
AN OVERVIEW OF THE OMNeT++ SIMULATION
ENVIRONMENT

András Varga
OpenSim Ltd.

Sz l köz 11, 1032 ő ő
Budapest, Hungary

andras.varga@omnest.com

Rudolf Hornig
OpenSim Ltd.

Sz l köz 11, 1032 ő ő
Budapest, Hungary

rudolf.hornig@omnest.com

ABSTRACT
The OMNeT++ discrete event simulation environment has been
publicly available since 1997. It has been created with the
simulation of communication networks, multiprocessors and other
distributed systems in mind as application area, but instead of
building a specialized simulator, OMNeT++ was designed to be as
general as possible. Since then, the idea has proven to work, and
OMNeT++ has been used in numerous domains from queuing
network simulations to wireless and ad-hoc network simulations,
from business process simulation to peer-to-peer network, optical
switch and storage area network simulations. This paper presents
an overview of the OMNeT++ framework, recent challenges
brought about by the growing amount and complexity of third
party simulation models, and the solutions we introduce in the
next major revision of the simulation framework.1

KEYWORDS
discrete simulation, network simulation, simulation tools,
performance analysis, computer systems, telecommunications,
hierarchical, integrated development environment

1. INTRODUCTION
OMNeT++[1][2] is a C++-based discrete event simulator for
modeling communication networks, multiprocessors and other
distributed or parallel systems. OMNeT++ is public-source, and
can be used under the Academic Public License that makes the
software free for non-profit use. The motivation of developing
OMNeT++ was to produce a powerful open-source discrete event
simulation tool that can be used by academic, educational and
research-oriented commercial institutions for the simulation of
computer networks and distributed or parallel systems. OMNeT++
attempts to fill the gap between open-source, research-oriented
simulation software such as NS-2 [11] and expensive commercial
alternatives like OPNET [16]. A later section of this paper
presents a comparison with other simulation packages. OMNeT++

1 The 4.0 release is scheduled to appear in Q1 2008.

is available on all common platforms including Linux, Mac OS/X
and Windows, using the GCC tool chain or the Microsoft Visual
C++ compiler.

OMNeT++ represents a framework approach. Instead of directly
providing simulation components for computer networks, queuing
networks or other domains, it provides the basic machinery and
tools to write such simulations. Specific application areas are
supported by various simulation models and frameworks such as
the Mobility Framework or the INET Framework. These models
are developed completely independently of OMNeT++, and
follow their own release cycles.

Since its first release, simulation models have been developed by
various individuals and research groups for several areas
including: wireless and ad-hoc networks, sensor networks, IP and
IPv6 networks, MPLS, wireless channels, peer-to-peer networks,
storage area networks (SANs), optical networks, queuing
networks, file systems, high-speed interconnections (InfiniBand),
and others. Some of the simulation models are ports of real-life
protocol implementations like the Quagga Linux routing daemon
or the BSD TCP/IP stack, others have been written directly for
OMNeT++. A later section of this paper will discuss these
projects in more detail. In addition to university research groups
and non-profit research institutions, companies like IBM, Intel,
Cisco, Thales and Broadcom are also using OMNeT++
successfully in commercial projects or for in-house research.

2. THE DESIGN OF OMNeT++
OMNeT++ was designed from the beginning to support network
simulation on a large scale. This objective lead to the following
main design requirements:

● To enable large-scale simulation, simulation models
need to be hierarchical, and built from reusable
components as much as possible.

● The simulation software should facilitate visualizing
and debugging of simulation models in order to reduce
debugging time, which traditionally takes up a large
percentage of simulation projects. (The same feature set
is also useful for educational use of the software.)

● The simulation software itself should be modular,
customizable and should allow embedding simulations
into larger applications such as network planning
software. (Embedding brings additional requirements
about the memory management, restartability, etc. of the
simulation).

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ICST must be
honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

SIMUTools, March 03 – 07, 2008, Marseille, France.
ISBN 978-963-9799-20-2

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for profit or commercial advantage and thatcopies bear this notice and the full citation on the first page. To copyotherwise, to republish, to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.SIMUTOOLS 2008, March 03-07, Marseille, FranceCopyright © 2008 ICST 978-963-9799-20-2DOI 10.4108/ICST.SIMUTOOLS2008.3027

● Data interfaces should be open: it should be possible to
generate and process input and output files with
commonly available software tools.

● Should provide an Integrated Development
Environment that largely facilitates model development
and analyzing results.

The following sections go through the most important aspects of
OMNeT++, highlighting the design decisions that helped achieve
the above main goals.

2.1 Model Structure
An OMNeT++ model consists of modules that communicate with
message passing. The active modules are termed simple modules;
they are written in C++, using the simulation class library. Simple
modules can be grouped into compound modules and so forth; the
number of hierarchy levels is not limited. Messages can be sent
either via connections that span between modules or directly to
their destination modules. The concept of simple and compound
modules is similar to DEVS [46][47] atomic and coupled models.

Both simple and compound modules are instances of module
types. While describing the model, the user defines module types;
instances of these module types serve as components for more
complex module types. Finally, the user creates the system
module as a network module which is a special compound module
type without gates to the external world. When a module type is
used as a building block, there is no distinction whether it is a
simple or a compound module. This allows the user to
transparently split a module into several simple modules within a
compound module, or do the opposite, re-implement the
functionality of a compound module in one simple module,
without affecting existing users of the module type. The feasibility
of model reuse is proven by the model frameworks like INET
Framework [1] and Mobility Framework [17][18], and their
extensions.

network

compound module

simple modules

Figure 1. Model Structure in OMNeT++. Boxes represent simple
modules (thick border), and compound modules (thin border).

Arrows connecting small boxes represent connections and gates.

