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Dementia, of which Alzheimer’s disease (AD) is the most common form, is characterized

by progressive cognitive deterioration, including profound memory loss, which affects

functioning in many aspects of life. Although cognitive deterioration is relatively common

in aging and aging is a risk factor for AD, the condition is not necessarily a part of the aging

process. The N-methyl-D-aspartate glutamate receptor (NMDAR) and its co-agonist

D-serine are currently of great interest as potential important contributors to cognitive

function in normal aging and dementia. D-Serine is necessary for activation of the

NMDAR and in maintenance of long-term potentiation (LTP) and is involved in brain

development, neuronal connectivity, synaptic plasticity and regulation of learning and

memory. In this paper, we review evidence, from both preclinical and human studies, on

the involvement of D-serine (and the enzymes involved in its metabolism) in regulation

of cognition. Potential mechanisms of action of D-serine are discussed in the context

of normal aging and in dementia, as is the potential for using D-serine as a potential

biomarker and/or therapeutic agent in dementia. Although there is some controversy in

the literature, it has been proposed that in normal aging there is decreased expression

of serine racemase and decreased levels of D-serine and down-regulation of NMDARs,

resulting in impaired synaptic plasticity and deficits in learning and memory. In contrast,

in AD there appears to be activation of serine racemase, increased levels of D-serine and

overstimulation of NMDARs, resulting in cytotoxicity, synaptic deficits, and dementia.

Keywords: D-serine, glutamate, NMDA receptor, dementia, Alzheimer’s disease, long-term potentiation,

aging, cognition

INTRODUCTION

Dementia, and its most common form, Alzheimer’s disease (AD), is a complex and progressive
neurological disorder characterized by many neuropsychiatric symptoms, e.g. aggression, anxiety,
depression and sleep disorder, and the better known symptoms associated with progressivememory
loss and cognitive impairment, all of which can significantly alter the quality of life of those afflicted
with this disorder (1, 2). Age is a major risk factor for dementia, and 1.5% of the population will
be affected directly by dementia by the age of 65 and >20% of the population by the age of 85 (3).
Neurocognitive disorders such as AD are expected to steadily increase in prevalence and incidence
as the population ages. It is estimated that the global number of individuals suffering from dementia
will reach 65 million by 2030 and 113 million by 2050 (2, 4). The impact of the high prevalence of
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dementia in the elderly is noteworthy, as seen in the substantial
direct healthcare costs as well as in the devastating social costs
for individuals and their families and caregivers (2). Yet, despite
the growing importance of understanding dementia, we are still
in search of effective methods for its diagnosis and treatment.

In this review, we provide a summary of the potential role
of the amino acid D-serine, a potent co-agonist at the N-
methyl-D-aspartate glutamate receptor (NMDAR), in normal
and pathological aging, with a focus on neurocognition. A
brief discussion on the diagnostic and therapeutic potential
of D-serine is also included. The evidence suggests that this
is a promising avenue of research into the pathophysiology
of neurocognition and its potential treatment in dementing
illnesses. Literature searches were performed in PubMed and
Web of Science for the period January 1970 to May 2021, and
the key search terms used were “D-serine and dementia”, “D-
serine and Alzheimer’s disease”, “D-serine and mild cognitive
impairment”, “D-serine and LTP”, as well as “D-serine and
NMDA receptors”. Only papers in English were used in
preparation of the review, and some of the review papers found
were searched for additional relevant references. Each reference
used was screened by at least two of the authors.

PHYSIOLOGY OF NORMAL AGING

Aging is a normal dynamic process, characterized by the
development of a mild inflammatory environment and a
progressive deterioration of certain physiological functions,
including in the central nervous system (CNS) (5, 6). Although
cognitive decline is relatively common in old age, the relationship
between aging and degenerative dementias such as AD remains
unclear. Whereas aging is a risk factor for AD, it is not inevitable
that AD be part of the aging process. While obvious and
oftentimes widespread structural changes can be seen within
the CNS with dementia pathophysiology, normal aging is not
associated with a significant loss of neurons (7); rather, brain
alterations in normal aging are much more subtle, involving
changes in connectivity and altered functions at the cellular and
molecular level (8). Several cognitive domains are affected in
normal aging and dementia, including learning and memory
(particularly for newly acquired information), processing speed,
working memory, and executive function (9, 10). An intriguing
feature of aging is the variation of degree of cognitive impairment
between individuals, from a mild deficit to a severe dementia, as
in the case of AD (11, 12).

The decline in learning and memory performance during
non-pathological aging appears to be primarily the result
of alterations in neuronal network plasticity within the
hippocampus (12). Memory formation is viewed as being closely
dependent on the capacity of the brain to regulate long-lasting
changes in neuronal communication via synapses, and appears to
be proportional to the strength of those communications (13, 14).
The first convincing support for neuronal plasticity changes
underlying changes in cognition came in the 1970s when long-
term potentiation (LTP), a mechanism now known to underpin
synaptic strengthening critical for learning and memory, was

characterized in the hippocampus (15). It was later shown that
LTP was regulated in large part by NMDAR signaling (16–18).

