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AN OVERVIEW OF STARCH-BASED PLASTIC

BLENDS FROM REACTIVE EXTRUSION

Sathya Kalambur* and Syed S. H. Rizvi
Department of Food Science

Cornell University

Ithaca, NY 14853, USA

ABSTRACT: The North American market for biodegradable plastics in 2005

was estimated to be around 60 million pounds (27 kt). Starch-based polymer

blends were expected to account for 30 million pounds (14 kt) with significantly

lower growth rates than other biodegradable polymers such as polyesters. The

main hurdle in the growth of starch-based products is the thermodynamic

immiscibility and non-wetting of starch with other polymers which leads

to serious deterioration of mechanical properties at >25–30wt% starch. Higher

amounts of starch in the blends entail adding suitable functional groups

on starch and other polymers in the blend to make them more compatible.

The primary challenge is to develop fast reaction chemistries that can be

transformed into viable processes and integrated into existing process lines with

economically viable formulations. This article briefly reviews some of the most

promising chemistries available for the reactive extrusion of starch-based

polymer blends (biodegradable/non-biodegradable).

KEY WORDS: biodegradable, starch, polyesters, immiscibility, reactive

extrusion, blends.

INTRODUCTION

POLYMER BLENDS CONTAINING varying amounts of starch have been
studied extensively as possible replacements for plastics mainly in

the area of packaging. Starch by itself is unsuitable because of various
disadvantages. These include:

1. brittleness in the absence of suitable plasticizers,
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2. hydrophilic nature of starch and poor water resistance,
3. deterioration of mechanical properties upon exposure to environ-

mental conditions like humidity, and
4. soft and weak nature of starch in the presence of plasticizers.

Thus, starch needs to be blended with other synthetic polymers
to eliminate these disadvantages. However, most of the synthetic
polymers are hydrophobic and thermodynamically immiscible with
hydrophilic starch, thus simple mixing will result in phase incompat-
ibility and poor mechanical properties. Ideally, starch and the second
polymer should be covalently bonded through existing functional groups
or by introduction of new functional groups. In this article, simple
mixing of starch with other polymers is referred to as composites
and reactive mixing is referred to as blends. Simple mixing does not
lead to phase separation if the starch present is below certain levels in
the composites [1]. Below this critical level, the deterioration
in properties has been found to be insignificant. For example
in starch–polyester composites, this critical level is approximately
25–30wt% [1].
Synthetic polymers that have been reactively blended with starch

have the following functional groups – carboxyl, anhydride, epoxy,
urethane, or oxazoline – that can react with the hydroxyl or carboxyl
groups in native and modified starches, respectively. Another method
for synthesizing starch-based blends is graft copolymerization. Synthetic
monomers are covalently bonded to hydroxyl positions on starch and
then polymerized to produce starch graft copolymers. Figure 1
illustrates various methods of reactive blending.
Recent advances have prompted this review on reactive extrusion

and compatibilization chemistries for starch–polymer blends. This
article will review several reaction mechanisms including reactive
extrusion blending of starch with other polymers and also starch
graft co-polymerization techniques. We have also reviewed the effects of
various reactive processes on the mechanical and functional properties
of these blends. Though hundreds of reactive processes have been
studied, very few of them promise to significantly increase the market
demand for starch in plastic applications. The primary challenges
for synthesizing starch-based blends with commercial utility are:
(1) overcoming miscibility problems at high starch contents,
(2) mechanical property deterioration at high starch content even in
reactive blends, and (3) cost, especially for biodegradable starch–
polyester blends at low starch contents (<30wt%).