Modules communicate with messages which – in addition to usual
attributes such as timestamp – may contain arbitrary data. Simple
modules typically send messages via gates, but it is also possible
to send them directly to their destination modules. Gates are the
input and output interfaces of modules: messages are sent out
through output gates and arrive through input gates. An input and
an output gate can be linked with a connection. Connections are
created within a single level of module hierarchy: within a
compound module, corresponding gates of two submodules, or a
gate of one submodule and a gate of the compound module can be
connected. Connections spanning across hierarchy levels are not
permitted, as it would hinder model reuse. Due to the hierarchical

structure of the model, messages typically travel through a chain
of connections, to start and arrive in simple modules. Compound
modules act as 'cardboard boxes' in the model, transparently
relaying messages between their inside and the outside world.
Properties such as propagation delay, data rate and bit error rate,
can be assigned to connections. One can also define connection
types with specific properties (termed channels) and reuse them in
several places.

Modules can have parameters. Parameters are mainly used to pass
configuration data to simple modules, and to help define model
topology. Parameters may take string, numeric or boolean values.
Because parameters are represented as objects in the program,
parameters – in addition to holding constants – may transparently
act as sources of random numbers with the actual distributions
provided with the model configuration, they may interactively
prompt the user for the value, and they might also hold
expressions referencing other parameters. Compound modules
may pass parameters or expressions of parameters to their
submodules.

2.2 The Design of the NED Language
The user defines the structure of the model (the modules and their
interconnection) in OMNeT++'s topology description language,
NED. Typical ingredients of a NED description are simple module
declarations, compound module definitions and network
definitions. Simple module declarations describe the interface of
the module: gates and parameters. Compound module definitions
consist of the declaration of the module's external interface (gates
and parameters), and the definition of submodules and their
interconnection. Network definitions are compound modules that
qualify as self-contained simulation models.

The NED language has been designed to scale well, however,
recent growth in the amount and complexity of OMNeT++-based
simulation models and model frameworks made it necessary to
improve the NED language as well. In addition to a number of
smaller improvements, the following major features have been
introduced:

Inheritance. Modules and channels can now be subclassed.
Derived modules and channels may add new parameters, gates,
and (in the case of compound modules) new submodules and
connections. They may set existing parameters to a specific value,
and also set the gate size of a gate vector. This makes it possible,
for example, to take a GenericTCPClientApp module and
derive an FTPApp from it by setting certain parameters to a fixed
value; or derive a WebClientHost compound module from a
BaseHost compound module by adding a WebClientApp
submodule and connecting it to the inherited TCP submodule.

Interfaces. Module and channel interfaces can be used as a
placeholder where normally a module or channel type would be
used, and the concrete module or channel type is determined at
network setup time by a parameter. Concrete module types have
to “implement” the interface they can substitute. For example, the
module types ConstSpeedMobility and
RandomWayPointMobility need to implement IMobility
to be able to be plugged into a MobileHost that contains an
IMobility submodule.

Packages. To address name clashes between different models and
to simplify specifying which NED files are needed by a specific

simulation model, a Java-like package structure was introduced
into the NED language.

Inner types. Channel types and module types used locally by a
compound module can now be defined within the compound
module, in order to reduce namespace pollution.

Metadata annotations. It is possible to annotate module or
channel types, parameters, gates and submodules by adding
properties. Metadata are not used by the simulation kernel
directly, but they can carry extra information for various tools, the
runtime environment, or even for other modules in the model. For
example, a module's graphical representation (icon, etc) or the
prompt string and unit (milliwatt, etc) of a parameter are specified
using properties.

The NED language has an equivalent XML representation, that is,
NED files can be converted to XML and back without loss of
data, including comments. This lowers the barrier for
programmatic manipulation of NED files, for example extracting
information, refactoring and transforming NED, generating NED
from information stored in other system like SQL databases, and
so on.

2.3 Graphical Editor
The OMNeT++ package includes an Integrated Development
Environment which contains a graphical editor using NED as its
native file format; moreover, the editor can work with arbitrary,
even hand-written NED code. The editor is a fully two-way tool,
i.e. the user can edit the network topology either graphically or in
NED source view, and switch between the two views at any time.
This is made possible by design decisions about the NED
language itself. First, NED is a declarative language, and as such,
it does not use an imperative programming language for defining
the internal structure of a compound module. Allowing arbitrary
programming constructs would make it practically infeasible to
write two-way graphical editors which could work directly with
both generated and hand-made NED files. (Generally, the editor
would need AI capability to understand the code.)

Most graphical editors only allow the creation of fixed topologies.
However, NED contains declarative constructs (resembling loops
and conditionals in imperative languages), which enable
parametric topologies: it is possible to create common regular
topologies such as ring, grid, star, tree, hypercube, or random
interconnection whose parameters (size, etc.) are passed in
numeric-valued parameters. The potential of parametric
topologies and associated design patterns have been investigated
in [7][9]. With parametric topologies, NED holds an advantage in
many simulation scenarios both over OPNET where only fixed
model topologies can be designed, and over NS-2 where building
model topology is programmed in Tcl and often intermixed with
simulation logic, so it is generally impossible to write graphical
editors which could work with existing, hand-written code.

2.4 Separation of Model and Experiments
It is always a good practice to try to separate the different aspects
of a simulation as much as possible. Model behavior is captured
in C++ files as code, while model topology (and of course the
parameters defining this topology) is defined by the NED files.
This approach allows the user to keep the different aspects of the
model in different places which in turn allows having a cleaner

model and better tooling support. In a generic simulation scenario,
one usually wants to know how the simulation behaves with
different inputs. These variables neither belong to the behavior
(code) nor the topology (NED files) as they can change from run
to run. INI files are used to store these values. INI files provide a
great way to specify how these parameters change and enable us
to run our simulation for each parameter combination we are
interested in. The generated simulation results can be easily
harvested and processed by the built in analysis tool. We will
explore later, in the Result Analysis paragraph, how the INI files
are organized and how they can make experimenting with our
model a lot easier.

