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Abstract The microscopic spatial kinetic Monte Carlo (KMC) method has been
employed extensively in materials modeling. In this review paper, we focus on differ-
ent traditional and multiscale KMC algorithms, challenges associated with their imple-
mentation, and methods developed to overcome these challenges. In the first part of
the paper, we compare the implementation and computational cost of the null-event
and rejection-free microscopic KMC algorithms. A firmer and more general founda-
tion of the null-event KMC algorithm is presented. Statistical equivalence between
the null-event and rejection-free KMC algorithms is also demonstrated. Implemen-
tation and efficiency of various search and update algorithms, which are at the heart
of all spatial KMC simulations, are outlined and compared via numerical examples.
In the second half of the paper, we review various spatial and temporal multiscale
KMC methods, namely, the coarse-grained Monte Carlo (CGMC), the stochastic sin-
gular perturbation approximation, and the τ -leap methods, introduced recently to
overcome the disparity of length and time scales and the one-at-a time execution
of events. The concepts of the CGMC and the τ -leap methods, stochastic closures,
multigrid methods, error associated with coarse-graining, a posteriori error estimates
for generating spatially adaptive coarse-grained lattices, and computational speed-up
upon coarse-graining are illustrated through simple examples from crystal growth,
defect dynamics, adsorption–desorption, surface diffusion, and phase transitions.
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1 Introduction

Spatial Monte Carlo (MC) methods have widely been employed in science and engi-
neering since, at least, 1953 [1]. The use of MC for structure-property determination
in condensed phases, such as liquids and solids, at interfaces (e.g., surfaces, defects,
and nanoparticles), and in gas phases to study transport, thermophysical, magnetic,
reactivity, and mechanical properties [2–11] is common in physics, chemistry, materials
science, and engineering disciplines.

While over these years MC simulation has successfully been applied to predict
equilibrium properties [2,12], its use in predicting transport (e.g., diffusion) and/or
chemistry, in both equilibrium and non-equilibrium systems, is quite recent (a suite
of modern application examples in chemical engineering appears in [13]). The MC
method became popular in 1970s and made major inroads in 1980s for studying mainly
transport (diffusion on surface and in materials), reaction kinetics, and crystal growth
problems (for illustrative examples see [11,14–28]). Computational resources were
sufficiently fast by 1980s to enable simulations, in most cases, of small to moderate
size model systems (current computational resources enable simulations of upto 106

atoms). Even though most of the early simulations provided insights into the physics
and chemistry of materials, by-and-large, they lacked predictive capabilities because
of the absence of accurate molecular information, such as interaction potentials and
dynamics. One of the first applications of the MC method to growth problems was
the study of crystal growth modes in homoepitaxial thin films, and the transition
to rough crystals (for an overview of earlier work see [29,30]). This research area
continues to be [31–33] of particular interest because of its diverse applications in
pharmaceuticals, separation devices, microelectronics, magnetics, catalysts, etc. The
first MC simulation of surface kinetics appeared in Wicke et al. [34]. However, it was
the work of Ziff and co-workers [35] in 1986 that ‘ignited’ mainly the physics com-
munity in investigating non-equilibrium phase transitions using the MC method. This
work established MC as a powerful numerical molecular simulation tool for studying
thermal fluctuations and spatial correlations driven phenomena in non-equilibrium
systems.

Since the MC method is not viewed by many as a truly first-principles tool (see
Sect. 4 on challenges), the computational power of 1990s propelled molecular dynam-
ics (MD) as the tool of choice for molecular or atomic scale dynamic simulations at the
expense of MC simulation. Further increase in computational power, in conjunction
with the need to predict transport, materials properties and structure under realis-
tic conditions, led to the realization that most systems contain multiple length and
time scales [36–42]. As a result, the MC method has recently regained considerable
attention in the multiscale modeling community. As an example, the importance of
stochasticity in biological networks [43–47], arising in part from the small species pop-
ulations, triggered intense research on accelerated stochastic (mainly MC) methods.
It is not then surprising that recent research roadmaps underscore the key role of the
MC method in multiscale modeling [48,49].

The MC method has been discussed in detail numerous times in articles and books.
A review of the vast literature on MC is well beyond the scope of this article. Our
focus herein is on the kinetic MC (KMC) method (see Sect. 3 for a classification).
Even though some introductory chapters on this method have recently appeared
[50,51], the lack of literature on algorithmic aspects of the KMC method have not
only led to confusion regarding its implementation, but also to reinvention of the same
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algorithm several times. The emphasis of this article is on providing an overview of
recent mathematical and algorithmic developments that can enable KMC simulations
of large length and time scales.

The organization of this paper is as follows: in Sect. 2, a non-equilibrium statisti-
cal mechanics representation for KMC simulations is described followed by physical
examples on crystal growth, surface defect dynamics, and equilibrium fluid-surface
interactions. In Sects. 3 and 4, the KMC method and its major challenges are summa-
rized. In Sect. 5, the null-event and rejection-free algorithms are described, with the
objective of providing a firm basis for the former and showing the statistical equiva-
lence between the two algorithms. This, to the best of our knowledge, has not been
done before. Two different approaches for addressing the challenges in KMC method
are addressed in rest of the paper. In Sect. 6, efficient search and update algorithms
are reviewed. Numerical examples are presented in Sect. 7 to illustrate the equiva-
lence of null-event and rejection-free algorithms and provide a comparison of CPU
times of various steps of a KMC algorithm. In Sects. 8 and 9, modern non-equilibrium,
statistical mechanics-based spatial and temporal acceleration methods are presented.
Various examples (some from our published work and some new) are presented to
highlight main algorithmic and mathematical developments. Finally, we close with
some concluding remarks and possible future directions.

2 Non-equilibrium statistical mechanics description of physical systems

In this section, we define kinetic and thermodynamics variables in the context of
non-equilibrium statistical mechanics. In particular, the concept of a microscopic state
in a KMC simulation, and non-equilibrium theories for describing state transforma-
tion are discussed. Three physical systems are described at the end of this section to
illustrate these concepts.

2.1 Microscopic state, microscopic processes, and the master equation

In most materials problems, atoms or molecules vibrate around specific locations
(minima in free energy) separated by large free energy barriers. Occasionally atoms
‘jump’ from one location to a nearby one (e.g., to a vacancy). In most cases, the time
scale of the jump is significantly larger than the time scales associated with thermal
vibrations. As a consequence, it is assumed that after a large number of thermal
vibrations, the system has attained quasi-equilibrium.

The momentum degrees of freedom of all atoms/molecules and thermal vibrations
are integrated out to compute the microscopic rates used in a stochastic description
of a system. The resulting (microscopic) state variable σ (underbars denote a vector)
is a function of only spatial and time coordinates. The aforementioned free energy
minima map to spatial locations that are referred to as lattice sites. Note though that
a regular lattice is not necessary (see Sect. 3.2). In this paper, the total number of sites
is denoted as NL. Note that the dimensionality of the lattice is arbitrary. The atomic
‘jump,’ referred to as a (microscopic) process in this paper, results in a change in σ

once the jump has occurred. The total number of processes that can occur at site i is
denoted as Np.
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The starting point for a stochastic description of a system is the underlying master
equation [52], given by

dP(σ )

dt
=

∑

σ ′

σ ′ �= σ

G(σ ′ → σ)P(σ ′) −
∑

σ ′

σ ′ �= σ

G(σ → σ ′)P(σ ), (1)

which gives the evolution of the probability density function P(σ ) of observing a par-
ticular state σ . Here G(σ → σ ′) is viewed as an element of the transition matrix for
the transition from state σ to state σ ′ [2]. Alternatively, one can write an equivalent
difference-differential equation [53]

dσi =
∑

j

Ŵ+
ij (σ )dt −

∑

j

Ŵ−
ij (σ )dt, (2)

which gives the temporal evolution of σi in terms of the transition probability Ŵ+
ij (σ )

(Ŵ−
ij (σ )) of all processes j that lead to a particle addition (deletion) at site i. In this

paper, the term particle implies an atom, a molecule or a vacancy. In a KMC simula-
tion, it is assumed that j is an independent, Markovian process. In the KMC literature
the terms microscopic rate, transition probability per unit time, and transition proba-
bility are used interchangeably.

The master equation is deterministic. Due to the large number of dimensions
present in most physical systems, Eq. 2 cannot be solved analytically. Furthermore,
the huge number of states renders a deterministic solution of Eq. 2 formidable for
most practical problems of interest. MC methods become naturally the most efficient
solution techniques.

While the matrix of transition probabilities [Ŵij(σ )] can be large, only a few ele-

ments are non-zero (a very sparse matrix). Let {εij}
Np

j=1 be the participation indices of

site i, i.e., whether the ith site can give rise to process j (εij = 1) or not (εij = 0)

εij =
{

1, if site i participates in process j,
0, otherwise.

(3)

The participation matrix [εij] consists then of ones and zeros (the many zeros highlight
the matrix sparsity). The participation indices of a site may depend on neighboring
interacting sites, and vary with time. Examples are given in the top panel of Fig. 1.

The transition probabilities {Ŵij}
Np

j=1 depend on the participation index of a site in a

process and are given by

Ŵij = Ŵjεij =
{

Ŵj, if site i participates in process j,
0, otherwise,

i = 1, . . . , NL, j = 1, . . . , Np.

(4)

The definition of a process makes it appropriate to introduce the concept of a class.
Each process, j, introduces a class, and all sites participating in this process belong to
this class (the terms grouping or lumping are also appropriate). The size of the jth
class is given by

nj =
NL
∑

i=1

εij. (5)
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Fig. 1 The solid-on-solid model (SOS) (top panel) and lattice model (bottom panel) for a (100) surface
are examples of KMC models used extensively in the areas of crystal growth and catalysis/materials,
respectively, over the last 30 years

2.2 Illustrative physical problems and notation

In this section, we present simple models for three prototype physical systems to illus-
trate the notation used in Sect. 2.1. These models are employed in later sections to
illustrate equivalence and discuss computational accuracy and efficiency of different
KMC algorithms.

2.2.1 A crystal growth model

One of the first applications of spatial KMC has been in the area of crystal growth
[29,30]. The solid-on-solid (SOS) approximation has been a prototype model for such
simulations. In this model, a crystal film contains particles on top of particles and there
are no overhangs or vacancies. One is able to simulate a three-dimensional (3D) sys-
tem by using essentially two-dimensional (2D) simulations (nowadays these are often

called 2+1-dimensional simulations). A 2D array, whose elements {σi}NL
i=1 represent

the number of particles or layers at each site i (local height), is used to represent the
surface topology (see top panel of Fig. 1). Upon selection of a site and a process, the
array element is updated accordingly.
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Lets consider a specific example of crystal growth on the (100) surface of a simple
cubic lattice with the SOS approximation. For illustration purposes, only adsorption
and desorption processes are considered. Assuming first-nearest neighbor interac-
tions of strength w (w > 0 implies attractive interactions), then each site can have
between 1 (a vertical) and 5 (a vertical plus four lateral) interactions. As a result,
there are a total of five desorption processes with distinct transition probabilities plus
an adsorption process (taken as site independent), i.e., Np = 6 processes are present
on each site.

The transition probabilities, for a single desorption (j = 1, . . . , 5) and adsorption
(j = 6) processes, are [54]

Ŵj = νde−jw/kT , j = 1, . . . 5, (6)

Ŵ6 = νde−3w/kTe�µ/kT . (7)

Here νd is the frequency for desorption of an atom, kT the thermal energy, T the
temperature, k the Boltzmann factor, and �µ is the difference in chemical potential
between the gas and solid phases.

At each instant, a site can participate in either an adsorption or one of the five
desorption steps. In the SOS example, the number of sites with a certain number of
nearest neighbors determines the class size, nj. In this case, there are six classes.

2.2.2 A prototype model for diffusion of surface vacancies

The KMC method has extensively been employed to study defects of varying dimen-
sionality [55–61]. Here we study a prototype model of surface defects diffusing on a
lattice. This is a simple Ising type of model (see bottom panel of Fig. 1). The simulation
is carried out in a canonical ensemble with Npopulation defects on NL lattice sites of a
(100) surface (the 2D defect concentration is given by c0 = Npopulation/NL). Either an
atom or a vacancy is allowed per lattice site. The occupancy at each site i is given by
σi = 1 (σi = 0) when the site is occupied by a vacancy (atom). Typically, Npopulation is
determined via the defect creation and annihilation rates [56,57,62], when the system
is far from equilibrium, or by thermodynamics when at equilibrium [63]. For simplic-
ity, we fix Npopulation at the beginning of a simulation by prohibiting defect creation
and annihilation.

An Ising-like interaction model [55] is employed to describe the interaction
potential J(|i − i′|) between two neighboring vacancies at sites i and i′ at a sepa-
ration r = |i − i′| (note r = |i − i′| denotes the distance between the two sites rather
than the difference between indices). The binding energy of a vacancy at site i is given
by

Ubinding(i) =
∑

i′
J(|i − i′|)σi′ . (8)

The vacancy–vacancy interaction potential J(r) is obtained with a suitable fit from the
interatomic interaction potentials. J(r) > 0 (J(r) < 0) implies attractive (repulsive)
interactions.

A vacancy defect at site i can jump to a nearest neighbor site at site i′ occupied by
an atom. Such a jump is shown in the bottom panel of Fig. 1. The transition probability
for a jump is given by
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Ŵ(i → i′) = 1

4
νmσi(1 − σi′)e

−Ubinding(i)/kT . (9)

In this paper, a hopping frequency of νm = 4 × 1013s−1 is assumed. Furthermore, the
activation energy is taken to depend on the interactions at the departing site only,
termed as Arrhenius dynamics [64,65] (this is obviously a crude approximation of
reality; other approximations are feasible and have been employed in the literature).
Even though this model barely captures the complexity of realistic defects, it is ade-
quate for demonstrating the application of KMC method to materials’ defects, and for
comparing the efficiency of different KMC algorithms. In this model, the participation
index (in the notation of Sect. 2.1) is εii′ = σi(1 − σi′).

2.2.3 A submonolayer film of adsorbates on a substrate

Consider the case of adsorbates (up to a monolayer) on a single crystal in contact with
a fluid reservoir, depicted in the bottom panel of Fig. 1. A lattice model, analogous
to Sect. 2.2.2, is employed. Typical processes that may occur include adsorption and
desorption, surface diffusion, and surface reactions. Such systems have extensively
been used to study phase transitions in Ising type of models and non-equilibrium
phase transitions in irreversible surface (catalytic) reaction systems.

