FRANZ BAADER An Overview of Tableau
ULRIKE SATTLER Algorithms for Description
Logics™

Abstract. Description logics are a family of knowledge representation formalisms that
are descended from semantic networks and frames via the system KL-ONE. During the
last decade, it has been shown that the important reasoning problems (like subsumption
and satisfiability) in a great variety of description logics can be decided using tableau-like
algorithms. This is not very surprising since description logics have turned out to be
closely related to propositional modal logics and logics of programs (such as propositional
dynamic logic), for which tableau procedures have been quite successful.

Nevertheless, due to different underlying intuitions and applications, most description
logics differ significantly from run-of-the-mill modal and program logics. Consequently,
the research on tableau algorithms in description logics led to new techniques and results,
which are, however, also of interest for modal logicians. In this article, we will focus on
three features that play an important réle in description logics (number restrictions, ter-
minological axioms, and role constructors), and show how they can be taken into account
by tableau algorithms.

Keywords: Description Logics, Tableau Algorithms.

1. Introduction

Description logics (DLs) are a family of knowledge representation languages
which can be used to represent the terminological knowledge of an applica-
tion domain in a structured and formally well-understood way. The name
description logics is motivated by the fact that, on the one hand, the impor-
tant notions of the domain are described by concept descriptions, i.e., ex-
pressions that are built from atomic concepts (unary predicates) and atomic
roles (binary predicates) using the concept and role constructors provided
by the particular DL. On the other hand, DLs differ from their predecessors,
such as semantic networks and frames (Quillian, 1967; Minsky, 1981), in that
they are equipped with a formal, logic-based semantics, which can, e.g., be
given by a translation into first-order predicate logic.

Knowledge representation systems based on description logics (DL sys-
tems) provide their users with various inference capabilities that deduce
implicit knowledge from the explicitly represented knowledge. For instance,
the subsumption algorithm allows one to determine subconcept-superconcept

* This is an extended version of a paper published in the proceedings of Tableaux 2000
(Baader and Sattler, 2000).

Studia Logica 69: 5-40, 2001.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.



6 F. Baader, U. Sattler

relationships: C' is subsumed by D iff all instances of C' are also instances of
D, i.e., the first description is always interpreted as a subset of the second de-
scription. In order to ensure a reasonable and predictable behaviour of a DL
system, the subsumption problem for the DL employed by the system should
at least be decidable, and preferably of low complexity. Consequently, the
expressive power of the DL in question must be restricted in an appropriate
way. If the imposed restrictions are too severe, however, then the important
notions of the application domain can no longer be expressed. Investigating
this trade-off between the expressivity of DLs and the complexity of their in-
ference problems has been one of the most important issues in DL research.
Roughly, the research related to this issue can be classified into the following
four phases.

Phase 1: First system implementations. The original KL-ONE system
(Brachman and Schmolze, 1985) as well as its early successor systems (such
as BACK (Peltason, 1991), K-REP (Mays et al., 1991), and LooM (MacGre-
gor, 1991)) employ so-called structural subsumption algorithms, which first
normalise the concept descriptions, and then recursively compare the syn-
tactic structure of the normalised descriptions (see, e.g., (Nebel, 1990a) for
the description of such an algorithm). These algorithms are usually very ef-
ficient (polynomial), but they have the disadvantage that they are complete
only for very inexpressive DLs, i.e., for more expressive DLs they cannot
detect all the existing subsumption relationships (though this fact was not
necessarily known to the designers of the early systems).

Phase 2: First complexity and undecidability results. Partially in parallel
with the first phase, the first formal investigations of the subsumption prob-
lem in DLs were carried out. It turned out that (under the assumption
P # NP) already quite inexpressive DLs cannot have polynomial subsump-
tion algorithms (Brachman and Levesque, 1984; Nebel, 1990b), and that
the DL used by the KL-ONE system even has an undecidable subsumption
problem (Schmidt-Schauf, 1989). In particular, these results showed the
incompleteness of the (polynomial) structural subsumption algorithms. One
reaction to these results (e.g., by the designers of BACK and LOOM) was to
call the incompleteness of the subsumption algorithm a feature rather than a
bug of a DL system. The designers of the CLASSIC system (Patel-Schneider
et al., 1991; Brachman, 1992) followed another approach: they carefully
chose a restricted DL that still allowed for an (almost!) complete polyno-
mial structural subsumption algorithm (Borgida and Patel-Schneider, 1994).

! The incompleteness is caused by individuals introduced by the one-of constructor;
however, the algorithm is complete w.r.t. a non-standard semantics.



Tableau Algorithms for Description Logics 7

Phase 3: Tableau algorithms for expressive DLs and thorough complexity
analysis. For expressive DLs (in particular, DLs allowing for disjunction
and/or negation), for which the structural approach does not lead to com-
plete subsumption algorithms, tableau algorithms have turned out to be
quite useful: they are complete and often of optimal (worst-case) complexity.
The first such algorithm was proposed by Schmidt-Schaufl and Smolka (1991)
for a DL that they called ALC (for “attributive concept description language
with complements”).? It quickly turned out that this approach for decid-
ing subsumption can be extended to various other DLs (Hollunder et al.,
1990; Hollunder and Baader, 1991; Baader and Hanschke, 1991; Baader,
1991; Hanschke, 1992) and also to other inference problems such as the in-
stance problem (Hollunder, 1990). Early on, DL researchers started to call
the algorithms obtained this way “tableau-based algorithms” since they ob-
served that the original algorithm by Schmidt-Schaufl and Smolka for ALC,
as well as subsequent algorithms for more expressive DLs, could be seen
as specialisations of the tableau calculus for first-order predicate logic (the
main problem to solve was to find a specialisation that always terminates,
and thus yields a decision procedure). After Schild (1991) showed that ALC
is a syntactic variant of multi-modal K, it turned out that the algorithm by
Schmidt-Schaufl and Smolka was actually a re-invention of a known tableau
algorithm for K.

At the same time, the (worst-case) complexity of various DLs (in partic-
ular also DLs that are not propositionally closed) was investigated in detail
(Donini et al., 1991a; Donini et al., 1991b; Donini et al., 1992).

The first DL systems employing tableau algorithms (KRris (Baader and
Hollunder, 1991) and CRACK (Bresciani et al., 1995)) demonstrated that (in
spite of their high worst-case complexity) these algorithms lead to acceptable
behaviour in practice (Baader et al., 1994). Highly optimised systems such as
FaCT (Horrocks, 1998b), DLP (Patel-Schneider, 1999), and Race (Haarslev
and Moller, 1999) have an even better behaviour, also for benchmark prob-
lems in modal logics (Horrocks, 1998a; Horrocks and Patel-Schneider, 1999;
Haarslev and Moller, 2000a; Horrocks, 2000; Patel-Schneider, 2000).

Phase 4: Algorithms and efficient systems for very expressive DLs. Moti-
vated by applications (e.g., in the database area), DL researchers started
to investigate DLs whose expressive power goes far beyond the one of ALC
(e.g., DLs that do not have the finite model property). First decidability

2 Actually, at that time the authors were not aware of the close connection between
their rule-based algorithm working on constraint systems and tableau procedures for modal
and first-order predicate logics.



8 F. Baader, U. Sattler

and complexity results for such DLs could be obtained from the connection
between propositional dynamic logic (PDL) and DLs (Schild, 1991). The
idea of this approach, which was perfected by De Giacomo and Lenzerini, is
to translate the DL in question into PDL. If the translation is polynomial
and preserves satisfiability, then the known EXPTIME-algorithms for PDL
can be employed to decide subsumption in exponential time. Though this
approach has produced very strong complexity results (De Giacomo and
Lenzerini, 1994; De Giacomo, 1995; De Giacomo and Lenzerini, 1996), it
turned out to be less satisfactory from a practical point of view. In fact,
first tests in a database application (Horrocks et al., 1999) showed that the
PDL formulae obtained by the translation technique could not be handled by
existing efficient implementations of satisfiability algorithms for PDL (Patel-
Schneider, 1999). To overcome this problem, DL researchers have started
to design “practical” tableau algorithms for very expressive DLs (Horrocks
and Sattler, 1999; Horrocks et al., 1999).3

The purpose of this article is to give an impression of the work on tableau
algorithms done in the DL community, with an emphasis on features that,
though they may also occur in modal logics, are of special interest to de-
scription logics. After introducing some basic notions of description logics in
Section 2, we describe a tableau algorithm for ALC in Section 3. Although,
from the modal logic point of view, this is just the well-known algorithm for
multi-modal K, this section will introduce the notations and techniques used
in description logics, and thus set the stage for extensions to more interesting
DLs. In the subsequent three sections we show how the basic algorithm can
be extended to one that treats number restrictions, terminological axioms,
and role constructors of different expressiveness, respectively.

An overview of reasoning techniques in description logics with more em-
phasis on complexity results and on results for less expressive DLs can be
found in (Donini et al., 1996). Reasoning in very expressive DLs with an
emphasis on results obtained via the translation approach is treated in (Cal-
vanese et al., 2001).

2. Description logics: basic definitions

The main expressive means of description logics are so-called concept de-
scriptions, which describe sets of individuals or objects. Formally, concept

3 In contrast to PDL, these DLs allow for transitive roles, but not for the transitive
closure operator.



Tableau Algorithms for Description Logics 9

| Constructor | Syntax | Semantics |
negation -C AT\ C*
conjunction | CM D ctnp?
disjunction | CU D ctuD?
existential 7 7 -
o Ir.C {r e A" |Jy: (z,y) er* ANy e C*}
restriction
Value T . T T
restriction vr.C {r e A |Vy: (z,y) ert - yeC*}
at-least
>nr T T T AN
e ton |G O)|{r € AT | #{y € AT | (w.y) € 7T Ay € CF) 2 )
at-most T T T T
<nr. <
Aot (<o 0)| € AT | #{y € AT | (e.y) € 1T Ay € CT) < n)

Table 1. Syntax and semantics of concept descriptions.

descriptions are inductively defined with the help of a set of concept con-
structors, starting with a set Ng of concept names and a set Ny of role
names. The available constructors determine the expressive power of the
DL in question. In the next two sections, we consider concept descriptions
built from the constructors shown in Table 1, where C, D stand for concept
descriptions, r for a role name, and n for a nonnegative integer. In the de-
scription logic ALC, concept descriptions are formed using the constructors
negation, conjunction, disjunction, value restriction, and existential restric-
tion. The description logic ALCQ additionally provides us with (qualified)
at-least and at-most number restrictions. The semantics of concept descrip-
tions is defined in terms of an interpretation T = (A%,7). The domain
AT of T is a non-empty set of individuals and the interpretation function
2 maps each concept name P € N¢ to a set PZ C AT and each role name
r € Ng to a binary relation 2 C AT x AZ. The extension of - to arbitrary
concept descriptions is inductively defined, as shown in the third column of
Table 1.