2.5 Simple Module Programming Model
Simple modules are the active elements in a model. They are
atomic elements in the module hierarchy: they cannot be divided
any further. Simple modules are programmed in C++, using the
OMNeT++ simulation class library. OMNeT++ provides an
Integrated C++ Development Environment so it is possible to
write, run and debug the code without leaving the OMNeT++
IDE. The simulation kernel does not distinguish between
messages and events – events are also represented as messages.

Simple modules are programmed using the process-interaction
method. The user implements the functionality of a simple module
by subclassing the cSimpleModule class. Functionality is
added via one of two alternative programming models: (1)
coroutine-based, and (2) event-processing function. When using
coroutine-based programming, the module code runs in its own
(non-preemptively scheduled) thread, which receives control from
the simulation kernel each time the module receives an event
(=message). The function containing the coroutine code will
typically never return: usually it contains an infinite loop with
send and receive calls.

When using event-processing function, the simulation kernel
simply calls the given function of the module object with the
message as argument – the function has to return immediately
after processing the message. An important difference between the
coroutine-based and event-processing function programming
models is that with the former, every simple module needs an own
CPU stack, which means larger memory requirements for the
simulation program. This is of interest when the model contains a
large number of modules (over a few ten thousands).

It is possible to write code which executes on module
initialization and finalization: the latter takes place on successful
simulation termination, and finalization code is mostly used to
save scalar results into a file. OMNeT++ also supports multi-
stage initialization: situations where model initialization needs to
be done in several "waves". Multi-stage initialization support is
missing from most simulation packages, and it is usually emulated
with broadcast events scheduled at zero simulation time, which is
a less clean solution.

Message sending and receiving are the most frequent tasks in
simple modules. Messages can be sent either via output gates, or
directly to another module. Modules receive messages either via
one of the several variations of the receive call (when using
coroutine-based programming), or messages are delivered to the
module in an invocation from the simulation kernel (when using
the event-processing function). Messages can be defined by
specifying their content in an MSG file. OMNeT++ takes care of

creating the necessary C++ classes. MSG files allow the
OMNeT++ kernel to generate reflection code which enables us to
peek into messages and explore their content at runtime.

It is possible to modify the topology of the network dynamically:
one can create and delete modules and rearrange connections
while the simulation is executing. Even compound modules with
parametric internal topology can be created on the fly.

2.6 Design of the Simulation Library
The OMNeT++ provides a rich object library for simple module
implementers. There are several distinguishing factors between
this library and other general-purpose or simulation libraries. The
OMNeT++ class library provides reflection functionality which
makes it possible to implement high-level debugging and tracing
capability, as well as automatic animation on top of it (as
exemplified by the Tkenv user interface, see later). Memory leaks,
pointer aliasing and other memory allocation problems are
common in C++ programs not written by specialists; OMNeT++
alleviates this problem by tracking object ownership and detecting
bugs caused by aliased pointers and misuse of shared objects. The
requirements for ease of use, modularity, open data interfaces and
support of embedding also heavily influenced the design of the
class library. The consistent use of object-oriented techniques
makes the simulation kernel compact and slim. This makes it
relatively easy to understand its internals, which is a useful
property for both debugging and educational use.

Recently it has become more common to do large scale network
simulations with OMNeT++, with several ten thousand or more
network nodes. To address this requirement, aggressive memory
optimization has been implemented in the simulation kernel,
based on shared objects and copy-on-write semantics.

Until recently, simulation time has been represented as with C's
double type (IEEE double precision). Well-known precision
problems with floating point calculations however, have caused
problems in simulations from time to time. To address this issue,
simulation time has been recently changed to 64-bit integer-based
fixed-point representation. One of the major problems that had to
be solved here was how to detect numeric overflows, as the C and
C++ languages, despite their explicit goals of being “close to the
hardware”, lack any support to detect integer overflows.

2.7 Contents of the Simulation Library
This section provides a very brief catalog of the classes in the
OMNeT++ simulation class library. The classes were designed to
cover most of the common simulation tasks.

OMNeT++ has the ability to generate random numbers from
several independent streams. The common distributions are
supported, and it is possible to add new distributions programmed
by the user. It is also possible to load user distributions defined by
histograms.

The class library offers queues and various other container
classes. Queues can also operate as priority queues.

Messages are objects which may hold arbitrary data structures and
other objects (through aggregation or inheritance), and can also
embed other messages.

OMNeT++ supports routing traffic in the network. This feature
provides the ability to explore actual network topology, extract it

into a graph data structure, then navigate the graph or apply
algorithms such as Dijkstra to find shortest paths.

There are several statistical classes, from simple ones which
collect the mean and the standard deviation of the samples to a
number of distribution estimation classes. The latter include three
highly configurable histogram classes and the implementations of
the P2 [10] and the k-split [8] algorithms. It is also supported to
write time series result data into an output file during simulation
execution, and there are tools for post-processing the results.

2.8 Parallel Simulation Support
OMNeT++ also has support for parallel simulation execution.
Very large simulations may benefit from the parallel distributed
simulation (PDES) feature, either by getting speedup, or by
distributing memory requirements. If the simulation requires
several Gigabytes of memory, distributing it over a cluster may be
the only way to run it. For getting speedup (and not actually
slowdown, which is also easily possible), the hardware or cluster
should have low latency and the model should have inherent
parallelism. Partitioning and other configuration can be
configured in the INI file, the simulation model itself doesn't need
to be changed (unless, of course, it contains global variables that
prevents distributed execution in the first place.) The
communication layer is MPI, but it's actually configurable, so if
the user does not have MPI it is still possible to run some basic
tests over named pipes. The figure below explains the logical
architecture of the parallel simulation kernel:

Simulation Kernel
Parallel simulation subsystem

Synchronization

Communication

Partition (LP)

Simulation Model

Event scheduling,
sending, receiving

communications library (MPI, sockets, etc.)