Dynamic synapses facilitate remodeling of neuronal circuits,
and changes in the functional properties of these networks could
play a critical role in the induction of age-related memory decline
(19). However, the mechanisms governing dynamic synapses in
the brain are still not well understood (20, 21). The hippocampus
is the area most frequently implicated in memory decline and
this structure seems to be particularly vulnerable to aging (22–
24). Interestingly, the circuits that are vulnerable to aging are
composed to a large extent of glutamatergic neurons (25).

Proper brain functioning requires healthy neurons and
neuronal connections, which in turn require properly
functioning neurotransmitters and enzymes that supply
these dendritic and neuronal connections. It has been shown
repeatedly that deficits in glutamatergic transmission mediated
by the NMDAR are related to cognitive impairment in both
laboratory animals and humans. Administration of an NMDAR
antagonist in rhesus monkeys impairs recognition memory
(26), which represents cognitive impairment (27). Similarly,
specific ablation of GRINs (Glutamate Ionotropic Receptor
NMDA Type 1-3), i.e., the genes that encode for subunits of
the NMDAR heterotetrameric complex, in the hippocampus or
pharmacological blockade of NMDAR function can lead to brain
atrophy, impaired neuroplasticity, reduced LTP and deficits
in learning and contextual memory (18, 28, 29). In contrast,
increasing NMDAR function by over-expression or reduced
degradation in the hippocampus can enhance LTP and learning
(30, 31).

Particular attention has been paid to learning and memory,
and to whether activation of NMDARs could be altered in
the course of aging. Various studies in wild-type rodents have
revealed that aging is associated with reductions in themagnitude
of LTP in the hippocampus and have implicated alterations in
NMDAR signaling and a decline in the activation of NMDARs
associated with a decrease in levels of D-serine, a co-agonist
at the NMDA receptor. Therefore, age-related decreases in D-
serine could be contributing to the cognitive decline (10). Since
activation of the NMDAR co-agonist-binding site by D-serine
and glycine is mandatory for the induction of synaptic plasticity,
the LTP rescue observed in aged animals after supplementation
with the co-agonist D-serine also suggests that the mechanisms
managed by endogenous D-serine are altered with age (11).

D-SERINE PHYSIOLOGY, METABOLISM
AND ROLE IN AGING

Memory formation relies on the capacity of neuronal networks
to manage long-term changes in synaptic communication. This
property is driven, at least in part, by NMDARs (32). The
NMDAR is a tetrameric ion channel that may be composed of
many configurations of three subunits, i.e., GluN1, GluN2, and
less commonly, GluN3 (33–35). To be activated, the NMDAR
requires simultaneous binding of the agonist glutamate to
the GluN2 subunit and a co-agonist to GluN1 (34–37). This
binding is crucial for NMDAR activation and originally it
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FIGURE 1 | Chemical structures of L-serine (left), D-serine (center) and

glycine (right). Structures were located with Google and drawn with

ChemDraw.

was thought that the major co-agonist was glycine (10, 36,
37); however, later studies found that D-serine is more potent
than glycine at binding to the co-agonist site on the GluN1
subunit of the NMDAR and stimulating the receptor in forebrain
regions, including hippocampus (38). D-Serine has a regional
distribution in the brain more similar to that of NMDARs
than does glycine (39–41) and it has been reported that D-
serine acts primarily at synaptic NMDARs whereas glycine
acts primarily at extrasynaptic NMDARs (38). Interestingly,
glycine is similar structurally to D-serine (Figure 1) and it is
formed by conversion of L-serine catalyzed by the enzyme
serine hydroxymethyltransferase.

Balanced NMDAR activity is required for optimal brain
function. Hypo- or hyper-function of NMDAR-mediated
neurotransmission can result in cognitive dysfunction or
neurotoxicity, respectively. Depletion of D-serine diminishes
NMDAR activity, LTP, and synaptic plasticity (33). NMDAR-
mediated neurotransmission and its modulation by D-serine
play a critical role in memory formation, learning, and neuronal
plasticity (34, 42–44). In CNS development, D-serine shapes
synaptogenesis and neuronal circuitry through activation of
NMDARs and it is also a key player in astrocyte-mediated LTP
associated with hippocampal plasticity (20).

The reports by Hashimoto et al. were the first to demonstrate
high concentrations of D-serine in the rodent brain and in the
human brain (45, 46). It was only later discovered that D-serine
is enriched in brain regions containing high concentrations
of NMDARs, such as the cerebral cortex, hippocampus, and
amygdala (41). The source of D-amino acids in mammals
was historically attributed to diet or intestinal bacteria (47)
until the racemization of L-serine by serine racemase was
identified as the endogenous source of D-serine (48) (see Figure 1
for structures of L- and D-serine). Serine racemase was first
described to be exclusively present in astrocytes (49–51), but
subsequent work has shown that serine racemase is also present
in neurons (52). Thus, D-serine may be a glial transmitter
as well as a neurotransmitter, and this has been a matter of
considerable controversy [for discussions of this matter see: (52–
54)]. Wolosker et al. (52) proposed that L-serine is synthesized in
astrocytes and then shuttled to neurons where it is converted to
D-serine. For a detailed description of D-serine circuits and the
“serine shuttle”, see Wolosker and Balu (55).