40 S. KALAMBUR AND S. S. H. RIZVI



Starch-based Plastic Market

The biodegradable polymer market for North America is expected to
be 60 million pounds in 2005 – up from 25 million pounds in 2000 [1].
However, the starch-based polymer consumption is expected to only
grow from 20 to 30 million pounds during this time. Most of the future
growth will be in the area of synthetic biodegradable polyesters [1].
Some of the prominent applications of starch composites and blends that
exist in the market today are as follows:

1. Loose-fill packaging: most of the starch-based products in this
category consist of different kinds of starches – corn, wheat,
hydroxypropylated high amylose corn – with a small amount of
additives like polyvinyl alcohol, glycerol, polyethylene glycol (PEG),
or silicon dioxide. There is also a product derived from methyl
acrylate grafted corn starch. This product is made by Uni-Star
Industries Ltd in Illinois and is called ‘STAR-KORE’ [2].

2. Starch–polyester films: starch–polycaprolactone (PCL) film compo-
sites and blends are currently used in the market primarily as
compost bags. For example, ‘Envar’ is a reactive blend of starch and
PCL developed at Michigan State University and is marketed for use
in manufacture of compost bags.

Other applications of starch-based plastics include agricultural
mulches, hygiene products, and paper coating.

Plastic polymers

Plastic monomers 

Starch and starch
derivatives

Starch-co-plastic
polymers 

Starch-functional plastic
polymer blend 

Addition 

Grafting 

Grafting

Polymerization 

Functional plastic     +

Maleic anhydride, oxazoline,
urethane and carboxyl
functional groups

Figure 1. A scheme for synthesizing reactive starch blends.
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STARCH–POLYMER REACTIVE BLENDS

Addition of Maleic Anhydride (MA) Functional Groups

Maleic anhydride (MA) has been grafted onto many different
hydrophobic polymers – biodegradable and non-biodegradable – to
produce functional polymers. In the plastic industry MA-grafted
polymers were generally used as compatibilizers between ungrafted
polymer and other polar polymers like nylon [3–7]. The use of these
functional compatibilizers was found to improve strength, modulus,
and elongation by helping to form a co-continuous phase in the polymer
blend. Thus maleated polymers can act as compatibilizers between
the non-functional polymer and the starch. Blends can also be made
from maleated polymer and starch without any unmodified polymers.

Maleic Anhydride (MA) Functionalized Non-biodegradable

Polymer–Starch Blends

Addition of MA has been done on many non-biodegradable synthetic
plastic polymers, many of which were blends with polyamides.
These include poly(ethylene-propylene) rubber (EPR) elastomer
[8–11], polyethylene (PE) [3,12–14], polypropylene (PP) [15–17],
poly(phenylene ether) (PPE) [18], poly(acrylonitrile-butadiene-styrene)
(ABS) [19], and polystyrene (PS) [6,20,21]. The main reason for the wide
use of MA functionalized polymers is the ease with which the anhydride
can be grafted onto many polymers at normal melt processing
temperatures without significant homo-polymerization and undesirable
scission side reactions. Figure 2(a) illustrates a simplified reaction
scheme of MA addition to a polyolefin (PE).
The addition reaction can be done in solution or melt states. The

reaction is initiated by the presence of peroxide initiators like benzoyl
peroxide (BPO) or dicumyl peroxide (DCP). Commercially available
MA-functionalized polymers may be synthesized by adding MA directly
onto a whole or growing polymer chain. Figure 2(b) illustrates reaction
of MA-grafted PE with starch. This reaction is mostly done in melt state
during extrusion. The maleated polymers can react with starch through
the presence of free anhydride groups; this reaction of anhydride with
starch hydroxyl to form an ester does not produce water during the
reaction.
The maleated polymers that have been blended with starch are

styrene-MA (SMA) polymer [22,23], ethylene-propylene-MA (EPMA)
polymer [22,23], ethylene-vinyl acetate-MA (EVAMA) polymer,

