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Abstract: The new paradigms of parametric modelling have

been proving promising on the advance of systems for anal-

ysis and design of taut (or tensile) structures. With this

premise, the presented work consist on the development

with a form-�nding tool for Computer Aided Design(CAE)

and Computer Aided Engineering (CAE) integration using

VPL (Visual Programming Language), in the context of para-

metricmodelling. Themethods used in the implementation

are the Force Density Method (FDM) and the Natural Force

Density Method (NFDM), taking advantage of the linear

solution approach provided, suitable for fast form-�nding

computational procedures.

The program is implemented as a Grasshopper plug-in and

it is named BATS (Basic Analysis of Taut Structures), which

enables parametric de�nition of boundary conditions for

the form-�nding. The program structure and benchmarks

with other available Grasshopper plug-ins for taut struc-

tures form-�nding are presented, showing considerably

superior performance using BATS.
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1 Introduction

Taut structures are de�ned by their characteristic state, in

which the structural members work only in tension. They

are usually �exible systems and are subjected to large dis-

placements upon changes of the intensity and distribution

of the loads.

Since Frei Otto’s pioneering works in the late 1950s [1],

they became an important research �eld for many archi-

tects and engineers. They provide lightweight structures,

composed mainly of cables and membranes, which have

no bending sti�ness, and thus neither compression sti�-

ness. Generally, it is not possible to de�ne the shape of a

taut structure a priori, but an appropriate shape is sought,

compatible to an initial stress �eld imposed to the system.

Once a viable con�guration is found, the structural behav-

ior under external loads can be determined considering

geometrically non-linear analysis.

The Force Density Method (FDM) [2] provides the most

convenient alternative for shape-�nding, approximating

a continuous surface by a network of linear elements. By

its turn, the Natural Force Density Method (NFDM) [3] is

an extension of the FDM that preserves the linearity of the

original method, and overcomes some of its limitations

to cope with irregular meshes which may arise from non

mapped tessellations of surface geometries.

The imposition of natural force densities and the impo-

sition of 2nd Piola-Kircho� stresses on a reference con�gu-

ration are equivalent [4], a property previously described

for the original force densities by [5]. [4] also recognized

that if the solution of the NFDM is recursively used as new

reference con�gurations, the process might converge in few

iterations to a con�guration in which the resultant Cauchy

stresses equal to the imposed 2nd Piola–Kirchho� stresses.

That means that for an isotropic homogeneous stress state,

the �nal converged viable con�guration will be a minimal

surface. That approach is computationally more e�cient

for �nding minimal shapes than other methods, such as

pseudo-dynamic systems and geometrical optimizations.

This makes NFDM well suited for structural design soft-
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wares, specially when the use of a parametric work�ow

is featured, as the user can quickly search for shapes, for

instance changing the initial stress and then observing the

�nal shape in real-time.A comparison between di�erent

methods on Ix-Cube 4.0 software, which has the NFDM im-

plemented, was performed by [6] showing faster and more

accurate results provided by NFDM. Although it is not stud-

ied in detail in this paper, the FDM and NFDM can also

be applied for the form-�nding of compression and mixed

tension and compression structures (see [7]).

The new paradigms of parametric modelling have been

showing promising on the advance of systems for analysis

and design of tensile structures. The possibility to integrate

Computer Aided Design (CAD) and Computer Aided Engi-

neering (CAE) systems inside a parametric work�ow allows

better rationalization of the design process and automation

of tedious tasks by linking CAD/CAE data for conception,

analysis and detailing of structures. Finite Element Analy-

sis (FEA) packages inside the visual programming language

(VPL) Grasshopper have been showing outstanding results

for structural design, as can be seen at [8], [9] and [10].

In this work, BATS (Basic Analysis of Taut Structures)

is presented. BATS is a Grasshopper add-on which applies

procedures for form-�nding of taut structures and funicu-

lar shells inside parametric environment, and it was �rstly

prototyped for studies regarding the use of NFDM for funic-

ular shell form-�nding by [7]. The main code of BATS was

updated from a pure C# code to a multi-language code with

C# code for pre and post-processing using Grasshopper and

Rhino API, which calls the solution from C++ functions,

optimized for computational speed. This computational ap-

proach overcomes some issues presented on the previous

code, as numerical ine�ciency, mainly due to the use of

the Open Source C# Library Math.NET, and non-optimized

assembly of the FEA model from raw CAD geometry. The

new code permits updates between many viable shapes in

terms of milliseconds with an acceptable mesh re�nement.