Serine racemase is expressed by many CNS cells, including
pyramidal neurons in the cerebral cortex and the CA1 region
of the hippocampus (41, 56), regions that also have high levels
of D-serine (57). Wong et al. (58) have shown an age-dependent

dendritic and postsynaptic localization of serine racemase in CA1
pyramidal neurons of the mouse. These same researchers, in
studies using serine racemase knockout (KO)mice, showed a cell-
autonomous role for this enzyme in regulating synaptic NMDAR
function at Schaffer collateral (CA3)-CA1 synapses and found
that single-neuron genetic deletion of serine racemase eliminated
LTP at the age of 1 month and that this loss of LTP could be
rescued by administering D-serine (58). The enzyme responsible
for the catabolism (breakdown) of D-serine is D-amino acid
oxidase (DAAO); this enzyme is most abundant in cerebellum
and brain stem, areas with low levels of D-serine (59).

D-Serine levels vary across different CNS areas. The level of D-
serine is in the order of 200–300 pmoles per milligram of tissue in
the hippocampus and frontal cortex in mice, 20-fold higher than
in the pancreas, lung, or testis and almost 50-fold higher than in
muscle (60).Within the brain, highest levels of D-serine are in the
cortex and hippocampus, and there are much lower levels in the
cerebellum and brain stem, likely reflecting the regional variation
in expression of serine racemase and DAAO (review: 61).

D-Serine, through its regulatory effect on glutamatergic
transmission, participates in multiple processes, including
synaptic plasticity (61, 62), cell migration and synaptogenesis
(41, 63), and in homeostatic functions, as a mediator of
hypercapnia-induced respiratory response (64). The production
of D-serine and its tightly regulated release, mainly through
calcium-dependent exocytosis (65), keep its concentration
within a narrow range. Any deviation from this range may
lead to pathology, with abnormally increased levels of D-
serine associated with NMDAR-mediated neurotoxicity (66–68)
and abnormally decreased levels of D-serine associated with
impairments in functional plasticity and with memory deficits
(11). The complexity of its actions and its modulatory effects
are not well understood; indeed, Coyle et al. (69) referred to D-
serine as a “shape-shifting NMDAR co-agonist” and provided
a possible explanation for these dueling effects of D-serine on
driving neuronal plasticity or neurodegeneration based on the
localization of the activated NMDARs involved. It is known that
synaptic NMDARs prompt trophic effects while extra-synaptic
NMDARs on the dendrites or soma drive excitotoxicity (38,
70, 71). Coyle et al. (69) propose that D-serine synthesized by
serine racemase binds preferentially to synaptic NMDARs and
facilitates glutamatergic neurotransmission, while proliferation
of inflammatory A1 astrocytes results in a new source of D-
serine that is released into the extracellular space to activate
extra-synaptic NMDARs.

D-Serine levels in the CNS change during development and
aging. In early developmental stages, a transient increase in
D-serine production matches a transient increase of NMDAR
activity (72). The early postnatal period with high D-serine
levels in glia coincides with a period of intense plasticity,
synaptogenesis and maturation in the CNS, suggesting the
existence of distinct functional roles for D-serine throughout
development (72). Healthy newborn children have elevated CSF
D-serine levels that are rapidly reduced during the first year of life
and reach 15% of the initial concentration at 3 years of age (73).

In the hippocampus of normal aged rats, both D-serine (but
not glycine) and serine racemase levels are decreased relative
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to younger rats (74, 75). In contrast, these reductions in D-
serine and serum racemase are not observed in the LOU/c/jall
rat strain regardless of age (5, 76). The LOU/c/jall strain of rat
(derived from theWistar strain) is a model of healthy aging (with
resistance to obesity and lower oxidative metabolic rates than the
routinely used other inbred strains of rats) (76). Interestingly, the
possibility that D-serine-related pathways could be targeted by
the age-related accumulation of reactive oxygen species (ROS)
has been suggested (5), and LOU/c/jall rats do not develop
oxidative stress (5, 76).

D-SERINE, NMDARs AND COGNITIVE
IMPAIRMENT IN AD/DEMENTIA

Animal Studies
Characterizing the processes associated with hippocampal
dysfunction has been an area of focus in research on AD, where
β-amyloid (Aβ) deposits, intracellular neurofibrillary tangles,
abnormal tau protein phosphorylation and synaptic loss are
typical pathological features (77–79). The pathological changes
that are detected in the brains of patients with AD, such as the
presence of amyloid plaques and neurofibrillary tangles, are now
known to appear several years before the development of clinical
symptoms. As such, current research is focusing more on early
detection and treatment in these earlier stages in the hope of
delaying the onset or slowing the progression of AD.