Figure 2. Logical Architecture of the OMNeT++ Parallel
Simulation kernel

2.9 Internal Architecture

SIM
(simulation

kernel)

ENVIR
(user interface
common base)

main()

CMDENV,
or TKENV
(one of the

concrete user
interfaces)

Simulation
Model

Model Component
Library

(simple & compound
module types, etc.)

OMNeT++ executable

Figure 3. Logical Architecture of an OMNeT++ Simulation
Program

OMNeT++ simulation programs possess a modular structure. The
logical architecture is shown on Figure 3.

The Model Component Library consists of the code of compiled
simple and compound modules. Modules are instantiated and the
concrete simulation model is built by the simulation kernel and
class library (Sim) at the beginning of the simulation execution.
The simulation executes in an environment provided by the user
interface libraries (Envir, Cmdenv and Tkenv) – this environment
defines where input data come from, where simulation results go
to, what happens to debugging output arriving from the simulation
model, controls the simulation execution, determines how the
simulation model is visualized and (possibly) animated, etc.

SIM
(sim. kernel)

Simulation

Model

Model Component
Library

Embedding Application

other parts of the
embedding application

OMNeT++ subsystem

Figure 4. Embedding OMNeT++

By replacing the user interface libraries, one can customize the
full environment in which the simulation runs, and even embed an
OMNeT++ simulation into a larger application (Figure 4). This is
made possible by the existence of a generic interface between Sim
and the user interface libraries, as well as the fact that all Sim,
Envir, Cmdenv and Tkenv are physically separate libraries. It is
also possible for the embedding application to assemble models
from the available module types on the fly – in such cases, model
topology will often come from a database.

2.10 Real-Time Simulation, Network
Emulation
Network emulation, together with real-time simulation and
hardware-in-the-loop like functionality, is available because the
event scheduler in the simulation kernel is pluggable too. The
OMNeT++ distribution contains a demo of real-time simulation
and a simplistic example of network emulation. Interfacing
OMNeT++ with other simulators (hybrid operation) or HLA is
also largely a matter of implementing one's own scheduler class.

2.11 Animation and Tracing Facility
An important requirement for OMNeT++ was easy debugging and
traceability of simulation models. Associated features are
implemented in Tkenv, the GUI user interface of OMNeT++.
Tkenv uses three methods: automatic animation, module output
windows and object inspectors. Automatic animation (i.e.
animation without any programming) in OMNeT++ is capable of
animating the flow of messages on network charts and reflecting
state changes of the nodes in the display. Automatic animation
perfectly fits the application area, as network simulation
applications rarely need fully customizable, programmable
animation capabilities.

Figure 5. Screenshot of the Tkenv User Interface of OMNeT++

Simple modules may write textual debugging or tracing
information to a special output stream. Such debug output appears
in module output windows. It is possible to open separate
windows for the output of individual modules or module groups,
so compared to the traditional printf()-style debugging, module
output windows make it easier to follow the execution of the
simulation program.

Further introspection into the simulation model is provided by
object inspectors. An object inspector is a GUI window
associated with a simulation object. Object inspectors can be used
to display the state or contents of an object in the most
appropriate way (i.e. a histogram object is displayed graphically,
with a histogram chart), as well as to manually modify the object.
In OMNeT++, it is automatically possible to inspect every
simulation object; there is no need to write additional code in the
simple modules to make use of inspectors.

It is also possible to turn off the graphical user interface
altogether, and run the simulation as a pure command-line
program. This feature is useful for batched simulation runs.

2.12 Visualizing Dynamic Behavior
The behavior of large and complex models is usually hard to
understand because of the complex interaction between different
modules. OMNeT++ helps to reduce complexity by mandating the
communication between modules using predefined connections.
The graphical runtime environment allows the user to follow
module interactions to a certain extent: one can animate, slow
down or single-step the simulation, but sometimes it is still hard
to see the exact sequence of the events, or to grasp the timing
relationships (as, for practical reasons, simulation time is not
proportional to real time; also, when single-stepping through
events, events with the same timestamp get animated
sequentially).

OMNeT++ helps the user to visualize the interaction by logging
interactions between modules to a file. This log file can be
processed after (or even during) the simulation run and can be
used to draw interaction diagrams. The OMNeT++ IDE has a
sequence chart diagramming tool which provides a sophisticated
view of how the events follow each other. One can focus on all, or

just selected modules, and display the interaction between them.
The tool can analyze and display the causes or consequences of an
event, and display all of them (using a non-linear time axis) on a
single screen even if time intervals between events are of different
magnitudes. One can go back and forth in time and filter for
modules and events.