From the modal logic point of view, roles are simply names for accessi-
bility relations, and existential (value) restrictions correspond to diamonds
(boxes) indexed by the respective accessibility relation. Thus, any ALC de-
scription can be translated into a multi-modal K formula and vice versa.
For example, the description P M 3r.P MVYr.—P corresponds to the formula
p A (r)p A [r]-p, where p is an atomic proposition corresponding to the
concept name P. As pointed out by Schild (1991), there is an obvious cor-
respondence between the semantics of ALC and the Kripke semantics for



10 F. Baader, U. Sattler

multi-modal K, which satisfies d € CT iff the world d satisfies the formula
¢c corresponding to C' in the Kripke structure corresponding to Z. Number
restrictions also have a corresponding construct in modal logics, so-called
graded modalities (Van der Hoek and De Rijke, 1995), which are, however,
not as well-investigated as the modal logic K.

One of the most important inference services of DL systems is computing
the subsumption hierarchy of a given finite set of concept descriptions.

DEFINITION 1. The concept description D subsumes the concept description
C (written C T D) iff C* C D? for all interpretations Z; C is satisfiable
iff there exists an interpretation Z such that C% # (; and C and D are
equivalent iff C C D and D C C.

In the presence of negation, subsumption can obviously be reduced to
satisfiability: C' C D iff C' 1 =D is unsatisfiable. Vice versa, satisfiability
can be reduced to subsumption: C' is satisfiable iff not C £ P M =P, where
P is an arbitrary concept name.

Given concept descriptions that define the important notions of an ap-
plication domain, one can then describe a concrete situation with the help
of the assertional formalism of description logics.

DEFINITION 2. Let Ny be a set of individual names. An ABox is a finite set
of assertions of the form C(a) (concept assertion) or r(a,b) (role assertion),
where C' is a concept description, r a role name, and a,b are individual
names.

An interpretation Z, which additionally assigns elements aZ € AT to
individual names a, is a model of an ABox A iff a* € C* ((a®,b?) € %)
holds for all assertions C'(a) (r(a,b)) in A.

The Abox A is consistent iff it has a model. The individual a is an
instance of the description C w.r.t. Aiff aZ € CZ holds for all models Z of A.

Satisfiability (and thus also subsumption) of concept descriptions as well
as the instance problem can be reduced to the consistency problem for
ABoxes: (i) C' is satisfiable iff the ABox {C(a)} for some a € Ny is con-
sistent; and (ii) a is an instance of C' w.r.t. A iff AU{—=C(a)} is inconsistent.

Usually, one imposes the unique name assumption on ABoxes, i.e., re-
quires the mapping from individual names to elements of AZ to be injective.
Here, we dispense with this requirement since it has no effect for ALC, and
for DLs with number restrictions we will explicitly introduce inequality as-
sertions, which can be used to express the unique name assumption.

* This was the reason why Schmidt-Schau and Smolka (1991) introduced a DL with
negation in the first place.



Tableau Algorithms for Description Logics 11

The —n-rule
Condition: A contains (Cy M Cy)(x), but not both C;(x) and Cy(x).
Action: A" := AU{Ci(x),Ca(x)}.

The — | ,-rule
Condition: A contains (C; U C3)(x), but neither Cy(z) nor Ca(z).
Action: A" := AU{Cy(x)}, A" := AU{Cy(x)}.

The —3-rule

Condition: A contains (Ir.C')(x), but there is no individual name z such that
C(z) and r(z, z) are in A.

Action: A’ := AU{C(y),r(z,y)} where y is an individual name not occurring
in A.

The —vy-rule

Condition: A contains (Vr.C)(x) and r(x,y), but it does not contain C(y).

Action: A':= AU{C(y)}.

Figure 1. Transformation rules of the satisfiability algorithm for ALC.

3. A tableau algorithm for ALC

Given an ALC-concept description Cy, the tableau algorithm for satisfiabil-
ity tries to construct a finite interpretation Z that satisfies Cy, i.e., contains
an element zg such that z¢ € COI . Before we can describe the algorithm
more formally, we need to introduce an appropriate data structure in which
to represent (partial descriptions of) finite interpretations. The original pa-
per by Schmidt-Schaufl and Smolka (1991), and also many other papers on
tableau algorithms for DLs, introduce the new notion of a constraint system
for this purpose. However, if we look at the information that must be ex-
pressed (namely, the elements of the interpretation, the concept descriptions
they belong to, and their role relationships), we see that ABox assertions
are sufficient for this purpose.

It will be convenient to assume that all concept descriptions are in nega-
tion normal form (NNF), i.e., that negation occurs only directly in front of
concept names. Using de Morgan’s rules and the usual rules for quantifiers,
any ALC-concept description can be transformed (in linear time) into an
equivalent description in NNF.

Let Cy be an ALC-concept in NNF. In order to test satisfiability of Cj,
the algorithm starts with Ay := {Cy(x)}, and applies consistency preserving



12 F. Baader, U. Sattler

transformation rules (see Fig. 1) to this ABox. The transformation rule that
handles disjunction is nondeterministic in the sense that a given ABox is
transformed into two new ABoxes such that the original ABox is consistent
iff one of the new ABoxes is so. For this reason we will consider finite sets of
ABoxes § = {Ay,..., A} instead of single ABoxes. Such a set is consistent
iff there is some i, 1 < ¢ < k, such that A; is consistent. A rule of Fig. 1 is
applied to a given finite set of ABoxes S as follows: it takes an element A
of S, and replaces it by one ABox A’ or by two ABoxes A’ and A”.

DEFINITION 3. An ABox A is called complete iff none of the transformation
rules of Fig. 1 applies to it. The ABox A contains a clash iff { P(x), ~P(x)} C
A for some individual name x and some concept name P. An ABox is called
closed if it contains a clash, and open otherwise.

The satisfiability algorithm for ALC works as follows. It starts with the
singleton set of ABoxes {{Cy(x¢)}}, and applies the rules of Fig. 1 (in arbi-
trary order) until no more rules apply. It answers “satisfiable” if the set S of
ABoxes obtained this way contains an open ABox, and “unsatisfiable” oth-
erwise. Correctness of this algorithm is an easy consequence of the following
lemma.

LEMMA 1. Let Cy be an ALC-concept in negation normal form.

1. There cannot be an infinite sequence of rule applications

{Co(zo)}} = 81 = Sy — -+~ .

2. Assume that S’ is obtained from the finite set of ABoxes S by application
of a transformation rule. Then S is consistent iff S’ is consistent.

3. Any closed ABox A is inconsistent.

4. Any complete and open ABox A is consistent.

The first part of this lemma (termination) is an easy consequence of the
facts that (i) all concept assertions occurring in an ABox in one of the sets
S, are of the form C(x) were C is a sub-description of Cp; and (ii) if an
ABox in S; contains the role assertion r(x,y), then the maximal role depth
(i.e., nesting of value and existential restrictions) of concept descriptions
occurring in concept assertions for y is strictly smaller than the maximal
role depth of concept descriptions occurring in concept assertions for z. A
detailed proof of termination (using an explicit mapping into a well-founded
ordering) for a set of rules extending the one of Fig. 1 can, e.g., be found in
(Baader and Hanschke, 1991).



Tableau Algorithms for Description Logics 13

The second and third part of the lemma are quite obvious, and the fourth
part can be proved by defining the canonical interpretation T 4 of A:

1. The domain AZA of T4 consists of the individual names occurring in A.
2. For all concept names P we define P74 := {z | P(z) € A}.

3. For all role names 7 we define r%4 := {(z,y) | r(z,y) € A}.

By definition, 74 satisfies all the role assertions in A. By induction on
the structure of concept descriptions, it is easy to show that it satisfies the
concept assertions as well, provided that A is complete and open.

It is also easy to show that the canonical interpretation has the shape
of a finite tree whose depth is linearly bounded by the size of Cy and whose
branching factor is bounded by the number of different existential restric-
tions in Cy. Consequently, ALC has the finite tree model property, i.e., any
satisfiable concept Cj is satisfiable in a finite interpretation Z that has the
shape of a tree whose root belongs to Cj.

To sum up, we have seen that the transformation rules of Fig. 1 reduce
satisfiability of an ALC-concept Cy (in NNF) to consistency of a finite set S
of complete ABoxes. In addition, consistency of S can be decided by looking
for obvious contradictions (clashes).

THEOREM 1. It is decidable whether or not an ALC-concept is satisfiable.

3.1. Complexity issues

The satisfiability algorithm for ALC presented above may need exponential
time and space. In fact, the size of the complete and open ABox (and thus
of the canonical interpretation) built by the algorithm may be exponential
in the size of the concept description. For example, consider the descriptions
Cyp (n > 1) that are inductively defined as follows:

Ci := r.ANdr.B,
Cpy1 = Ir AN Ir.BOVr.C,.

Obviously, the size of C,, grows linearly in n. However, given the input
description C,,, the satisfiability algorithm generates a complete and open
ABox whose canonical interpretation is a binary tree of depth n, and thus
consists of 2" — 1 individuals.

Nevertheless, the algorithm can be modified such that it needs only poly-
nomial space. The main reason is that different branches of the tree model to
be generated by the algorithm can be investigated separately, and thus the



14 F. Baader, U. Sattler

tree can be built and searched in a depth-first manner. Since the complexity
class NPSPACE coincides with PSPACE (Savitch, 1970), it is sufficient to
describe a nondeterministic algorithm using only polynomial space, i.e., for
the nondeterministic —-rule, we may simply assume that the algorithm
chooses the correct alternative. In principle, the modified algorithm works
as follows: it starts with {Cy(z¢)} and

1. applies the —pn- and — | -rules as long as possible and checks for clashes;

2. generates all the necessary direct successors of zy using the —3-rule and
exhaustively applies the —v-rule to the corresponding role assertions;

3. successively handles the successors in the same way.

Since the successors of a given individual can be treated separately, the
algorithm needs to store only one path of the tree model to be generated,
together with the direct successors of the individuals on this path and the
information which of these successors must be investigated next. Since the
length of the path is linear in the size of the input description Cjy, and
the number of successors is bounded by the number of different existential
restrictions in Cp, the necessary information can obviously be stored within
polynomial space.

This shows that the satisfiability problem for ALC-concept descriptions is
in PSPACE. PSPACE-hardness can be shown by a reduction from validity of
Quantified Boolean Formulae (Schmidt-Schaufi and Smolka, 1991; Halpern
and Moses, 1992).

THEOREM 2. Satisfiability of ALC-concept descriptions is PSPACE-comp-
lete.

3.2. The consistency problem for ALC-ABoxes

The satisfiability algorithm described above can also be used to decide con-
sistency of ALC-ABoxes. Let A4y be an ALC-ABox such that (w.lo.g.) all
concept descriptions in Ag are in NNF. To test Aq for consistency, we simply
apply the rules of Fig. 1 to the singleton set {Ap}. It is easy to show that
Lemma 1 still holds. Indeed, the only point that needs additional consider-
ation is the first one (termination). Thus, the rules of Fig. 1 yield a decision
procedure for consistency of ALC-ABoxes.