Although NMDAR function is vital for memory and cognitive
function, its role in the pathophysiology of AD is still not
completely understood. NMDAR over-activation can lead to
cell death mediated by calcium overload. The associated
excitotoxicity is one of the accepted neurochemical models of
AD in rodents and may be involved with the pathophysiology
associated with Aβ , a hallmark of the pathogenesis of
AD (80–82). Interestingly, different forms of Aβ aggregates
increase glutamate release from neurons and astrocytes (2, 83)
and Aβ can increase NMDAR activity and induce inward
Ca2+ current and neurotoxicity; this NMDAR activation may
stimulate Aβ production and Aβ-associated synaptic loss
(2). Aβ deposition appears to play an important role in
the pathophysiology of AD, and the mechanism underlying
glutamate excitotoxicity in AD may be related to Aβ deposition
(84, 85). Aβ aggregation interferes with NMDAR-mediated
neurotransmission, suppressing NMDAR-dependent synaptic
function and LTP, which may lead to cognitive impairment
(86–89). Furthermore, Aβ can lead to intracellular trapping of
NMDARs, decreasing LTP; this effect can be rescued by a Reelin-
and Src kinase-dependent tyrosine phosphorylation in the GluN2
subunit of the NMDARs, restoring normal synaptic plasticity
(90). In addition to Aβ , apolipoprotein E4 (APOE4), a protein
isoform that has lower Aβ-binding capacity than APOE2 and
APOE3, and is a genetic risk factor for AD (91), reduces NMDAR
function and synaptic plasticity by impairing APOE receptor
recycling (92).

Aβ peptides have also been shown to stimulate the synthesis
and release of D-serine (93) in preclinical models (80). The
excessive D-serine release from neurons and glia leads to synaptic

loss and stimulation of extra-synaptic NMDAR currents (94,
95). Excessive levels of D-serine create a dramatic overload of
Ca2+ (96), and degradation of D-serine by DAAO or D-serine
deaminase protects against cell death (97). Dysfunctional D-
serine metabolismmay be a downstream outcome of Aβ toxicity,
and excess D-serine release may contribute to neuronal death
in AD through excitotoxicity. However, whether levels of free
D-serine are elevated in the brains of AD is still a matter of
debate as levels vary depending on brain region and stages of
pathology (10).

Ongoing interest in amyloid precursor protein (APP), the
precursor of the Aβ peptide in AD, has been refueled by
evidence indicating its multifaceted complex role in synaptic
(patho)physiology and development (98). Animal studies have
shown that a lack of APP impairs the structural plasticity of
dendritic spines (important for cognition and memory) and
that APP plays a key role in regulating D-serine homeostasis,
which is an important factor in synaptic plasticity in the adult
brain (98). These authors measured cortical extracellular and
total D-serine concentrations in APP-KO mice and found an
increase in concentrations of total D-serine, but a concurrent
decrease in concentrations of extracellular D-serine. Treatment
with exogenous D-serine not only restored the extracellular
D-serine levels and synaptic plasticity, but also normalized
the concentrations of total D-serine and rescued the cognitive
deficit observed in the APP-KO mice. These results suggest
that the maintenance of D-serine homeostasis requires APP and
demonstrate D-serine’s essential role in adaptive remodeling in
the adult brain (98).

Microglia are the main immune effector cells of the brain and
the main source of inflammatory cytokines and reactive oxygen
species (ROS) in the CNS (5). Alterations in the activation and
regulation of microglia can promote a chronic inflammatory
condition in the CNS in normal and pathological aging
(5), an inflammatory environment termed immunosenescence.
This process induces changes in gene expression related to
the immune response and inflammation, causing increased
susceptibility to inflammatory responses to stressors, which
could facilitate the onset of neurodegeneration (5, 6, 99–
102). Activation of microglial cells, as part of a chronic
inflammatory response, is a prominent component of AD that
drives neurotoxicity through the release of excitotoxins including
glutamate, and increased activity of Aβ , which not only promotes
glutamate release from microglia, but also stimulates expression
of serine racemase and D-serine release from these glial cells
(2, 93, 103). Aβ also promotes serine racemase activity through
increases in intracellular levels of calcium, upregulating the
activity of the enzyme. How much of the changes in D-serine
levels during aging are determined by microglial cell actions is
unclear. However, it is speculated that age-dependent changes in
microglia regulation result in neuroinflammation and increased
oxidative stress (104), in turn eventually activating production of
D-serine by glia and neurons in AD (5).

The functioning of neuronal networks within the CNS
requires high levels of oxygen, and the CNS is particularly
sensitive to oxidative stress (105). Studies have found that
antioxidant levels in the brain are low compared to other
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TABLE 1 | Abnormal D-serine function in normal aging and Alzheimer’s disease.

Serine

racemase

expression

D-serine

levels

NMDARs Cognitive

changes

Normal Aging Down-regulation,

leading to reduced LTP

and impaired synaptic

plasticity

Variable

learning and

memory

deficits

AD Over-stimulation,

interactions with

activated microglia and

Aβ, increased release

of glutamate,

excitotoxicity

Dementia

= decrease; = increase; AD, Alzheimer’s disease; NMDARs, N-methyl-

D-aspartate receptors; LTP, long-term potentiation; Aβ, β-amyloid. [adapted from

Billard (11)].

organs (106). Changes in redox regulation in the CNS may be
accompanied by neuronal dysfunction, particularly alterations of
synaptic plasticity (107, 108). Assuming synaptic plasticity is an
essential neuronal mechanism for learning and memory (13, 14),
it may be a preferred target by which oxidative stress could
alter memory functions. DAAO plays a key role in the process
of oxidative stress and results in formation of ROS; through
this effect and its regulatory function on NMDARs by reducing
levels of D-serine, DAAO may play an important role in the
process of aging and age-related cognitive decline (109). Nagy
et al. (110) studied the effects of the DAAO inhibitor CPD30
on passive avoidance learning and neuronal firing activity in rats
and concluded that inhibition of DAAO is an effective strategy
for cognitive enhancement; CPD30 increased hippocampal firing
and reversed MK-801-induced memory impairment in the
passive avoidance test.