Benchmarks considering computational speed is pre-

sented considering saddle and catenoid minimal surface

form-�nding. BATS is compared to SATS (System for Analy-

sis of Taut Structures, the �rst implementation of NFDM in

MATLAB) [11], and Kangaroo solver [12], which is a multi-

physics simulation Grasshopper add-on that uses pseudo-

dynamic methods for many shape �nding procedures, in-

cluding minimal surfaces, with good computational perfor-

mance.

2 Force Density Method

One of the �rst alternatives for form-�nding was the de�ni-

tion of force densities, proposed by Linkwitz [2] and Sheck

[13], in the context of cable nets.

The FDM is based on the equilibrium of each node in

a cable net. With reference of the forces at the system in

Figure 1, the resultant of internal forces acting on node i is

~Pi =

n
∑

j=1

~Pij =

n
∑

j=1

Nij ~vij (1)

Where Nij is the interaction force among the nodes i and

j, while ~vij =
~lij/

∥

∥

∥

~lij

∥

∥

∥
is the unit vector oriented from i to j.

Applying equilibrium conditions gives equation 2

~Fi +

n
∑

j=1

Nij

~xj − ~xi
∥

∥~xj − ~xi
∥

∥

= ~0 i = 1, 2, ..., n (2)

Relating nodes with nodal displacements results in a non-

linear equation system. However, de�ning at each element

a force density nij (equation 3), a linear system with 3n

equations is obtained (4), and with boundary conditions

imposed, the system can be easily solved.

nij =
Nij

∥

∥~xj − ~xi
∥

∥

(3)

n
∑

j=1

nij(~xj − ~xi) = ~Fi i = 1, 2, ..., n (4)

Still, it is convenient for large meshes to adopt a matrix

notation instead of the presented one. The Cartesian coor-

dinates of the system, as the external and internal forces,

can be expressed by 3 global vectorsX,F andP, respectively

Figure 1: A system of central forces [3]
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de�ned by equations 5
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(5)

Where xi =
[

~xi
]

3x1
, Pi =

[

~Pi

]

3x1
Fi =

[

~Fi

]

3x1
are local coor-

dinate and force vectors of each node. It is also convenient

to substitute the sum inside the de�nition of P from the n

nodes to b elements connecting those nodes. The vector of

nodal coordinates and the vector of internal forces of the

the element, as show in Figure 2, are related by equation 6.

xe = Aex ; Pe = AeTpe (6)

Where xe =
[

xeT1 xeT2

]T
and pe =

[

peT1 peT2

]T
=

Ne
[

-veT veT
]T
, with ve =

[

~vij
]

3x1
as the director cosine

of the element inside the global Cartesian coordinate sys-

tem. Ae is de�ned as the Boolean incidence matrix of the

element.

Figure 2: Linear element with local and global indexes [3]

Once these de�nitions are given, the equation 4 can be

rewritten as equation 7, where Kd =
∑e

b=1 A
eTkedA

e is the

force density sti�ness matrix of the system, with ked de�ned

in equation 8 is the element local sti�ness matrix, with ne

as the element force density and I3 as an order 3 identity

matrix.

KdX = F (7)

ked = ne

[

I3 −I3
−I3 I3

]

(8)

3 Natural Force Density Method

The NFDMpreserves the linearity of the original FDMmean-

while issues related to irregular triangular meshes are over-

Figure 3: Natural Membrane Finite Element (a) unit vectors, (b)

internal forces [3]

come. The natural force density derives from the natural

forces de�ned at the natural membrane �nite element, �rst

proposed by Argyris [14]. Pauletti [3] rede�nes the formula-

tion of previous developments into amore concise notation.

The nodes and sides at Figure 3 are numbered anti-

clockwise, where each node index is coincident with the

face index in front of it. Node coordinates are referenced

at both global and local Cartesian system, with the local

representation expressed by " ∧ ".

To de�ne the internal vector forces, it is convenient to

de�ne natural forces Ni , which are parallel to its faces. The

relationship between the internal force vector of the ele-

ment pe and the internal forces are de�ned in equation 9.

