26, 30)

Primates Cynomolgus

macaques

- Asymptomatic except

serous nasal discharge in

an aged animal

- Focal pulmonary consolidation

in young and aged animals

- Edema in alveolar and

bronchiolar lumina

- Thickened alveolar walls

- Hyaline membrane formation

- Hyperplasia of type II

pneumocyte, and

mononuclear infiltration

- Viral replication in both

upper and lower

respiratory tracts.

- Viral replication peaks at

the early stages of

infection.

- Higher level of viral RNA

expression and prolonged

virus shedding in aged

animals compared to

young animals

- Effective virus

transmission to other

animals

- Development of lung

disease

- Early peak of virus

resembles

asymptomatic patients

- Slower reproduction rate

- Limited clinical signs

developed

- High cost

- Difficult handling

- Ethical reasons

(38, 86)

Rhesus macaques - Asymptomatic or show

mild and transient

symptoms, such as,

reduced appetite, weight

loss, elevated body

temperature, rapid

respiration, hunched

posture, dehydration, pale

appearance, and

occasional coughing

- Lung consolidation, edema,

hemorrhage

- Thickened alveolar walls,

inflammatory infiltration

- Mild to moderate

interstitial pneumonia

- Old animals shows diffuse

severe interstitial pneumonia

- Viral RNA is in pharynx,

trachea, bronchi, and

lungs

- High level of virus

shedding from the nose

and throat

- ACE2 receptors are 100%

identical to those of

humans

- The moderate and

transient disease

resemble that of human

cases

- Similar virus shedding

pattern to that of human

- Slower reproduction rate

- Moderate clinical signs

developed

- High cost

- Difficult handling [
¯
-]

Ethical reasons

(29, 87–90)

- Treeshrew - Asymptomatic with

elevated temperature in

female animals

- Mild histopathological picture

in lung tissue including local

hemorrhagic necrosis, lung

consolidation at the margin,

and inflammatory infiltration

- Low level of viral shedding

with earlier shedding in

young animals

- Alternative to primates - Limited virus replication

- Mild histopathology

(39)
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direct contact with respiratory droplets (30, 85). Infected cats
with no symptoms might act as a silent intermediate host of
SARS-CoV-2 (85).

An infected pet cat with SARS-CoV-2 in Belgium showed
clinical signs, such as obvious lethargy, anorexia, poor appetite,
vomiting, and diarrhea. Later, the cat showed sneezing,
productive cough, difficult breathing, and emaciation. Moreover,
viral RNA persisted for about 10 days with virus shedding in
the feces (59). Therefore, cats also could be used as an optimal
animal model for asymptomatic-to-moderate COVID-19 and
screening antiviral drugs or vaccines against SARS-CoV-2 (91,
92). However, it is difficult to handle cats in biosafety level-3
conditions (91).

Ferrets
Ferrets are frequently used as an animal model for studying
human respiratory viral infection (97, 98). They were highly
susceptible to infection with SARS-CoV-2 (26, 48, 99).
Experimentally infected ferrets showed fever, loss of appetite,
occasional coughs, and reduced activity (26, 30). The
histopathological features included severe lymphoplasmacytic
perivasculitis and vasculitis, mild peribronchitis in the lungs, and
inflammatory cell infiltration in the alveolar septa and lumen.
Viral RNA was detected in the nasal turbinate, tonsils, and soft
palate indicating virus replication in the upper respiratory tract
(26, 30, 94, 99). Additionally, virus shedding was reported in
urine and fecal samples (26).

SARS-CoV-2 was actively transmitted from infected ferrets
to naïve ones through direct contact and occasionally airborne
transmission (26, 48). Infected ferrets were capable to transmit
the virus at 2 dpi before reaching the peak of viral RNA
copy number and the peak of body temperature as well
(26, 99). Therefore, ferret is considered as the most closely
animal model mimicking human infection and transmission
(99). However, infected ferrets showed some limitations, such
as mild symptoms and low virus titer in the lungs (26).
Recently, ferret was used as an animal model to evaluate
the efficacy of three FDA-approved drugs, lopinavir-ritonavir,
hydroxychloroquine sulfate, and emtricitabine-tenofovir, against
SARS-CoV-2 infection (100).