Since now the canonical interpretation obtained from a complete and
open ABox need no longer be of tree shape, the argument used to show that
the satisfiability problem is in PSPACE cannot directly be applied to the
consistency problem. In order to show that the consistency problem is in



Tableau Algorithms for Description Logics 15

PSPACE, one can, however, proceed as follows: In a pre-completion step,
one applies the transformation rules only to old individuals (i.e., individuals
present in the original ABox Ay). Subsequently, one can forget about the
role assertions, i.e., for each individual name in the pre-completed ABox, the
satisfiability algorithm is applied to the conjunction of its concept assertions
(see (Hollunder, 1996) for details).

THEOREM 3. Consistency of ALC-ABoxes is PSPACE-complete.

Since ALC is closed under negation, this also implies that the instance
problem is PSPACE-complete in ALC. The consistency and the instance
problem for DLs not allowing for negation has been investigated in (Schaerf,
1993; Donini et al., 1994).

4. Number restrictions

Before treating the qualified number restrictions introduced in Section 2, we
consider a restricted form of number restrictions, which is the form present
in most DL systems. In unqualified number restrictions, the qualifying con-
cept is the top concept T, where T is an abbreviation for P U —P, i.e.,
a concept that is always interpreted by the whole interpretation domain.
Instead of (Znr.T) and (<nr.T), we write unqualified number restrictions
simply as (=nr) and (<nr). The DL that extends ALC by unqualified num-
ber restrictions is denoted by ALCN (Hollunder et al., 1990; Donini et al.,
1991a).

Obviously, ALCN- and ALCQ-concept descriptions can also be trans-
formed into NNF in linear time.

4.1. A tableau algorithm for ALCN

The main idea underlying the extension of the tableau algorithm for ALC
to ALCN is quite simple. At-least restrictions are treated by generating
the required role successors as new individuals. At-most restrictions that
are currently violated are treated by (nondeterministically) identifying some
of the role successors. To avoid running into a generate-identify cycle, we
introduce explicit inequality assertions that prohibit the identification of
individuals that were introduced to satisfy an at-least restriction.

Inequality assertions are of the form x # y for individual names x, y, with
the obvious semantics that an interpretation 7 satisfies z # y iff 2% # yt.
These assertions are assumed to be symmetric, i.e., saying that x # y belongs
to an ABox A is the same as saying that y # x belongs to A.



16 F. Baader, U. Sattler

The —>-rule

Condition: A contains (=nr)(z), and there are no individual names

21,...,%p such that r(z,2) (1 <i<n)and z; # z; (1 <i<j<n)are
in A.

Action: A" = AU{r(z,y;) |1 <i<n}U{y; #y; |1 <i<j<n}, where
Y1,--.,Yn are distinct individual names not occurring in A.

The —<-rule

Condition: A contains distinct individual names ¥1,...,¥y,+1 such that
(<nr)(z) and r(z,y1),...,7(2,Yny1) are in A, and y; # y; is not in
A for some 4,5, 1 <i<j<n+1.

Action: For each pair y;,y; such that 1 < i < j <n+1 and y; # y; is not
in A, the ABox A, ; := [yi/y;]A is obtained from A by replacing each
occurrence of y; by y;.

Figure 2. The transformation rules handling unqualified number restrictions.

The satisfiability algorithm for ALCN is obtained from the one for ALC
by adding the rules in Fig. 2, and by considering a second type of clashes:

o {(<nr)(@)}U{r(z,y) | 1<i<n+1}U{yi#y |1<i<j<n+1}CA
for ,y1,...,Ynt1 € Ny, r € Np, and a nonnegative integer n.

The nondeterministic —<-rule replaces the ABox A by finitely many new
ABoxes A;;. Lemma 1 still holds for the extended algorithm (see e.g.
(Baader and Sattler, 1999), where this is proved for a more expressive DL).
This shows that satisfiability (and thus also subsumption) of ALCN -concept
descriptions is decidable.

4.1.1. Complexity issues

The ideas that lead to a PSPACE algorithm for ALC can be applied to
the extended algorithm as well. The only difference is that, before han-
dling the successors of an individual (introduced by at-least and existential
restrictions), one must check for clashes of the second type and generate
the necessary identifications. However, this simple extension only leads to
a PSPACE algorithm if we assume the numbers in at-least restrictions to
be written in base 1 representation (called unary notation in the following).
Here, the size of the representation coincides with the number represented.
For bases larger than 1 (e.g., numbers in decimal notation), the number
represented may be exponential in the size of the representation. Thus, we



Tableau Algorithms for Description Logics 17

cannot introduce all the successors required by at-least restrictions while
only using space polynomial in the size of the concept description if the
numbers in this description are not written in unary notation.

It is not hard to see, however, that most of the successors required by
the at-least restrictions need not be introduced at all. If an individual x
obtains at least one r-successor due to the application of the —g-rule, then
the —>-rule need not be applied to = for the role r. Otherwise, we simply
introduce one r-successor as representative. In order to detect inconsisten-
cies due to conflicting number restrictions, we need to add another type of
clashes: {(<nr)(x),(=mr)(z)} C A for nonnegative integers n < m. The
canonical interpretation obtained by this modified algorithm need not sat-
isfy the at-least restrictions in Cy. However, it can easily be modified to
an interpretation that does, by duplicating r-successors (more precisely, the
whole subtrees starting at these successors).

THEOREM 4. Satisfiability of ALCN -concept descriptions is PSPACE-com-
plete, even if numbers are not represented in unary notation.

4.1.2. The consistency problem for ALCN-ABoxes

Just as with ALC, the extended rule set for ALCN can also be applied
to arbitrary ABoxes. Unfortunately, the algorithm obtained this way need
not terminate, unless one imposes a specific strategy on the order of rule
applications. For example, consider the ABox

Ao :={r(a,a), (Ir.P)(a), (<1r)(a), (Vr.3r.P)(a)}.
By applying the —3-rule to a, we can introduce a new r-successor x of a:
Ay = AgU{r(a,z), P(z)}.

The —y-rule adds the assertion (3r.P)(x), which triggers an application of
the —3-rule to z. Thus, we obtain the new ABox

Az == A1 U {(H’I"P)(SL‘), T(Jl,y), P(y)}

Since a has two r-successors in A, the —<-rule is applicable to a. By
replacing every occurrence of x by a, we obtain the ABox

Az := Ao U{P(a), 7(a,y), P(y)}-

Except for the individual names (and the assertion P(a), which is, however,
irrelevant), A3 is identical to A;. For this reason, we can continue as above
to obtain an infinite chain of rule applications.



18 F. Baader, U. Sattler

The —choose-rule
Condition: A contains (<nr.C)(x) and r(z,y), but neither C(y) nor ~C(y).
Action: A':=AU{C(y)}, A" :=AU{-C(y)}.

Figure 3. The —}o0ge-rule for qualified number restrictions.

We can easily regain termination by requiring that generating rules (i.e.,
the rules —3 and —>) may only be applied if none of the other rules is ap-
plicable. In the above example, this strategy would prevent the application
of the —3-rule to z in the ABox A; U {(3r.P)(x)} since the —<-rule is also
applicable. After applying the —<-rule (which replaces = by a), the —3-rule
is no longer applicable since a already has an r-successor that belongs to P.

In order to obtain a PSPACE algorithm for consistency of ALCN-
ABoxes, the pre-completion technique sketched above for ALC can also be
applied to ALCN (Hollunder, 1996).

THEOREM 5. Consistency of ALCN -ABoxes is PSPACE-complete, even if
numbers are not represented in unary notation.

4.2. A tableau algorithm for ALCQ

An obvious idea when attempting to extend the satisfiability algorithm for
ALCN to one that can handle ALCQ is the following (see (Van der Hoek
and De Rijke, 1995)):

e Instead of simply generating n new r-successors yi,...,¥y, in the —>-
rule, one also asserts that these individuals must belong to the qualifying
concept C of (=nr.C) by adding the assertions C(y;) to A'.

e The —<-rule only applies to (=nr.C) if A also contains the assertions
Cly;)) 1<i<n+1).

Unfortunately, this does not yield a correct algorithm for satisfiability in
ALCQ. In fact, this simple algorithm would not detect that the concept de-
scription (=3r) M (<1r.P) M (<1r.=P) is unsatisfiable. The (obvious) prob-
lem is that, for some individual @ and concept description C, the ABox
may neither contain C(a) nor =C'(a), whereas in the canonical interpreta-
tion constructed from the ABox, one of the two must hold. In order to
overcome this problem, the nondeterministic —¢po0se-rule of Fig. 3 must be
added (Hollunder and Baader, 1991). Together with the —yoose-rule, the



Tableau Algorithms for Description Logics 19

simple modification of the —>- and —<-rule described above yields a correct
algorithm for satisfiability in ALCQ (Hollunder and Baader, 1991).

4.2.1. Complexity issues

The approach that leads to a PSPACE-algorithm for ALC can be applied
to the algorithm for ALCQ as well. However, as with ALCN, this yields
a PSPACE-algorithm only if the numbers in number restrictions are as-
sumed to be written in unary notation. For ALCQ, the idea that leads to
a PSPACE-algorithm for ALCN with non-unary notation does no longer
work: it is not sufficient to introduce just one successor as representative for
the role successors required by at-least restrictions. Nevertheless, it is possi-
ble to design a PSPACE-algorithm for ALCQ also w.r.t. non-unary notation
of numbers (Tobies, 1999). Like the PSPACE-algorithm for ALC, this algo-
rithm treats the successors separately. It uses appropriate counters (and a
new type of clashes) to check whether qualified number restrictions are sat-
isfied. By combining the pre-completion approach of (Hollunder, 1996) with
this algorithm, we also obtain a PSPACE-result for consistency of ALCQ-
ABoxes.

THEOREM 6. Satisfiability of ALCQ-concept descriptions as well as consis-
tency of ALCQ-ABozes are PSPACE-complete problems, even if numbers
are not represented in unary notation.

5. Terminological axioms

DL systems usually provide their users also with a terminological formalism.
In its simplest form, this formalism can be used to introduce names for
complex concept descriptions. More general terminological formalisms can
be used to state connections between complex concept descriptions.

DEFINITION 4. A TBoz is a finite set of terminological axioms of the form
C = D, where C,D are concept descriptions. The terminological axiom
C = D is called concept definition iff C is a concept name.

An interpretation Z is a model of the TBox 7 iff CZ = D? holds for all
terminological axioms C'= D in 7.

The concept description D subsumes the concept description C' w.r.t.
the TBox T (written C C7 D) iff T C D7 for all models Z of T; C is
satisfiable w.r.t. T iff there exists a model Z of 7 such that CT # (). The
Abox A is consistent w.r.t. 7T iff it has a model that is also a model of 7.