Figure 6.
Screenshot of a Sequence Chart from the OMNeT++ IDE

2.13 Organizing and Performing Experiments
The ultimate goal of running a simulation is to obtain results and
to get some insight into the system by analyzing the results.
Thorough simulation studies very often produce large amounts of
data, which are nontrivial to organize in a meaningful way.
OMNeT++ organizes simulation runs (and the results they
generate) around the following concepts:

model – the executable (C++ model files, external libraries, etc.)
and NED files. (INI files are considered to be part of the study and
experiment rather than the model.) Model files are considered to
be invariant for the purposes of experimentation, meaning that if a
C++ source or NED file gets modified, then it will count as a
different model.

study – a series of experiments to study some phenomenon on one
or more models; e.g. “handover optimization for mobile IPv6”.
For a study one usually performs a number of experiments from
which conclusions can be drawn. One study may contain
experiments on different models, but one experiment is always
performed on one specific model.

experiment – exploration of a parameter space on a model, e.g.
“the adhocNetwork model’s behavior with
numhosts=5,10,20,50,100 and load=2..5 step 0.1 (Cartesian
product)”; consists of several measurements.

measurement – a set of simulation runs on the same model with
the same parameters (e.g. “numhosts=10, load=3.8”), but
potentially different seeds. May consist of several replications of
whose results get averaged to supply one data point for the
experiment. A measurement can be characterized with the
parameter settings and simulation kernel settings in the INI file,
minus the seeds.

replication – one repetition of a measurement. Very often, one
would perform several replications, all with different seeds. A
replication can be characterized by the seed values it uses.

run – or actual run: one instance of running the simulation; that
is, a run can be characterized with an exact time/date and the
computer (e.g. the host name).

OMNeT++ supports the execution of whole (or partial)
experiments as a single batch. After specifying the model
(executable file + NED files) and the experiment parameters (in
the INI file) one can further refine which measurements one is
interested in. The simulation batch can be executed and its
progress monitored from the IDE. Multiple CPUs or CPU cores
can be exploited by letting the launcher run more than one
simulation at a time. The significance of running multiple
independent simulations concurrently is often overlooked, but it is
not only a significantly easier way of reducing overall execution
time of an experiment than distributed parallel simulation (PDES)
but also more efficient (as it guarantees linear speedup which is
not possible with PDES).

2.14 Result Analysis
Analyzing the simulation result is a lengthy and time consuming
process. In most cases the user wants to see the same type of data
for each run of the simulation or display the same graphs for
different modules in the model, so automation is very important.
(The user does not want to repeat the steps of re-creating charts
every time simulations have to be re-run for some reason.) The
lack of automation support drives many users away from existing
GUI analysis tools, and forces them to write scripts.

OMNeT++ solves this by making result analysis rule-based.
Simulations and series of simulations produce various result files.
The user selects the input of the analysis by specifying file names
or file name patterns (e.g. "adhoc-*.vec"). Data of interest can be
selected into datasets by further pattern rules. The user completes
datasets by adding various processing, filtering and charting steps,
all using the GUI (Figure 7). Whenever the underlying files or
their contents change, dataset contents and charts are recalculated.
The editor only saves the "recipe" and not the actual numbers, so
when simulations are re-run and so result files get replaced, charts
are automatically up-to-date. Data in result files are tagged with
meta information: experiment, measurement and replication labels
are added to the result files to make the filtering process easy. It is
possible to create very sophisticated filtering rules, for example,
“all 802.11 retry counts of host[5..10] in experiment X, averaged
over replications”. In addition datasets can use other datasets as
their input so datasets can build on each other.

Figure 7. Rule based processing

OMNeT++ supports several fully customizable chart and graph
types which are rendered directly from datasets (Figure 8). The
visual properties of the charts are also stored in the “recipe”.

Figure 8. Charts in the OMNeT++ IDE

3. CONTRIBUTIONS TO OMNeT++
Currently there are two major network simulation model
frameworks for OMNeT++: the Mobility Framework [17][18] and
the INET Framework [1].

The Mobility Framework was designed at TU Berlin to provide
solid foundations for creating wireless and mobile networks
within OMNeT++. It provides a detailed radio model, several
mobility models, MAC models including IEEE 802.11b, and
several other components. Other model frameworks for mobile,
ad-hoc and sensor simulations [26][33][13] have also been
published (LSU SenSim [25][26] and Castalia [19][20], for
example), but they have so far failed to make significant impact.
Further related simulation models are NesCT for TinyOS [21]
simulations, MACSimulator and Positif [13] which are continued
in the MiXiM [5] project, EWsnSim, SolarLEACH, ChSim [27],
AdHocSim, AntNet, etc.

The INET Framework has evolved from the IPSuite originally
developed at the University of Karlsruhe. It provides detailed
protocol models for TCP, IPv4, IPv6, Ethernet, Ieee802.11b/g,
MPLS, OSPFv4, and several other protocols. INET also includes
the Quagga routing daemon directly ported from Linux code base.

Several authors have developed various extensions for the INET
Framework. OverSim [22][23][24] is used to model P2P
protocols on top of the INET Framework. AODV-UU, DSR is
also available as an add-on for the INET Framework. IPv6Suite
[45] (discontinued by 2007) supported MIPv6 and HMIPv6
simulations over wired and wireless networks.

The OppBSD [44] model allows using the FreeBSD kernel
TCP/IP protocol stack directly inside an OMNeT++ simulation.
Other published simulation models include Infiniband [28],
FieldBus [14] and SimSANs [43].

A very interesting application area of OMNeT++ is the modeling
of dynamic behavior of software systems based on the UML
standard, by translating annotated UML diagrams into OMNeT++
models. A representative of this idea is the SYNTONY project
[30][31][32]; similar approach have been reported in [35] where
the authors used UML-RT, and in [34] where performance
characteristics of web applications running on the JBoss
Application Server were studied.

The Simulation Library API can be mapped to programming
languages other than C++. There is already 3rd party support for
Java and C# which makes it possible to write simple module
behavior in these languages.

4. COMPARISON WITH OTHER
SIMULATION TOOLS
The network simulation scene has changed a lot in the past ten
years, simulation tools coming and going. This section presents an
overview of various commercial and noncommercial network
simulation tools in wide use today, and compares them to
OMNeT++. Specialized network simulators (like TOSSIM, for
TinyOS simulations), and simulation packages not or rarely used
for network simulations (such as Ptolemy or Ptolemy II) are not
considered. Also, the discussion only covers the features and
services of the simulation environments themselves, but not the
availability or characteristics of specific simulation models like
IPv6 or QoS (the reason being that they do not form part of the
OMNeT++ simulation package.)