After some algebra (see [15]) it is possible to rewrite the nat-

ural loads vector N = [N1N2N3]
T as in equation 10, where

V = At is the element volume, L = diag {l1, l2, l3} a diago-

nal "lenght matrix" and T is a transformation matrix, given

by equation 11.

p =







p1
p2
p3







=







N2v2 − N3v3
N3v3 − N1v1
N1v1 − N2v2







(9)

N = VL−1T−T σ̂ (10)

T =







cos2 γ sin2 γ − sin γ cos γ

cos2 β sin2 β − sin β cos β

1 0 0







(11)

Comparing equations 9 with 6 suggest the de�nition

of natural force densities ni = Ni/li, and using the rela-

tion given at equation 10 gives us a vector of natural force

densities (equation 12).

n =
[

N1

l1
N2

l2
N3

l3

]T
= VL−2T−T σ̂ (12)

With the de�nition of n it is possible to assign the nat-

ural force density sti�ness matrix knd as in equation 13, and

the solution of a system with n linear elements andm trian-

gular elements is given by equation 7withKd = K (equation
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14)

knd =







(n2 + n3)I3 −n3I3 −n2I3
−n3I3 (n1 + n3)I3 −n1I3
−n2I3 −n1I3 (n1 + n2)I3







(13)

K = Kd + Knd =

n
∑

b=1

AbTkbdA
b +

m
∑

c=1

AcTkcndA
c (14)

Although this linear procedure produces a viable con-

�guration of a bending-free shapes, the imposition of natu-

ral force densities to achieve a uniform stress �eld is non-

viable. However, the NFDM process can be evaluated recur-

sively by assigning a constant stress �eld σ̂0 and repeatedly

determining K, using σ̂ = σ̂0 on Eq. 12, where the new ref-

erence con�guration is updated every step. [4] shows that

this process converges the solution to a minimal surface,

as the Cauchy stress resultants for this converged solution

are equal to the uniform second Piola–Kirchho� stress re-

sultants, which is an analogous solution to a mathematical

minimal surface by the soap bubble analogy. This process

�nds minimal surface shapes in quite few linear steps, as

will be discussed further, and is an interesting approach

as requires low computational cost and produces a viable

con�guration at every step, feature that have clear advan-

tages compared to non-linear methods that converges to

a minimal solution but usually through a series of non-

equilibrium con�gurations.

The NFDM can �nd also non-minimal shapes by im-

position of non-isotropic and non-uniform stress �elds. A

obvious example is application of a single step of theNFDM,

which gives a viable shape, yet have a non-uniform stress

state. The imposition of non-isotropic solutions canbedone

Figure 4: De�nition of an orthotropic initial stress �eld by using

director places [15].

Figure 5: De�nition of a quadrangular element by coupling multiple

triangular elements [15].

by �nding natural force densities by an initial orthotropic

stress �eld using director planes on the elements, as de-

tailed by [15]. [15] also proposed a method to extend the

NFDM to quadrangular elements, by coupling multiple tri-

angular elements on both directions to reduce biased stress

results.

4 CAD/CAE integration by

parametric workflow

The steps of design and analysis of taut structures presents

some computational challenges, specially in the commu-

nication between CAD (Computer Aided Design) and CAE

(Computer Aided Engineering) systems. CADgenerally have

resources for geometrical de�nition of complex shapes and

details, where CAE is used for computational physical anal-

ysis. [16] de�nes the main issues on CAD/CAE integration,

and address the main issues to loss of data, compatibility

during the process and lack of automation. Those issues are

due the di�erent characteristics between the processes. A

CADmodel is mainly a computational representation of the

geometry, not necessarily having attributes and properties.

These features are crucial inside CAE environment, as it

needs data such as material properties, physical interfaces

and element types. Many CAE softwares o�ers CAD mod-

elling features inside its interfaces, but still very limited

compared to CAD specialized softwares. Also, some FEA

packages are only code implementation, which need a ex-

ternal pre and post processor to work properly as a design

tool.

On the other hand, specialized CAD software as

Rhinoceros3D [17] have been delivering scripting features

with API’s (Application Programming Interface) giving the

developer access to the CAD system geometrical objects

inside an object-oriented-programming environment. With

this features it is possible to develop CAE structural appli-

cations with full use of CAD capabilities, using geometrical

objects as parameters for structural classes.