20 F. Baader, U. Sattler

The individual a is an instance of C w.r.t. A and T iff a* € CT holds for
each model 7 of A and 7.

In the following, we restrict our attention to terminological reasoning
(i.e., the satisfiability and subsumption problem) w.r.t. TBoxes; however,
the methods and results also apply to assertional reasoning (i.e., the instance
and the consistency problem for ABoxes) (see, e.g., (Buchheit et al., 1993)).

5.1. Acyclic terminologies

The early DL systems provided TBoxes only for introducing names as abbre-
viations for complex descriptions. This is possible with the help of acyclic
terminologies.

DEFINITION 5. A TBox is an acyclic terminology iff it is a set of concept
definitions that neither contains multiple definitions nor cyclic definitions.
Multiple definitions are of the form A = C,A = D for distinct concept
descriptions C, D, and cyclic definitions are of the form Ay = C4,..., A, =
Cp, where A; occurs in C;_1 (1 < i <n) and A; occurs in C,,. If the acyclic
terminology 7 contains a concept definition A = C', then A is called defined
name and C' its defining concept.

Reasoning w.r.t. acyclic terminologies can be reduced to reasoning with-
out TBoxes by unfolding the definitions: this is achieved by repeatedly re-
placing defined names by their defining concepts until no more defined names
occur. Unfortunately, unfolding may lead to an exponential blow-up, as the
following acyclic terminology (due to Nebel (1990b)) demonstrates:

{AQ =Vr. A1 MVs. Ay, ..., An_1 =Vr.A, N VSAn}

This terminology is of size linear in n, but unfolding applied to Ag results
in a concept description containing the name A, 2" times. Nebel (1990b)
also shows that this complexity can, in general, not be avoided: for the DL
F Ly, which allows for conjunction and value restriction only, subsumption
between concept descriptions can be tested in polynomial time, whereas
subsumption w.r.t. acyclic terminologies is coNP-complete.

For more expressive languages, the presence of acyclic TBoxes may or
may not increase the complexity of the subsumption problem. For exam-
ple, subsumption of concept descriptions in the language ALC is PSPACE-
complete, and so is subsumption w.r.t. acyclic terminologies (Lutz, 1999).
Of course, in order to obtain a PSPACE-algorithm for subsumption in ALC
w.r.t. acyclic terminologies, one cannot first apply unfolding to the concept



Tableau Algorithms for Description Logics 21

descriptions to be tested for subsumption since this may need exponential
space. The main idea is to use a tableau algorithm like the one described in
Section 3, with the difference that it receives concept descriptions containing
defined names as input. Unfolding is then done on demand: if the tableau
algorithm encounters an assertion of the form A(z), where A is a defined
name and C' its defining concept, then it adds the assertion C'(x). However,
it does not further unfold C' at this stage. It can be shown that this really
yields a PSPACE-algorithm for satisfiability (and thus also for subsumption)
of concepts w.r.t. acyclic terminologies in ALC (Lutz, 1999).

THEOREM 7. Satisfiability w.r.t. acyclic terminologies is PSPACE-complete
in ALC.

Although this technique also works for many extensions of ALC (such
as ALCN and ALCQ), there are extensions for which it fails. One such
example is the language ALCF, which extends ALC with functional roles as
well as agreements and disagreements on chains of functional roles.

More precisely, in ALCF, a set Np C Npg of feature names is fixed, and
a feature chain u = f1--- f, is defined to be a non-empty sequence of feature
names f; € Np. An interpretation Z maps each f € Np to a functional role
fZ, ie., (z,y),(x,2) € fF implies y = z. The interpretation of a feature
name can thus also be viewed as a partial function fZ : AT — AZ. For
this reason, we will usually write fZ(z) = y instead of (z,y) € fZ. The
feature chain u = f;--- f,, is interpreted as the composition of its features,
., o (x) i= f1(- - fE(2)- ).

The DL ALCF is obtained from ALC by allowing for feature names in
value and existential restrictions, and for additional concept descriptions of
the form u | v (agreement) and u T v (disagreement), where u, v are feature
chains. These new descriptions are interpreted as follows:

(u | v) = {z € AT|thereis ayc AT with v’ (z) =y = v (x)}

(uTv)r = {xc AT| there are y1,ys € AT with y; # v,
u?(z) =y and v?(z) = yo}

The tableau-based satisfiability algorithm for ALC can easily be extended
to ALCF (Hollunder and Nutt, 1990). Both agreements and disagreements
are handled by rules that generate the feature successors required by the
semantics. To ensure that features are interpreted as functional roles in
the canonical interpretation, one uses an identification rule (similar to the
—<-rule): if f(x,y), f(x, z) occurs in the ABox, then the rule replaces every
occurrence of y by z, unless the ABox also contains an inequality assertion



22 F. Baader, U. Sattler

y # z. This second case leads to a new type of clashes. Inequality assertions
are introduced by the rule that handles disagreements: the final individuals
reached by the feature chains are explicitly asserted to be distinct.

It can easily be seen that this algorithm can again be realised within
polynomial space. There is, however, a significant difference between the
PSPACE-algorithm for ALC and the one for ALCF. Due to identifications
caused by agreements, the canonical interpretation built by the algorithm
need no longer have tree shape. For example, an application of the agreement
rule to (fifz | g192)(z) leads to assertions g¢1(z,vy1), g2(y1,2), fi(z,y2),
f2(y2, z). In particular, this means that the successors y; and y, of x cannot
be handled independently since they lead to a common successor. However,
this problem is restricted to individuals connected by feature chains. It is
easy to show that each such feature-connected component is polynomial in the
size of the concept description to be tested for satisfiability (if identification
of feature successors is done eagerly). Thus, it is unproblematic to generate
the whole feature-connected component issuing from a given individual.

In the presence of acyclic terminologies, this is no longer true. In fact, by
using a sequence of terminological axioms of the form Cp, 1 = 3f.C,M3g.C,,,
one can enforce feature-connected components of size exponential in the size
of the given terminology and concept description. In (Lutz, 1999), this fact is
used to show that satisfiability of ALCF-concept descriptions w.r.t. acyclic
terminologies is NEXPTIME-complete.

THEOREM 8. Satisfiability of ALCF-concept descriptions is PSPACE-com-
plete, but satisfiability w.r.t. acyclic terminologies is NEXPTIME-complete
in ACCF.

5.2. General TBoxes

For general terminological axioms of the form C' = D, where C' may also be
a complex description, unfolding is obviously no longer possible. Instead of
considering finitely many such axioms Cy=D,...,C, = D, it is sufficient
to consider the single axiom C' = T, where

C:=(=CyUDy) N (CyU=Dy) -1 (=Cy UD,) M (CpU=Dy)

and T is an abbreviation for P LI —P.

The axiom C = T just says that any individual must belong to the
concept C. The tableau algorithm for ALC introduced in Section 3 can easily
be modified such that it takes this axiom into account: all individuals are
simply asserted to belong to C. However, this modification may obviously
lead to nontermination of the algorithm.



Tableau Algorithms for Description Logics 23

For example, consider what happens if this algorithm is applied to test
consistency of the ABox Ag := {(3r.P)(zp)} w.r.t. the axiom Ir.P = T: the
algorithm generates an infinite sequence of ABoxes A1, Ao, ... and individ-
uals x1, s, ... such that -AH—I =A; U {’I"(l‘i,fl:,q_l), P(I‘H_l), (HTP)(I‘H_l)}
Since all individuals x; (i > 1) receive the same concept assertions as x1, we
may say that the algorithm has run into a cycle.

Termination can be regained by using a mechanism that detects cyclic
computations, and then blocking the application of generating rules: the
application of the rule —3 to an individual x is blocked by an individual
y in an ABox A iff {D | D(z) € A} C {D' | D'(y) € A}. The main
idea underlying blocking is that the blocked individual x can use the role
successors of y instead of generating new ones. For example, instead of
generating a new r-successor for xy in the above example, one can simply use
the r-successor of ;. This yields an interpretation Z with AZ := {zo, 1,22},
PT .= {x1,29}, and v = {(x0,21), (x1,22), (x2,72)}. Obviously, Z is a
model of both Ay and the axiom Ir.P = T. Since the set of concepts
asserted for the blocked individual is a subset of the set of those asserted for
the blocking individual, we call this blocking condition subset blocking.

To avoid cyclic blocking (of = by y and vice versa), we consider an enu-
meration of all individual names, and define that an individual  may only
be blocked by individuals y that occur before x in this enumeration. This,
together with some other technical assumptions, makes sure that a tableau
algorithm using this notion of blocking is sound and complete as well as
terminating both for ALC and ALCN (see (Buchheit et al., 1993; Baader
et al., 1996) for details).

In the algorithm we have just described, we do not impose any order or
strategy on the application of the transformation rules. This leads to what
is called dynamic blocking (Horrocks and Sattler, 1999), where blocks can be
established and then broken. For example, suppose an individual x is blocked
by an individual y. Then, the application of the —v-rule to z’s predecessor
may add C(z) to A. If C(y) is not present in A, then x is no longer blocked
by y. However, using a strategy that (basically) applies generating rules
only if no non-generating ones can be applied, blocks that are established
once will never be broken again. Thus, when employing this strategy, we
can block statically. Note that implementations of tableau-based algorithms
usually employ this strategy anyway.

It should be noted that the algorithm we have described above is no
longer in PSPACE since it may generate role paths of exponential length
before blocking occurs. In fact, even for the language ALC, satisfiability
w.r.t. general terminological axioms is known to be EXPTIME-complete



24 F. Baader, U. Sattler

Constructor /Restriction | Syntax | Semantics |

intersection ris (ris)f =rfnst

union ris (rus)f =rfust

complement -7 (—=r)f = AT\ r*

composition ros (ros)t ={(z,2)| thereis a y such that
(z,y) € r? and (y,2) € s}

transitive closure R (RM) = (R%)T

inverse R~ (R ={(y,2) | (x,y) € RT}

transitive roles Re Nj R7 is transitive

role hierarchy rCs rf C st

Table 2. Syntax and semantics of role constructors and restrictions.

(Schild, 1994). The tableau-based algorithm sketched above is a NEXP-
TIME algorithm. However, using the translation technique mentioned in
the introduction, it can be shown (De Giacomo and Lenzerini, 1994) that
ALCN-ABoxes and TBoxes can be translated into PDL.

THEOREM 9. Consistency of ALCN -ABoxes w.r.t. TBoxes is EXPTIME-
complete.

Blocking does not work for all extensions of ALC that have a tableau-
based satisfiability algorithm. An example is again the DL ALCF, for which
satisfiability is decidable, but satisfiability w.r.t. general TBoxes undecidable
(Nebel, 1991; Baader et al., 1993).