In this model, at most one atom is allowed per lattice site (exclusion principle).
The occupancy at each site i is given by σi = 1 (σi = 0) when the site is occupied
(unoccupied) by an atom. The spatially averaged coverage over the entire lattice is

denoted as θ =
∑NL

i=1 σi/NL. The microscopic Hamiltonian is given by

H = −
∑

i

∑

i′

i′ �= i

J(|i − i′|)σiσi′ +
∑

i

hσi, i, i′ = 1, . . ., NL, (10)

where J(r) is the interaction potential between two adsorbed atoms at separation r,
and h is the external field, such as the chemical potential.

Atoms/molecules from the fluid phase adsorb on the lattice with a transition prob-
ability

Ŵa(i) = νa(1 − σi), (11)

and adsorbed atoms can hop or desorb with a transition probability given by Eq. 9
and

Ŵd(i) = νdσie
−Ubinding(i)/kT , (12)

respectively. Here νa and νd are the adsorption rate constant and desorption fre-
quency, respectively. It is assumed that the desorption follows Arrhenius dynamics.
Note that (1 − σi) and σi in Eqs. 11 and 12 play the same role as εij of Sect. 2.2.1
(the participation index notation is more general and will be used later). Examples of
participation indices for (a) diffusion of species A on a square lattice with first-nearest
neighboring jumps or (b) reaction between A and B are shown in the top panel of
Fig. 1.
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Fig. 2 Generic flowchart for
any KMC algorithm. Available
methods for performing each
step in this flowchart are
explained in detail in the text.
Shaded boxes denote
computationally most
expensive steps
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3 The Kinetic Monte Carlo (KMC) method and its variants

In this section, we discuss basic concepts of spatial KMC simulation, as well as similar-
ities and subtle differences between different types of KMC algorithms. Furthermore,
KMC and traditional MC methods are also contrasted.

3.1 Generic flowchart of a KMC algorithm

The main steps in a KMC algorithm are outlined in Fig. 2. The underlying principle in
all KMC algorithms is the random selection of a process based on the transition proba-
bilities of all processes, execution of the selected process (i.e., appropriately modifying
the configuration of the system), and updating the time clock and the transition proba-
bilities. In mathematical terms, the KMC method follows a discrete Markov evolution
of the system with continuous time increments given by an exponential distribution
[66].

Each of the steps in the entire flowchart presents specific challenges that are enu-
merated in the sections that follow. Subtle differences between different KMC algo-
rithms originate from (1) the selection of a process and (2) determining the time
increment after a process is executed.

3.2 Off-lattice and on-lattice simulation

The probably best-known Metropolis algorithm [1] and its variants, such as the
Kawasaki dynamics [67], was introduced and is mainly used (but not exclusively)
for off-lattice simulations, where atoms or molecules do not have prescribed positions
in space. Rather, their average locations are determined from free energy minimi-
zation. The transition probabilities for transitioning from one configuration to the
next do not have dynamic but purely thermodynamic information. A key element in
constructing the transition probabilities for such traditional MC method is that they
obey detailed balance; as a result, they provide the correct thermodynamic results.
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Spatial movements of atoms or molecules are typically very small, and thus, sampling
of configurational space is slow. At each trial, a random number, from a uniform
distribution, is compared to the instantaneously computed Metropolis probability, p,
and the event is executed only when the random number is lower than p. Otherwise,
nothing happens in this specific trial (a null-event).

As mentioned earlier in Sect. 2.1, in most physical systems there is a large separation
of time scales between the thermal vibrations and microscopic processes (short vibra-
tional time versus long jump time). Such separation of time scales is known in numer-
ical analysis as stiffness. MD and off-lattice MC simulations are too slow to deal with
such time scale separation, created by large barriers, and they spend most computer
time sampling fast vibrations, rather than executing the slower jumps. These slow
jumps are termed as rare events because they happen infrequently in comparison to
the fast processes. The small time increments of fast processes result in minor advance-
ment of the simulation time clock. The term ‘rare events’ is more general than what
was used above and indicates separation of time scales between processes.

On-lattice KMC simulations attempt to overcome the aforementioned type of stiff-
ness via integrating out the effect of thermal vibrations on microscopic rates. In these
simulations, particles reside at discrete spatial coordinates on a suitable lattice and
slow events, in comparison to the vibrational time, are fired. On-lattice simulation
can be parameterized to capture off-lattice effects (for an example see [61,68]). KMC
simulations on non-regular lattices are also possible [69].

3.3 KMC classification: null-event and rejection free algorithms

There are two broad algorithms employed for spatial simulation, namely the null-

event and the rejection-free algorithms. In the former, not all MC events (trials) are
successful. The Metropolis algorithm is an example of a null-event algorithm, where
atomic displacements are actually adjusted to achieve a certain ratio of successful
events. In this algorithm, energetically favorable moves, i.e., the ones that reduce the
system energy, are selected with probability 1; moves that increase the system energy
are accepted with probability < 1. In contrast, in rejection-free algorithms, all events
are successful.

It is not surprising that null-event algorithms are assumed, but not necessarily
correctly, to be less efficient than rejection-free algorithms. We return to this point
in the following sections, where we provide a more detailed description of the two
algorithms and numerical examples.

3.4 The time clock issue

Early KMC simulations reported results in MC events (MCE) or MC steps (MCS)
‘time units.’ One MCS is defined as the number of MC events or trials, that is, equal to
the number of sites of the system NL. In the case of crystal growth (and other appli-
cations), where steady state is established after some time, a MCS is proportional
to real time. However, a MCS does not generally correspond to a fixed amount of

real time. Furthermore, early KMC simulations of crystal growth and surface kinetics
employed a null-event algorithm instead of the rejection-free method. This aspect
further complicates mapping of MCS to real time.

It is then not surprising to read in the literature that MC methods lack real time.
Aside from the earlier use of null-event algorithms, where association of real time with
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MC events was not typically established, this has been in part due to the widespread
use of the Metropolis and Kawasaki algorithms, which lack dynamic information in
their transition probability. The issue of dynamics is immaterial as far as equilibrium
is concerned. However, real dynamics is most often essential for non-equilibrium
systems.

The MC simulations follow the stochastic dynamics of a master equation; with
appropriate parameterization of the transition probabilities (see Sect. 4.1), they pro-
vide continuous time information as well (discrete Markov states, continuum time
processes). The MC method, which employs transition probabilities, is what is usually
known as KMC or dynamic MC (DMC) method. The former term is probably more
often used. It is this method that is the subject of the remaining of the paper.

4 Challenges in KMC simulations

In this section, we outline main challenges in carrying out spatial KMC simulation.
Table 1 summarizes these challenges along with methods for coping with them and
provides key references. More details are given in the text of this and subsequent
sections.

4.1 Input to a KMC simulation

A major challenge of on-lattice KMC simulations (Step 1 of the KMC flowchart in
Fig. 2; see also Table 1) is to create a complete catalog of all possible processes along
with their transition probabilities. This key input to any KMC simulation can be ex-
tracted from smaller length and time scale simulation tools, such as density functional
theory (DFT) [18,99–102] (these are often termed first principles KMC simulations),
transition state identification methods, transition state theory (TST) [103,104], and
MD [3,4,61,105,106] typically via a bottom-up approach (information passage from
small to large scales) [36,107–110]. Significant work in this area to address the compu-
tational requirements of DFT and MD and the approximations involved, e.g., in TST,
has led to the development of a whole new research area. Important developments in
potential energy surface (PES) prediction include semiempirical/empirical methods,
such as the tight-binding method, and interaction potentials, such as the embedded-
atom method and the effective medium theory [111–114]. Methods developed for
exploring the PES, saddle points and path sampling, include double-ended search
methods (initial and final states are known), such as the nudged elastic band, discrete
and transition path sampling, and single-ended search methods (only initial state
known), such as the Hessian-based and the minimum mode methods [115–117]. In
addition, accelerated MD methods, such as the temperature accelerated dynamics, hy-
perdynamics, and on-the-fly KMC [69,118,119] are also useful for accessing long time
scale processes. Ultimately, the basic paths, i.e., the initial and final microscopic states,
are identified, and the transition probability for the process is typically postulated in
terms of a rate prefactor and a Boltzmann term and fitted using the aforementioned
tools. The difficulty involved in identifying all microscopic processes (especially the
rare ones) may render the catalog of process incomplete. Recent on-the-fly techniques,
such as the self-learning KMC, are under development to address this very issue, e.g.,
[69,120].
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Table 1 Summary of major challenges in spatial KMC simulation, examples, and techniques (mainly
focusing on spatial methods) for overcoming these challenges

Challenge in kinetic Monte
Carlo simulation

Example Technique for overcoming the chal-
lenge

Input to KMC (identification
of microscopic processes and
determination of their transi-
tion probabilities)

Diffusion of adatoms on a
surface (types of jumps,
such as first and sec-
ond nearest neighbors, ex-
change mechanism, etc.)

Molecular dynamics; transition
state search algorithms; transi-
tion state theory; density function
theory (see Sect. 4.1)

Efficient search and update
methods of transition proba-
bilities

All KMC algorithms n-level search methods, binary
search methods and efficient up-
date algorithms;a efficient pro-
cess selection algorithms, e.g., [70,
71] and n-fold method [72]

Time scale separation among
various processes (stiffness;
low and large barriers)

Diffusion too fast in com-
parison to surface reac-
tions; multiple diffusion
paths with different
barriers

Net-event MC method [73];b

Probability-weighted MC
method [75];c Rescaling of

probabilities [76];d Partial
equilibrium assumption
[77,78];e Multiscale KMC tech-
nique (stochastic
low-dimensional manifold/singu-

lar perturbation method) [79]f

Length scale separation Internal interfaces, stand-
ing and traveling waves,
boundary conditions, gra-
dients in external field
(e.g., chemical potential,
electric field)

Spatial coarse-grained Monte Car-
lo (CGMC) method with the lo-
cal mean field stochastic closure
[83–85]; Adaptive
CGMC method [86–88];
CGMC method with various
cluster expansions ([79], M. Kat-
soulakis et al., submitted) Two
grid (mesh) CGMC method
with pdf and microscopic tran-
sition probabilities from micro-
scopic KMC passed to the coarse
CGMC scale [79]; Wavelet trans-
formation of the Hamiltonian
[89,90]

Execution of one event
at-a-time

All ‘microscopic’
algorithms

τ -leap (Poisson and binomial
based) methods for microscopic
KMC (D.G. Vlachos, submitted);
τ -leap (Poisson and binomial
based) methods for the CGMC
method [91]g

a See Sect. 4.2
b Its spatial homogeneous version was introduced in Vlachos [74]. Its noise is reduced with respect to
a microscopic KMC simulation
c Never applied to a spatial simulation. Its noise gets amplified with respect to a microscopic KMC
simulation
d This method is similar to the probability-weighted method introduced for well-mixed systems.
Both of these methods are ad hoc in nature and lack theoretical foundation but could be useful for
simulation
e Various closures are employed to approximate the fast network. Examples include a mean field
approach, use of a few moments, etc
f A similar method with subtle differences has been applied to well-mixed (spatially homogeneous)
systems in Liu and Eijnden, Samant and Vlachos, and Salis and Kaznessis [80–82]
g The τ -leap method has been applied to well-mixed (spatially homogeneous) systems in Vlachos,
Gillespie, Rathinam et al., Tian and Burrage, Chatterjee et al., Auger et al., and Cao et al. [36,92–98]
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As an alternative, the microscopic processes along with their corresponding tran-
sition probabilities can be obtained via experiments, such as field emission or fast
scanning tunneling microscopy [67,121]. However, this is not a trivial or even a feasi-
ble task in many cases (many of these processes can be too fast to be observed even
at low temperatures). The creation of a library (database/lookup table) of transition
probabilities emerges as a powerful modeling approach in computational materials
science [122,123]. Despite its importance, this first challenge of KMC simulation is
not further discussed in this article.

4.2 Search and update algorithms and data structure for KMC implementation

The retrieval of information from libraries and the update following execution of an
event can become a major computational bottleneck for systems with a large number
of processes (see Table 1). We term the corresponding methods as search and update

algorithms. When the entire library is sequentially searched and updated, we term the
method as global. In contrast, when a portion of the library is searched and updated,
we term the method as local. Due to their important role in computational cost, these
methods are discussed in Sect. 6 and their computational efficiency is compared in
Sect. 7.

The literature on data structures for generic implementation of KMC algorithms
and on efficient algorithms for searching atomic processes and updating system con-
figuration and transition probabilities is scattered. A generic KMC tool was discussed
in Dooling and Broadbelt [9] that can model complex systems by representing atom-
istic processes as reactions, rather than representing the lattice surface via arrays. This
approach enables random number generators, rate constants and lattice positions to
be easily plugged/updated in a modular fashion.

4.3 Separation of length and time scales

Despite the substantial acceleration of on-lattice KMC simulation achieved by leav-
ing out vibrations, free energy barriers of very different size introduce a different
separation of time scales, namely separation of time scales among the group of rare

events. Most KMC simulations get stuck via sampling the fast (low barrier) processes,
whereas the long time dynamics is controlled via the slow (high barrier) processes
that are rarely sampled. This is another major challenge of KMC simulations.

In some applications, spatial inhomogeneity is restricted to nanometer length scales.
Consider the example of repulsive first-nearest neighbor interactions between adsor-
bates on the (100) surface of a crystal. The chessboard solution, resulting under
suitable interaction strength with respect to thermal energy, is such an example of
short-range inhomogeneity (nanopattern formation). In these situations, the simula-
tion box of a KMC simulation with periodic boundary conditions (PBCs) is sufficient to
resolve the length scales of interest. However, there are a number of problems where
there is a separation of length scales. Examples include a propagating front, such as
a crack, pattern formation (e.g., nanopatterns formed in heteroepitaxial growth of
materials), and diffusion through a membrane under a gradient in chemical potential.
In some of these applications, PBCs may not be suitable, and the entire material
domain, spanning up to microns, millimeters, or even much larger scales, must be
simulated. In others (e.g., pattern formation), PBCs are suitable but the wavelength
of spatial heterogeneity is comparable to or larger than the typical simulation box
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size. This situation is obviously beyond the realm of KMC simulation, which in 2D is
currently limited to ∼ 500×500 nm2. In the last part of this paper (Sect. 8), we present
recently introduced techniques that can cope with the separation of length and time
scales.

Finally, experienced users of numerical methods realize that the conventional KMC
method handles one event-at-a time. This is in contrast to most other numerical meth-
ods, such as MD simulation or integration of differential equations (DEs), where all
equations or all species are simultaneously advanced. This one-at-a time aspect seri-
ously limits computational efficiency of the KMC simulation. The recent introduction
of multifiring methods, discussed in Sect. 9, enables firing of multiple events at once
while maintaining accuracy in the solution.

In summary, there are five major challenges in KMC simulation, namely (1) cre-
ating the input, (2) algorithmic efficiency in search and update of databases, (3) time
scale separation, (4) length scale separation, and (5) execution of one process-at-a
time. This article focuses on the last four topics.