42 S. KALAMBUR AND S. S. H. RIZVI



low-density polyethylene MA (LDPEMA), and high-density polyethylene
MA (HDPEMA) [24]. Blending was done in a melt extrusion process.
The tensile strengths of the SMA/EPMA blends are given in Table 1.
Tensile strengths of starch–SMA/EPMA blends were at least twice
those of starch–PS/ethylene-propylene(EP) composites demonstrating
compatibility of starch and SMA/EPMA polymers [22]. The authors
explained the improvement in properties as occurring because of
interaction between the anhydride functionality on EPMA/SMA forming
esters with starch and they predicted that free anhydride carboxyls
on maleated polymer in the blends could form covalent/hydrogen bonds
with starch hydroxyls. Water absorption was found to be significant in
the blends. Starch–EPMA blends at 80wt% starch absorbed 18wt%
after immersion in water for 60 days compared to 27wt% for SMA
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Figure 2. Simplified reaction scheme showing: (a) addition of MA to PE and (b) reaction
of maleated PE with starch.
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blends [22]. Dynamic mechanical analysis (DMA) studies showed two
glass transitions (Tg) for starch–EPMA blends and one broad Tg for
starch–SMA blends. The broad Tg peak for starch–SMA blends did not
indicate miscibility but arose because the two transitions for starch
and SMA were close to each other and could not be resolved.
Biodegradation studies showed that the starch component was
biodegradable but EPMA and SMA were not affected. Bhattacharya
et al. [24] also studied blends of starch (70wt%) with EVAMA,
HDPEMA, and EMA. Tensile and flexural strength and ultimate
elongation of these blends with maleated plastics increased significantly
over that of composites containing unmodified plastics. Table 2
illustrates the effect of polymer maleation on the mechanical properties
of the starch-maleated polymer blends.

Maleic Anhydride (MA) Functionalized Biodegradable

Polyester–Starch Blends

Maleated polyesters have been synthesized from high molecular
weight PCL [25], polybutylene succinate (PBS) [26], polytetramethylene

Table 1. Mechanical properties of starch–SMA/EPMA blends [22].

Material Tensile strength (MPa)

Starch/SMA, 60/40 18.4

Starch/polystyrene (nonfunctional), 60/40 9.6

SMA 33

PS 31

Starch/EPMA, 70/30 8.3

Starch/ethylene–Propylene (EP) co-polymer, 70/30 2.8

EPMA 6.2

EP >9

Table 2. Mechanical properties of starch–LDPE/HDPE/EVA composites
and blends with maleation [24].

Tensile strength

at break (MPa)

%

Elongation at break

Flexural strength at

break (MPa)

Material With MA Without MA With MA Without MA With MA Without MA

Starch–EVA 7 2.5 13 9.4 – –

Starch–LDPE 13.7 6.9 4 3 22 13

Starch–HDPE 22 10 5 3.2 42 16.4
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adipate terephthalate (PAT) [26], and polylactic acid (PLA) [26,27].
These were used as compatibilizers in corresponding starch–polyester
blends [28,29]. A simplified reaction scheme proposed by Bhattacharya
et al. [25] is given in Figure 3 for starch–PCL blends with maleated PCL
as compatibilizer. Except for PLA, maleated polyesters were prepared
from reactive extrusion in the presence of organic peroxide initiators like
BPO, DCP, and dimethyl dibutylperoxy hexane [26]. Maleated PLA
was synthesized in a toluene media. Grafted MA quantities ranged
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Starch-based Plastic Blends from Reactive Extrusion 45



from 0.4 to 1.6% in PCL [25], and 0.2 to 1.2% for PBS, PAT, and PLA
polyesters [26]. Bhattacharya et al. [25,26] reported little change in the
molecular weight of polyesters before and after the MA addition process.
Extrusion parameters like temperature, initiator and monomer con-
centration, and residence time were optimized to avoid crosslinking
and scission side-reactions during extrusion. The same authors [28]
evaluated the properties of starch–polyester blends containing small
amounts of maleated polyesters (5%). For starch–PCL blends with 5%
compatibilizer and 50wt% starch, a three-fold increase in strength over
starch–PCL composites was observed (Table 3) although there was no
change in elongation or modulus. Similarly, addition of compatibilizer
to starch–PBS blends resulted in a two-fold increase in tensile strength –
approaching that of 100% PBS – with no effect on modulus or elongation
(Table 3). No significant effect of compatibilizer on tensile strength
and elongation of starch–PAT blends was observed. The DMA studies
showed a decrease in Tg of starch from 74 to 65�C in compatibilized
starch–PBS blends and it was related to better miscibility between
starch and PBS in the presence of maleated PBS.
Narayan et al. [27] studied the maleation of PLA by reactive extrusion