6. Expressive roles

The DLs considered so far allowed for atomic roles only. There are two ways
of extending the expressivity of DLs w.r.t. roles: adding role constructors
and constraining the interpretation of roles. An overview of the syntax and
semantics of both are given in Table 2, where the first part refers to role con-
structors and the second to role constraints. Role constructors can be used
to build complex roles from atomic ones. In the following, we will mostly
restrict our attention to the inverse constructor, which makes it possible to
“use a role in both directions”. For example, using inverse roles, we can
describe both parents of nice children by Vhas_child.Nice as well as children
of nice parents by Vhas_child”.Nice. The other role constructors have also
been considered in the literature (e.g., Boolean operators in (De Giacomo,
1995; Lutz and Sattler, 2000), and composition, union, and transitive closure
in (Baader, 1991; Schild, 1991)).



Tableau Algorithms for Description Logics 25

Constraining the interpretation of roles is very similar to imposing frame
conditions in modal logics. One possible such constraint has already been
mentioned in the previous section: in ALCF the interpretation of roles f €
Np C Ng is required to be functional. Here, we will consider transitive
roles and role hierarchies. In a DL with transitive roles, a subset NE of the
set of all role names Np is fixed (Sattler, 1996). Elements of N;{ must be
interpreted by transitive binary relations. (This corresponds to the frame
condition for the modal logic K4.) A role hierarchy is given by a finite set
of role inclusion axioms of the form r C s for roles r,s. An interpretation
7 satisfies the role hierarchy H iff rZ C s% holds for each r C s € H. For
example, we can use the role inclusion axiom has_son C has_child to express
that every son of a person is also her child.

6.1. Expressive roles in number restrictions

In DLs with expressive roles and number restrictions, the roles that are al-
lowed to occur in the number restrictions are usually of a restricted form
(see, e.g., (De Giacomo and Lenzerini, 1994; De Giacomo and Lenzerini,
1996; Horrocks et al., 1999; Haarslev and Moller, 2000b)). Whereas tableau-
based algorithms that respectively handle number restrictions on conjunc-
tions of roles (Donini et al., 1991a), on compositions of roles (Baader and
Sattler, 1999), on inverse roles (see Section 6.2.3), and on roles occurring in a
role hierarchy (Horrocks and Sattler, 1999; Haarslev and Moller, 2000b) are
known from the literature, other role constructors and restrictions appear
to be more problematic when used within number restrictions.

Let us illustrate this with two examples. First, transitive closure of
roles, transitive roles, or roles having a transitive sub-role (with respect to a
role hierarchy) are usually not allowed inside number restrictions. In fact, a
tableau-based algorithm for a DL containing such number restrictions would
need to differ significantly from the algorithms we have described until now.
Intuitively, this is due to the fact that transitivity (in one of the forms
mentioned above) can yield situations where, for a transitive role r, a long
r-path starting at an individual  would need to be collapsed into a single r-
successor of x, due to the presence of an assertion (< 1r)(z). This destroys
the tree shape of the canonical interpretation to be generated, which (for
example) means that the usual arguments for showing termination can no
longer be applied. At least in the case where roles having transitive sub-
roles are allowed to occur in number restrictions, these problems cannot
be overcome: the extension of ALCN that allows roles having transitive
sub-roles to occur in number restrictions has an undecidable subsumption
problem (Horrocks et al., 1999).



26 F. Baader, U. Sattler

Second, the combination of role composition with Boolean role construc-
tors and inverse roles in number restrictions usually causes undecidability.
In (Baader and Sattler, 1999), the tableau-based algorithm for ALCN is first
extended to composition of roles in number restrictions, and then to union
and intersection of role compositions of the same length. It is also shown
that most of the other combinations lead to an undecidable DL.

6.2. Role hierarchies, inverse roles, and transitive roles

Before considering different extensions of ALC and ALCN by these role con-
structors, a general remark is in order. For most of the DLs considered in
this subsection, satisfiability and subsumption of concept descriptions are
EXPTIME-complete problems. The reason for these DLs to be EXPTIME-
hard is that they can simulate general TBoxes within concept descriptions
(see below). The fact that they are in EXPTIME follows from results for
PDL and converse-PDL (Pratt, 1979; Harel, 1984). The tableau-based algo-
rithms that will be sketched below are NEXPTIME-algorithms. The point
in designing these algorithms was not to prove worst-case complexity re-
sults, but rather to obtain “practical” algorithms, i.e., algorithms that are
easy to implement and optimise, and which behave well on realistic knowl-
edge bases. Nevertheless, the fact that “natural” tableau algorithms for
such EXPTIME-complete logics are usually NEXPTIME-algorithms is an
unpleasant phenomenon. In contrast, automata-based algorithms (Vardi
and Wolper, 1986) often yield optimal worst-case complexity results, but
do not behave well in practice (since they are also best-case exponential).
Attempts to design EXPTIME-tableaux for such logics (De Giacomo et al.,
1996; De Giacomo and Massacci, 1996; Donini and Massacci, 1999) usually
lead to rather complicated (and thus not easy to implement) algorithms,
which (to the best of our knowledge) have not been implemented yet.

6.2.1. DLs with transitive roles and role hierarchies

In the DL SH, i.e., the extension of ALC with transitive roles and role
hierarchies, reasoning w.r.t. (general) TBoxes can be reduced to reasoning
without TBoxes using a standard technique from modal logics, which is
called internalisation in the DL literature (Schild, 1991; Baader et al., 1993).
As mentioned in SecAtion 5.2, we may assume that TBoxes consist of a single
axiom of the form C' = T. Internalisation of this axiom introduces a new
transitive role u, and asserts in the role hierarchy that u is a super-role
of all roles occurring in C and the concept description Cy to be tested for



Tableau Algorithms for Description Logics 27

satisfiability. Then, Cp is satisfiable w.r.t. {C = T} iff Co 1 C MNvu.C is
satisfiable with respect to the role hierarchy.

With respect to expressive power, this is a nice property of SH. However,
it also shows that satisfiability and subsumption of concept descriptions
in SH is EXPTIME-hard.®> The tableau algorithm for SH presented in
(Horrocks, 1998b) handles role hierarchies by an appropriate definition of
r-successors: an individual y is called an r-successor of an individual x in an
ABox A iff s(z,y) € A for some sub-role s of 7. Then, the condition r(z,y) €
A in the —3- and the —y-rule is replaced by the condition “if y is an -
successor of x in A”. Transitive roles are taken care of by a new rule, the —ﬁ -
rule, which, basically, adds (Vr.C')(y) to A iff y is an r-successor of  such that
(Vs.C)(x) € A and r is a transitive sub-role of s. (Note that this corresponds
to the treatment of K4-modalities in tableau algorithms from modal logics
(Halpern and Moses, 1992).) Obviously, this shifting of value restrictions
along transitive roles makes for a non-terminating algorithm, unless one
employs an appropriate blocking technique. The blocking strategy used in
(Horrocks, 1998b) coincides with the one we have presented in Section 5.2,
i.e., subset-blocking.

6.2.2. DLs with transitive and inverse roles, and role hierarchies

The extension of SH with inverse roles is called SHZ. In this DL, TBoxes
can be internalised in a way similar to the one we have described for SH.
The only difference is that now u is not only specified as a (transitive) super-
role of all roles occurring in the input concept and the TBox, but also of the
inverses of these roles (Horrocks and Sattler, 1999).

In (Horrocks and Sattler, 1999), a tableau algorithm for SHZ is obtained
from the one for SH sketched above by extending the notion of r-successors
to r-neighbours, and modifying the transformation rules accordingly. Mod-
ulo some technical details, an individual y is called an r-neighbour of an
individual =z in A iff s(z,y) € A or s~ (y,x) € A for some sub-role s of r.
Obviously, using r-neighbours instead of r-successors in the new —y-rule
implies that the rule can now be applied in both direction. For example, if
r~(z,y), (Vr.C)(y) € A, then the rule adds C(x). The main technical prob-
lem is to find an appropriate blocking condition, i.e., a condition that still
ensures termination, but does not compromise correctness of the algorithm.
The blocking strategy introduced in (Horrocks and Sattler, 1999) differs in
two points from blocking for SH.

5 More precisely, reasoning in SH is EXPTIME-complete (Horrocks et al., 2000a).



28 F. Baader, U. Sattler

x o (Vs™.A)(z), (3r.A)(z),.
x irA r=¥s . A)(z1),...
Yy (l)s Ir. A)(

Figure 4. A situation where subset blocking fails for SHZ.

First, one can no longer use subset blocking as described in Section 5.2.
Consider the example shown in Fig. 4 (where, for the sake of legibility, not
all concepts necessary for generating this situation are explicitly given). If
subset blocking is used, then y is blocked by x. However, when building the
canonical interpretation Z, the r-successor x; of x is used to satisfy (3r.A)(y),

e, (y,z1) € rZ. This violates the value restriction for z1, which shows that
the interpretation obtained this way is not a model of the complete and
open ABox. This problem can be overcome by using equality blocking, i.e.,
an individual y is blocked by an individual z iff {D | D(z) € A} = {D’ |
D'(y) € A}.

Second, blocking is now dynamic, even if rules are applied according to
the strategy that applies non-generating rules with higher priority. This is
due to the fact that the —y-rule can be applied back and forth on a chain
of individuals.

Alternatively to the approach described until now, which goes back and
forth in the interpretation to be generated, one could have chosen to guess
(nondeterministically) all those assertions C(z) that could be propagated
“back” from an r-successor y of = due to value restrictions (Vr~—.C')(y). In
the case of a wrong guess, one has a new type of clashes. The analytic cut
rule in (De Giacomo and Massacci, 1996) does this for a well-chosen, rela-
tively small set of sub-descriptions of the input description. In this setting,
blocking would again become static. However, in an actual implementation
it is preferable to avoid this “blind” guessing. For SHZ (and its extensions
treated in the following subsections), avoiding this source of nondeterminism
is indeed possible. This does not appear to be the case for the extension of
ALC with transitive closure and inverse of roles. This DL is closely related
to converse-PDL, for which a tableau algorithm is presented in (De Gia-
como and Massacci, 1996) using the analytic cut rule. (In Section 6.2.4, we



Tableau Algorithms for Description Logics 29

will comment in more detail on tableau algorithms for DLs with transitive
closure of roles.)

By dropping role hierarchies from SHZ, we obtain the logic SZ. Ob-
viously, the internalisation of TBoxes sketched above does no longer work
since we cannot specify super-roles of roles. It can be shown that SZ is
indeed less complex than SH or SHZ. Using a rather sophisticated blocking
technique, a tableau algorithm can be designed that decides satisfiability of
concept descriptions in SZ using space polynomial in the size of the input
description (Spaan, 1993; Horrocks et al., 1999). This implies that satisfia-
bility of concept descriptions in SZ is PSPACE-complete, i.e., of the same
worst-case complexity as ALC.

6.2.3. DLs with transitive and inverse roles, role hierarchies,
and number restrictions.

Things become even more complicated for the DL SHZN, which extends
SHI with unqualified number restrictions on simple roles. A role r is called
simple iff r is an atomic role or its inverse such that r does not have a
transitive sub-role (Horrocks and Sattler, 1999).