In CAD scripting context, mainly two types of program-

ming are featured: Visual Programming Languages (VPL)

and Textual Programming Languages (TPL). A VPL consists

on visual block elements which contains algorithms and

can be manipulated in a logical sequence of inputs and

outputs. On other hand, TPL systems relies on a sequence

of linear characters which describes the commands the pro-

gram should execute [18]. VPL’s are advantageous as do not

require a broad knowledge on programming syntax, and

are easier to use for general CAD users. The possibility of

association of inputs and outputs in VPL’s are interesting
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Figure 6: Possibilities in CAD/CAE integration

for CAE, as association between geometrical and analysis

data can be made. However, VPL’s are strictly dependent

on TPL’s, as each block component on the VPL is produced

from a TPL code.

In terms of TPLs, applications that depends on numer-

ical methods requires, besides code with low algorithmic

complexity, a programming interface that o�ers nice mem-

ory allocation tools. Classical examples for high perfor-

mance languages for linear algebra procedures are FOR-

TRAN( with LAPACK and BIAS libraries) and C++ (with

Eigen numerical library). On other hand, CAD software

normally features APIs from more modern programming

languages as C# and Phyton, as they are more versatile

to work and delivers better features for object-oriented-

programming and dynamic types, which �ts well for API

purposes as the developer can access and correlate all geo-

metric classes and itsmethods given from the CAD software.

Working with multiples languages and types of pro-

gramming can then lead towards a nice computer perfor-

mance with user-friendly interface, that can be established

in 3 levels: (1) User level, or the VPL itself; (2) Application

level, for communication between the user and the numer-

ical level; (3) Numerical processing level, which solves the

problem desired with optimized code.

Rhinoceros is a CAD software and provides it’s VPL

Grasshopper, which have components for manipulation

of many Rhino geometries and so forth enables a para-

metric work�ow inside it’s environment. The user can de-

�ne a logical sequence of events describing the project in

function of prede�ned parameters, and instantly retrieve

geometry and analysis feedback within changes on them.

Both Rhinoceros and Grasshopper have their own C# API’s

(Rhinocommon (RC) and GrasshopperSDK (GS)), Where GS

depends onRC, and allow custom components and parame-

ters development for many purposes. Many CAE extensions

were developed as Karamba3D [8], Kiwi3D [9] and Beaver

[19] for structural analysis, Ladybug [20] for Thermar/Solar

Analysis, and Butter�y [20] and Eddy3d [21] for CFD analy-

sis.

The use of a parametric work�ow in FEA is then a

promising candidate for solving CAD/CAE intercommuni-

cation problems, as it can automate processes converting

geometric information and other relevant data for analy-

sis. The conversion of data is automated by assembling

series of algorithms, where any change in geometry returns

a suitable new structural model, avoiding rework in mesh

generation and other possible tedious tasks.

Thus, structural analysis software within a parametric

environment enables a user-friendly yet powerful design

and analysis process. The environment allows the user to

implement routines for speci�c and interconnected tasks

based on the geometry and properties of the membrane. In

addition, The VPL routines pattern allows the user to per-

form the analysis and extract and reuse the results for other

routines such cutting patterns, connection details and veri-

�cation of structural components by technical standards

[22].
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5 BATS implementation

In order to implement an e�cient and robust form-�nding

method inside parametric work�ow environment, the

Grasshopper plugin BATS was developed. It was �rstly pro-

totyped in [7], and was not concerned yet about computer

e�ciency. However, it’s resulting code appointed for two

main issues regarding computational performance.

The �rst issue is related to the linear system solution

and other linear algebra processes required. Matrices can

be highly memory consuming, considering that given n

nodes, corresponding each one to 3 degrees of freedom,

the number of variables inside the matrix is on the order

of (3n)2. This means that the complexity solving linear sys-

tems are in exponential order. Also, modern languages as

C# and Pythonworks with automatic memorymanagement

and dynamic types, which can be undesired for numerical

purposes evolving matrices. In addition, it is well know

in numerical analysis area that languages like FORTRAN

and C++ provides tools formemorymanagement which can

optimize computational cost, and this naturally leads to

more e�cient numerical libraries available. In C#, a wide-

usednumerical library is theOpen-Source libraryMath.NET.

Although quite user-friendly and versatile, it shows high

computational cost solving large linear system as also other

linear algebra procedures.