Primates
The cynomolgus macaques is an animal model that is closest
to humans in pathophysiology, therefore, it can be used for
SARS-CoV-2 studies (38). Infected young and aged macaques
were asymptomatic except for serous nasal discharge in an
aged animal. The pathological features included focal pulmonary
consolidation in both young and aged animals; edema in
alveolar and bronchiolar lumina, thickened alveolar walls,
hyaline membrane formation, hyperplasia of type II pneumocyte,
and mononuclear infiltration (38, 101). Viral replication was
detected in both the upper and lower respiratory tracts, which
corresponds to the effective virus transmission to other animals
and the development of lung disease, respectively. Moreover,
viral replication peaked at the early stages of infection that
resembled asymptomatic patients. On the other hand, aged
animals expressed a higher level of viral RNA and prolonged virus
shedding compared to young animals (101).

The infected rhesus macaques were also asymptomatic or
showed mild and transient symptoms, such as reduced appetite,
weight loss, elevated body temperature, rapid respiration,
hunched posture, dehydration, pale appearance, and occasional
coughing (29, 87–90). The chest X-ray showed patchy to mild
glass-ground opacity in the lower parts of lungs up to 3
dpi, the density decreased at 6 dpi (29). The pathological
features included variable degrees of lung consolidation, edema,
hemorrhage, thickened alveolar walls, inflammatory infiltration,
and mild to moderate interstitial pneumonia (29, 87, 89, 90).
Infected old rhesus macaque showed diffuse severe interstitial
pneumonia with extremely thickened alveolar septa than in
young rhesus macaque (90, 102). Viral RNA was detected in
the pharynx, trachea, bronchi, and lungs with a high level of
virus shedding from the nose and throat (87–89). It is worth to
mention that primarily infected monkeys developed immunity
against SARS-CoV-2, which protected those monkeys from the
second infection (87). It is worth to mention that the ACE2
receptors of rhesus macaques were about 100% identical to those
of humans (76). Additionally, the moderate and transient disease
developed in rhesus macaque was similar to that of the majority
of human cases together with a similar virus shedding pattern
to that of human (88). Therefore, rhesus macaque could be a
suitable animal model that mimics mild or asymptomatic human
cases and to evaluate potential drugs and vaccine safety (29, 88,
102). However, the slower reproduction rate of cynomolgus and
rhesus macaques is considered a major limitation of using these
animals (38).

In a recent study, Lu et al. (102) experimentally infected
three types of non-human primates; rhesus macaques (Macaca
mulatta) and cynomolgus macaques (Macaca fascicularis) as old
world monkeys and common marmosets (Callithrix jacchus) as
new world monkeys with SARS-CoV-2. They concluded that the
three non-human primates simulated several features of COVID-
19 and that M. mulatta was the most susceptible to SARS-
CoV-2 infection, while C. jacchus was the least susceptible to
infection (102). Even though non-human primates are closely
similar to human beings, which make them ideal candidates for
vaccine evaluation (76), their main disadvantages are the high
cost, difficult handling, and ethical reasons (62, 103).

Treeshrew
The treeshrew (Tupaia belangeris) is a non-rodent, primate-like
animal. It has been used in biomedical research as an animal
model for viral infections (104). Treeshrew inoculated with
SARS-CoV-2 showed no clinical signs with limited replication of
the virus and mild histopathological abnormalities in lung tissue.
Therefore, treeshrew is not as a susceptiblemodel to SARS-CoV-2
infection (39).