Human Studies
The preclinical studies mentioned above have suggested that
while normal aging may result in decreases in D-serine
synthesis and levels, NMDAR activity, the magnitude of LTP
and synaptic plasticity (all of which may be reversed by
administration of D-serine), pathological aging may involve
activation of serine racemase, increased levels of D-serine,
NMDAR hyperstimulation and excitotoxicity, resulting in
dementia (Table 1).

Madeira et al. (16) conducted a comprehensive combined
clinical-preclinical study on D-serine in AD. D-Serine levels were
measured in post-mortem hippocampal and cortical samples
from non-demented individuals and AD patients. D-Serine
was also measured in hippocampus from wild type rats and
mice after intracerebroventricular injections of Aβ and in the
APP/PS-1 transgenic mouse model of AD. In addition, D-serine
levels in CSF of people with probable AD were also measured
and compared to those of patients with normal pressure
hydrocephalus or major depression, and to healthy controls.
D-Serine levels were higher in the post-mortem hippocampus

and parietal cortex samples of AD patients than in healthy
controls. The researchers also found higher levels of D-serine and
serine racemase in all the rodent models compared to controls.
Furthermore, D-serine levels were higher in the CSF of probable
AD patients compared to the non-demented control groups;
mean D-serine levels in the probable AD group were five-fold
higher than in healthy controls, and approximately two-fold
higher than in the depression or hydrocephalus groups. These
researchers concluded that D-serine levels in brain and CSF are
increased in AD and that D-serine might be a candidate for early
AD diagnosis (16). In contrast, three earlier studies using post-
mortem prefrontal, parietal, frontal or temporal cortical tissue
failed to detect altered D-serine levels between AD and controls
(111–113). All of the post-mortem studies had small sample sizes
and a wide range of participant ages and postmortem collection
times. One study (16) had equal numbers of males and females,
one (113) had all male participants and the other two studies
(111, 112) did not indicate the male/female ratio.

POTENTIAL ROLE OF D-SERINE IN
DIAGNOSIS OF AD

Significant efforts are being made to identify diagnostic markers
and modifiable risk factors for AD, specifically any factor
that influences the earliest stages of the disease process,
when intervention might still provide therapeutic benefit.
In this context, CSF levels of Aβ , total tau protein and
hyperphosphorylated tau (p-tau) have now been included in
diagnostic guidelines (114). Such CSF biomarkers have been
advocated for research purposes, but sensitivity and specificity
issues have generally raised concerns about their widespread
clinical use (15). Madeira et al. (16) proposed that combining CSF
D-serine levels with the Aβ/tau index could markedly increase
the sensitivity and specificity of diagnosis of probable AD.
However, Biemans et al. (115) and Nuzzo et al. (116) did not
find a difference in CSF D-serine levels between AD patients and
elderly controls.

Lin et al. (109) found increased levels of DAAO in the serum
of patients with mild cognitive impairment (MCI) and AD
and observed that the severity of cognitive deficits correlated
positively with DAAO blood levels, suggesting that this enzyme
catabolizing D-serine may also serve as a biomarker forMCI/AD.
These researchers found that DAAO levels were significantly
lower in healthy controls than in the patients, and moreover,
lower in patients with amnestic MCI than in those with moderate
to severe AD (109). In the same study, D-serine levels in serum
were reported to be higher in AD patients than in the healthy
controls. The clinical benefit of DAAO inhibition in AD may
be mediated in part by an antioxidant effect since D-serine
degradation by DAAO generates hydrogen peroxide, a precursor
to many ROS (10, 109). In a later study of D-serine levels
in 144 patients with varying degrees of cognitive impairment,
Lin et al. (117) concluded that higher D-serine levels predict
worse cognitive function, particularly with regard to word recall,
orientation, comprehension, and word-finding.
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In a recent metabolomics study in a cohort of women aged 65–
80 years old, Kimura et al. (118) reported a higher D-proline/(D-
proline+L-proline) ratio in women with MCI compared to
matched controls, and found this biomarker’s accuracy was
improved by further adding the D-serine/(D-serine+L-serine)
ratio. Piubelli et al. (119) measured serum levels of D- and L-
serine in AD patients with either a score of 1 (mild dementia)
or 2 (moderate dementia) in the Clinical Dementia Rating Scale,
and found that D-serine levels and the D-serine/total serine
ratio increased significantly with disease progression. These
researchers suggested using the combination of the above ratio
with other blood-based biomarkers presently under development
and reviewed by Hampel et al. (120).