In contrast to SHZ, the DL SHZN no longer has the finite model prop-
erty. For example, if the role hierarchy contains the axiom s C r for a
transitive role r € N}, then the following concept is obviously satisfiable,
but each of its models has an infinite s-path: ~AM3s. AMVr.(3s. AMN(<L1s7)).

Thus, instead of directly trying to construct a (possibly infinite) inter-
pretation that satisfies Cj, the tableau algorithm for SHZN introduced in
(Horrocks and Sattler, 1999; Horrocks et al., 1999) first tries to construct
a so-called pre-model, i.e., a structure that can be “unravelled” to a (possi-
bly infinite) canonical (tree) interpretation. In principle, this algorithm is
obtained by extending the algorithm for SHZ with the rules that handle
number restrictions. The main technical problem to be solved is again to
design the appropriate blocking condition.

Unravelling is also known in modal logic (see, for example, (Stirling,
1992)), and works as follows. To construct a model from a pre-model, we
define elements of the model’s domain to be paths in the pre-model that
follow edges r(x,y) where, instead of going to a blocked individual, the path
goes to its blocking individual. Thus, if blocking occurs, we may obtain an
infinite model (e.g., if the blocking individual is a predecessor of the blocked
individual)—even though the input concept might have a finite one.

Before describing the blocking condition introduced in (Horrocks and
Sattler, 1999; Horrocks et al., 1999), let us point out a new phenomenon



30 F. Baader, U. Sattler

that can occur when running the tableau algorithm for SHZN. Due to the
interaction of role hierarchies and number restrictions, the algorithm can
generate an ABox A with {r(z,y),s(z,y)} C A where r, s are not sub-roles
of each other. This situation can be caused by an assertion (<1t¢)(x), where
t is a common super-role of r and s, and x already has an r- and an s-
successor. These two successors are then merged into the single successor y.
Note, however, that each individual generated by the algorithm still has a
unique predecessor, though it may be related to it by more than one role.
The new blocking condition for SHZN is called pair-wise blocking. It
extends the one for SHZ as follows. In order for an individual y to be
blocked by an individual z, the predecessors of x and y must also have
identical assertion attached to them, and x and y must be related by the
same roles to their respective predecessors. More precisely, assume that z,y
are individuals in A that respectively have the predecessors z’,7’ in A. For
y to be blocked by x, the following conditions must be satisfied: (i) for each
role 7, x is an r-successor of " iff y is an r-successor of ¢/; (ii) {D | D(z) €
A} ={D’ | D'(y) € A}; and (iii) {D | D(2') € A} = {D" | D'(¢y) € A}.
The following example should give a better intuition for why this complex
blocking condition is needed. In Fig. 5, we show relevant parts of an ABox
that was generated to decide the satisfiability of the concept Cp, where

Co := AN (3s.D) M (Vr.3s.D),

s is a sub-role of the transitive role r, and D := AM (<1s7) M (3s~.0A4).
Using equality blocking, z would be blocked by y. When constructing the
canonical interpretation, we cannot re-use y’s s-successor as z’s successor:
this would make z an s-successor of itself, and thus z would have itself and y
as s~ -successors, contradicting the assertion (<1s7)(z). Thus, unravelling is
really necessary in this example. As explained above, unravelling the ABox
to an interpretation would generate as elements of the interpretation the
path [z] (corresponding to ), the path [z,y] (corresponding to y), the path
[, y,y] (which is used instead of the blocked individual z), the path [z, y, y, y]
etc. However, in this interpretation the element [x,y,y] and its successors
do not belong to the concept description ds~.—A, which shows that this
interpretation does not satisfy Cy. With respect to pair-wise blocking, z is
not blocked by y since the predecessor z of y has a concept assertion (—A)(x)
that the predecessor y of z does not have. Hence the tableau algorithm
generates an s-successor to satisfy (3s.D)(z) and an s~ -successor to satisfy
(Fs7.mA)(2). It should be noted that the problems that lead to the need
for pair-wise blocking do not depend on the presence of “large” numbers



Tableau Algorithms for Description Logics 31

z O Co(x), (mA)(x), (3s.D)(x), (Vr.3s.D)(z)

y © D(y), A(y), (£1s7)(y), (3s7.~A)(y), (3s.D)(y), (Vr.3s.D)(y)

z O D(z), A(2), (£1s57)(2), (3s7.mA)(z), (3s.D)(2), (Vr.3s.D)(z)

Figure 5. A situation where pair-wise blocking is crucial.

in number restrictions. In fact, the above example used only functional
restrictions, i.e., number restrictions of the form (<1 r).

The tableau-based satisfiability algorithm for SHZN described until now
can also be extended to decide the consistency of ABoxes (Horrocks et al.,
2000b). Recall that, for ALCN, the naive extension of the satisfiability
algorithm to a consistency algorithm ran into termination problems. This
problem can be overcome by applying the pre-completion technique, which
reduces ABox consistency to satisfiability of concept descriptions (see Sec-
tion 4.1.2). Pre-completion does not work for SHZN due to the presence
of inverse roles. For example, the inconsistency of the ABox {r(z,y), A(z)
(3s.Vs~.Vr—.mA)(y)} cannot be detected if, after the application of non-
generating rules only, x and y are treated in unrelated ABoxes. However,
the termination problem pointed out for ALCN is not relevant for SHIN
since the algorithm employs blocking to ensure termination. Basically, the
only difference between the satisfiability and the consistency algorithm for
SHIN is that one must be a bit more careful when the block involves old
individuals, i.e., individuals present in the input ABox.

6.2.4. DLs with the transitive closure of roles

Finally, let us briefly comment on the difference between transitive roles and
transitive closure of roles. The transitive closure of roles is more expressive,
but it appears that one has to pay dearly for this. In fact, whereas there
exist quite efficient implementations for very expressive DLs with transitive
roles, inverse roles, and role hierarchies (see above), no such implementations
are known (to us) for closely related logics with transitive closure, such as
converse-PDL (which is a notational variant of the extension of ALC by tran-
sitive closure, union, composition, and inverse of roles (Schild, 1991)). One
reason could be that the known tableau algorithm for converse-PDL (De Gi-
acomo and Massacci, 1996) requires an analytic cut rule (see Section 6.2.2),
which is massively nondeterministic, and thus very hard to implement effi-
ciently.



32 F. Baader, U. Sattler

Another problem with transitive closure is that a blocked individual need
no longer indicate “success”, as is the case in DLs with transitive roles. In the
presence of transitive closure, when blocking occurs, one must check whether
this block is due to a harmless, cyclic repetition of the same assertions (as is
always the case for SHZN), or whether the block is caused by the repeated
unsuccessful attempt to satisfy an assertion of the form (Ir*.C)(z), where
C is unsatisfiable or in conflict with an assertion (Vr*.D)(x). The former
case is called a “good” cycle and the latter a “bad” cycle in (Baader, 1991).
To satisfy an assertion of the form (3r+.C)(z) (often called “eventuality” in
the modal or temporal logic literature), one has two possibilities: (i) satisfy
it now, i.e., generate an r-successor that belongs to C; or (ii) defer it till
later on, i.e., generate an r-successor that belongs to 3r.C'. However, one
must ensure that the (Ir*.C)(x) is satisfied eventually, i.e., one does not
always choose the second alternative. To ensure termination, the algorithm
in (Baader, 1991) basically uses equality blocking, together with a rather
strict strategy on the application of rules. A block (called cycle in (Baader,
1991)) can now indicate two things: either it is good, which corresponds
to the situation encountered in logics like SHZN, or it is bad, which cor-
responds to infinitely deferring to satisfy an eventuality. Since good cycles
can be distinguished from bad cycles, the algorithm can stop with success in
the first case, and it must backtrack in the second. Note that the algorithm
in (Baader, 1991) is very similar to the satisfiability algorithm for DPDL
sketched in Section 5.3 of (Ben-Ari et al., 1982). The main difference is that
Ben-Ari et al. (1982) first treat all cycles as good, but then detect bad cycles
by checking whether the generated interpretation really satisfies the input
formula.

Automata-based methods (Vardi and Wolper, 1986) elegantly treat the
problems caused by eventualities by employing appropriate acceptance con-
ditions (e.g., Biichi acceptance). However, as mentioned above, a direct
implementation of these methods is also best-case exponential. To the best
of our knowledge, there is no efficient implementation of these methods, and
we conjecture that an attempt to optimise them would lead to an algorithm
that is very similar to a tableau algorithm.

7. Conclusion

Though many of the tableau-based algorithms sketched in this paper are
of optimal worst-case complexity, and thus provide complexity results for
subsumption and satisfiability in DLs, theoretical complexity results never
were the main focus of this line of DL research. The design of these algo-



Tableau Algorithms for Description Logics 33

rithms was strongly motivated by the goal to obtain practical algorithms,
i.e., algorithms that are easy to implement and optimise, and which behave
well on realistic knowledge bases. In particular, for the logics treated in
Section 6.2, the exact worst-case complexity (EXPTIME) was known before
the (NEXPTIME) tableau algorithms sketched above were designed. The
claim that these algorithms really are “practical” must still be supported by
more empirical evaluations, but the first results are rather encouraging (see
below).

The notion of what is thought to be a practical subsumption algorithm
in description logics has gone through a remarkable evolution in the last
15 years. Throughout the eighties and up to the early nineties, anything
non-polynomial was deemed to be impractical. Consequently, when the first
complexity results showed that all of the DLs used in systems had subsump-
tion problems of a higher complexity, the proposed solution was either to
restrict the expressive power or to employ incomplete algorithms. The first
tableau algorithms for more expressive DLs (with PSPACE-complete sub-
sumption problems) were widely considered to be of (complexity) theoretic
interest only, though not by their designers. In fact, it turned out that im-
plementations of these algorithms were amenable to optimisation techniques
and behaved quite well in practice (Baader et al., 1994; Bresciani et al.,
1995).

Following this lead, Ian Horrocks implemented the first system, FaCT,
based on an EXPTIME-complete DL. The satisfiability algorithm of FaCT is
a highly optimised implementation of the tableau algorithm for SH sketched
above. FaCT was originally designed to represent medical terminology
(where the whole expressive power of SH is needed), and it has behaved
very well on the large medical knowledge base it was designed for (Horrocks,
1998b). In addition, FaCT performed equally well on randomly generated
benchmarks for formulae in (PSPACE) modal logics designed for system
comparisons (Horrocks, 1998a; Patel-Schneider and Horrocks, 1999; Hor-
rocks, 2000). These formulae do not use the whole expressive power of
SH, but to the best of our knowledge there are no benchmark formu-
lae available for EXPTIME-complete logics. Encouraged by these expe-
riences, other DL systems were designed that use (optimised) implemen-
tations of the tableau algorithms described in Section 6.2, and they also
proved to behave quite well, both in realistic applications, and on the avail-
able (PSPACE) benchmarks (Horrocks and Patel-Schneider, 1999; Haarslev
and Moller, 2000b; Horrocks et al., 2000a). This shows that, at the be-
ginning of the new millennium, even an EXPTIME-algorithm is no longer
automatically considered to be impractical in the DL community.