5 Microscopic algorithms for spatial KMC simulation

In this section, we provide first a brief description of the rejection-free methods, focus-
ing mainly on the direct KMC method, followed by a firm foundation of the null-event
KMC algorithm. Finally, the statistical equivalence of the two methods is shown.

5.1 Rejection-free KMC methods

5.1.1 Algorithm

An efficient implementation of the rejection-free method for spatially distributed
systems, termed as the n-fold method (see Sect. 6.3.1 for more detailed discussion on
the n-fold method), was introduced by Bortz, Kalos, and Lebowitz (nowadays is also
abbreviated as the BKL method) in Bortz et al. [72]. The following year, Gillespie
introduced two different rejection-free algorithms for well-mixed systems, namely,
the direct and the first reaction method [66,124]. Both the direct and the first reaction
methods find widespread applications in spatially distributed systems as well. The
physics/mathematics and the chemistry communities refer to the former (the BKL
method) and the latter (Gillespie’s work), respectively, and rarely reference each
other.

The best-known and most used rejection-free method is the direct KMC method

[66,124]. It involves two steps, namely one (1) computes a priori the microscopic rates
of all processes and (2) selects a process and a site using a single random number.
The first reaction method uses one random number for each process, and as a result,
it is typically expensive and not as widely spread. The most recently introduced, next

reaction method [125] is another efficient selection method (see also Sect. 6 on fast
search and update methods).

The direct KMC method uses fewer random numbers than the first reaction
method, has been the most popular, and is discussed next (we return to the next
reaction method below). The jth process at the ith site is selected with a probability
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pij = Ŵij/

Np
∑

j=1

NL
∑

i=1

Ŵij =Ŵij

/

NL
∑

i=1

Ŵi,tot = Ŵij/Ŵtot. (13)

Here Ŵij = Ŵjεij is the transition probability of the jth process at site i, Ŵi,tot the total
transition probability of all processes at site i, and Ŵtot is the total transition probabil-
ity over the entire lattice. All Ŵij and Ŵi,tot are computed a priori, i.e., prior to selecting
an event. In the direct KMC method, there are two steps.

Step 1 The (I, J) pair is selected using a uniform distribution random number
ζ1 ∈ (0, 1) according to

J−1
∑

j=1

I
∑

i=1

Ŵij/Ŵtot < ζ1 ≤
J

∑

j=1

I
∑

i=1

Ŵij/Ŵtot. (14)

Step 2 The time is advanced via an increment given from the exponential distri-
bution

�t = − ln ζ2

Ŵtot
, (15)

where ζ2 ∈ (0, 1) is another uniform distribution random number. The average time
step is the inverse of the total transition probability and can be written as (we omit an
indicator of time averaging since the lack of a random number makes this notation
obvious)

�t = 1

Ŵtot
= 1

Np
∑

j=1

NL
∑

i=1

Ŵij

= 1

Np
∑

j=1

NL
∑

i=1

εijŴj

= 1

Np
∑

j=1

njŴj

= 1

NL

Np
∑

j=1

ϕjŴj

. (16)

Here nj is the number of sites of the lattice that can participate in process j, i.e., the
class size, and ϕj = nj/NL is the fraction of sites that can participate in process j.

5.1.2 CPU scaling laws of the direct rejection-free KMC method

The computational cost of the direct KMC method, in both (1) building the transition

probability matrix {Ŵij}NL
i=1

Np

j=1
at each event and (2) selecting one element from the

matrix, increases linearly with the total number of transition probabilities Np
∗NL

(i.e., the size of the transition probability matrix). As a result, the computational cost
escalates with both the number of processes and with the lattice size. This scaling
holds on a per event basis.

Building the entire transition probability matrix (updating of the matrix elements)
and selecting one element, as done in the original Gillespie algorithm, requires scan-
ning the entire lattice and is hereafter termed global updating and search (see also
Sect. 4.2) Global updating and search methods limit the direct KMC method to sys-
tems of a small lattice size and a few processes. Obviously, more efficient algorithms
can be used, as discussed in Sect. 6.

An important point underscored by Eq. 16 is that the time step is inversely pro-
portional to the lattice size. As a result, as the lattice size increases, not only updating
and searching per each event takes more time but also the real time reached is much
smaller, and thus, additional KMC events are needed to reach the same real time.
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Fig. 3 (a) Flowchart of the null-event algorithm. (b) Schematic for selection of a process or a null
event, using linear search

Consequently, in the simplest direct KMC method, the CPU needed to reach the
same real time scales as N2

L. This scaling obviously makes simulation of large domains
prohibitive.

The direct KMC method uses two random numbers at each event. This is another
important point, since the CPU in some cases may be controlled from the cost of
calling the random number generator.

5.2 A general null-event algorithm

5.2.1 Algorithm

Earlier lattice KMC algorithms employed a null-event approach, e.g., [35,126] and
were specific to a particular application. Here we present the algorithm and discuss
the time scale and null-event issues in more general terms than done previously in the
literature. In null-event algorithms, there are four steps (see Fig. 3).

Step 1 A site, say i, is randomly chosen among all lattice sites from a uniform
distribution, i.e., with an equal chance. The probability of picking the ith site is

psite
i = 1/NL. (17)

This is accomplished using a random number ζ1 ∈ (0, 1) from a uniform distribution;
the picked site is determined from

I = floor(ζ1NL) + 1. (18)
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Here the command ‘floor’ indicates rounding of the real number ζ1NL to the closest
lower integer. Obviously, all sites do not have the same sum of transition probabili-
ties Ŵi,tot =

∑

j Ŵij, and thus, a correction needs to be done to account for the equal

probability of picking sites (see below).

Step 2 The transition probabilities {Ŵij}
Np

j=1 are computed for that site only after

the site is picked (a posteriori calculation)

Ŵij = Ŵjεij, j = 1, . . . , Np (19)

using the known process transition probabilities {Ŵj}
Np

j=1 and the participation indices.

In this step, the participation indices need actually to be computed for this site by

searching within the radius of interactions (Lpotential). Since {εij}
Np

j=1 vary with time,

{Ŵij}
Np

j=1 are also time-dependent.

Step 3 These transition probabilities are then normalized with a suitable micro-
scopic rate, Ŵmax, to provide the probability of executing the jth process at the ith
site

κj =
Ŵij

Ŵmax
=

Ŵjεij

Ŵmax
. (20)

The normalization rate Ŵmax makes all probabilities less than 1, and should be chosen
to be the same for all sites of the entire lattice rather than for the selected site. This is
an important issue that is discussed below. A convenient way is to choose Ŵmax as the
maximum (over the entire lattice) sum of all microscopic rates at a site

Ŵmax = max
i=1,...,NL

Np
∑

j=1

Ŵij = max
i=1,...,NL

Np
∑

j=1

Ŵjεij. (21)

This is a subtle and often overlooked issue (by new comers to the field) that ensures
that different sites are picked appropriately, i.e., with a probability, that is, propor-
tional to the overall transition probability of each site, according to Eq. 13. As a result
of this normalization, typically a null bin exists, and when the random number falls in
this bin, no event is executed (this explains the name of a null-event algorithm). In our
calculations Ŵmax is typically computed at the beginning of a simulation, depending on
the participation indices of sites, according to Eq. 21 and is thereafter kept constant.
By its definition, Ŵmax is the maximum possible transition probability at a single site

rather than of the entire lattice.
Step 4 A process, say J, is randomly picked using another uniform distribution

random number, ζ2 in the (0,1) interval

J−1
∑

j=1

κj < ζ2 ≤
J

∑

j=1

κj. (22)

Once a process is selected and executed, the algorithm is repeated. A flowchart of the
algorithm and a schematic of the selection process are shown in Fig. 3. Overall, the
algorithm is fairly easy to implement and has minimum bookkeeping.
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5.2.2 Null bin and success probability

The probability for a successful event in a null-event algorithm deserves more atten-

tion. The null bin at the ith site has a size of Ŵmax −
Np
∑

j=1

Ŵij. The probability of a null

event on the ith site is

pnull
i =

Ŵmax −
∑Np

j=1 Ŵij

Ŵmax
= 1 −

∑Np

j=1 Ŵij

Ŵmax
= 1 − Ŵi,tot

Ŵmax
. (23)

Here Ŵi,tot is the total transition probability at the ith site. Note that by design (Eq.
21), Ŵmax ≥ Ŵi,tot. Thus, pnull

i ≤ 1 (a well-behaved situation).
The probability of an event being successful at the ith site is

psuccess
i = 1 − pnull

i =
∑Np

j=1 Ŵij

Ŵmax
= Ŵi,tot

Ŵmax
. (24)

Based on Eq. 21, psuccess
i ≤ 1 (a well-behaved situation). One can easily see that a

large Ŵmax results in a large null bin, i.e., the probability of a null event is high and
more null events are encountered. Thus, a large null bin is detrimental to the efficiency
of null-event algorithms.

The introduction of a null bin corrects the equal probability used in choosing sites,
according to Eq. 17, by penalizing sites with a lower transition probability Ŵi,tot to
likely give more null events. It should be noted that when Ŵmax is equal to Ŵi,tot, then
the null bin is zero and no null events occur (psuccess

i = 1). This idea comes from
rejection-free algorithms but obviously indicates that sites are picked completely ran-
domly (Eq. 17 only is employed) and not based on their microscopic rates, i.e., this
choice of Ŵmax is incorrect. This aspect underscores the importance of proper normal-
ization of microscopic rates in a null-event algorithm. Therefore, one should typically
employ Eq. 21 or written in a different way

Ŵmax = max
i,σ

(Ŵi,tot) (25)

for all possible configurations σ .
The probability of the jth process happening on the ith site, pij, depends on the

probability that the ith site is being picked among all lattice sites, psite
i , on the proba-

bility that an event occurs at this site, psuccess
i , and on the probability that this process

is selected among all processes at this site, κj, (this is a sequence of conditional prob-
abilities)

pij = psite
i psuccess

i κj = 1

NL

Ŵi,tot

Ŵmax

Ŵij

Ŵi,tot
= 1

NL

Ŵij

Ŵmax
= 1

NL

Ŵjεij

Ŵmax
. (26)

Note that pij from Eq. 26 differs from (and is generally smaller than) that of Eq. 13.
This difference arises because of null-events.

The probability of picking the jth process over the entire lattice is

ψj =
NL
∑

i=1

pij =
NL
∑

i=1

1

NL

Ŵij

Ŵmax
= 1

NL

Ŵtot,j

Ŵmax
. (27)
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Here Ŵtot,j is the transition probability of the jth process (over the entire lattice)

Ŵtot,j =
NL
∑

i=1

Ŵij =
NL
∑

i=1

Ŵjεij = Ŵj

NL
∑

i=1

εij = njŴj (28)

and is simply the number of sites nj which participate in the process (i.e., for which
εij = 1) times the transition probability Ŵj of this process. This transition probability
is precisely the rate of a class defined for this process in the n-fold rejection-free
algorithm of Bortz et al. [72] (see Sect. 6.3.1).

Finally, the probability of picking any process over the entire lattice is

ψtot =
Np
∑

j=1

ψj = 1

NL

Ŵtot

Ŵmax
. (29)

Since Ŵmax ≥ Ŵi,tot,
NL
∑

i=1

Ŵmax ≥
NL
∑

i=1

Ŵi,tot or NLŴmax ≥
NL
∑

i=1

Ŵi,tot = Ŵtot. The latter rela-

tion ensures that ψtot ≤ 1 in Eq. 29. Note that the summation of probabilities in Eqs.
24–28 was possible since the processes are independent of each other.

Equation 29 gives the overall probability of having a successful event in a null-event
algorithm, and is a measure of the efficiency of a null-event algorithm. One could pick
an arbitrarily large Ŵmax, but this will reduce the overall probability of having success-
ful events. A large separation of transition probabilities (stiffness) results in Ŵmax, that
is, much larger than the transition probabilities of the slow processes. In such a case,
the probability of a rare event being successful is very low. Even though this feature
is also common to the rejection-free KMC algorithms, it is more severe in the case of
the null-event KMC method because too many unsuccessful events occur. This partly
rationalizes the observation made in Reese et al. [127], regarding the inefficiency of
the null-event algorithm for stiff systems.

Given a total of Ne,null events in a null-event algorithm, the number of successful
events will be

Nsuccess
e,null = Ne,nullψtot. (30)

5.2.3 Time increments and time clocks

Next we turn to the time increment issue. This problem has been touched upon only
sporadically for simple unimolecular processes [128–130] and rarely for non-linear
and/or complex problems [47,99]. The time can be advanced based on a single pro-
cess either at a site or over the entire lattice every time this process is picked. Below
we illustrate the approach based on a single process over the entire lattice.

Consider a clock advancing time only when the jth process is picked at any site of
the entire lattice. The average time elapsed each time a successful jth process occurs
is 1/Ŵtot,j. Thus, in a simulation the average time is advanced according to

tj = tj + 1/Ŵtot,j. (31)

Note that when a null-event or another process is picked, the jth process clock does
not advance.

Next we compare the time clocks of the direct, rejection-free and the null-event
KMC methods. Since not all events are successful, the probability of success of an event
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is considered to theoretically compare methods. The average time elapsed depends
on the probability of the process being picked up and its corresponding average time
increment and is given by

Clock Increment
j th process
null-event

= �tj = ψj
1

Ŵtot,j

= 1

NL

Ŵtot,j

Ŵmax

1

Ŵtot,j
= 1

NL

1

Ŵmax
, j = 1, . . . , Np. (32)

In the direct KMC method, the average time advanced per event is 1
Ŵtot

, i.e.,

Clock Incrementdirect = 1

Ŵtot
. (33)

Suppose the same experiment is repeated Ne times (events), without actually execut-
ing the event (in order to obtain statistics). In order to achieve the same number of suc-
cessful events between null-event and rejection-free methods, one has Nsuccess

e,null = Ne,
or using Eq. 30

Ne,nullψtot = Ne. (34)

The time advanced in a null-event algorithm for the same number of successful events,
using the jth process as our time clock, is then (using Eqs. 32, 34, and 29)

tnull = �tj,nullNe/ψtot = 1

NL

1

Ŵmax
NeNL

Ŵmax

Ŵtot
= Ne

Ŵtot
= tdirect. (35)

This result indicates that the time advanced is theoretically independent of the process
chosen to advance the time clock (see Eq. 32). Thus, any process can be picked for
advancing time. In practice, it is advantageous to select a process that occurs frequently
in order to have higher resolution of when various events happen. Alternatively, a
group of processes can be picked for updating time. For example, one can use an
average time increment of 1

NL

1
Ŵmax

every KMC event (independent of whether the

event is successful or not) without relying on any specific process.
It is important to pick a process to easily compute Ŵtot,j. For example, in the

case of a site-independent process (say process J), with a transition probability of Ŵ,
Ŵtot,J = NLŴ is a fixed number during the simulation and needs to be calculated only
once. Even if a processes is picked, whose transition probability is site dependent, for
advancing the time clock, one can compute Ŵtot,J at the beginning of a simulation by
summing over the entire lattice and ‘locally’ update the clock increment by subtract-
ing the old and adding the new contributions. An example was given for the case of
diffusion/reaction processes in Mayawala et al. [131].