The role of D-serine in AD is complex and the literature
is often ambiguous. It has been suggested that some of the
differences between findings in laboratory animals and human
AD patients could be due to the fact that current animal models
do not mimic the slow progression and the changes in Aβ and
tau protein that occur in AD in humans (11). It has also been
proposed that studies on D-serine and AD should be done at
various stages of AD since at early stages with low levels of
Aβ oligomers there is also decreased synthesis of L-serine and,
hence, decreased D-serine levels and weaker NMDAR activation.
However, at later stages when there is increased soluble Aβ , glia
start to express more serine racemase and release large amounts
of D-serine, resulting in NMDAR over-activation and resultant
excitotoxicity, neurodegeneration and marked memory deficits
(117). There is also some speculation that D-serine increases
observed in AD patients may be part of a protective mechanism
to counter Aβ signaling and prevent AD pathology (10).

TREATMENT POTENTIAL OF D-SERINE

Asmentioned above, there is a loss of production of D-serine and
a decline in NMDAR activation and a corresponding reduction
of LTP magnitude in the normal aging process, which can be
reversed in animal models by administration of D-serine (11).
These findings imply that increasing D-serine levels in cases
of initial cognitive decline or in early stages of AD may be
therapeutically useful (10).

Findings that the co-agonist modulatory site was not saturated
in vivo prompted investigators to consider whether exogenous D-
serine could act as a cognitive enhancer (10). Although the focus
of the present review is on dementia, it should be mentioned that
much of the research on the effects of D-serine in cognition in
humans has been done on schizophrenia (57, 121–130), reporting
either cognitive benefits (121, 122, 125, 126, 130) or no effects on
cognition (123, 128, 129). It is difficult to compare the studies
since they were performed at several doses, the patients were
taking antipsychotics (which presents a possible confound), and
a variety of tests were conducted to measure cognition. Most of
the studies were carried out using a daily dose of 30 mg/kg, but
Kantrowitz et al. (126, 130) also used higher doses (60 and 120
mg/kg) and reported improvements in cognition.

D-Serine administration can improve cognition in aged
rodents and correct age-related decline in synaptic plasticity

FIGURE 2 | Chemical structures of D-cycloserine (left) and D-cysteine (right).

Structures were located with Google and drawn with ChemDraw.

(10). In mouse models, the learning deficits caused by NMDAR
hypofunction can be rescued by administration of D-serine (131).
Although conflicting results have been reported, D-cycloserine
(Figure 2; a cyclized form of D-serine that is hydrolyzed to
give D-serine and hydroxylamine) has been reported to improve
memory functions in animal studies and in dementia patients
(132, 133). Lin and Lane (133) speculated that D-cycloserine may
have different effects on mood and learning depending on the
stage of dementia involved. D-Serine given intraperitoneally to
rats can increase NMDAR activation in the hippocampus and
improve social memory in rats and recognition and working
memory in mice (10). The potency of exogenous D-serine
to enhance NMDAR activation appears significantly higher in
hippocampal slices from aged rats when compared to effects
in younger adult rats (134). Nikseresht et al. (135), using a rat
model of AD (intracerebroventricular injection of Aβ), reported
a synergistic memory-enhancing effect of D-serine and the
mitochondrial calcium uniporter blocker RU360. The findings
in this report suggested that the coadministration of these drugs
ameliorated memory impairment, probably in part through
an increase in hippocampal levels of cyclic AMP response
element binding protein (CREB) and brain-derived neurotrophic
factor (BDNF).

In a randomized controlled clinical trial (RCT) by Avellar et al.
(9), 50 healthy elderly human adults received a single dose of D-
serine or placebo, and the effects of D-serine administration on
cognitive test performance and a mood scale were measured. In
addition, blood samples were analyzed for levels of D-serine, L-
serine, glutamate and glutamine. D-Serine levels measured while
the participants were on placebo were inversely associated with
aging. D-Serine administration improved performance in the
Groton Maze Learning Test of spatial memory, learning and
problem solving. Individuals who achieved higher increases in
plasma D-serine levels after administration improved more in
test performance. D-Serine administration was not associated
with any significant changes in other cognitive domains, such as
verbal working memory, visual attention or cognitive flexibility.
There were also no changes observed in mood (9). In a
similar study, but in young healthy adults, Levin et al. (136)
demonstrated that D-serine administration improved attention,
verbal learning and memory as well as subjective feelings of
sadness and anxiety.

These above studies suggest an important role for D-serine
in brain networks underlying memory impairment and provide
useful information in the search for new therapeutic strategies
for the treatment of memory deficits. However, an important
question is whether the improvements seen so far with the
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addition of D-serine in animal models and healthy human
controls will have real-life effects in AD (11).

OTHER TREATMENT APPROACHES
RELATED TO D-SERINE

In the aging brain, ROS accumulation may trigger age-
related reduction of cognitive function through oxidative stress.
Consequently, ROS accumulation could be viewed as a major
process acting on the D-serine-related pathway in the aging
hippocampus, especially considering that serine racemase activity
is particularly sensitive to oxidative stress (105). Long-term
dietary supplementation with L-N-acetylcysteine (L-NAC, a
precursor to the antioxidant glutathione) prevented oxidative
damage in the hippocampus and restored D-serine-dependent
NMDAR activation and LTP induction in aged rats (20). These
data provide evidence that maintaining elevated D-serine levels
in the aging hippocampus through the control of the redox state
is able to prevent the cellular injury underlying cognitive aging,
specifically in the CA1 hippocampal area (11).