and evaluated the effects of initiator concentration and temperature on
% maleation. Up to 0.6% maleation was achieved with 2wt% MA
concentration in the presence of peroxide initiators at 180–200�C. They
also evaluated interfacial adhesion by scanning electron microscopy
(SEM) in blends containing 70wt% maleated-PLA and 30wt% starch
[29]. Though mechanical properties were not evaluated, starch particles
did not show surface dewetting in these blends, thus indicating good
adhesion between starch and maleated PLA.
In addition to MA, other anhydrides have also been used to prepare

anhydride modified polyesters. Avella et al. [30] reported grafting
of pyromellitic anhydride on PCL and its use as a compatibilizer in
starch–PCL blends. However, they used a low molecular weight
(Mw¼ 20,000) PCL for anhydride addition and high molecular weight

Table 3. Tensile properties of starch–polyester blends [28].

Tensile strength at break (MPa) % Elongation at break

Material With MA Without MA With MA Without MA

Starch–PBS 33 15 10–20 10–20

100% PBS 37 37 – 300

Starch–PCL 21 8 10–20 10–20

100% PCL 25 25 – 650
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(Mw¼ 80,000) polymer as the unmodified polyester in the blend. The
anhydride addition process was done in molten state in the presence
of small amounts of tetrahydrofuran. Infra-red analysis of modified
PCL showed appearance of a new band at 3200 cm�1 indicating the
stretching of PCL carbonyl groups due to chemical bonding with
anhydride functionality. The anhydride modification of PCL shifted the
Tg from �66 to �55�C. This was correlated with reduced segmental
chain mobility due to the presence of pyromellitic groups attached to the
PCL backbone. The SEM pictures of fractured samples of starch–PCL
(70 : 30 wt ratio) with compatibilizer showed better interfacial adhesion
than in samples without compatibilizer. The addition of starch
decreased resilience compared to the 100% PCL, but addition of
compatibilizers was found to reduce the decrease of resilience in
blends containing 30–50% starch. The authors found no differences
in biodegradation rate of blends and composites with and without
compatibilizers. However, starch in the blend increased the rate of
degradation.

Introduction of Oxazoline (OXA) Functional Groups

Oxazoline (OXA) compounds grafted on polymers can form
amidoester and amidoether linkages with other polymers containing
carboxyl or phenolic groups, respectively. For example, modified
starches containing carboxyl groups can form amidoester linkage
with OXA-grafted polymers. The general reaction scheme of OXA-
grafted polymer with carboxyl and phenolic polymers is shown in
Figure 4.

HC
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OA + B COOH

C

O NH

CH2
CH2

O

CH

O
A

B

HC

N

O + BA OH

C
O NH

CH2
CH2

O
B

A

OXA-grafted polymer

OXA-grafted polymer

Figure 4. Reactions of OXA-grafted polymers with carboxyl and phenolic groups to form
amidoester and amidoether linkages respectively. A and B are chains of polymers A and B
respectively.
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Oxazoline (OXA) Functionalized Non-biodegradable

Polymer–Starch Blends

The OXA-functionalized polymers have been used to compatibilize the
following blends:

1. OXA-grafted poly(styrene-acrylonitrile) (SAN) for compatibilizing
polyamide 6 (PA6)-SAN blends [31].

2. OXA-grafted PS for compatibilizing PS-oxidized PE, PS-natural
rubber (NBR) [31], and high impact polystyrene (HIPS)-NBR
blends [32].