5.2.4 CPU scaling laws

Since one selects randomly a site, the entire matrix of transition probabilities is never
searched and updated. As a result, the CPU per event is lattice-size independent.
Once a site is selected, one has to search up to Np processes, so the CPU scales at

most linearly with Np. In summary, the CPU per event scales as N0
LNp. The CPU for

the same real time obviously increases linearly with lattice size (see last part of Eq. 32)
as in a rejection-free method.
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A major advantage of the null-event method, in comparison to the direct, rejection-
free KMC algorithm (Sect. 5.1.2.), is its lattice size independence. On other hand, null
events diminish, to some extent, this advantage (there is an overhead associated with
execution of more events). Section 5.4 compares the CPUs of two methods in more
detail and provides some tips for method selection. Numerical examples in Sect. 7
provide further guidance on method selection.

Another major advantage of the null-event algorithm is its ease of implementation.
When a system does not exhibit stiffness and has a small number of possible processes
that can occur, then the probability of successful events is high and the method is very
efficient. Under these circumstances, the null-event algorithm should be preferred
given its ease of implementation.

5.3 Statistical equivalence of null-event and rejection-free KMC methods

There are two aspects that demonstrate the equivalence of the null-event and rejec-
tion-free KMC methods. First the probability of picking processes from the two meth-
ods should be same, so the correct probability density function is computed. Second,
real time after a fixed number of successful events should be statistically the same in
both methods, so that the correct dynamics is predicted.

The ratio of probabilities at two sites for any two processes from Eqs. 26, for the
null-event algorithm, and 13, for the rejection-free algorithm, is identical. Further-
more, Eq. 35 indicates that the time advanced by the two methods is the same once
an appropriately large number of events are carried out in the null-event algorithm to
account for the unsuccessful events. Numerical examples in Sect. 7 further illustrate
these points.

5.4 Comparison of computational efficiency, memory, and implementation
of the rejection-free and null-event KMC methods

In early spatial KMC simulations, it was typically assumed that since a process is
always selected at every trial of a rejection-free KMC method, i.e., there are no
null events, the rejection-free KMC method exhibits superior performance than a
null-event algorithm employed e.g., in Gilmer, Ziff et al., Gilmer and Bennema and
van der Eerden et al. [29,35,126,132]. While this is often the case, this is not gen-
erally true and depends heavily on the search and update methods employed. For
example in Reese et al. [127], the implementation and the efficiency of rejection-
free and null-event KMC methods with local and global search and update meth-
ods (see Sect. 6 for these methods) were compared for a specific example of a sur-
face reaction. It was concluded that the rejection-free algorithm is more efficient
for rare event dynamics (stiff systems) but a null-event algorithm could, under some
conditions, outperform the rejection-free method due to lack of book-keeping and
updating.

In comparison to the direct, rejection-free KMC method, the number of events
needed in a null-event algorithm to achieve the same number of successful events is
increased by a factor of 1/ψtot − 1 = NL

Ŵmax
Ŵtot

− 1 (according to Eqs. 29 and 30) due to
the presence of null events. Therefore, the CPU times of the two methods for reaching
the same real time scale as

CPUrejection−free

CPUnull−event
≈

NLNp

NL
0Np

1

1/ψtot
= Ŵtot

Ŵmax
≤ NL. (36)
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Since Ŵtot is typically larger than Ŵmax, Eq. 36 indicates that the simple rejection-
free KMC method (with global search and update methods) can in fact be much
more inefficient than the null-event algorithm. Specifically, when NLŴmax ≈ Ŵtot, the
probability of successful events in the null-event algorithm is high and the null-event
algorithm is very efficient because global searches and updates are absent.

In local update rejection-free methods, the transition probabilities of all interact-
ing sites of a central site have to be updated. As elaborated in Sect. 6, this cost scales
linearly or faster with the number of interacting neighbors Ninterac for site i and can be
a considerable fraction of a calculation. In contrast, the null-event method exhibits no
bookkeeping (involves minimum calculation, since only the transition probabilities at
the chosen site are determined).

In summary, because of there is no overhead associated with updating classes and
searching the entire lattice, null-event algorithms usually outperform rejection-free
algorithms, when the latter employ global searches and updates. This may (albeit
rarely) be true even for local-based rejection-free methods when the probability of
successful events happens to be close to 1.

Null-event algorithms are easy to implement and do not suffer from large memory
requirement that can become a bottleneck in rejection-free algorithms for large size
systems involving many processes. On the other hand, simple rejection-free methods
are also easy to implement but are very inefficient. Rejection-free methods, which
use efficient search and update algorithms, are very efficient, but require much more
complicated coding as discussed in the next section.

6 Search and update algorithms for KMC Simulation

Process selection and updates of the transition probabilities in a KMC simulation (see
Fig. 3 for an example depicting the null-event algorithm) are computationally inten-
sive. As alluded to above, the CPU requirements per KMC event increase linearly
with increasing the number of processes (Np) and the lattice size (NL) when global
search and update methods are employed. Furthermore, the computational cost esca-
lates with an increase of the interaction potential cut-off length (Lpotential). Even in
the case of a null-event KMC algorithm, which identifies a site using Eq. 18, process
identification (via Eqs. 19–22) can become a bottleneck, when the number of possible
processes Np on a single site is large. Such a situation is typically encountered in
multicomponent systems. For example, hundreds of diffusion and reaction processes
are typically possible on each lattice site on a catalyst surface [133] and in defects
in materials [56]. In microkinetic modeling and in biological systems, one frequently
encounters reaction networks comprising of hundreds to thousands of elementary
reaction steps [134,135]. For these reasons, efficient algorithms for search and update
are critical for accessing reasonably large time scales on large lattices.

In this section, a brief overview of challenges in search and update algorithms,
encountered in different areas of computational science, and approaches employed
to overcome these challenges are discussed. This is followed by a detailed discussion
of such algorithms.

The literature on search and update algorithms is broad and application specific.
Numerous search algorithms have been developed in computer science for small
as well as large databases [136]. Typically, these algorithms require as inputs a key,
the information to be retrieved, and an algorithm-specific implementation for the
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database. ζŴtot is an example of a key in the context of the direct KMC simula-
tion. The information of interest is detailed information about a specific element of
the database. Database implementations commonly include arrays/linked lists, binary
trees, and graph structures. The CPU requirements of these search algorithms typically
scale as O(log(log(Ndb))) to O(Ndb), where Ndb is the size of the database.

The need for efficient update of transition probabilities in KMC algorithms paral-
lels the need for fast update algorithms in other areas of computational science. For
example, in MD and Metropolis MC simulations, the energy landscape experienced by
an atom or a molecule needs to be evaluated at each time step before solving the equa-
tions of motion. Algorithms, such as the linked-list and Ewald summation methods [2,
3], enable efficient on-the-fly estimation of the potential energy surface. A similar ap-
proach may be employed for off-lattice KMC modeling. However, more efficient algo-
rithms exist for on-lattice KMC simulation, which take advantage of the fixed lattice.

Some efficient algorithms for KMC of well-mixed systems were recently discussed
in Gibson and Bruck [125]. A dependency graph was employed for locally updating
processes (transition probability matrix) that are affected when a particular atomic
process is executed. Furthermore, an indexed priority queue was employed that effi-
ciently identifies the process with the least firing time using the first reaction method.
A binary tree search was employed in the same paper for efficiently selecting pro-
cesses using the rejection-free KMC algorithm. Besides these approaches developed
specifically for KMC, other approaches developed in computational science can be
implemented with minor modification. Next, we discuss some of these algorithms and
their efficiency.

6.1 n-level linear search methods

6.1.1 Linear search

The linear search is probably the simplest and most frequently employed search tech-
nique for selecting a process in a KMC simulation. The method employs an array or a
linked list, as shown in Figs. 3b and 4a. In this scheme, ζŴtot is known at the beginning
of the search, and the process is sequentially searched until the criterion given by
Eq. 14 or 22 is satisfied. The CPU requirements for linear search scales as O(Nlist),
when all processes have the same order of magnitude average transition probability.
Here Nlist is the average size of the list of processes being searched. For example,
Nlist = Np

∗NL for the rejection-free KMC method.
When time scale separation between processes exists, the linear search method is

most efficient when fast processes (processes with large expected transition probabil-
ity) are located at the beginning of the array/linked list [137].

6.1.2 Two-level linear search

A slightly modified version of the linear search, shown in Fig. 4b, involves representing
processes by a 2D square matrix of size N2 ×N2, where N2 =

√
Nlist when

√
Nlist is an

integer and N2 = floor
(√

Nlist

)

+ 1, otherwise. The sum of transition probabilities of
all processes in the ith column, denoted as Ŵc,tot, and ζŴtot are known at the beginning
of the search. Two linear searches are performed. The first linear search selects the

Cth column using
{

Ŵc,tot

}Nlist

i=1
as weights. For example, in the case of the rejection-free

KMC algorithm, this search criterion is given by



An overview of spatial microscopic and accelerated kinetic Monte Carlo methods 275

Fig. 4 (a) Implementation of the linear search scheme using a 1D array of size Nlist. The arrow indi-
cates the process selected based on Eq. 14 or 22. (b) Implementation of two-level linear search scheme
with a 2D array of size N2 × N2 (see text). A column, shown by the vertical red arrow, is selected
first using Eq. 37. A process in the selected column is next picked using Eq. 14 or 22. Implementation
of the binary search scheme using a (c) balanced and d unbalanced binary tree. The gray bands in
(d) denote spectral bands, i.e., time scales of processes. In this case, all processes with the same time
scale are found at the same level of the unbalanced binary tree. (e) Logical operations are employed
to search for a process, starting from the top of the tree toward the bottom. Squares with rounded
(sharp) corners denote single (multiple) processes

C−1
∑

c=1

Ŵc,tot/Ŵtot < ζ ≤
C

∑

c=1

Ŵc,tot/Ŵtot. (37)

The second linear search determines the process to be executed using Eq. 14. The
CPU requirement of this method scales as O(N2). As an example, when Nlist ∼ 106,
the two-level linear search is about 103 times faster than the simple linear search
method.

6.1.3 n-level linear search

Larger CPU savings are obtained with an n-dimensional matrix of size Nn ×Nn ×· · ·×
Nn (n times), where Nn=Nlist

1/n, when Nlist
1/n is an integer, and Nn=floor

(

Nlist
1/n

)

+1,
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otherwise. For example, when Nlist ∼ 106, a three-level linear search is about 104

times faster than the linear search technique. Due to the increasing number of linear
searches, the CPU for a n-level linear search scales as nO(Nn).

To the best of our knowledge, the simple extension of linear search method to 2- and
n-level linear search has not been reported in the KMC literature. The n-dimensional
matrix is best implemented via the use of pointers. However, it is certainly not the
most efficient KMC-search technique.

6.2 Binary search

A binary search algorithm employs a divide-and-conquer approach to find the location
of a particular value in a list of processes [136]. The most effective way of employing
binary search is via a binary tree using pointers (see Fig. 4c). An example of a binary
tree search for KMC simulations was given in Gibson and Bruck and Schulze [70,125].

In this data structure, each node has two children nodes in the level below it. There
are Nlevel levels in the binary tree, where Nlevel = log2(Nlist), when log2(Nlist) is an
integer, and Nlevel = floor(log2(Nlist)) +1, otherwise. A node at the bottom level rep-
resents a single process and has a value given by the process transition probability.
When Nlist < Nlevel, Nlevel − Nlist bottom nodes have a value zero and do not rep-
resent any process. Each node at a level above the bottom level contains the sum of
values of its children. The head node (topmost node) contains the sum of transition
probabilities of all processes. The values in the entire binary tree and ζŴtot are known
at the beginning of the search.

The binary search starts from the head node, and rules out either the left or the
right branch, using logic operations with the help of the search variable Ŵsearch (see
Fig. 4e). Initially, Ŵsearch = ζŴtot. The left branch node is selected if it has a value less
than Ŵsearch. When selected, the value of Ŵsearch is retained for the lower level. When
Ŵsearch has a value greater than the value of the left branch node, the right branch
node is selected and Ŵsearch has a new value given by Ŵsearch minus the value of the left
branch node. This procedure is repeated until the bottom-most node is encountered.
This node contains the process, that is, executed.

The CPU time for the binary search scales as O(log2(Nlist)). For example, the
binary search method is 104–105 times faster for Nlist = 106. Despite its complexity,
the large efficiency in comparison to linear search methods is a major advantage of the
binary search method. The weakness of the binary search method is the large storage
requirements, given by 2Nlevel+1 nodes, required for creating the binary tree.

When time scale separation between processes exists, an unbalanced tree is slightly
more efficient compared to a balanced tree (Fig. 4d). In an unbalanced binary tree, the
fastest (slowest) processes are situated at the highest (lowest) levels. This approach
is suited when the number of processes is extremely large, such that the number of
levels for a balanced tree is high.

6.3 The n-fold method

The n-fold method of Bortz et al. [72] is an efficient search spatial KMC method and
is an example of what is called a Hash-table search [136]. The hashing function in this
example catagorizes processes according to their transition probability. It is discussed
separately due to its significance and the fact that is often overlooked.
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One realizes that interactions are often short-ranged, e.g., first-nearest neighbors.
Consequently, each site allows only a small number of possible processes, i.e., the
number of processes for which εij = 1 is often much smaller than Np. All sites with
εij = 1 are grouped into a class (termed the jth class). Let nj be the number of sites
belonging to the jth class (class size). The class size is determined from Eq. 5. In
the n-fold method, first a class is selected and then a site from this class is randomly
chosen. Specifically, the jth class is selected with a probability

pclass
j =

∑NL
i=1 Ŵjεij

∑Np

k=1

∑NL
i=1 Ŵkεik

=
Ŵj

∑NL
i=1 εij

∑Np

k=1 Ŵk

∑NL
i=1 εik

=
njŴj

∑Np

k=1 nkŴk

=
njŴj

Ŵtot
(38)

using a uniform distribution random number ζ1 ∈ (0, 1)

j−1
∑

i=1

niŴi/Ŵtot < ζ1 ≤
j

∑

i=1

niŴi, j = 1, . . . , Np. (39)

Once a class is selected, a site, say m, from this class is randomly chosen using another
random number ζ2 ∈ (0, 1)

m = floor(njζ2) + 1. (40)

The computational cost of the selection now scales linearly with Np rather than
Np

∗NL, i.e., the computational savings are of order O(NL). A key ingredient of the
n-fold method is that one avoids scanning the entire lattice (aside from the very first
time during initialization). This is then an extremely efficient search (O(1)) method
when a small or moderate number of classes is involved.