34 F. Baader, U. Sattler

Databases have turned out to be a very interesting application area for
DLs, which needs the expressive power offered by logics such as SHZN.
Indeed, such expressive DLs can be viewed as a unifying formalism for class-
based representation systems such as object-oriented or frame-based sys-
tems, and they capture the semantics of conceptual modelling formalisms
such as Entity-Relationship diagrams (Calvanese et al., 1999b). DL systems
can be used to support the design and evolution of database schemata or to
optimise queries (Calvanese et al., 1998a; Calvanese et al., 1998c); to support
the integration of sources in heterogeneous databases/data warehouses (Cal-
vanese et al., 1998b; Calvanese et al., 1999a); and to support the conceptual
modelling of multidimensional aggregation (Franconi and Sattler, 1999).

A first tool that provides an interface for the above mentioned data-
base applications is iecom (Franconi and Ng, 2000). Its graphical user in-
terface supports the design of conceptual models using enhanced Entity-
Relationship diagrams. The underlying inference engine is the new version
of the DL system FaCT which implements SHZOQ, i.e., the extension of
SHIN with qualified number restrictions. Once the user has finished a
modelling step, she can ask the system to translate the conceptual model
into a SHZQ knowledge base. This knowledge base is then given to FaCT,
which checks for implicit IS-A (i.e., subsumption) relationships between en-
tities/relations and tests entities/relations for inconsistencies. In case of an
inconsistency or an unexpected IS-A link, the user can modify her conceptual
model appropriately.

References

Baader, F.: 1991, ‘Augmenting Concept Languages by Transitive Closure of Roles: An Al-
ternative to Terminological Cycles’. In: Proc. of the 12th Int. Joint Conf. on Artificial
Intelligence (IJCAI-91). A long version appeared as DFKI-Research-Report RR-90-13,
Kaiserslautern, Germany.

Baader, F., M. Buchheit, and B. Hollunder: 1996, ‘Cardinality Restrictions on Concepts’.
Artificial Intelligence Journal 88(1-2), 195-213.

Baader, F., H.-J. Biirckert, B. Nebel, W. Nutt, and G. Smolka: 1993, ‘On the Expressivity
of Feature Logics with Negation, Functional Uncertainty, and Sort Equations’. Journal
of Logic, Language and Information 2, 1-18.

Baader, F., E. Franconi, B. Hollunder, B. Nebel, and H. Profitlich: 1994, ‘An Empir-
ical Analysis of Optimization Techniques for Terminological Representation Systems
or: Making KRIS get a move on’. Applied Artificial Intelligence. Special Issue on
Knowledge Base Management 4, 109-132.



Tableau Algorithms for Description Logics 35

Baader, F. and P. Hanschke: 1991, ‘A Schema for Integrating Concrete Domains into
Concept Languages’. Technical Report RR-91-10, Deutsches Forschungszentrum fiir
Kiinstliche Intelligenz (DFKI), Kaiserslautern, Germany. An abridged version appeared
in Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI-91).

Baader, F. and B. Hollunder: 1991, ‘A Terminological Knowledge Representation System
with Complete Inference Algorithm’. In: Proc. of PDK’91, Vol. 567 of Lecture Notes
In Artificial Intelligence. pp. 67-86, Springer-Verlag.

Baader, F. and U. Sattler: 1999, ‘Expressive Number Restrictions in Description Logics’.
Journal of Logic and Computation 9(3), 319-350.

Baader, F. and U. Sattler: 2000, ‘Tableau Algorithms for Description Logics’. In: R.
Dyckhoff (ed.): Proc. of the Int. Conf. on Automated Reasoning with Tableauzr and
Related Methods (Tableaux 2000), Vol. 1847 of Lecture Notes in Artificial Intelligence.
pp- 1-18, Springer-Verlag.

Ben-Ari, M., J. Y. Halpern, and A. Pnueli: 1982, ‘Deterministic Propositional Dynamic
Logic: Finite Models, Complexity, and Completeness’. Journal of Computer and Sys-
tem Science 25, 402-417.

Borgida, A. and P. F. Patel-Schneider: 1994, ‘A Semantics and Complete Algorithm for
Subsumption in the CLASSIC Description Logic’. Journal of Artificial Intelligence
Research 1, 277-308.

Brachman, R. J.: 1992, ‘“Reducing” CLASSIC to Practice: Knowledge Representation
Meets Reality’. In: Proc. of the 3rd Int. Conf. on the Principles of Knowledge Repre-
sentation and Reasoning (KR-92). pp. 247-258, Morgan Kaufmann.

Brachman, R. J. and H. J. Levesque: 1984, ‘The Tractability of Subsumption in Frame-
Based Description Languages’. In: Proc. of the 4th Nat. Conf. on Artificial Intelligence
(AAAI-84), pp. 34-37, AAAI Press.

Brachman, R. J. and H. J. Levesque (eds.): 1985, Readings in Knowledge Representation.
Morgan Kaufmann.

Brachman, R. J. and J. G. Schmolze: 1985, ‘An Overview of the KL-ONE Knowledge
Representation System’. Cognitive Science 9(2), 171-216.

Bresciani, P., E. Franconi, and S. Tessaris: 1995, ‘Implementing and Testing Expressive
Description Logics: Preliminary Report’. In: A. Borgida, M. Lenzerini, D. Nardi, and
B. Nebel (eds.): Working Notes of the 1995 Description Logics Workshop. pp. 131-139.

Buchheit, M., F. M. Donini, and A. Schaerf: 1993, ‘Decidable Reasoning in Terminological
Knowledge Representation Systems’. Journal of Artificial Intelligence Research 1, 109—
138.

Calvanese, D., G. De Giacomo, and M. Lenzerini: 1998a, ‘On the Decidability of Query
Containment under Constraints’. In: Proc. of the Seventeenth ACM SIGACT SIGMOD
Sym. on Principles of Database Systems (PODS-98). pp. 149-158.

Calvanese, D., G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati: 1998b, ‘Description
Logic Framework for Information Integration’. In: Proc. of the 6th Int. Conf. on the



36 F. Baader, U. Sattler

Principles of Knowledge Representation and Reasoning (KR-98). pp. 2-13, Morgan
Kaufmann.

Calvanese, D., G. De Giacomo, and R. Rosati: 1999a, ‘Data Integration and Reconciliation
in Data Warehousing: Conceptual Modeling and Reasoning Support’. Network and
Information Systems 4(2).

Calvanese, D., G. D. Giacomo, M. Lenzerini, and D. Nardi: 2001, ‘Reasoning in Expressive
Description Logics’. In: A. Robinson and A. Voronkov (eds.): Handbook of Automated
Reasoning. Amsterdam, NL: Elsevier Science Publishers.

Calvanese, D., M. Lenzerini, and D. Nardi: 1998c, ‘Description Logics for Conceptual Data
Modeling’. In: J. Chomicki and G. Saake (eds.): Logics for Databases and Information
Systems. Kluwer Academic Publisher, pp. 229-264.

Calvanese, D., M. Lenzerini, and D. Nardi: 1999b, ‘Unifying Class-Based Representation
Formalisms’. Journal of Artificial Intelligence Research 11, 199-240.

De Giacomo, G.: 1995, ‘Decidability of Class-Based Knowledge Representation For-
malisms’. Ph.D. thesis, Dipartimento di Informatica e Sistemistica, Universita di Roma
“La Sapienza”.

De Giacomo, G., F. Donini, and F. Massacci: 1996, ‘EXPTIME tableaux for AZC’. In:
Proc. of the 1996 Description Logic Workshop (DL’96).

De Giacomo, G. and M. Lenzerini: 1994, ‘Boosting the Correspondence between Descrip-
tion Logics and Propositional Dynamic Logics’. In: Proc. of the 12th Nat. Conf. on
Artificial Intelligence (AAAI-94). pp. 205212, AAAI Press/The MIT Press.

De Giacomo, G. and M. Lenzerini: 1996, ‘TBox and ABox Reasoning in Expressive De-
scription Logics’. In: L. C. Aiello, J. Doyle, and S. C. Shapiro (eds.): Proc. of the 5th
Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR-96). pp.
316-327, Morgan Kaufmann.

De Giacomo, G. and F. Massacci: 1996, ‘Tableaux and algorithms for propositional dy-
namic logic with converse’. In: Proc. of the 13th Conf. on Automated Deduction
(CADE-96), Vol. 1104 of Lecture Notes In Artificial Intelligence. pp. 613628, Springer-
Verlag. A long versioned will appear in Information and Computation.

Donini, F. M., B. Hollunder, M. Lenzerini, A. M. Spaccamela, D. Nardi, and W. Nutt:
1992, ‘The Complexity of Existential Quantification in Concept Languages’. Artificial
Intelligence Journal 2-3, 309-327.

Donini, F. M., M. Lenzerini, D. Nardi, and W. Nutt: 1991a, ‘The Complexity of Concept
Languages’. In: J. Allen, R. Fikes, and E. Sandewall (eds.): Proc. of the 2nd Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR-91). pp. 151-162,
Morgan Kaufmann.

Donini, F. M., M. Lenzerini, D. Nardi, and W. Nutt: 1991b, ‘Tractable Concept Lan-
guages’. In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI-91).
pp. 458-463.



Tableau Algorithms for Description Logics 37

Donini, F. M., M. Lenzerini, D. Nardi, and A. Schaerf: 1994, ‘Deduction in Concept Lan-
guages: From Subsumption to Instance Checking’. Journal of Logic and Computation
4(4), 423-452.

Donini, F. M., M. Lenzerini, D. Nardi, and A. Schaerf: 1996, ‘Reasoning in Description
Logics’. In: G. Brewka (ed.): Principles of Knowledge Representation, Studies in Logic,
Language and Information. CSLI Publications, pp. 193-238.

Donini, F. M. and F. Massacci: 1999, ‘EXPTIME Tableaux for ALC’. Technical Report
32/99, Dipartimento di Ingegenria dell’Informazione, Universita degli studi di Siena,
Ttaly. To appear in Artificial Intelligence.

Franconi, E. and G. Ng: 2000, ‘The iecom Tool for Intelligent Conceptual Modelling’.
In: Working Notes of the ECAI2000 Workshop on Knowledge Representation Meets
Databases (KRDB2000), CEUR Electronic Workshop Proceedings.

Franconi, E. and U. Sattler: 1999, ‘A Data Warehouse Conceptual Data Model for Mul-
tidimensional Aggregation: a preliminary report’. [talian Association for Artificial
Intelligence AI*IA Notizie 1, 9-21.