4.1 NS
NS-2 [11] is currently the most widely used network simulator in
academic and research circles. NS-2 does not follow the same
clear separation of simulation kernel and models as OMNeT++:
the NS-2 distribution contains the models together with their
supporting infrastructure, as one inseparable unit. This is a key
difference: the NS-2 project goal is to build a network simulator,
while OMNeT++ intends to provide a simulation platform, on
which various research groups can build their own simulation
frameworks. The latter approach is what called the abundance of
OMNeT++-based simulation models and model frameworks into
existence, and turned OMNeT++ into a kind of an “ecosystem”.

NS-2 lacks many tools and infrastructure components that
OMNeT++ provides: support for hierarchical models, a graphical
editor, GUI-based execution environment (except for nam),
separation of models from experiments, graphical analysis tools,
simulation library features such as multiple RNG streams with
arbitrary mapping and result collection, seamlessly integrated
parallel simulation support, etc. This is because the NS-2 project
concentrates on developing the simulation models, and much less
on simulation infrastructure.

NS-2 is a dual-language simulator: simulation models are Tcl
scripts2, while the simulation kernel and various components
(protocols, channels, agents, etc) are implemented in C++ and are
made accessible from the Tcl language. Network topology is
expressed as part of the Tcl script, which usually deals with
several other things as well, from setting parameters to adding
application behavior and recording statistics. This architecture
makes it practically impossible to create graphical editors for
NS-2 models3.

NS-3 is an ongoing effort to consolidate all patches and recently
developed models into a new version of NS. Although work
includes refactoring of the simulation core as well, the concepts

2 In fact, OTcl, which is an object-oriented extension to Tcl.
3 Generating a Tcl script from a graphical representation is of

course possible, but not the other way round: no graphical
editor will ever be able to understand an arbitrary NS-2 script,
and let the user edit it graphically.

are essentially unchanged. The NS-3 project goals [36] include
some features (e.g. parallel simulation, use of real-life protocol
implementations as simulation models) that have already proven
to be useful with OMNeT++.

4.2 J-Sim
J-Sim [37][38] (formerly known as JavaSim) is a component-
based, compositional simulation environment, implemented in
Java. J-Sim is similar to OMNeT++ in that simulation models are
hierarchical and built from self-contained components, but the
approach of assembling components into models is more like
NS-2: J-Sim is also a dual-language simulation environment, in
which classes are written in Java, and glued together using Tcl (or
Java). The use of Tcl in J-Sim has the same drawback as with
NS-2: it makes implementing graphical editors impossible. In fact,
J-Sim does provide a graphical editor (gEditor), but its native
format is XML. Although gEditor can export Tcl scripts,
developers recommend that XML files are directly loaded into the
simulator, bypassing Tcl. This way, XML becomes the equivalent
of OMNeT++ NED. However, the problem with XML as native
file format is that it is hard to read and write by humans.

Simulation models are provided in the Inet package, which
contains IPv4, TCP, MPLS and other protocol models.

The fact that J-Sim is Java-based has some implications. On one
hand, model development and debugging can be significantly
faster than C++, due to existence of excellent Java development
tools. However, simulation performance is significantly weaker
than with C++, and it is also not possible to reuse existing real-life
protocol implementations written in C as simulation models. (The
feasibility and usefulness of the latter has been demonstrated with
OMNeT++, where simulation models include port of the Quagga
Linux routing daemon, the TCP stack from the FreeBSD kernel,
the port of the UU-AODV routing package, etc. The NS-3 team
has similar plans as well.)

Development of the J-Sim core and simulation models seem to
have stalled after 2004 when version 1.3 was published; later
entries on the web site are patches and contributed documents
only. There are no independent (3rd party) simulation models for
J-Sim.

4.3 SSFNet
SSFNet [39] (Scalable Simulation Framework) is defined as a
“public-domain standard for discrete-event simulation of large,
complex systems in Java and C++.” The SSFNet standard defines
a minimalist API (which, however, was designed with parallel
simulation in mind). The topology and configuration of SSFNet
simulations are given in DML files. DML is a text-based format
comparable to XML, but has its own syntax. DML can be
considered the SSFNet equivalent of NED, however it lacks
expressing power and features to scale up to support large model
frameworks built from reusable components. SSFNet also lacks
OMNeT++'s INI files, all parameters need to be given in the
DML.

SSFNet has four implementations: DaSSF and CSSF in C++, and
two Java implementations (Renesys Raceway and JSSF). There
were significantly more simulation models developed for the Java
versions than for DaSSF. Advantages and disadvantages of using
Java in SSFNet are the same as discussed with J-Sim.

As with J-Sim, development of the SSFNet simulation framework
and models seem to have stalled after 2004 (date of the SSFNet
for Java 2.20 release), and little activity can be detected outside
the main web site as well.

4.4 JiST and SWANS
JiST [42][6] represents a very interesting approach to building a
high performance Java based simulation environment. It modifies
the Java Virtual Machine to run the programs in simulation time
instead of real time. JiST is basically just a simulation kernel, and
as such, it lacks most of the features present in the OMNeT++
package.
SWANS is a scalable wireless network simulator built atop the
JiST platform as a proof of concept model, to prove the efficiency
of the virtual machine based approach. It appears that no further
simulation models have been created by the JiST team or
independent groups. Development of JiST/SWANS seems to be
halted after 2005.

4.5 OPNET Modeler
OPNET Modeler is the flagship product of OPNET Technologies
Inc. [16]. OPNET Modeler is a commercial product which is
freely available worldwide to qualifying universities. OPNET has
probably the largest selection of ready-made protocol models
(including IPv6, MIPv6, WiMAX, QoS, Ethernet, MPLS,
OSPFv3 and many others).