On other hand, the C++ open-source library Eigen have

proven highly e�cient, leading to fast results even for large

systems. Benchmarks shows that Eigen performs almost

the same as Math Kernel Library (MKL), a commercial nu-

merical library well know by it’s good performance [23].

That makes use of these resources highly desirable inside

parametric work�ow, as this can lead to practically real-

time visualization of form-�nding results. The advantage

of C++ in Grasshopper development relies on great inter-

operability between C# and C++, where C++ functions in

numerical level can be called by C# code.

The second issue is due the assembly of a FEA model

based on geometrical information, where the program

should index all geometrical nodes and assign the con-

nectives between the elements. This is not a trivial task, as

requires searching algorithms for equal points in 3D space.

Linear search, which is the most obvious approach and

was used in prototyping, provides a O(n) complexity, and

can be highly consuming when dealing with thousands of

nodes. Other search algorithms can be performed in order

to improve the complexity of the algorithm. Binary search

and also R-Tree search can deal with the problem respec-

tively with O(log n) and O(logM n), whereM denotes to the

maximum entries in R-Tree nodes [24]. This task can be

done in application level, as do not have matrices or linear

algebra applications involved. Yet, it can still be a tedious

process, taking more computational time than the solver,

as evolves a search problem on a large list of 3D points.

The VPL components were developed in a C# applica-

tion that uses C++ unmanaged functions from the devel-

oped numerical solver. Figure 7 shows the general work�ow

of the developed tool. First, raw Rhino/Grasshopper data is

converted into structural analysis data, which is then used

to assemble the structural model. All this data is structured

in object-oriented-programming in C#.

Figure 7:Workflow of the application and solver implementations
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Figure 8: BATS components and results

The next step is to solve the model, where the C# appli-

cation calls the solver function. In this step the structured

data is transformed in a series of arrays, as the C# and C++

interoperability is straightforward only for native C types.

In the C++ code, the data is then restructured in object-

oriented style, but it have di�erent purposes than the C#

data. The C# application data aims at general structural

data, that any FEA user would be familiar with, and the C++

solver data focus on attributes and methods for assembly

of the external force vector and sti�ness matrix. Although

�rstly required for simplicity in data transfer between two

programming languages, the scheme of have independent

data structures for the application and the solver showed

to be of bene�t, as each implementation can deal with their

own needs separately.

Latter, the C++ code outputs the results also in arrays,

and the C# application retrieves the results and prepare

them for visualization inside the Rhino/Grasshopper inter-

face. The details of each part of the developed tool, respec-

tively the VPL components, the C# application code and the

C++ numerical code, are discussed in detail the following

subsections.

5.1 VPL components

Figure 8 describes the component work�ow for the form-

�nding related to the work�ow presented on Figure 7. A

series of components retrieves geometrical data of meshes,

lines and points and it’s respective supplementary data, for

force density linear elements, natural force densities mesh

elements, supports and loads.

Each component outputs custom parameters which

contain all data provided, and are used to assemble the

model, subsequently sending the model parameter to the

solver component, which updates the model object with

the shape found and its respective stress �eld. Results can

be retrieved by special components, wheremembrane view,

cable view and support reaction view are available.

With that work�ow, the user can modify the form-

�nding parameters (i.e. initial stress �elds) as well as the

initial geometry and its constraints. That makes the process

of form-�nding very versatile, as shape �nding de�nition

can be de�ned by geometrical and structural design param-

eters inside a CAD environment and with real-time updates

within parameter changes.
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5.2 Application level

Figure 9 shows the class diagram of the application

code in C#, that is the core for the development of the

VPL components. It is responsible to intercommunicate

Rhino/Grasshopper with BATS numerical engine, and con-

tains a collection of classes with geometric variables de-

�ned as Rhino geometrical objects in RhinoCommon, with

supplementary information relevant for the analysis.

Node class collects variables regarding it’s 3D geomet-

rical point in RhinoCommon and have it’s FEA index associ-

ated, which is determined on a further step inside Model

class. For post-processing and colour plot purposes, it also

have methods and �elds for resultant nodal stress de�ni-

tion.

Support Class contains a Node class �eld, which

also have only geometrical information before the pre-

processing. More �elds are needed for these objects, as

support plane, prescribed displacements and constrained

DOFs. Reactions �eld and methods are needed in order to

post-process the model after solution.