While fast selection of a class and a site is very important, updating of the entire
transition probability matrix is also of O(NL). Therefore, fast execution of the n-fold
method requires that only the modified elements of the transition probability matrix
are updated. We term this approach local updating algorithm. Construction of lists of
neighbors is essential in that regard. Once a site is selected, it is only the transition
probabilities of these neighboring sites and of the central site that are accessed and
updated. Local updating involves complex coding. As a result, global updating is often
implemented.

The potentially low, storage requirements, given by the number of processes Np,
and the low, CPU requirements, given by O(1), are the main advantages of the n-fold
method. Even though the n-fold method is one of the most efficient search algo-
rithms for KMC simulations, tabulation of classes becomes a major issue when the
number of classes is large. For instance the number of classes increases rapidly with
increasing interaction potential cut-off length, Lpotential. The number of classes for

the submonolayer example of Sect. 2.2.3 increases as L2
potential in the asymptotic limit

of a long potential. Additionally, the number of classes and the way of ascertaining a
class type (a pattern identification procedure) depends on the lattice and the number
of chemical species. For example, the number of classes in the SOS model of the (100)
surface example is 10 and 48 for 1 and 2 chemical species, respectively. These issues
undermine the portability of the n-fold KMC code to complex, long-range interacting
systems.



278 A. Chatterjee, D. G. Vlachos

6.4 Update algorithms

In this section, different techniques for updating the system configuration, interaction
energies, and transition probabilities are discussed. Upon selection of a process, the
populations of all chemical species are updated most efficiently using a stoichiometric
matrix. A stoichiometric matrix is commonly employed in KMC simulations of well-
mixed systems [124]. The (i, j) element of the sparse matrix is an integer that denotes
the net number of atoms/molecules of the ith chemical species that are consumed
or generated by the jth process. The sign of the (i, j) element is positive (negative)
when the chemical species is generated (consumed) and zero if the species does not
participate in this reaction. The memory requirements of the stoichiometric matrix
can be reduced using a 1D array of size Np of linked lists. Each element j of the array
gives the number of particles created/consumed by process j.

In an inefficient update method, termed as the global update method [127], one
reevaluates all interparticle interactions and all process transition probabilities after
a process is executed (we separate interactions from probabilities because the former
may not be used for some systems but could become very expensive to compute
depending on the functional form of the potential). Unless the temporal acceler-
ated τ -leap method is used (see below), this is often computationally unnecessary
since changes are typically localized around the selected site where a process has just
occurred. For instance, the CPU requirements of a global update method for comput-
ing only the interactions is O(Ninterac

∗NL) for two-body potentials. Additionally, the
CPU requirements for updating the transition probabilities (given the interactions) is
O(Np

∗NL). Here, Ninterac is the average number of interacting neighboring sites of a
single site.

Local update methods are more efficient compared to global updates; for a com-
parison see [127]. Interaction energies are locally updated using a list of interacting
neighbors and a connectivity matrix for the transition probabilities. The CPU require-
ments in a local update method for computing both interactions and the transition
probabilities are roughly NL times lower than those of the corresponding global
update method. A list of interacting neighbors is easily implemented using arrays
or linked lists. Two 1D arrays are employed with the array-based list of interacting
neighbors, as shown in Fig. 5 [2]. The first array (Arr1 in Fig. 5) contains interacting
neighbors on a site-by-site basis. The second array (Arr2 in Fig. 5) is 2Ninterac long
and contains index limits for the section in Arr1 where interacting neighbors are
located.

Processes are locally updated via a connectivity matrix. The connectivity ma-
trix gives a list of process transition probabilities that are updated when a partic-
ular atom/molecule participates in a process or has a modified energy landscape
due to a process executed nearby. Alternatively, dependency graphs [125] can be
employed instead of linked lists to update interactions and process transition
probabilities.

The binary tree used with the binary search method is updated, after a process is
executed, using either global or local update methods. In a global update, all branches
are updated, i.e., the computational cost is proportional to Np

∗NL. In contrast, the
local update method is the most efficient approach since only branches containing
the modified process rates are updated. The computational cost of the local update
method is proportional to, at most, Np.
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Fig. 5 Two arrays (Arr1 and
Arr2) are employed to locally
update interactions. Arr1 is a
complete list of interacting
neighbors, whereas Arr2 is a
list of ‘pointers.’ The
interacting sites of the kth site
are stored in the dark green
shaded region in Arr1. This
region has indices
Arr2(2k-1)–Arr2(2k). In other
words, Arr2(2k-1) and
Arr2(2k) are the lower and
upper bounds, respectively

7 Numerical examples of equivalence and of CPU requirements of common KMC

algorithms

In this section, we implement some of the search and update techniques for the KMC
methods described above and we compare various methods.

7.1 Crystal growth

In order to illustrate the above issues, we employ a null-event algorithm and a rejec-
tion-free algorithm for a simple SOS crystal growth example on the (100) surface of
the cubic lattice (see Sect. 2.2.1 for the model). Implementation of all algorithms was
done in Matlab 7.0. The rejection-free algorithm used the n-fold method for efficient
selection of a class and a site. Update of the transition probability matrix was done
by employing the global update method; however, a vectorized code was written in
Matlab to re-compute the transition probability matrix. This Matlab vectorization
resulted in substantial speedup.

In this example, the time of the null-event algorithm has been advanced in two
ways. First, every time a successful adsorption event happens, the time clock is incre-
mented by an average amount of �t = 1/(Ŵ6NL). Alternatively, in every MC event,
the time clock is advanced by an average amount of �t = 1/(ŴmaxNL), according to
Eq. 21. In this example, Ŵmax = Ŵ6 + max{Ŵj}5

j=1. For attractive interactions (w > 0)

used in this example, max{Ŵj}5
j=1 = νde−w/kT . For repulsive interactions (w < 0), on

the other hand, one would have max{Ŵj}5
j=1 = νde−5w/kT .



280 A. Chatterjee, D. G. Vlachos

0

1

2

3

4

5

6

7

0 4000 8000 12000 16000

M
o

n
o

la
y

er
s 

d
ep

o
si

te
d

Time

(a)

w/kT=2

τ-leap KMC

Rejection-free KMC

Null-event KMC

τ-leap KMC

Rejection-free KMC

Null-event KMC

τ-leap KMC

Rejection-free KMC

Null-event KMC

Null-event KMC

10-4

10-3

10-2

10-1

0.8 1 1.2 1.4 1.6 1.8 2 2.2

r
G

o
w

ht
ra

et
[m

o
n
o

l
ya

mi t/sr e
e
]

Interaction, w/kT

(b)

10-2

10-1

100

1 3 4 5

C
la

ss
 p

ro
b

ab
il

it
y

Class (Number of nearest neighbors)

(c)

0

550

1100

1650

101 102 103 104

u
B

n
d

el
s

o
f

m
u
l

fit
ri

ni
g

m
e

ht
o

d

Time

(d)

Adsorption

Class 1

Class 2Class 3
Class 4, 5

2

Fig. 6 Crystal growth example (Sect. 2.2.1). (a) Layers deposited versus time using different algo-
rithms for w/kT = 2. The squares correspond to the time being calculated based on adsorption events

only and the crosses based on the average time increment 1
NL

1
Ŵmax

(see text), both for the null-event

algorithm. The acceleration factor of the τ -leap method is f = 20. (b) Growth rate versus interaction
strength using three algorithms. The multiple triangles at w/kT = 1 indicate results for seven values of
the acceleration factor of the τ -leap method ranging from f = 15 to 1,000. Even for the largest f , the
error in growth rate is small. (c) Probability of observing a desorption class (arithmetic mean over a
long period showing in panel a) using the three algorithms (f = 20) (error bars denote two standard
deviations). For panels a–c, the lattice size is NL = 40 × 40. (d) Bundles (number of events executed
at each time increment) versus time from a NL = 200×200 lattice simulation using the τ -leap method
with f = 2, 000 and w/kT = 2. For all simulations, �µ/kT = 1.5 and νd = 1

Figure 6 compares results from the different algorithms. Figure 6a shows the num-
ber of layers deposited versus time. Two sets of points are shown for the null-event
algorithm corresponding to the different methods of computing time. The excellent
agreement indicates the accuracy of all methods and the fact that the time clock of
null-event algorithms can be advanced correctly in different ways. Figure 6b shows
the growth rate versus the strength of interaction for all methods. The coincidence
of points with the line underscores the equivalence of all methods. Figure 6c shows
the probability of observing sites with a certain number of nearest neighbors, after
quasi-equilibration has been reached, for the simulation depicted in Fig. 6a. This is a
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better statistic of the agreement of methods and shows that the surface topology is
the same within error.

Figure 7 compares the computational efficiency of the null-event and rejection-
free methods. The horizontal dotted line separates the graph into two and indicates
the regime where each algorithm is more efficient. At low-interaction energies, the
null-event algorithm is more efficient despite the large fraction of unsuccessful events
due to the lack of updating the entire system. This is contrary to the general belief.
In fact, this behavior can happen even if local updating is used (see [127] for an
example). Under such conditions, the desorption transition probabilities of sites with
1 and 2 nearest neighbors are not that low in comparison to adsorption, and thus, the
probability of successful desorption events is moderate. However, as the interaction
strength increases, the probability of unsuccessful events goes to 1, and the null-event
method becomes more inefficient. Under such conditions, the desorption transition
probabilities are too low in comparison to that of adsorption, and thus, the normali-
zation constant, Ŵmax, is dictated by adsorption. At the same time, the probability of
having successful desorption events is too low.

7.2 Defect dynamics

The KMC method is often employed to obtain transport properties, such as diffusion
coefficients, of defects. Here we focus on the model of Sect. 2.2.2. Figure 8 shows the
tracer diffusion coefficient for the aforementioned surface vacancy model, which is
computed as

Dt =
〈

δ2(t)
〉

/t (41)

for various defect coverages. Here δ2(t) is the ensemble averaged displacement of
the tracer particle during a time interval t. Defects are initially placed randomly on a
lattice of size NL = 100 × 100. The range of interaction potential is Lpotential = 1. The
standard deviation in the diffusivity data is roughly 0.01 times the diffusion coefficient.
Implementation was done in Fortran 90.

The results show that the diffusion coefficient decreases with increasing defect
coverage because diffusion is possible only between a substrate atom and a defect,
and because of frequent collisions between vacancies at large vacancy coverages. At
complete defect coverage, c0 = 1, Dt = 0 m2s−1. At low-defect coverages, the diffusion

Fig. 7 Comparison of CPU of
null-event and rejection-free
methods (left vertical axis) and
fraction of unsuccessful events
of the null-event algorithm
(right vertical axis)
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Fig. 8 Tracer diffusion
coefficient (left vertical axis)
obtained from the
rejection-free and the
null-event KMC methods and
percentage of successful events
in the null-event method (right
vertical axis) versus defect
coverage c0

coefficient is given by Dt ≈ νma2/4, where a is the lattice constant. The computed
tracer diffusion coefficient, in Fig. 8, matches the tracer diffusion coefficient at the
asymptotic zero-defect coverage limit.

The rejection-free and the null-event KMC methods give identical results, further
demonstrating the equivalence of the two methods discussed based on probability
theory and shown also above with the crystal growth example. The percentage of
successful events in the null-event algorithm is also shown as a function of defect cov-
erage in Fig. 8. At low coverages, the probability of selecting a defect site, according to
Eq. 18, is low, and the probability of a successful event (Eq. 29) is also low. However,
the method becomes more efficient as the coverage increases.

Figures 9–11 compare the CPU requirements of various parts of a KMC simulation
for a low-defect coverage of c0 = 0.005. Figures 9 and 10 employ the rejection-free
algorithm, whereas Fig. 11 is obtained using the null-event algorithm. Figure 9 employs
a binary tree structure to represent the transition probabilities, whereas the other two
figures employ array structures. Local (global) updates of the transition probabilities
are employed in panels a and c (panels b and d) of these three figures. Local (global)
interaction energy updates are employed in panels a and b (panels c and d) of the
figures. The CPU for the same fixed real time, obtained with the Portland group (PG)
profiler, is mentioned above the pie chart in each panel. Each pie chart gives the rela-
tive computational requirements of various KMC parts. Since similar conclusions are
obtained regarding the efficiency of local versus global search and update methods
from all three figures, we discuss Fig. 9 in more detail.

Figure 9a shows that when local update methods are employed, the least compu-
tational resources are needed. After each diffusion event, the interaction energy at
four lattice sites, and the transition probabilities of 20 diffusion processes need to be
updated. For this reason, and given the costly exponentiation involved in Eq. 9, the
local update of transition probabilities is more time consuming than the local interac-
tion update step (note though that this is problem specific). The CPU requirements
for process search with the binary tree search are negligible compared to the update
steps because of the small number of levels present in the binary tree (Nlevel is 11 in
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Fig. 9 Computational requirements for local and global update methods with the binary search
method (using the binary tree) and the rejection-free KMC algorithm with c0 = 0.005 in Fig. 8. Local
(global) update of the transition probabilities is applied in panels a and c (panels b and d). Local
(global) update of the interaction energy is applied in panels a and b (panels c and d)

this case) and the large CPU requirements for computing Ŵij. This is not the case with
the linear search method in Fig. 10.

The CPU scaling laws mentioned earlier suggest that the ratio of CPU times
between global and local update methods would be of the order of NL = 104. In
general, these predicted ratios seem to hold well [127]. However, in certain cases the
predicted ratio is an upper bound. For example, after enabling all optimizations during
compiling and linking of the KMC code, smaller ratios were obtained for this example.
When all microscopic rates and branches of the binary tree are updated (panel b), 300
times more computational time is needed in comparison to panel a. In panel c, most of
the time is spent in updating the interaction energy. The CPU requirements of panels
c and d are 75 and 380 times higher, respectively, in comparison to panel a. Nonethe-
less, despite the complexities involved in their implementation, computational savings
from efficient search, and local update methods are tremendous.