OPNET and OMNeT++ provide rich simulation libraries of
roughly comparable functionalities. The OPNET simulation
library is based on C, while the one in OMNeT++ is a C++ class
library. OPNET's architecture is similar to OMNeT++ as it allows
hierarchical models with arbitrarily deep nesting (like
OMNeT++), but with some restrictions (namely, the "node" level
cannot be hierarchical). A significant difference from OMNeT++
is that OPNET models are always of fixed topology, while
OMNeT++'s NED and its graphical editor allow parametric
topologies. In OPNET, the preferred way of defining network
topology is by using the graphical editor. The editor stores models
in a proprietary binary file format, which means in practice that
OPNET models are usually difficult to generate by program (it
requires writing a C program that uses an OPNET API, while
OMNeT++ models are simple text files which can be generated
e.g. with Perl).

Both OPNET and OMNeT++ provide a graphical debugger and
some form of automatic animation which is essential for easy
model development.

OPNET does not provide source code to the simulation kernel
(although it ships with the sources of the protocol models).
OMNeT++ – like NS-2 and most other non-commercial tools –
is fully public-source allowing much easier source level
debugging.

OPNET's main advantage over OMNeT++ is definitely its large
protocol model library, while its closed nature (proprietary binary
file formats and the lack of source code) makes development and
problem solving harder.

4.6 Qualnet
Qualnet [41] is a commercial simulation environment mainly for
wireless networks, which has a significant client base in the

military. Qualnet has evolved from the Parsec parallel simulation
“language”4 [12] developed at the UCLA Parallel Computing
Laboratory (PCL), and the GloMoSim (Global Mobile system
Simulation) model written on top of Parsec. The Parsec language
divides the simulation model into entities, and provides a
minimalistic simulation API (timers, etc) for them. Entities are
implemented with coroutines. Because coroutine CPU stacks
require relatively large amounts of memory (the manual
recommends reserving 200KByte each), it is rarely feasible to
map the natural units of the simulation (say, hosts and routers, or
protocols) one-to-one onto entities. What GloMoSim and Qualnet
models do is implement the equivalent of the OMNeT++ model
structure in model space, above the Parsec runtime. The Parsec
kernel is only used to provide event scheduling and parallel
simulation services.

Parsec provides a very efficient parallel simulation infrastructure,
and models (GloMoSim and Qualnet simulation models) have
been written with parallel execution in mind5, resulting in an
excellent parallel performance for wireless network simulations.

4.7 Summary
In this section we have examined the simulation packages most
relevant for analysis of telecommunication networks, and
compared them to OMNeT++. NS-2 is still the most widely used
network simulator in the Academia, but it lacks much of the
infrastructure provided by OMNeT++. The other three
open-source network simulation packages examined (J-Sim,
SSFNet and JiST/SWANS), have failed to gain significant
acceptance, and their project web pages indicate near inactivity
since 2004.
We have examined two commercial products as well. Qualnet
emphasizes wireless simulations. OPNET has similar foundations
as OMNeT++, but ships with an extensive model library and
provides several additional programs and GUI tools.

5. CONCLUSIONS
In this paper we presented an overview of the OMNeT++ discrete
event simulation platform, designed to support the simulation of
telecommunication networks and other parallel and distributed
systems. The OMNeT++ approach significantly differs from that
of NS-2, the most widely used network simulator in academic and
research circles: while the NS-2 (and NS-3) project goal is to
build a network simulator, OMNeT++ aims at providing a rich
simulation platform, and leaves creating simulation models to
independent research groups. The last ten years have shown that
the OMNeT++ approach is viable, and several OMNeT++-based
open-source simulation models and model frameworks have been
published by various research groups and individuals.

6. REFERENCES
[1] OMNeT++ Home Page. http://www.omnetpp.org [accessed

on September, 2007]
[2] Varga, A. 2001. The OMNeT++ Discrete Event Simulation

System. In the Proceedings of the European Simulation
Multiconference (ESM2001. June 6-9, 2001. Prague, Czech
Republic).

4 It extends the C language with some constructs, and Parsec
programs are translated into C before compilation.

5 Lookahead annotations, avoiding central components, etc.

[3] Kaage, U., V. Kahmann, F. Jondral. 2001. An OMNeT++
TCP Model. To appear in Proceedings of the European
Simulation Multiconference (ESM 2001), June 7-9, Prague.

[4] Wehrle, K, J. Reber, V. Kahmann. 2001. “A Simulation
Suite for Internet Nodes with the Ability to Integrate
Arbitrary Quality of Service Behavior”. In Proceedings of
the Communication Networks and Distributed Systems
Modeling and Simulation Conference 2001, Phoenix (AZ),
USA, January 7-11.

[5] MiXiM home page. http://sourceforge.net/projects/mixim/
[accessed on September, 2007]

[6] JiST home page. http://jist.ece.cornell.edu [accessed on
September, 2007]

[7] Varga, A. and Gy. Pongor. 1997. Flexible Topology
Description Language for Simulation Programs. In
Proceedings of the 9th European Simulation Symposium
(ESS'97), pp.225-229, Passau, Germany, October 19-22.

[8] Varga, A and B. Fakhamzadeh. 1997. The K-Split
Algorithm for the PDF Approximation of Multi-
Dimensional Empirical Distributions without Storing
Observations. In Proc. of the 9th European Simulation
Symposium (ESS'97), pp.94-98. October 19-22, Passau,
Germany.

[9] Varga, A. 1998. Parameterized Topologies for Simulation
Programs. In Proceedings of the Western Multiconference
on Simulation (WMC'98), Communication Networks and
Distributed Systems (CNDS'98). San Diego, CA, January
11-14.