Figure 9: Class Diagram for application C# code

FD Class contain the geometrical line de�ned by

two non-indexed nodes (i.e. geometrically informed only)

which represents the element and other information de-

scribed in Section 2. Also, a material density �eld is avail-

able for funicular shell purposes.

NFD classes contains a single triangular or quadrangu-

lar element de�ned by it’s non-indexed nodes and other

relevant information described in Section 3. Similar to FD

class, it also contains �elds regarding material density. For

simplicity andassemblyprocess, a auxiliaryNFDMesh class

is used, as this permits the de�nition of properties in a

whole mesh as also speeds up model assembly as connec-

tivity data of the mesh can be directly passed through the

model. Elements have also �elds for post-processing results,

as the resultant stress �elds.

Model class contains list �eld of all classes listed above,

and has the relevant methods for pre and post-processing.

It also contains the C++ calling method for the solve pro-

cess. The pre-process is done by calling NodeIndexmethod,

which retrieves all tridimensional geometrical information

and provides index assignment of the global model nodes

as also the reference global supports and element nodes

indexes. BuildtoC and SolveonC methods grabs all struc-

tured data and assign series of data arrays to be sent to the

C++ function, which will handle the numerical processing

and retrieves the NFDM results. At last, post-process on

each object type is made by PostProcessElements, PostPro-

cessNodes and PostProcessSupportsmethods.

Every application class have it’s corresponding parame-

ter wrapper inside Grasshopper, which makes possible con-

nection of objects data between components. That makes

possible the assembly structure proposed in the VPL com-

ponents, as the VPL do not recognize automatically custom

classes that are not on RhinoCommon or GrasshopperSDK.

5.3 Numerical level

Numerical level refers to series of C++ functions related

to a main function, which is called from application level.

The main function must call it’s variables considering in-

teroperability between both C# and C++ variable types. C#

provides compatibility of main C native data types when

calling C++ functions using DllImport resources [25]. Ar-

rays from the native types, that are needed due to size of

data, can be passed considering them as pointers in C++,

that will access directly the memory data called in C# code.

Sparse matrices are used as they storage only non-null

values, considerably reducingmemory allocation. However,

sparse matrix build-up can be slow when applied changes

on global indexes, as its structure is not directly correlated
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to dense matrix indexes [26]. Hopefully, sparce matrix as-

sembly can be optimized by directly providing a set of in-

dices and corresponding values, which are called triplets,

de�ned by three values (i, j, value).

For matrix assembly, the global sti�ness matrix K is

partitioned between free and constrained DOFs, resulting

on four sub-matrices Kff , Kfc, Kcf , Kcc, as the solution pro-

cess requires only the unconstrained part, which can cause

economy in highly constrained systems, and reaction forces

can be directly obtained using the results with the other

submatrices. Therefore, a list of triplets is needed for each

submatrix, which is done by the Partitionmethod, which

stores each triplet list for further matrix assembly.

Figure 10 shows auxiliary classes for numerical model

assembly. Arrays data are rebuilt in a scheme of classes

DOFs → Nodes → Elements. This helps to organize

matrix assembly of the linear system in a object-oriented

scheme. Elements have information about force densities

and also of its nodes, which de�nes its type (linear, trian-

gular or quadrangular). Node objects contains geometrical

position, its nodal index and correponding DOFs. DOF ob-

ject then collects unpartitioned and partitioned indices.

Figure 10: Class Diagram for numerical C++ code

That approach turns matrix assembly simple yet e�ec-

tive, as it avoid further searching algorithms for constrained

DOFs during assembly, as they are directly considered be-

fore this step. The same partitioning process is done in the

force vector F in Ff and Fc. LL
T factorizationwith Cholesky

Decomposition is used to solve linear systems, as Kff pre-

serves the symmetry and positive de�nitive properties re-

quired. At last, outputs delivers the new geometry with the

resultant stress �eld and reactions.

Addressing these main issues retrieves good perfor-

mance even for large systems,as is shown in Section 6.1.

6 Examples and benchmarks

Examples and benchmarks are shown in order to evaluate

BATS reliability and computational performance. All tests

were made with a personal computer with the following

speci�cations: Intel i7 9750h processor (2.4Ghz), 16GB RAM.