Significant computational resources are required for performing a linear search in
Fig. 10, and in generating uniform random deviates for failed events in the null-event
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Fig. 10 Computational requirements for local and global updates using the linear search method
(using an array) and the rejection-free KMC algorithm with c0 = 0.005 in Fig. 8. Local (global)
update for the transition probabilities is applied in panels a and c (panels b and d). Local (global)
update for the interaction energy is applied in panels a and b (panels c and d)

KMC method, as shown in Fig. 11. In the case of the null-event KMC method, efficient
pseudorandom number generators can reduce computational requirements [138].
Alternatively, a modified hybrid null-event KMC algorithm can be employed [131], in
which only sites, where diffusion events are possible, are selected, to increase the num-
ber of successful events. Such hybrid algorithms are a compromise between the ease
of implementation of the null-event method and the efficiency of ‘efficient’ rejection-
free methods. In this example, the null-event algorithm is slightly more efficient than
a rejection-free method with global search and update despite the very low coverage
of defects used for these simulations. While it does not make sense to locally update
the microscopic rates and not the interaction energies, these simulations re-emphasize
the fact that computational efficiency requires that all modules of an algorithm should

perform local updates (not just one of them).
The CPU requirements for local and global interaction energy updates with differ-

ent interaction potential cut-off lengths, Lpotential, are shown in Fig. 12. Long-ranged
interactions are commonly encountered with electrostatic, steric, and elastic interac-
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Fig. 11 Computational requirements for local and global update methods using the linear search
method (using an array) in the null-event KMC algorithm with c0 = 0.005 in Fig. 8. Local (global)
update for the transition probabilities is applied in panels a and c (panels b and d). Local (global)
update for the interaction energy is applied in panels a and b (panels c and d)

tions. As shown on the right y-axis of Fig. 12, the number of interacting interactions
increases with increasing Lpotential. For example, the number of interacting sites of
each site is Ninterac = 4 and 48 for Lpotential = 1 and 4, respectively. At larger values of

Lpotential, the functional dependence is proportional to L2
potential. Rather than identi-

fying interacting neighbors in each KMC event (as in MD or off-lattice KMC), which
is a time consuming process, a list of neighbors is employed to take advantage of the
fixed lattice. This list contains information about the strength of interaction between
any two chemical species at two different sites. The length of the list for a site is
proportional to the number of interacting neighbors. During an update step at site i,
all interactions are recomputed for the entire list of neighbors of i. It should be noted
that a list of neighbors with a finer lattice representation (i.e., with a sub lattice con-
stant spacing) and interpolation techniques could be employed for off-lattice KMC.
When an array representation is employed for a periodically repeating lattice, a list
of neighbors for a single site can be used as a template for all sites. The neighbors of
a different site are obtained based on the relative positions between sites stored in
this template. Even though this approach drastically reduces memory requirements,
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Fig. 12 CPU requirements for
global and local interaction
energy updates (left-handed
axis) and number of interacting
neighbors (right-handed axis)
versus potential cut-off
distance, Lpotential. The binary

tree search method was
employed for all cases
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which would become necessary for very large lattices and number of processes, the
computational cost increases when the actual coordinates are computed.

Figure 12 shows that the global update method is 800 times more expensive than
the local update method with all compilation and linking optimizations enabled. Both
global and local updates have roughly a-L1.35

potential power law dependence. As a result,

the total CPU requirements for the global and local update methods also increase
with Lpotential. Binary tree search and local update of transition probabilities were
employed for all cases in Fig. 12. Roughly 100% (10%) of the computational time is
spent in updating the interactions with the global (local) update method.

The computational requirements for different algorithms discussed above are con-
sistent with discussion of CPU scaling rules in Sect. 6, and underscore the need for
efficient algorithmic implementations to access large length and time scales. Local
search and updates have to be implemented in all modules of the code. Otherwise,
the efficiency is poor. However, this computational speed-up is often insufficient for
accessing realistic lengths and times in physical systems displaying multiscale phe-
nomena. Such challenges, imposed by large separation of length and time scales,
were discussed in Sect. 4 and Table 1. In the rest of the paper, spatial and temporal
coarse-graining techniques are discussed that can overcome these challenges.

8 Spatial coarse-grained Monte Carlo (CGMC) simulations

Due to it’s computational cost, the KMC method has mostly been implemented for
small lattices (e.g., up to ∼ 103 × 103 lattice sites in 2D) with periodic boundary
conditions. Recent research efforts aim at accelerating the KMC method via multi-
scale approaches (see Table 1). A review on several multiscale approaches has been
discussed in Vlachos [36]. In this section, we discuss a particular multiscale method,
called the spatial coarse-grained Monte Carlo (CGMC) method.
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8.1 The concept

The CGMC method enables simulation of larger length and time scales at a reasonable
computational cost by grouping lattice sites into coarse cells (spatial coarse-grain-
ing) [83,84,86]. The idea of coarse cells is reminiscent of the renormalization group
(RG) theory [139]. Unlike RG, used for studying equilibrium critical phenomena, the
CGMC method is derived via a coarse-graining, non-equilibrium statistical mechanics
approach for the evolution of far from equilibrium as well as equilibrium systems. The
CGMC method incorporates the correct microscopic physics, and thermal fluctuations
[79], which are essential for correctly modeling fluctuation-driven and correlated phe-
nomena, such as nucleation, growth, and phase transitions. Since both KMC on a
microscopic lattice and a coarse lattice use the same algorithm, hereafter, the former
is referred to as the microscopic (lattice) KMC method.

The CGMC method can be implemented using either the null-event or any rejec-
tion-free algorithm discussed above. Furthermore, the search and update methods
discussed above for microscopic KMC simulation apply directly to the CGMC method
as well.

A coarse-grained difference-differential equation is derived to describe the time
evolution of coarse-grained variables, such as the coarse-grained system configura-
tion, transition probabilities, and interatomic/intermolecular interactions. A hierarchy
of coarse-grained models, spanning from a microscopic lattice (zero coarse graining)
to a spatially homogeneous description (infinite coarse-graining) is obtained by sim-
ply controlling the degree of coarse-graining [36,140,141]. Increased coarse-graining
results in reduced computational cost typically at the expense of a larger computa-
tional error.

The coarse-grained transition probabilities are derived from the underlying micro-
scopic lattice via a systematic procedure that ensures correct asymptotic limits in the
case of zero (the microscopic model) and infinite (a global mean field model) coarse-
grainings. The entire coarse-grained model is expressed in terms of coarse-grained
variables, namely the coarse cell size and the populations within a coarse cell.

The main assumption in CGMC is that local equilibrium is achieved within a coarse
cell. The local equilibrium assumption requires fast processes within a coarse cell to
relax to a quasistationary probability distribution function (pdf), and only slow pro-
cesses are sampled by projecting their transition probabilities onto the quasistation-
ary pdf of the fast processes. The quasistationary pdf can be computed exactly, using
multigrid techniques, or approximately, using lower moments of the pdf (estimated
via statistical mechanics-based analytical stochastic closures). The local equilibrium
assumption is not as limiting as it may appear at first glance, because it is a general
characteristic of dissipative particle dynamics.

The CGMC method is most suitable for problems where there is a need for KMC
simulation of really large domains. Unfortunately, most analytical stochastic closures
are not exact and they result in loss of information and error in solution. Non-uniform
coarse lattice generation (adaptive CGMC method), based on error estimates from
information theory, and a hierarchy of stochastic closures (all the way up to using
multigrid methods) can be employed to overcome the issue of accuracy (see below).
Next we summarize the reasons rationalizing the acceleration of the CGMC method,
followed by an elaboration of the aforementioned concepts.
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8.2 Speedup resulting from the CGMC method

The CGMC method overcomes several of the aforementioned challenges in KMC
simulation (see Sect. 4 and Table 1). Acceleration is achieved for the following rea-
sons:

(1) Computation of the quasi-stationary pdf of the fast processes and projection of
the transition probabilities of the slow (rare) events on the pdf bypasses the
serious problem of stiffness (co-existence of large and low barriers) in real sys-
tems. CPU advantages can be tremendous (proportional to the separation of time
scales). This approach is reminiscent of the computational singular perturbation
(CSP) and low-dimensional manifold (LDM) methods that have been used very
successfully in deterministic models.

(2) Spatial coarse-graining first reduces the total number of processes (because of
having fewer coarse cells, m) from the microscopic limit of NL

∗Np to the coarse
limit of m∗Np. This immediately reduces computational cost linearly, when global
search and update methods are employed. Second, spatial coarse-graining reduces
the range of coarse interaction potentials. For example, when Lpotential = 5 and
five lattice sites are grouped uniformly for a 1D lattice, the number of interacting
neighbors per microscopic site and coarse cell are given by 10 and 2, respectively.
This aspect reduces the computational time for computing interactions and for
search and update steps and enables simulation of large length and time scales.

(3) Spatial coarse-graining results in additional speed-up for surface diffusion. Spe-
cifically, when an atom/molecule jumps from one coarse cell to a different coarse
cell in a single step, a coarse time increment is taken (proportional to the square
of the cell-to-cell centers distance) compared to a microscopic lattice jump.

(4) Finally, the one process-at-a time limitation of the KMC method is overcome by
coupling the CGMC method with the τ -leap method (temporal acceleration), as
discussed in Sect. 9.1.

8.3 Coarse-grained variables and coarse-grained master equation

This section first introduces the notation and discusses the idea of separation of scales
in a somewhat abstract manner. The first step in CGMC is to group qk lattice sites
to form m coarse cells, denoted as Ck, k = 1, . . ., m. Such a coarse lattice is shown in
Figs. 13 and 14 for the 2D case. Here, qk � 1 is an integer that determines the degree
of coarse-graining. Site conservation requires that

∑m
k=1 qk = NL, and m is also an

integer. So far only rectangular/cuboid coarse cell tessellations have been employed
because of the relative ease in deriving the corresponding coarse master equation
and transition probabilities [83,84,86]. For uniform coarse-graining, site conservation
requires that the coarse lattice consists of m = NL/q uniformly sized coarse cells of
size q.

The vector of time-dependent coarse-grained occupancies of all cells, denoted as η,
is the main observable in a CGMC simulation. Each element of η gives the population
of a particular chemical species residing on a particular lattice site type (such as top,
hollow, and bridge sites) in a particular cell Ck. In the limit of no coarse-graining, η = σ

and m = NL, whereas in the limit of maximum coarse-graining, η has a dimensionality
dim(η) = dim(σ )/NL and m = 1.

For simplicity in notation, we discuss the CGMC method for a binary system
on a single-site lattice. Extension to more complex systems is straightforward [142].
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Fig. 13 Schematic of a
two-dimensional (a)
microscopic and (b)
coarse-grained lattice. In (b)
the microscopic lattice is
shown in dashed lines. From
Chatterjee et al. [86]
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Hereafter, we focus on the submonolayer model (Sect. 2.2.3). Derivations in the
CGMC method presented here are valid for any two-body interaction potential J(r).
Extensions to multibody interaction potentials, such as the embedded atom [143] and
the Stillinger and Weber [144] potentials, are possible.

The coarse-grained occupancy in Ck, ηk =
∑

v∈Ck
σv, gives the number of atoms/mol-

ecules in Ck, where 0 ≤ ηk ≤ qk. The cell coverage, i.e., the fraction of occupied sites
in Ck, is denoted as η̄k = ηk/qk and the spatially averaged coverage over the entire
lattice is denoted as θ =

∑m
k=1 ηk/N. As shown in Fig. 13, η̄k has quantized values

from 0 to 1 with increments of 1/qk.
The coarse-grained difference-differential equation is derived from the microscopic

difference-differential equation by exploiting the aforementioned time scale separa-
tion between microscopic processes via singular perturbation analysis. The overall
approach is reminiscent of adiabatic elimination in stochastic differential equations
[145]. In passing, we should note that coarse-graining of the master equation and time
scale separation are very important issues and have also been discussed for well-mixed
systems, e.g., [77,78,80–82,146].

Equation 2 is written separately for the fast and slow processes, which gives rise to a
low-dimensional stochastic manifold. Summing up contributions for the fast processes
within coarse cell Ck, k = 1, . . ., m, results in m difference-differential equations given
by

d
∑

i∈Ck

σi(t̃f ) = dt̃f

⎡

⎣

∑

j

∑

i∈Ck

Ŵ+
ij,f (σ ) −

∑

j

∑

i∈Ck

Ŵ−
ij,f (σ )

⎤

⎦ , k = 1, . . ., m. (42)
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Here the subscript f in Ŵ+
ij,f and Ŵ−

ij,f denotes fast processes. As an example, two

time scales were considered in Chatterjee and Vlachos [79], namely, adsorption and
desorption processes were the slow events and surface diffusion was the fast pro-
cess. Slow processes are not executed over short time scales. When a coarse cell is
locally equilibrated in a short relaxation time, determined by Ŵ+

ij,f and Ŵ−
ij,f , the local

quasi-stationary pdf of states is obtained. When the system is locally relaxed, one has

∑

j

〈

∑

i∈Ck

Ŵ+
ij,f (σ )

〉

−
∑

j

〈

∑

i∈Ck

Ŵ−
ij,f (σ )

〉

= 0, k = 1, . . ., m. (43)

The quasi-stationary pdf is independent of the initial conditions and depends only on
mesoscopic constraints, such as local mass, energy, and temperature arising from the
slow processes in each coarse cell. The configuration space evolves over the slow time
scales of t̃s interest according to

d
∑

i∈Ck

σi(t̃s) = dt̃s

⎡

⎣

∑

j

∑

i∈Ck

Ŵ+
ij,s(σ ) −

∑

j

∑

i∈Ck

Ŵ−
ij,s(σ )

⎤

⎦ , k = 1, . . ., m. (44)

The CGMC solves Eq. 44. Spatial correlations, activation barriers, etc., required in Eq.
44, are determined only after the coarse cell has locally been equilibrated according
to Eq. 43.

Equation 43 makes evident of a theoretical difficulty, namely, how to connect the

ensemble averaged coarse-grained transition probability, given by Ŵ̄j(k) =
〈

∑

i∈Ck

Ŵij

〉

,

for correlated microscopic processes in terms of the coarse variable ηk. Note that over-
bars used in this paper denote the corresponding coarse-grained variables depicted
in brackets. Assuming constant frequencies, the coarse-grained adsorption transition
probability for Ck is given by

Ŵ̄a(k) =
〈

∑

i∈Ck

Ŵia

〉

=
∑

i∈Ck

νa(1 − 〈σi〉) = νa(qk − ηk), k = 1, . . ., m (45)

and the coarse-grained desorption transition probability is given by

Ŵ̄d(k) =
〈

∑

i∈Ck

Ŵid

〉

= νd

〈

σie
−Ubinding(i)/kT

〉

, k = 1, . . ., m. (46)

Spatial correlations on the microscopic lattice make the connection between
〈

σie
−Ubinding(i)/kT

〉

and the coarse variable (constraints) ηk difficult.

Likewise, spatial correlations determine the coarse Hamiltonian given by

H̄(σ ) =
m

∑

k=1

(

H̄1(k) +H̄2(k) +H̄ext(k)
)

, (47)

where

H̄1(k) = −
∑

i∈Ck

∑

i′ ∈ Ck

i′ �= i

〈

J(|i − i′|)σiσi′
〉

(48)
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is the contribution from interactions between Ck and other cells Cj ,

H̄2(k) = −
∑

i∈Ck

∑

i′ ∈ Ck′

k′ �= k

〈

J(|i − i′|)σiσi′
〉

(49)

is the contribution from interactions within Ck, and

H̄ext(k) = h̄ηk (50)

gives the contribution of the coarse external field h̄.