Haarslev, V. and R. Moller: 1999, ‘RACE System Description’. In: Proc. of the 1999
Description Logic Workshop (DL’99). pp. 130-132, CEUR Electronic Workshop Pro-
ceedings.

Haarslev, V. and R. Moller: 2000a, ‘Consistency Testing: The RACE Experience’. In:
R. Dyckhoff (ed.): Proc. of the Int. Conf. on Automated Reasoning with Tableauz and
Related Methods (Tableaux 2000), Vol. 1847 of Lecture Notes in Artificial Intelligence.
pp- 57-61, Springer-Verlag.

Haarslev, V. and R. Moller: 2000b, ‘Expressive ABox Reasoning with Number Restric-
tions, Role Hierarchies, and Transitively Closed Roles’. In: Proc. of the 7th Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR-00). Morgan Kauf-
mann.

Halpern, J. Y. and Y. Moses: 1992, ‘A Guide to Completeness and Complexity for Modal
Logics of Knowledge and Belief’. Artificial Intelligence Journal 54, 319-379.

Hanschke, P.: 1992, ‘Specifying Role Interaction in Concept Languages’. In: Proc. of the
3rd Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR-92).
pp- 318-329, Morgan Kaufmann.

Harel, D.: 1984, ‘Dynamic Logic’. In: Handbook of Philosophical Logic, Vol. 2. Dordrecht,
Holland: D. Reidel, pp. 497-640.

Hollunder, B.: 1990, ‘Hybrid Inferences in KL-ONE-based Knowledge Representation Sys-
tems’. In: Proc. of GWAI’90, Vol. 251 of Informatik-Fachberichte. pp. 38-47, Springer-
Verlag.

Hollunder, B.: 1996, ‘Consistency Checking Reduced to Satisfiability of Concepts in Termi-
nological Systems’. Annals of Mathematics and Artificial Intelligence 18(2-4), 133-157.

Hollunder, B. and F. Baader: 1991, ‘Qualifying Number Restrictions in Concept Lan-
guages’. In: Proc. of the 2nd Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR-91). pp. 335-346, Morgan Kaufmann.



38 F. Baader, U. Sattler

Hollunder, B. and W. Nutt: 1990, ‘Subsumption Algorithms for Concept Languages’.
Technical Report RR-90-04, Deutsches Forschungszentrum fiir Kiinstliche Intelligenz
(DFKI), Kaiserslautern, Germany.

Hollunder, B., W. Nutt, and M. Schmidt-Schauf: 1990, ‘Subsumption Algorithms for
Concept Description Languages’. In: Proc. of the 9th FEuropean Conf. on Artificial
Intelligence (ECAI-90). pp. 348-353, Pitman.

Horrocks, I.: 1998a, ‘The FaCT System’. In: H. de Swart (ed.): Proc. of the Int. Conf.
on Automated Reasoning with Tableauz and Related Methods (Tableauz-98), Vol. 1397
of Lecture Notes in Artificial Intelligence. pp. 307-312, Springer-Verlag.

Horrocks, I.: 1998b, ‘Using an Expressive Description Logic: FaCT or Fiction?’. In: Proc.
of the 6th Int. Conf. on the Principles of Knowledge Representation and Reasoning
(KR-98). pp. 636-647, Morgan Kaufmann.

Horrocks, 1.: 2000, ‘Benchmark Analysis for FaCT’. In: R. Dyckhoff (ed.): Proc. of the Int.
Conf. on Automated Reasoning with Tableaux and Related Methods (Tableaux 2000),
Vol. 1847 of Lecture Notes in Artificial Intelligence. pp. 62-66, Springer-Verlag.

Horrocks, 1. and P. F. Patel-Schneider: 1999, ‘Optimizing Description Logic Subsumption’.
Journal of Logic and Computation 9(3), 267-293.

Horrocks, I. and U. Sattler: 1999, ‘A Description Logic with Transitive and Inverse Roles
and Role Hierarchies’. Journal of Logic and Computation 9(3), 385-410.

Horrocks, I., U. Sattler, and S. Tobies: 1999, ‘Practical Reasoning for Expressive Descrip-
tion Logics’. In: Proc. of the 6th Int. Conf. on Logic for Programming and Automated
Reasoning (LPAR’99), Vol. 1705 of Lecture Notes In Artificial Intelligence. Springer-
Verlag.

Horrocks, 1., U. Sattler, and S. Tobies: 2000a, ‘Practical Reasoning for Very Expressive
Description Logics’. Logic Journal of the IGPL 8(3), 239-264.

Horrocks, 1., U. Sattler, and S. Tobies: 2000b, ‘Reasoning with Individuals for the De-
scription Logic SHIQ’. In: D. MacAllester (ed.): Proc. of the 13th Conf. on Automated
Deduction (CADE-17). Springer-Verlag.

Lutz, C.: 1999, ‘Complexity of Terminological Reasoning Revisited’. In: Proc. of the 6th
Int. Conf. on Logic for Programming and Automated Reasoning (LPAR’99), Vol. 1705
of Lecture Notes In Artificial Intelligence. Springer-Verlag.

Lutz, C. and U. Sattler: 2000, ‘The Complexity of Reasoning with Boolean Modal Logic’.
In: Advances in Modal Logic 2000 (AiML 2000). Leipzig, Germany.

MacGregor, R.: 1991, ‘The Evolving Technology of Classification-Based Knowledge Rep-
resentation Systems’. In: J. F. Sowa (ed.): Principles of Semantic Networks. Morgan
Kaufmann, pp. 385-400.

Mays, E., R. Dionne, and R. Weida: 1991, ‘K-REP System Overview’. SIGART Bulletin
2(3).

Minsky, M.: 1981, ‘A Framework for Representing Knowledge’. In: J. Haugeland (ed.):
Mind Design. The MIT Press. Republished in (Brachman and Levesque, 1985).



Tableau Algorithms for Description Logics 39

Nebel, B.: 1990a, Reasoning and Revision in Hybrid Representation Systems, Vol. 422 of
Lecture Notes In Artificial Intelligence. Springer-Verlag.

Nebel, B.: 1990b, ‘Terminological Reasoning is Inherently Intractable’. Artificial Intelli-
gence Journal 43, 235-249.

Nebel, B.: 1991, ‘Terminological Cycles: Semantics and Computational Properties’. In:
J. F. Sowa (ed.): Principles of Semantic Networks. Morgan Kaufmann, pp. 331-361.

Patel-Schneider, P.: 2000, ‘TANCS-2000 Results for DLP’. In: R. Dyckhoff (ed.): Proc. of
the Int. Conf. on Automated Reasoning with Tableaux and Related Methods (Tableaux
2000), Vol. 1847 of Lecture Notes in Artificial Intelligence. pp. 72-76, Springer-Verlag.

Patel-Schneider, P. F.: 1999, ‘DLP’. In: Proc. of the 1999 Description Logic Workshop
(DL’99). pp. 9-13, CEUR Electronic Workshop Proceedings.

Patel-Schneider, P. F. and I. Horrocks: 1999, ‘DLP and FaCT’. In: Proceedings of the
International Conference on Automated Reasoning with Analytic Tableaux and Related
Methods (TABLEAUX-99), Vol. 1397 of Lecture Notes In Artificial Intelligence. pp.
19-23, Springer-Verlag.

Patel-Schneider, P. F.,; D. L. McGuiness, R. J. Brachman, L. A. Resnick, and A. Borgida:
1991, ‘The CLASSIC Knowledge Representation System: Guiding Principles and Im-
plementation Rational’. SIGART Bulletin 2(3), 108-113.

Peltason, C.: 1991, ‘The BACK System — an Overview’. SIGART Bulletin 2(3), 114-119.

Pratt, V. R.: 1979, ‘Models of Program Logic’. In: Proc. of the 20th Annual Sym. on the
Foundations of Computer Science (FOCS-79). pp. 115-122.

Quillian, M. R.: 1967, ‘Word Concepts: A Theory and Simulation of Some Basic Capa-
bilities’. Behavioral Science 12, 410-430. Republished in (Brachman and Levesque,
1985).

Sattler, U.: 1996, ‘A Concept Language Extended with Different Kinds of Transitive
Roles’. In: G. Gorz and S. Holldobler (eds.): Proc. of the 20th German Annual Conf.
on Artificial Intelligence (KI1°96), Vol. 1137 of Lecture Notes In Artificial Intelligence.
Springer-Verlag.

Savitch, W. J.: 1970, ‘Relationship between Nondeterministic and Deterministic Tape
Complexities’. Journal of Computer and System Science 4, 177-192.

Schaerf, A.: 1993, ‘On the Complexity of the Instance Checking Problem in Concept
Languages with Existential Quantification’. Journal of Intelligent Information Systems
2, 265-278.

Schild, K.: 1991, ‘A Correspondence Theory for Terminological Logics: Preliminary Re-
port’. In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI-91). pp.
466-471.

Schild, K.: 1994, ‘Terminological Cycles and the Propositional p-Calculus’. In: J. Doyle,
E. Sandewall, and P. Torasso (eds.): Proc. of the 4th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR-94). pp. 509-520, Morgan Kaufmann.



40 F. Baader, U. Sattler

Schmidt-Schauf3, M.: 1989, ‘Subsumption in KL-ONE is Undecidable’. In: R. J. Brachman,
H. J. Levesque, and R. Reiter (eds.): Proc. of the 1st Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR-89). pp. 421-431, Morgan Kaufmann.

Schmidt-Schauf;, M. and G. Smolka: 1991, ‘Attributive Concept Descriptions with Com-
plements’. Artificial Intelligence Journal 48(1), 1-26.

Spaan, E.: 1993, ‘The Complexity of Propositional Tense Logics’. In: M. de Rijke (ed.):
Diamonds and Defaults. Kluwer Academic Publishers, pp. 287-307.

Stirling, C.: 1992, ‘Modal and Temporal Logic’. In: S. Abramsky, D. M. Gabbay, and
T. S. E. Maibaum (eds.): Handbook of Logic in Computer Science. Clarendon Press,
pp- 477-563.

Tobies, S.: 1999, ‘A PSPACE Algorithm for Graded Modal Logic’. In: Proc. of the 13th
Conf. on Automated Deduction (CADE-16), Vol. 1632 of Lecture Notes in Computer
Science. Springer-Verlag.

Van der Hoek, W. and M. De Rijke: 1995, ‘Counting Objects’. Journal of Logic and
Computation 5(3), 325-345.

Vardi, M. Y. and P. Wolper: 1986, ‘Automata-theoretic Techniques for Modal Logics of
Programs’. Journal of Computer and System Science 32, 183—-221. A preliminary
version appeared in Proc. of the 16th ACM SIGACT Symp. on Theory of Computing
(STOC’84).

FrANZ BAADER and ULRIKE SATTLER
RWTH Aachen

Ahornstr 55

52074 Aachen, Germany

{baader sattler} @cs.rwth-aachen.de