BATS is compared for minimal surface form-�nding with

two other solvers: Kangaroo [12] and SATS [11].

Kangaroo is amulti-physics solver with a wide-range of

physical simulations and features coupling between many

physical objectives. In terms ofmembrane and cable design,

it o�er both minimal edge lengths and minimal surface so-

lutions, where the latter is obtained by an iterative mathe-

matical procedure imposing zero Gaussian’s curvature on

the mesh.

SATS is a MATLAB program which contains routines

for form-�nding and analysis of taut-structures and was

the �rst program which NFDM was implemented. As BATS

is a further development of SATS with better user-interface,

only computer performance is analysed.

For all benchmarks it is assumed that the 200th itera-

tion of NFDM is an acceptable minimal surface. [6] and [15]

shows that for the shapes analysed the NFDM converges

to these solutions in few steps. Then the geometrical error

for each procedure can be evaluated and analysed at each

iteration by the following relation:

err =
∥

∥

∥
Xi − X

NFDM
200

∥

∥

∥
(15)

6.1 Minimal saddle surface with boundary

restriction

Figure 11 shows an initial mesh made from a simple NURBS

patch. The model is de�ned by a square mesh of NFDM ele-

ments with FD elements in the mesh boundary, supported

by the 4 corner edges. The addition of FD elements in the

boundary adds a restriction to the minimal shape �nding

procedure which gives the best-�t solution for a minimal

shape considering the tension in the FD elements. For the

models assembled in Kangaroo, both considers an addi-

tional boundary restriction with linear spring elements at

the border. This restriction is important as the surface de-

generates if only the corner points are set �xed.More details

on this matter can be seen at [27].

Performance analysis wasmade in three di�erentmesh

densities: 10x10, 25x25 and 50x50 grid. On all tests, the

shape found for the saddle surface matches for the NFDM

and minimal surface procedure with boundary restrictions

on Kangaroo. However, the minimal edges procedure on

Kangaroo presented a deviation from the exact solution.
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Figure 11: Initial mesh for form-�nding

This is explained by the fact that the minimal edges pro-

cedure considers linear elements that are dependent on

line length and mesh topology, and the correct de�nition

for force densities is non intuitive. The de�nition for mini-

mal edges on each line addresses the direction of principal

stresses to the lines axis, and this constraint leads to the er-

ror observed. Therefore, the minimal edges length method,

which is analogous to the original force density method,

does not provides a correct solution.

The following graphs (Figure 12, 13 and 14) shows the

evolution of the geometrical error as a function of both

iteration number n and the time elapsed t.

With exception of the 10x10 grid solution, the mathe-

matical minimal surface procedure on Kangaroo presented

initial increase of the error, which starts to converge when

the other methods are already or almost on convergence

domain. It can be seen that in both terms of n and t BATS

presented direct convergence to the solution, requiring a

maximum of 20 iterations to converge (in the 50x50 grid

case).

Both methods in Kangaroo presented an oscillatory

behaviour for the error, and requiredmore iterations to con-

Figure 12: Iteration and time comparison for 10x10 grid

verge. Even that the minimal edge surface method required

fewer time per iteration, the NFDM property of directly �nd

viable shapes at each iteration, makes it more e�cient as

quite few steps are required to achieve convergence.

Interactive pseudo-dynamic methods presented on

Kangaroo are explicit methods and so forth requires more

steps to reach a solution, as they are dependent on the

time step at each iteration. The procedure tries to �nd a

equilibrium state in the pseudo-dynamic scheme by im-

posing constraints on the motion, which error function in

Figure 13: Iteration and time comparison for 25x25 grid

Figure 14: Iteration and time comparison for 50x50 grid
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terms of time/iteration presents the behaviour of damped

oscillations. However, these methods can be helpfull when

dealing with non-linear structural analysis of tensile non-

linear materials, as the problem can be derived only from

the internal and external force vectors and avoids the use

of the tangent sti�ness matrix, that might be singular due

to the local instabilities on the membrane. This method

for non-linear systems solution is the so called Dynamic

Relaxation method, that, although lacks computational

e�ciency compared to direct methods, it is more robust

and achieve solutions which are quite di�cult to using a

Newton-Raphson solver. Further reading in this topic is

addressed to [28] and [29].