8.4 Analytical stochastic closures

Analytical expression for the exact quasistationary pdf with nearest-neighbor inter-
actions is known for the 1D lattice for certain ensembles from statistical mechanics
[12]. However, exact pdfs for 2D and 3D lattices are not available for the general
case. Either approximate analytical stochastic closures, such as the local mean-field
(MF), quasi-chemical (QC), and cluster expansions, are employed in place of Eq. 43,
or Eq. 43 is solved numerically via multigrid techniques to obtain the quasi-stationary
microscopic pdf. These different approaches are discussed next.

8.4.1 Local mean-field (MF) approximation

In the local MF approximation, a uniform distribution of particles is assumed and
any local correlations between particles inside a coarse cell are disregarded, i.e.,
〈ξ1ξ2〉 ≈ 〈ξ1〉 〈ξ2〉. Here ξ1 and ξ2 are two independent random variables. The intra-
and inter-cell terms of the coarse-grained Hamiltonian derived using the local MF
approximation is given in Katsoulakis and Vlachos, Chatterjee and Vlachos, Katsou-
lakis et al., and Chatterjee et al. [84–87]

H̄1(k) = −1

2

m
∑

k=1

J̄kkηk(ηk − 1) (51)

and

H̄2(k) = −1

2

m
∑

k=1

m
∑

k′ = 1
k′ �= k

J̄kk′ηkηk′ , (52)

respectively. Here

J̄kk =

∑

i∈Ck

∑

i′ ∈ Ck

i′ �= i

J(|i − i′|)

qk(qk − 1)
(53)

is the coarse-grained potential within cell Ck and

J̄kk′ =

∑

i∈Ck

∑

i′ ∈ Ck′

k′ �= k

J(|i − i′|)

qk(qk − 1)
(54)



292 A. Chatterjee, D. G. Vlachos

is the coarse-grained potential between cells Ck and Ck′ obtained using Haar-wavelets.
The coarse-grained potentials are real-valued constants evaluated at the beginning of
a CGMC simulation for a given mesh. The term qk(qk − 1) results from the lack of
self-interaction term due to a hard-potential at zero separation (exclusion principle).

The coarse-grained interaction energy between adsorbed sites, using the local MF
approximation, is given by

Ubinding(k) = J̄kk(ηk − 1) +
∑

k′

k′ �= k

J̄kk′ηk′ . (55)

Neglecting the spatial correlations in Eq. 46 one gets

Ŵd(k) =
∑

v

νd

〈

σve−Ubinding(v)/kT
〉

≈ νdηke−Ūbinding/kT . (56)

As before it is assumed that desorption obeys Arrhenius dynamics. Note that by
using the MF closure, Ŵ̄d andŪbinding can directly be expressed in terms of the coarse
variable ηk (compare Eqs. 56 and 51 with Eqs. 46 and 47, respectively).

Numerical examples have shown that the CGMC method with the local MF approx-
imation is reasonably accurate and extremely computationally efficient [84–87]. Scal-
ing laws for CPU were derived in terms of the degree of uniform spatial coarse-grain-
ing, q [84,85]. For instance, it was found that the CPU requirements decrease as q3

for short-ranged potentials and q4 for long-ranged potentials for diffusion (canonical
ensemble) with linear search and global updates. Even with a modest coarse-graining
of q = 3 × 3, these scaling laws imply that the CPU requirements of CGMC decrease
by a factor of up to 6,500 in comparison to the microscopic KMC method. CPU
requirements for diffusion on a 2D lattice using binary search and local updates are
discussed for the first time later in this section. Large CPU savings with high accuracy
can be expected with non-uniform coarse lattices discussed later.

8.4.2 Local quasi-chemical (QC) approximation

The QC approximation (or the equivalent Bethe–Peierls approximation) is employed
within each cell Ck (termed as local QC theory) when nearest-neighbor interactions
are present and cell boundaries can be neglected. In the local QC approximation, the
partition function for the coarse cell Ck is given by Hill [12]

Q(qk, ηk, T) = Q
ηk

s QNN , (57)

where Qs = e−h/kT is the partition function of a single adsorbed particle on the lattice,

QNN =
[

qk!
ηk!(qk − ηk)!

]1−Z
(Zqk/2)!

(Zηk/2 − NNN
01 /2)!(NNN

01 /2)!2(Z(qk − ηk)/2 − NNN
01 /2)!

(58)

is the configurational contribution to the partition function Q, NNN
01 (NNN

11 ) is the num-
ber of pairs with one site (both sites) occupied in Ck and Z is the coordination number
of a 2D square lattice. Ultimately, the spatial correlations of nearest-neighbors are
obtained in terms of NNN

01 and NNN
11 .
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Neglecting boundary effects (qk → ∞), the coarse-grained Hamiltonian is given
by Chatterjee and Vlachos [79]

H̄(η) =
m

∑

k=1

(H̄2(k) + h̄ηk) = −
m

∑

k=1

ZqkJNN

2

[

η̄k − 2η̄k(1 − η̄k)

ζNN + 1

]

+
m

∑

k=1

h̄ηk. (59)

Here JNN is the isotropic NN interaction potential between two neighboring adsorbed
particles. Likewise, the coarse-grained transition probability for desorption is given
by Chatterjee and Vlachos [79]

Ŵ̄d(k) =
〈

∑

v∈Ck

Ŵd(v)

〉

= 0, when η̄k = 0, (60)

Ŵ̄d(k) ≈ νdqke−JNNZ/kT , when η̄k = 1 (61)

and

Ŵ̄d(k) ≈ νdηk

[

(ζNN − 1 + 2η̄k)(1 − η̄k)

(ζNN + 1 − 2η̄k)η̄k

]Z/2

e−JNNZ/2kT , when 0 < η̄k < 1. (62)

8.4.3 Advantages and limitations of analytical closures

An advantage of the local MF and QC approximations is that analytical expressions
for the coarse energetics and transition probabilities are available in terms of the
coarse observable ηk. Extension of this approach to diffusion on adaptive lattices is
not as straightforward as suggested by Eqs. 42–44 (for uniform meshes this is not
as difficult a task). As evident from macroscopic scaling laws, such as the Stokes–
Einstein’s law, incorporation of the correct length scales in the transition probability
for diffusion between coarse cells is important to obtain the correct time scales. In
Katsoulakis and Vlachos, and Chatterjee et al. [84,86], a systematic approach was
introduced to derive the diffusion transition probability on arbitrary complex lattices.

The local MF approximation is exact in the limit of infinitely high temperatures,
and/or zero interaction strength and/or infinitely long interaction potential. As the
range of interactions or lattice dimensionality increase, the accuracy of the local MF
closure improves. Thus, fairly accurate simulations should be expected for 3D sys-
tems even with short-ranged interactions. Similarly, the local QC approximation is
a good approximation (but not exact) when the potential entails nearest-neighbor
interactions.

Detailed discussion on information loss associated with the local MF approximation
is given in Sect. 8.6. More sophisticated approximations, such as cluster expansions
[12,147, M. Katsoulakis et al. submitted], can also be employed to improve the accu-
racy. However, the accuracy usually improves slowly with several moments of the pdf
at the cost of increasing mathematical complexity and computational requirements.
In contrast to traditional cluster expansions [12], the expansion in M. Katsoulakis et
al. (submitted) is not done around the high or the low-temperature limits but around
the CG approximations, which are already very good approximations. Hence just
one correction term gives good predictions even for nearest neighbors. Thus, further
developments in this type of expansions are most fruitful.
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Fig. 14 Comparison of (a)
time-dependent average lattice
coverage and the (b)
Hamiltonian of various
methods for simultaneous
adsorption, desorption, and
surface diffusion. Initially, the
lattice has no adsorbed atoms.
Local equilibrium within a
coarse cell is attained via fast
diffusion processes. A snapshot
of the coarse lattice
(m = 10 × 10 coarse cells) and
the microscopic lattice
(qm = 40 × 40 lattice sites)
from the CGMC simulation
with a two-level grid at time
t = 10 s is also shown in the
middle. KMC = microscopic
simulation,
CGMC-MF = spatially
coarse-grained MC (CGMC)
with local mean-field
approximation,
CGMC-QC = CGMC with
local quasi-chemical
approximation,
multiscale CGMC = CGMC on
two grids with stochastic
closure to explicitly handle
separation of time scales. From
Chatterjee and Vlachos [79]
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8.5 Multigrid methods

In Chatterjee and Vlachos [79], a multigrid numerical scheme was employed to gen-
erate the quasi-stationary pdf. In this method, two grids were used. A coarse lattice
is employed to numerically solve Eq. 44 over large length and time scales. A small
microscopic lattice of size qm is also embedded within each coarse cell Ck to solve
the master equation for fast processes only over short time scales (see Figs. 13 and
14), i.e., until quasi-steady state (Eq. 43 in this example) is achieved. The microscopic
KMC simulation uses the coarse variable ηk as a constraint. In turn, the transition
probabilities of slow processes on the coarse grid over long times are projected on the
pdf of the fine grid KMC simulation.

Significant acceleration results when q ≫ qm for two reasons. First, one computes
the correct pdf of fast modes, via the microscopic KMC method, using only a small
fraction qm/q of the entire domain. Second, additional acceleration results from the
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time scale separation between simulations on the two grids. Specifically, one evolves
the system over coarse (slow events) time scales, using correct transition probabil-
ities obtained from the underlying pdfs determined via brief KMC simulations on
short time scales (the duration of KMC simulation is such that quasi-steady state is
established; statistical methods to ensure this are given in Chatterjee and Vlachos,
and Samant and Vlachos [79,81]). Further acceleration can result by maintaining the
same pdf for a period of time and by firing multiple processes at once via the τ -leap
CGMC method discussed later [91].

An important advantage of the multigrid method is that it has no error, within
numerical accuracy, as long as the local equilibrium assumption is valid. In other
words, the method is exact for any range potentials and any temperature (as long as
the assumptions of separation of length and time scales are valid). Furthermore, it is
relatively easy to implement.

8.5.1 A priori computation of pdfs using look-up tables or neural networks

Instead of employing on-the-fly approaches for evaluating spatial correlations, one
can generate a priori a database of pdfs using microscopic lattice KMC simulations
for various atomic/molecular configurations. However, this may become tedious for
complex systems and may require interpolation and/or tabulation, when a large num-
ber of configurations are present. In such cases, more sophisticated fitting methods,
such as a neural network [148], can be trained to predict the quasi-stationary pdf with
macroscopic thermodynamic constraints, such as mass and temperature, as inputs.

The large acceleration obtained with the neural network is accompanied with diffi-
culties in determining input sets during training, some initial training time, complexity
of implementation of the method, and loss of accuracy due to insufficient sampling
during training. All of these issues are, though, surmountable given good implemen-
tation.

8.6 Adaptive coarse lattice generation via error estimates based on information
theory

It has been found through simulation and Large Deviation theory [83–87] that the
local MF approximation is accurate in the limit of infinitely long ranged interactions,
i.e., Lp → ∞ and/or zero interactions and/or infinite high temperatures, i.e., |βJ0| ≪ 1.
In practice, the local MF approximation can be reasonably accurate for Lp=3 in 2D
and at moderate temperatures, e.g., |βJ0| < 1 [84]. For strong, short ranged interac-
tions, and/or low temperatures, the local MF assumption results in information loss
of the atomic positions (local spatial correlations are absent).

A posteriori error estimates (upper bounds which are based on the solution on the
coarse lattice) in a CGMC simulation with the local MF assumption, resulting from
information loss due to spatial coarse-graining, were developed using information
theory methods [85,87,88,149]. The error bounds were expressed in terms of the level
of local coarse-graining, the interaction potential, and the local coverage. The relative
entropy difference between the microscopic and coarse-grained Gibbs measures is
[88]

∫

log

(

dµ̄

dµ

)

dµ̄ = O

(

NLq

Lpotential

)

. (63)
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Here, µ is the Gibbs measure for the microscopic lattice. Using Eq. 63 for a non-
uniform lattice, an estimate of the error in computing the Hamiltonian (the difference
between the exact microscopic and the coarse-grained Hamiltonians) is given by
Chatterjee et al. [88]

ER =
m

∑

k=1

ERk (64)

as a sum of error contributions from all cells, where

ERk = 4
jkk

qk(qk − 1)

〈

ηk(qk − ηk)
[

ηk(ηk − 1) + (qk − ηk)(qk − ηk + 1)
]〉

+ 4
∑

k′

k′ �= k

jkk′

qkqk′

〈

q2
kηk(qk − ηk) − 2ηkηk′(qk − ηk)(qk′ − ηk′)

〉

. (65)

Here jkk′ = max |J(i − i′) − J(i′′ − i′′′)| is the maximum difference in the interactions
between lattice points of Ck and Ck′ , i, i′ ∈ Ck and i′′, i′′′ ∈ Ck′ . It was shown in
Chatterjee et al. [88] via numerical analysis that Eq. 65 accurately captures the func-
tional trends of actual numerical errors, so it could be used as a guide of designing
adaptive lattices.

In the absence of gradients, Eq. 65 is nearly symmetric about the coverage of 0.5
implying that the error for a given cell size is largest around a coverage-value of one-
half. As a result, one should refine the mesh at interfaces. Equation 65 guides selection
of the cell size around the interface using mesh equidistribution or mesh insertion tech-
niques [87,88]. This approach enables design of optimal adaptive meshes resulting in
large accuracy and speed-up. Since ηk ≈ O(qk) for large q, it is intuitively expected
that εk ≈ O(q 2

k
) but this is only an approximate limit. This estimate gives an idea

that by doubling the mesh points, one could approximately improve accuracy by a
factor of 4 (in reality it is less).

8.7 Numerical examples

Figures 14 and 15 compare CGMC simulations using the local MF, QC and multi-
grid approach for strong, short ranged interaction (Lpotential = 1) with simultaneous
adsorption, desorption, and diffusion. As expected, the local MF approximation exhib-
its errors; the local QC approximation is reasonable but not as accurate; finally, the
multigrid approach, denoted as multiscale CGMC method in the graph, matches the
microscopic KMC solution. Another advantage of the multigrid method is its inher-
ent generality in terms of the number and type of processes, lattices, etc. that can be
treated. In fact, as illustrated in Chatterjee and Vlachos [79], one may not even have to
derive the coarse-grained transition probabilities in connecting the two (microscopic
and coarse) KMC simulators.