3. OXA-grafted ABS for compatibilizing poly (styrene-co-acrylic acid)
(SAA)–ABS blends [33].

Very few studies have been reported yet on OXA-grafted non-
biodegradable polymer blends with starch or modified starch.

Oxazoline (OXA) Functionalized Biodegradable

Polyester–Starch Blends

Bhattacharya et al. [34] grafted oxazoline functional groups on PCL
through a free radical chain mechanism. The grafting process was done
in an extruder and grafts of 0.9–2.2% were achieved. Ricinoloxazoline,
which is a 2-oxazoline, was used as the grafting monomer. The structure
of ricinoloxazoline is given in Figure 5. The double bonds on carbon
atoms indicated by a and b were found to react with the polyester
chain similar to MA grafting on PCL shown in Figure 3. When
used as an initiator, DCP was found to produce minimum homo-
polymerization, high grafting efficiency, and minimum decrease in
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Figure 5. Structure of ricinoloxazoline used for OXA-grafting of PCL. a and b carbons
function as chain extenders during grafting reaction.
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PCL molecular weight. Though no blending studies with starch were
carried out, the authors predicted reactions with starch and modified
starch containing carboxyl groups and wheat gluten because of the
presence of carboxyl and hydroxyl groups.

Introduction of Carboxyl Groups

Carboxyl Functionalized Non-biodegradable Polymer–Starch Blends

Jane et al. [35] blended PE and native corn starch (NCS) in the
presence of oxidized polyethylene (OPE) using extrusion. They observed
that carboxyl and keto functional groups on OPE interacted strongly
with starch hydroxyls. Best properties were achieved in blends contain-
ing starch and OPE in the ratios between 1 : 1 and 3.3 : 1, with PE being
the rest of the blend. Improvements in properties were achieved due to
compatibilizing effect of OPE on starch–PE polymer matrix (examples in
Table 4).

Starch-Urethane and their Blends with Polyesters

Mei et al. [36] synthesized urethane-based starch derivatives and
blended them with polyhydroxy butyrate (PHB). They reported
improved processability of PHB with starch urethane addition due
to improved compatibility between starch urethanes and PHB. Three
types of starch-urethanes were produced by reacting isocyanates
with starch and PEG, polypropylene glycol (PPG) or polyadipic acid
ester. The modified starches were then blended with PHB. Infrared
analysis confirmed formation of the characteristic –N–H group in starch
urethanes and also showed unreacted isocyanate groups (–N¼C¼O).
When blended with PHB, the unreacted isocyante groups were no
longer seen on the infra-red scan, resulting in an increase in intensity

Table 4. Tensile properties of starch/PE/OPE blends illustrating
compatibilizing effect of OPE on Starch–PE blends [35].

Ultimate tensile strength

Formulation psi MPa Ultimate elongation (%)

PE/7%NCS 2193 15.1 543

PE/15%NCS 1611 11.1 242

PE/7%NCS/7%OPE 2407 16.6 523

PE/15%NCS/15%OPE 2330 16.1 581
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of –N–H– groups. Tensile strengths of starch-urethane–PHB blends only
showed a slight increase over native starch–PHB composites, while
modulus and elongation did not show any improvements. However,
the mechanical properties of starch urethane–PHB blends (10–30wt%
starch urethanes) were significantly lower than that of 100% PHB, with
strength reaching only one-third of 100% PHB and no significant
increase in elongation.

Monomer Grafting and Polymerization on Starch

"-Caprolactone Grafting and Polymerization on Starch

Narayan et al. [37–40] synthesized starch–PCL blends by polymeriz-
ing "-caprolactone monomer in the presence of starch. The authors used
three different pathways for carrying out the polymerization reaction:

1. Polymerization in the presence of a Lewis acid catalyst, stannous
octoate – this reaction was carried out in melt state between
100–150�C. High monomer conversions (>98%) were achieved.
However there were certain disadvantages with this method – low
grafting efficiency, formation of cyclic and linear oligomers, and long
reaction times (3 h).