Figure 15 gives the time elapsed on each procedure

for convergence. BATS performs considerably quickly than

other implementations.

SATS elapsed time is presented and requires the same

iterations than BATS, as also uses the NFDM procedure,

however presented lower performance. The main di�er-

ences on the implementation of BATS and SATS is the lan-

guage (C++ and MATLAB), numerical library (Eigen and

MATLAB), sparse matrix assembly (optimized with triplets

and no optimization) and linear system solving (factoriza-

tion with Cholesky decomposition and generalized linear

system solver).

Figure 15: Comparison with SATS included

6.2 Minimal catenoid surface

This example is de�ned from an initial mesh of a cylinder

of radius r and height h, for the form-�nding of a minimal

catenoid shape. For this class of shapes, a minimal surface

can be found analytically with the Goldschmidt solution,

which states that a minimal surface of a catenoid, with two

equal radius rings as boundary, only have a solution for

h < 1.3254868r [30].

As explained before, the minimal edges procedure is

not equivalent to a minimal surface form-�nding and will

be neglected in this example. Three di�erent heights are

de�ned in order to check the Goldschmidt limit: h = 1.30r

(Figure 16), h = 1.32r (Figure 17) and h = 1.34r (Figure 18).

Besides a apparent gradient of stresses showedon the stress

colour plot in the catenoid, the maximum stress variation

is on order of 10−4, and then it can be clearly assumed that

the stress distribution is uniform for all converged BATS

results.

Expected results arises for h bellow the Goldschmidt

limit, where both procedures converges to the same

shape.Above the limit, both solutions diverge into a de-

generative mesh as no solution is viable. However, it can

be seen that for h = 1.32r, which is quite close to the

limit, BATS converges to a solutionwhereas Kangaroo don’t,

showing better sensitivity of results using the NDFM.

The graph of geometrical error in function of time

elapsed is presented on Figures 19 and 20. It can be ob-

served that for h = 1.30r both solutions behaves in the

Figure 16: Catenoid solution for h = 1.30r. BATS on the left, Kanga-

roo on the right

Figure 17: σ1 plot of the catenoid solution for h = 1.32r. BATS on the

left, Kangaroo on the right

Figure 18: Conoid solution for h = 1.34r. BATS on the left, Kangaroo

on the right
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Figure 19: Iteration and time comparison for h = 1.30r.

Figure 20: Iteration and time comparison for h = 1.32r.

samemanner as the saddle surface example. Onother hand,

h = 1.32r shows Kangaroo almost reaching a solution but

diverging the minimum error is achieved, which happens

at both BATS and Kangaroo solution for h = 1.34r.

However, as NFDM produces at each iteration an viable

solution, it’s possible to retrieve the last iteration in which

the stress �eld deviance decreases. For h = 1.34r case,

Figure 21 shows the maximum and minimum stress acting

on the surface, where when the values are equal a uniform

stress �eld is achieved. It was observed that the shape with

Figure 21:Minimal and Maximum resultant stress per iteration, for

h = 1.34r

Figure 22: Last viable shape before solution diverges.

Figure 23: Comparison between the last viable shape and corre-

sponding iteration resultant geometry h = 1.34r.

the stress �eld closest possible to a uniform state is found

in the 20th iteration, and it can be seen on Figure 22.

The error between each iteration and this solution is

plotted in Figure 23, where the convergence domain and

divergence domain of the error function can be observed.
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7 Conclusion

This work showed a implementation of the Natural Force

Density Method in a novel framework composed by

Grasshopper components, application code in C# for com-

ponent programming, and a numerical code in C++.

Comparison with the �rst implementation showed

the importance of e�cient memory management and the

choice of numerical libraries and methods. Comparison

with other form-�nding methods in Kangaroo shows how

an e�cient implemented implicit method can perform

highly better than a nicely implemented explicit method.

Besides it, the developed tool delivers viable con�gurations

at all iterations as also deliver the resultant stress �eld as-

sociated with the shape.

The combination of a robust form-�nding method as

NFDM with adequate numerical programming techniques

and e�cient numerical libraries inside a parametric en-

vironment produced a reliable, fast and versatile form-

�nding tool for the shape �nding of taut structures and

funicular shells. Future research is on applying the com-

putational framework for non-linear analysis and cutting

pattern routines for taut structures, taking advantage of the

numerical e�ciency presented.
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