An increase in D-serine availability in the brain could be
achieved by reducing its degradation by DAAO. Treatment
of rats with a DAAO inhibitor has been reported to increase
levels of D-serine in the cerebral cortex and midbrain (137).
Although DAAO KO mice have been reported to have markedly
increased levels of D-serine in cerebellum and brain stem but
little or no change in D-serine levels in cortex or hippocampus
(138, 139), support for a physiological role for DAAO in
modulating cognition comes from the enhanced learning abilities
reported for DAAO KO mice (57, 140). The DAAO inhibitor
sodium benzoate, which also modulates the immune system
and is an antioxidant, has been shown to improve cognition,
global functioning and positive and negative symptoms of
schizophrenia (141). Modi et al. (142), using an animal model
of AD, reported that sodium benzoate reduced oxidative stress
and protected memory and learning. In addition, in RCTs of 6
weeks daily treatment with sodium benzoate, Lin and colleagues
reported that cognitive scores were improved in early stage
dementia patients and in women, but not men, with later phase
dementia (143).

The D-amino acid D-cysteine, which is derived from the gut,
and is structurally related to D-serine (it is also referred to as
thioserine; Figure 2) also exerts neuroprotection, but it does so
via a DAAO-dependent conversion to H2S (144). Interestingly
DAAO has greater affinity for D-cysteine even though D-serine is
found in far greater concentrations in the brain (145). It is all the
more interesting that D-cysteine has been shown to be a potent
inhibitor of serine racemase (146), thereby making it a potential
treatment for pathologies where D-serine might exert deleterious
effects, such as in AD.

LIMITATIONS IN THE USE OF D-SERINE AS
A BIOMARKER AND TREATMENT

The fact that body fluid levels of D-serine have been reported
to be altered in other psychiatric and neurological disorders,

such as depression, anxiety, schizophrenia, bipolar disorder
and hydrocephalus (16, 61, 147, 148) suggests that D-serine
would not be a specific biomarker for AD. There are also
potential challenges for the clinical use of D-serine, including
the possibility of nephrotoxicity (149, 150). However, this
nephrotoxicity may only be a problem with rats since it has
not been reported in other species, including rodents such as
mice and rabbits (151, 152). Even in rats, the nephrotoxicity is
reversible and appears to occur only at high doses (152). In a
comprehensive review of safety of D-serine across species,Meftah
et al. (152) listed the studies on humans with D-serine that have
been published and reported that only one subject in one study
showed renal abnormalities. These researchers concluded that D-
serine is safe and well tolerated in humans even at the highest
dose (120 mg/kg) tested to date, but that people with pre-existing
renal dysfunction should be excluded from clinical studies. Co-
administration of a DAAO inhibitor with D-serine may be a
strategy to prevent nephrotoxicity since lower doses of D-serine
could be used and hence formation of peripheral metabolites
of D-serine reduced (153). In mice, treatment with a DAAO
inhibitor has been reported to render a low dose of D-serine
effective in treating pre-pulse inhibition deficits caused by the
NMDAR antagonist dizocilpine, compared to the same dose of
D-serine alone (154).

Poor oral bioavailability can also limit the effects of D-
serine on cognition. Accordingly, D-serine had better effects
on cognition when administered as an adjunct to patients with
schizophrenia when higher doses such as 60 mg/kg/day or
higher were used (review: 61). In general, poor oral D-serine
bioavailability may account for mixed results in clinical trials,
and alternative treatment paradigms may need to be considered,
including larger doses of D-serine or a combination of D-serine
and sodium benzoate (thus using lower doses of both drugs while
retaining high efficacy). Because D-serine and sodium benzoate
have different pharmacokinetic and pharmacodynamic profiles,
it is possible that D-serine may be especially useful for treating
depression because of its acute and chronic antidepressant effects,
whereas sodium benzoate may be a safer approach in older adults
with impaired renal function (10).

CHALLENGES AND POSSIBLE FUTURE
DIRECTIONS IN RESEARCH ON D-SERINE
AND COGNITION

Considerable evidence in the literature supports the involvement
of D-serine in reduction of cognitive deficits, but there are
some contradictory findings that indicate that further research
is warranted. For example, Capitao et al. (155), in a study
of a single dose (60 mg/kg) in human volunteers, found
that D-alanine modulated emotional processing while D-serine
did not. Some researchers have questioned the physiological
role of DAAO in controlling D-serine availability because this
enzyme is expressed at low levels in forebrain areas relevant
to cognition such as the hippocampus and cortex, and D-
serine levels have been reported to be elevated markedly in the
cerebellum and brain stem but not in cortex or hippocampus
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of DAAO KO mice (138, 139). However, other researchers
have found that systemic administration of a DAAO inhibitor
to rats increases levels of D-serine in the cortex (137). Labrie
et al. (140) reported that DAAO KO mice had a marked
increase in levels of D-serine in the cerebellum, but also had
a relatively small, but significant, increase in D-serine levels
in the hippocampus and showed enhanced extinction and
reversal learning.