2. Polymerization in the presence of aluminum or titanium alkoxides –
in batch preparation methods [37], a low conversion of 30% was
achieved in the presence of starch and aluminum alkoxides. However,
the use of titanium alkoxides led to 98.5% conversion. High
conversions were achieved during the reactive extrusion process
[38–40] with PCL molecular weights (Mw) ranging from 25,000 to
400,000 at residence times of 1–3min. Relevant patents [38–40]
mentioned a temperature of 180�C during the extrusion process and
discussed effects of screw configuration, residence time, and acid
value of the monomer on molecular weight. The patent indicated
that the starch–PCL blends were synthesized in three extrusion
steps (i) homopolymerization of "-caprolactone to PCL in the
presence of aluminum alkoxides, (ii) extrusion of starch-plasticizer
pellets, and (iii) extrusion blending of materials from (i) and (ii).
The mechanical properties of films produced by this method are
given in Table 5. These films are currently marketed under the name
of ‘Envar.’

3. Polymerization in the presence of triethyl aluminum – the reaction
was found to be the fastest in batch preparation methods using
this catalyst. High monomer conversions (>99.9%) and grafting
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efficiencies (up to 95%) were achieved in batch methods. The authors
proposed the formation of starch–aluminum alkoxides in situ by
the reaction of triethyl aluminum with starch, which then acted as
an initiator species for lactone polymerization.

The reaction mechanisms proposed by the authors are illustrated in
Figure 6. Figure 6(a)–(c) shows the Lewis catalyst, alkoxide and triethyl
initiated polymerization reactions respectively.

Other Grafting Reactions

There have been several studies on grafting of various monomers
on starch – styrene [41,42], methyl acrylates [42], vinyl acetates [43],
ethylene oxide [44,45], ethylene-acrylic acid [46], and acrylamide [47].
However, these blends were limited by the fact that the mechanical
properties of these blends were significantly lower than those of the
100% synthetic polymer. Also, the starch component in these blends
was biodegradable whereas the synthetic/non-biodegradable component
was not.

CURRENT STUDIES BY OUR GROUP

Our research group has recently developed a reactive extrusion
process in which high amounts of starch (approx. 40wt%) can be
blended with a biodegradable polyester (PCL) in the presence of
nanoclay resulting in tough nanocomposite blends with elongational
properties approaching that of 100% PCL [1,48]. Starch, PCL,
plasticizer, modified montmorillonite (MMT) organoclay, and Fenton’s
reagent (H2O2 and ferrous sulfate) were extruded in a conical
co-rotating twin-screw extruder at 120�C and injection molded at
150�C. The primary reactions taking place during extrusion are
illustrated in Figure 7. Native starch was partially oxidized by the
peroxide, and ester groups in PCL can crosslink with the carbonyl

Table 5. Tensile properties of starch-g-PCL films [38–40].

Maximum Ultimate

Material Starch (wt%) strength (MPa) elongation (%)

Starch-g-PCL (Envar) 30 16 257

100% PCL 0 25 360
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and/or carboxyl groups in oxidized starch through a peroxide initiated
free radical process. This crosslinked starch–PCL fraction acted as a
compatibilizer between unmodified starch and PCL. A single extrusion
step with a low residence time (�74 s) was found to accomplish the above
set of reactions. Elongation of these reactively extruded starch–PCL
nanocomposite blends with 3 and 6wt% organoclay approached
that of 100% PCL (Table 6). However, strength and modulus remained
the same as that of starch–PCL composites prepared from simple
physical mixing. X-ray diffraction results showed mainly intercalated
flocculated behavior of clay at 1,3,6, and 9wt% organoclay. The SEM
showed that there was improved starch–PCL interfacial adhesion
in reactively extruded blends compared to starch–PCL composites.
Dynamic mechanical analysis showed changes in primary �-transition
temperatures for both the starch and PCL fractions, reflecting cross-
linking changes in the nanocomposite blends at different organoclay
content. Also, starch–PAT blends prepared by the above reactive
extrusion process showed a trend of elongational properties approaching
that of 100% PAT. The reactive extrusion concept can be extended