PREVENTION AND CONTROL OF
COVID-19

Precautions on Pet Animals
Although there is no confirmation that pet animals have a role
in the spreading of the SARS-CoV-2 pandemic (31), researchers
suggest that pet animals may be susceptible to SARS-CoV-2
infection. Therefore, studies are recommended to verify which
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other pets and companion animals can be infected by SARS-
CoV-2 (60). It is also recommended to limit the contact between
the infected owner and pets, avoid kissing animals, apply basic
hygienemeasures (36, 58), and prevent pets from interacting with
other animals or individuals outdoors (57). Even though CDC
does not recommend routine testing of animals for SARS-CoV-2
(57), pet animals exposed to SARS-CoV-2 infected patients and
presented clinical signs of new illness should be screened for
SARS-CoV-2 as a precautionary measure (31, 57, 92). Moreover,
general hygiene measures should be done after contact with
animals and animal products, such as regular handwashing with
soap (76).

One Health Approach
The One Health approach includes joint planning and
collaborative efforts of various sectors and disciplines that
work together from local to global levels to maintain optimal
health and welfare of people, animals, and plants in shared
environments (105–108). Therefore, a thorough knowledge of
the relationships between pathogen, native hosts, intermediate
hosts, and environment together with the tendency of mutations,
characteristics of animals-to-humans, and humans-to-humans
transmission is crucial to understand the mechanism of COVID-
19 and combat its spread (107, 109–113). Knowledge of the
animal reservoir and the transmission cycle will help to prevent
and mitigate the transmission of the virus (62, 110). The spread
of the emerging SARS-CoV-2 can be controlled through rapid
laboratory diagnosis, proper isolation, quarantine measures,
developing effective vaccines and therapeutics (18, 109, 113, 114).
In addition to surveillance of susceptible animals in close contact
to humans, zoo animals, and wildlife animal species to
highlight their role as an intermediate host or virus carrier
(33, 61, 113, 115). It is crucial to establish an international
cooperation sharing pathogen sequence libraries and updated
databases to facilitate efforts in disease diagnosis and vaccine
development (107). Such strategies will help to prevent and
mitigate outbreaks of SARS-CoV-2 in these animals and the
potential of spillback to humans (23). On the other hand, it is
recommended to apply public health and biosecurity measures
for workers in the field of meat and poultry processing for their
protection, enhancement of food safety, and preservation of
processing facilities during the pandemic (33, 116).

Standard Precautions and Measures
Standard precautionary measures should be practiced at all times
to maintain good personal and environmental hygiene. These
measures include regular washing of hands with water and

soap/detergent, using a disinfectant, wearing masks, avoid close
contact with affected individuals, avoid crowded places, cover the
mouth with tissue during sneezing or coughing, avoid touching
the eye and nose, food hygiene practice, and thorough cooking of
animal-based food items (115, 117–119).

CONCLUDING REMARKS

This review provides an overview of the current knowledge of
the relation between SARS-CoV-2 infection and the role played
by animals. It was speculated that SARS-CoV-2 was originated
from bats and passes through an unknown intermediate host,
which facilitated its transfer to humans. Although it is not
confirmed that pet animals play a role in the spreading of the
SARS-CoV-2 pandemic, several animal species either received
natural infection upon contact with an infected individual or
after experimental infection. Therefore, it is recommended to
apply basic hygiene measures to limit the contact between
infected patients and pets. Several animal models have been
reported as candidates for assessing the efficacy and safety of
antiviral drugs or testing experimental vaccines against SARS-
CoV-2. These models include mouse models, either transgenic
mice, and adenoviral-infected mice, hamster models, cat, ferret,
and primate models. To prevent the spread of the virus,
collaborative efforts of different disciplines, such as public health,
veterinary medicine, environmental sciences, and social sciences
are crucial as the One Health approach. These studies will help
to understand the potential hosts of the virus, the mechanism
of transmission, and vaccine development. Moreover, public
health measures for workers dealing with animals and animal-
by-products are recommended together with the application of
standard hygienic measures. The current review provided an
overview of the available animal models and highlighted the
advantages and disadvantages of each model to help researchers
in their future research. Among the potential animal models,
rhesus macaques were more highlighted the symptoms of
COVID-19 disease in humans.
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