Although it has been proposed that CSF and/or serum
levels of D-serine could be novel biomarkers for AD (16,
119, 156), other researchers have reported that D-serine levels
in these body fluids are unaltered in AD (115, 116). It has
also been reported that perinatal epigenetic mechanisms play
a role in the regulation of levels of D-serine in the brain
(157), and future studies in AD should include epigenetic
investigations on expression of serine racemase and DAAO
genes. Dysregulation of aerobic glycolysis in the brain is often
observed early in the course of AD, and Le Douce et al.
(158) have shown that the astrocytic biosynthetic pathway for
L-serine (the precursor for D-serine), which branches from
glycolysis, is impaired in young AD mice and in AD patients.
These researchers found that dietary supplementation with L-
serine prevented the synaptic and behavioral deficits in AD
mice, which suggests that oral L-serine could be a therapy
for AD.

RELEVANCE OF D-SERINE TO COMORBID
DEPRESSION, ANXIETY AND OTHER
BEHAVIORAL CHANGES IN DEMENTIA

The focus of this review has been on the involvement of
D-serine in cognitive deficits, but dementia is complex and
often there is a high degree of comorbidity with depression,
anxiety, aggression, and/or sleep disorders. There is now an
extensive body of literature indicating involvement of D-serine
in each of these disorders. It may seem contradictory for D-
serine to have antidepressant effects considering the known
antidepressant effects of the NMDAR antagonist ketamine (159),
but several preclinical and clinical studies report antidepressant
actions of D-serine [reviews: (61, 160, 161)]. It has been
proposed that the antidepressant actions of ketamine and D-
serine may be due to common effects on α-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid (AMPA) glutamate receptors
and similar differential actions on synaptic vs. extra-synaptic
NMDARs (160). Wolosker and Balu (55) have provided a
comprehensive review of mainly preclinical studies suggesting
a role of D-serine in fear conditioning and anxiety disorders.
As an abnormal social behavior, aggression (often studied in
mice as social interaction deficits with intruder strains of mice)
has been observed in rodents to show an association with
NMDAR function (162–165). Both D-cycloserine and D-serine
have been reported to improve impaired social interaction
skills, for example in inbred Balb/c mice used as models for
autism (164–167). Nagai et al. (168) reported that mice treated
neonatally with polyI:C (elicits viral-like immune responses) had
emotional and cognitive deficits which could be ameliorated

in adulthood by treatment with D-serine. With regard to
sleep disorders, studies in mammals and Drosophila flies
have shown that NMDARs and D-serine participate in sleep
regulation (169–171). Drosophila has been used as a model for
genetic studies of sleep for several years (172). In a detailed
study of sleep in this model, Dai et al. (173) showed that
sleep is regulated by D-serine through NMDAR1 and that
intestinal expression of serine racemase is important for this
sleep regulation.

Longitudinal studies, both preclinical and clinical, involving
larger samples sizes will be needed in future research on D-
serine, and such investigations should include both males and
females, along with assessments of the comorbid disorders
mentioned above.

SUMMARY

In normal aging there is development of a mild inflammatory
environment and progressive deterioration of several
physiological functions, including cognition involving learning
and memory performance. With aging, the degree of cognitive
impairment can vary markedly among individuals. Memory
formation depends on the capacity of the brain to regulate
long-lasting changes in neuronal communication via synapses,
and these changes in neuronal plasticity are dependent on
LTP, which is regulated in large part by NMDARs. Functioning
of NMDARs is in turn dependent on co-agonists, the most
important of which appears to be D-serine. Numerous animal
studies have shown that even with normal aging there is
a reduction in the magnitude of LTP in the hippocampus
accompanied by a decline in NMDAR action and a decrease in
production and levels of D-serine. It has also been demonstrated
in animal models that administration of D-serine can rescue
the reduced NMDAR function and loss of LTP observed
in aging.

Preclinical studies suggest that D-serine may be useful in
treating cognitive impairment, but while abnormally decreased
levels of D-serine are associated with impairments in functional
plasticity, abnormally increased levels of D-serine can be
associated with NMDAR-mediated excitotoxicity such as occurs
in later-stage AD. Activation of microglia is part of a chronic
inflammatory response in AD that increases release of glutamate
and D-serine from glia and neurons, and Aβ also stimulates
expression of serine racemase in microglia. It has been
suggested that with cognitive deficits associated with normal
aging and in early AD, there may be decreased expression of
serine racemase, decreased levels of D-serine, NMDAR down-
regulation and impaired synaptic plasticity, while in advanced
AD serine racemase activation and D-serine levels are increased
and NMDARs are overstimulated, resulting in excitotoxicity
and dementia.

D-Serine and DAAO have been proposed as possible
biomarkers in the diagnosis of AD, although there have been
conflicting results reported and differences found in animal
models and humans. Current animal models do not mimic
the slow progression and the changes in Aβ and tau protein
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that occur in humans; it has also been proposed that future
studies on D-serine in humans should be done at several stages
of AD. Research to date suggests that earlier stages of AD
would benefit from D-serine supplementation, whereas D-serine
supplementation should be avoided in later stages of AD. DAAO
inhibitors may also be useful for increasing brain D-serine levels
and enhancing learning.

Although we understand a great deal about the roles of D-
serine in brain function, about changes in its brain levels with
normal and pathological aging, and about its potential role as
a cognitive enhancer from experimental and preclinical studies,
much still remains to be learned about its potentially targetable
role in development, treatment and possibly even prevention of
dementia in a clinical setting.
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