(a) (Starch)-OH + ε-caprolcatone                                (Starch-O-[CO(CH2)5-O]mH

(b) (Starch)-OH + Al(Oisopropyl)3 [(Starch)-O]pAl(Oisopropyl)3-p (I)

+ p isopropylOH

I + Al(Oisopropyl)3 (Starch-O-[CO(CH2)5-O]nH +

IsopropylO[CO(CH2)5-O]mH 

(c) (Starch)-OH + Al(Ethyl)3 [(Starch)-O]pAl(Ethyl)3-p (II) +

p C2H6

    II                                        (Starch-O-[CO(CH2)5-O]mH

Stannous octoate

ε-caprolactone

H2O 

H2O 

ε-caprolactone

Figure 6. Grafting and polymerization of caprolactone on starch and their initiation by:
(a) Lewis acid catalyst; (b) aluminum alkoxide; and (c) triethyl aluminum [37].
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to other starch–PCL like polymer blends with polyhydroxy polymers
like polyvinyl alcohol and starch on one side and PBS, polyhydroxy
butyrate-valerate, and PLA on the other to create cheap, novel, and
compatible biodegradable polymer blends with increased toughness.

HO OH + Fe2+ Fe3+ + HO
−

+ OH. (hydroxyl radical)

Starch fragment

III. Crosslinking pathway

+

O
HH

OH

COOH
O

HHOH

H OH

CHO

O

O

Oxidized starch

O
OH

HOOC
O

HOH

H OH

OHC
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O
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b) HO OH OOH − (perhydroxyl anion)
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O
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Figure 7. Simplified reaction scheme showing oxidation and crosslinking between starch
and PCL using Fenton’s reagent [1,48].

Table 6. Tensile properties of starch–PCL blends and composites
from reactive extrusion.

Material Maximum strength (MPa) Ultimate elongation (%)

100% PCLa 31 1240

STPCL (no reactive extrusion)b 13 300

STPCLPERI-3c 14 1200

STPCLPERI-6d 16 1010

a: 100% PCL, extruded at 120�C and molded at 150�C;

b: native wheat starch : PCL : glycerol wt ratio 1 : 1 : 0.5, 0% clay, extruded at 120�C and molded at 150�C;

c: native wheat starch : PCL : glycerol wt ratio 1 : 1 : 0.5, ferrous sulfate catalyst at 0.07g/g starch, H2O2

(30% solution in water)¼ 0.07mL/g starch, 3% clay, extruded at 120�C and molded at 150�C;

d: native wheat starch : PCL : glycerol wt ratio 1 : 1 : 0.5, ferrous sulfate catalyst at 0.07 g/g starch, H2O2

(30% solution in water)¼ 0.07mL/g starch, 6% clay, extruded at 120�C and molded at 150�C

Starch-based Plastic Blends from Reactive Extrusion 53



CONCLUSIONS

Many reactive chemistries are available to compatibilize starch and
synthetic polymers. Current research activities have focused on starch–
polyester biodegradable blends. Even though starch-based plastics have
captured a major portion of biodegradable plastic market, it is not the
fastest growing one. Significant and faster growth is expected for
products synthesized from 100% biodegradable polyesters like polylactic
acid (PLA). This is because significant hurdles exist in using high
amounts of starch (>25–30wt%) even in reactive blends without
compromising material properties. Thus the application of starch-
based blends is now limited to niche applications. Future research
activities need to focus on reactive starch blends containing significant
amounts of starch or modified starch that allow them to be used in a
larger number of applications.
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