As an example of mesh generation guided by Eq. 65, an adaptive coarse lattice
was generated for a standing wave connecting the dilute and dense phases at equi-
librium in Chatterjee et al. [88] for the case of purely attractive interactions. The
isotherm is multivalued when attractive interactions are strong or temperatures are
low (specifically, when J0/kT > 4). When the two phases co-exist, a standing wave
connects the dense and the dilute phases. A 1D lattice with NL =16,384 microscopic
sites was used for the standing wave calculation with J0/kT = 12 and Lpotential = 128.
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Fig. 15 Probability
distribution function (pdf) for
(a) average lattice coverage
and (b) Hamiltonian at time
t = 10 s from different methods
(acronyms per Fig. 14) for the
simulation depicted in Fig. 14.
From Chatterjee and Vlachos
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As shown in Fig. 16, the standing wave is hardly resolved with a uniform coarse lattice
of q = 64. The resulting error is large. On other hand, the error can become sufficiently
small (lower than a tolerance), by adding more or localizing lattice points around the
interface.

The coarse-grained diffusion transition probability, derived for a 2D (100) lattice
[86], is employed to study the diffusion of atoms arranged initially as a stripe (shown
at treal = 0 ps in Fig. 17). In this numerical example, microscopic KMC and uniform
coarse lattice CGMC simulations were performed using periodic boundary conditions,
J0/kT = 0.8 and Lpotential = 3. Two different uniform coarse-grained lattices, namely,
q = 2 × 2 and 4 × 4 were employed. The microscopic and coarse lattices contain
NL = 300 × 300 microscopic lattice sites.

As time proceeds, atoms diffuse along the x-axis, until the lattice is uniformly
covered. As evident from Fig. 17, the coverage profiles obtained by averaging along
the y-axis from the CGMC simulations are in excellent agreement with those of the
KMC method. The CPU requirements for the microscopic (q = 1 × 1) and coarse
(q = 2 × 2 and q = 4 × 4) lattices are given by 36:14:1, respectively. The q3 CPU
scaling law, mentioned above, is not valid here since binary search and local updates
were employed for both the microscopic KMC and the CGMC simulations. However,
substantial savings are still observed even for moderate levels of coarse-graining.

9 Temporal acceleration (multifiring) methods

The CGMC method still follows the one process-at-a time approach of the microscopic
KMC method. While time acceleration is still achieved, as mentioned above, further
acceleration can be obtained via temporal coarse graining. This can be achieved by
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Fig. 16 (a) Standing wave at
equilibrium in the presence of
strong attractive interactions
(or low temperatures) for
three uniform meshes and an
adaptive mesh. (b) Error
estimates of CGMC solution
for three uniform meshes. Here
NL = 16, 384, J0/kT = 12 and
Lpotential = 128. (c) Adaptive

mesh used. From Chatterjee
et al. [88]
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executing (firing) multiple processes at once using one of the τ -leap (multifiring)
methods.

The τ -leap method is an approximate stochastic simulation method, which was
introduced by Gillespie [92] for modeling reaction networks in spatially uniform
(well-mixed) systems. There are several variations of the original method, based on
different distributions (Poisson versus binomial) and explicit versus implicit schemes
[93–97]. Numerical simulations for simple reaction networks and complex biological
networks have demonstrated that the method accurately captures the probability den-
sity function (pdf) of the time-dependent species populations for small τ . A central
assumption in the τ -leap method, termed as the leap condition [92], requires τ to be
sufficiently small so that the change in the population for all chemical species is small.
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Fig. 17 Comparison of the
time-dependent coverage
profiles from microscopic
(q = 1 × 1) and two CGMC
(q = 2 × 2 and 4 × 4) surface
diffusion simulations. The inset
depicts the initial conditions.
Initially atoms are present only
in the shaded stripe, and
diffuse to vacant sites at t > 0.
The lattice contains
NL = 300 × 300 microscopic
sites

9.1 τ -leaping on coarse-grained lattices

The τ -leap methods cannot directly be implemented on a microscopic lattice, since any
surface process would result in a population change that violates the leap condition.
For example, desorption of an atom from a site changes the occupation function from
1 to 0. The extension of the τ -leap idea to spatial KMC simulation was introduced
in Chatterjee and Vlachos [91]. Specifically, the temporally adaptive coarse-grained
Monte Carlo (τ -leap CGMC) method combines coarse-graining in both space and
time to study the evolution of the coarse-grained occupation state vector η.

The main idea is fairly simple. When the cell sizes qk, k = 1, . . ., m, of a coarse
lattice are sufficiently large, there are enough atoms/molecules within coarse cells
that the τ -leap method can be applied without violating the leap condition. Instead of
executing one process at a time, a ‘bundle’ of processes are then executed in all cells
during a time interval [t, t + τ ) and the time is advanced by a coarse amount τ .

So far the explicit Poisson and binomial τ -leap methods have been employed in
the CGMC method. In the explicit Poisson τ -leap method, the jth process bundle size
at cell Ck, γij, i.e., the number of times the jth process is executed during τ , is sampled
from the Poisson distribution

PPD(γij; Ŵijτ) = e−Ŵijτ

γij!
(Ŵijτ)γij . (66)

The average bundle size, based on Eq. 66, is given by Ŵijτ . However, since a Poisson
distribution random variable is unbounded, negative populations are encountered
[95, 150], when γij exceeds the available population size within a cell. The explicit
binomial τ -leap method overcomes this issue by sampling γij from the bounded bino-
mial distribution

PBD(γij; pj, γ
ij
max) = γ

ij
max!

γij!(γ ij
max − γij)!

p
γij

j (1 − pj)
γ

ij
max−γij . (67)
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Here γ
ij
max is the limiting reactant population size for each reaction, i.e., the number

of times this process can be executed in a coarse cell, and pj = min(Ŵijτ/γ
ij
max, 1) is

the probability associated with a successful event among γ
ij
max possible events. The

average process bundle size, based on Eq. 67, is given by Ŵijτ . Once γij for all processes
are determined, using Eq. 66 or 67, the populations ηk(t) are updated and the time is
incremented to t + τ . In order to ensure positive number of particles, the constrained
τ -leap method is recommended [95].

Various approaches have been employed to choose the time increment τ [92,95,98].
Our preferred method uses the r-criterion [95] such that

τ = r min(ηk/
∑

i,j

Ŵij). (68)

Here 0 < r < 1 is a user specified temporal coarse-graining factor. Equation 68 is valid
when only adsorbed species are consumed, for e.g., when only desorption processes
are present. A more general expression for τ in terms of r is given in Chatterjee and
Vlachos, and Chatterjee et al. [91,95]. The derivation of Eq. 68 is in essence similar to
the stability analysis of the forward Euler method. It was shown in Chatterjee et al.
[95] that the value of r ∼ 1 is closely related to the onset of numerical instabilities
in the algorithm. Values of r ∼ 0.1 give good results for several problems we have
studied.

In summary, accurate solutions can be obtained with simultaneous spatial and tem-
poral coarse-graining by employing accurate stochastic closures in CGMC for space
and by selecting τ such that the leap criterion, e.g., Eq. 68, is not violated.

9.1.1 CPU comparison for an adsorption-desorption example

CPU scaling laws in terms of the coarse cell size and length of interaction potential can
be derived. For example, it was shown that in the case of adsorption and desorption on
a uniform coarse lattice, the relative CPUs of CGMC (without temporal acceleration)
and τ -leap CGMC are [91]

tCPU,CGMC

tCPU,τ−CGMC
= rNLφ

(7 + 2Lpotential/q)t̂m + 2t̂exp + 2t̂rand/m

(15 + 2Lpotential/q)t̂m + 2t̂exp + 2t̂rand/m
, (69)

where φ is a constant, φ = θ when c0 < 1/2, and φ = 1 − θ when c0 > 1/2. Since the
CPU of the CGMC method is fixed, the CPU of the τ -leap CGMC decreases linearly
with increasing the temporal coarse-graining factor r and with the lattice size. Similar
relations have been found for other ensembles.

Figure 18 compares the CPU of the CGMC method with and without temporal
acceleration. Note that since the generation of Poisson and binomial random num-
bers is more expensive that that of uniform random deviates, the τ -leap CGMC
method becomes more expensive than the CGMC method when the bundle size is
small, as shown in Fig. 18. However, for large domains, where substantial spatial
coarse-graining is possible, bundle sizes can be large and the CPU savings can be
substantial, especially as the time step becomes larger (large r in Fig. 18).
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Fig. 18 Computational
requirements of the CGMC
(without temporal
coarse-graining) and the τ -leap
CGMC methods for an
adsorption–desorption
simulation. The parameters are
νa/νd = 0.4, J0/kT = 2,
Lpotential = 30 and

NL = 20, 000. Uniform lattices
of size q = 10 and q = 100 are
employed for the CGMC
simulations. The microscopic
KMC simulation corresponds
to q = 1. The r-criterion is used
for temporal coarse-graining
(see text). From Chatterjee
and Vlachos [91] 100
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9.2 τ -leaping on microscopic lattices

The above discussion points to the fact that use of multifiring is straightforward upon
spatial coarse-graining but raises the question of whether temporal acceleration is
ever possible if coarse-graining in space is not desirable or done. For example, when
spatial inhomogeneities span only a few nanometers, a microscopic lattice KMC sim-
ulation is the preferred method. The answer to the above question is affirmative.
By grouping sites with the same transition probability into the same group or class,
i.e., using the n-fold method, a fairly large number of sites in each class are typi-
cally present. Each class becomes then a pseudo process (or ‘lumped’ reaction) and
τ -leaping can be applied to the classes without necessarily violating the leap condition.
One can then apply the τ -leap method to microscopic spatial KMC simulations (see
D.G. Vlachos, submitted, for details).

9.2.1 A crystal growth example

Here we refer again to the earlier example of crystal growth (see Sects. 2.2.1 and
7.1) in order to illustrate the application of the τ -leap method in a microscopic KMC
simulation. In the simulations below, the coarse time step has been chosen as that of
the microscopic KMC simulation multiplied by an acceleration factor f (f > 1) [95]

τ = f/Ŵtot. (70)

This is a simpler choice of computing time increments (in comparison to the r-criterion
discussed above) and allows a more direct comparison between microscopic and
coarse simulations. The Poisson τ -leap method is employed in this example. Results
are shown in Fig. 6. Multiple data (seven calculations) for various values of the accel-
eration factor, f , of the τ -leap method from f = 15 to 1,000 were performed at
w/kT = 1. The proximity of points (triangles), which are hard to discern in the log-
arithmic scale, indicates a small error (up to ∼10%) with respect to the microscopic
simulation despite the substantial temporal coarse-graining.
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Figure 6d shows the bundles of the τ -leap method versus time for a larger lattice
of NL = 200 × 200. For sufficiently large lattices, the bundles can be large. In this sim-
ulation, many adsorption and desorption events occur per time increment, especially
for classes with one and two nearest neighbors. In contrast, sites with many nearest
neighbors have so low-desorption transition probability that such desorption events
rarely occur.

Regarding the performance of the τ -leap method, in all cases it is much faster
than the rejection-free method with the n-fold search method and global updating
(see Sect. 7.1). The acceleration depends on the size of the time increment τ . As an
example, for w/kT = 1 the τ -leap method is faster than the rejection-free method
by seven times for f = 15 and by 140 times for f = 1, 000. At the same conditions,
the CPU of the τ -leap method can be slightly larger and up to a factor of 5 less than
the null-event algorithm. Again, τ -leap methods are very efficient when large time
steps can be taken. For non-stiff problems, large domains result in large class sizes
and better speedup where the benefit of τ -leap methods is substantial.

10 Summary and outlook

In this paper an overview of the traditional and multiscale KMC methods was given.
Specifically, the challenges encountered in the KMC simulation were first outlined.
A firm foundation of the null-event algorithm was provided and its equivalence to the
rejection-free algorithm was established using simple probability theory. Examples
from crystal growth and diffusion of defects in 2D served to numerically illustrate the
equivalence of the two methods. We further compared these algorithms in terms of
implementation ease, memory, and computational cost.

The search and update steps are at the heart of any KMC simulation. Various such
methods were discussed, scaling laws were outlined, and numerical examples were
provided to compare them.

A number of physical systems exhibit spatial inhomogeneity over length scales
much larger than a few nanometers that cannot be captured using small periodic
lattices. Simulation of such large domains is currently impossible with microscopic
KMC methods. The coarse-grained KMC method is a promising technique for such
applications. This method is based on the assumption of local equilibrium in each
coarse cell, i.e., on separation of time scales. A number of stochastic closures as well
as multigrid methods can be used to resolve some or most of the lost information
for the distribution of particles within coarse cells and improve the accuracy of the
method. The method can further be improved using spatial adaptivity. The concept of
stochastic computational singular perturbation is key to handling separation of time
scales. Finally, temporal coarse-graining, using multifiring methods, can overcome the
one-at-a time execution of events and can be applied to both spatially coarse and
microscopic lattices resulting in further acceleration.

A direct application of these multiscale KMC methods capitalizes on the concept
of hierarchical multiscale method (HiMM) introduced in Vlachos [36]. HiMM is a sys-
tems analysis tool in which continuum mesoscopic equations (derived in the limit of
infinite coarse-graining), coarse-grained KMC methods, and microscopic KMC meth-
ods are employed hierarchically to study the stochastic behavior of complex systems.
This approach, used primarily for design and control of multiscale systems encompass-
ing multiple system variables, such as temperature and concentrations, starts with a
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low-level tool (e.g., large coarse-graining, low accuracy, low-CPU requirements), and
subsequently refines the information using higher-level tools (small coarse-graining,
high accuracy, large CPU requirements). Even though a similar idea is often employed
in the multiscale modeling community via different model representations of differ-
ent scales (hybrid multiscale modeling), the HiMM employs variable coarse-grain-
ing for the same underlying microscopic model and very importantly preserves the
noise between scales. The numerical advantages of this approach are outlined in Vla-
chos [36]. In essence, the HiMM can be viewed as a multiresolution system analysis
technique for identifying interesting dynamics and/or equilibrium phase behavior.
Recently, HiMM was employed for self-assembled nanopattern (namely, nanoparti-
cles, nanowires, and ‘inverted nanodots’) formation in heteroepitaxy, resulting from
an interplay between competing attractive, and repulsive interactions [140]. Deter-
ministic continuum mesoscopic equations are amenable to non-linear (bifurcation)
analysis techniques and enable the relatively easy generation of a dynamic phase
diagram of pattern shapes and scaling laws of feature size and shape, in terms of
the microscopic model parameters (e.g., interaction potential parameters, substrate
temperature, film thickness, and material properties). Next the CGMC method is
employed for investigating the role of thermal fluctuations in nucleation of patterns,
shape and defects, and for refining the phase diagram.

While all these methods are promising, application to real examples may need
some generalization of theory. Ultimately, the success of these methods will be dic-
tated from their ease of implementation and mainly from the resulting speedup in
real world problems.
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