[10] Jain, R, and I. Chlamtac. 1985. The P2 Algorithm for
Dynamic Calculation of Quantiles and Histograms Without
Storing Observations. Communications of the ACM, 28, no.
10 (Oct.): 1076-1085.

[11] Bajaj, S., L. Breslau, D. Estrin, K. Fall, S. Floyd, P. Haldar,
M. Handley, A. Helmy, J. Heidemann, P. Huang, S. Kumar,
S. McCanne, R. Rejaie, P. Sharma, K. Varadhan, Y. Xu, H.
Yu and D. Zappala. 2000. Improving simulation for network
research. IEEE Computer. (to appear, a preliminary draft is
currently available as USC technical report 99-702)

[12] Bagrodia, R, R. Meyer, M. Takai, Y. Chen, X. Zeng, J.
Martin, B. Park, H. Song. 1998. Parsec: A Parallel
Simulation Environment for Complex Systems. Computer,
Vol. 31(10), October, pp. 77-85.

[13] Consensus home page.
http://www.consensus.tudelft.nl/software.html [accessed on
September, 2007]

[14] FieldBus home page.
http://developer.berlios.de/projects/fieldbus [accessed on
September, 2007]

[15] Davis, J, M. Goel, C. Hylands, B. Kienhuis, E.A. Lee, J. Liu,
X. Liu, L. Muliadi, S. Neuendorffer, J. Reekie, N. Smyth, J.
Tsay and Y. Xiong. 1999. Overview of the Ptolemy Project.
ERL Technical Report UCB/ERL No. M99/37, Dept. EECS,
University of California, Berkeley, CA 94720, July.

[16] OPNET Technologies, Inc. OPNET Modeler.
http://www.opnet.com [accessed on September, 2007]

[17] Mobility Framework. http://mobility-fw.sourceforge.net
[accessed on September, 2007]

[18] W. Drytkiewicz, S. Sroka, V. Handziski, A. Koepke, and H.
Karl, A Mobility Framework for OMNeT++. 2003. 3rd
International OMNeT++ Workshop (Budapest University of
Technology and Economics, Department of

http://sourceforge.net/projects/mixim/
http://mobility-fw.sourceforge.net/
http://www.opnet.com/
http://developer.berlios.de/projects/fieldbus
http://www.consensus.tudelft.nl/software.html
http://jist.ece.cornell.edu/

Telecommunications Budapest, Hungary, January 2003).
http://www.tkn.tu-berlin.de/~koepke/

[19] D. Pediaditakis, S. H. Mohajerani, and A. Boulis. 2007.
Poster Abstract: Castalia: the Difference of Accurate
Simulation in WSN. 4th European Conference on Wireless
Sensor Networks, (Delft, The Netherlands, 29-31 January
2007).

[20] Castalia: A Simulator for WSN.
http://castalia.npc.nicta.com.au. [accessed on September,
2007]

[21] NesCT: A language translator. http://nesct.sourceforge.net
[accessed on September, 2007]

[22] OverSim:The Overlay Simulation Framework
http://www.oversim.org [accessed on September, 2007]

[23] Ingmar Baumgart and Bernhard Heep and Stephan Krause.
2007. OverSim: A Flexible Overlay Network Simulation
Framework. Proceedings of 10th IEEE Global Internet
Symposium (May, 2007). p.79-84.

[24] Ingmar Baumgart and Bernhard Heep and Stephan Krause.
2007. A P2PSIP Demonstrator Powered by OverSim.
Proceedings of 7th IEEE International Conference on Peer-
to-Peer Computing (P2P2007, Galway, Ireland. Sep, 2007).
pp. 243-244,

[25] C. Mallanda, A. Suri, V. Kunchakarra, S.S. Iyengar, R.
Kannan, A. Durresi, and S. Sastry. 2005. Simulating
Wireless Sensor Networks with OMNeT++ , submitted to
IEEE Computer, 2005
http://csc.lsu.edu/sensor_web/publications.html

[26] Sensor Simulator. http://csc.lsu.edu/sensor_web [accessed
on September, 2007]

[27] S. Valentin. 2006. ChSim - A wireless channel simulator for
OMNeT++, (TKN TU Berlin Simulation workshop, Sep.
2006) http://www.cs.uni-paderborn.de/en/research-
group/research-group-computer-
networks/projects/chsim.html

[28] Mellanox Technologies: InfiniBand model:
http://www.omnetpp.org/filemgmt/singlefile.php?lid=133

[29] I. Dietrich, C. Sommer, F. Dressler. Simulating DYMO in
OMNeT++. Erlangen-Nürnberg : Friedrich-Alexander-
Universität. 2007 Internal report.

[30] Isabel Dietrich, Volker Schmitt, Falko Dressler and
Reinhard German, 2007. "SYNTONY: Network Protocol
Simulation based on Standard-conform UML 2 Models,"
Proceedings of 1st ACM International Workshop on
Network Simulation Tools (NSTools 2007), Nantes, France,
October 2007.

[31] I. Dietrich, C. Sommer, F. Dressler, and R. German. 2007.
Automated Simulation of Communication Protocols
Modeled in UML 2 with Syntony. Proceedings of GI/ITG
Workshop Leistungs-, Zuverlässigkeits- und
Verlässlichkeitsbewertung von Kommunikationsnetzen und
verteilten Systemen (MMBnet 2007), Hamburg, Germany,
September 2007. pp. 104-115.

[32] Syntony home page. http://www7.informatik.uni-
erlangen.de/syntony [accessed on September, 2007]

[33] Feng Chen, Nan Wang, Reinhard German and Falko
Dressler, 2008. "Performance Evaluation of IEEE 802.15.4

LR-WPAN for Industrial Applications," Proceedings of 5th
IEEE/IFIP Conference on Wireless On demand Network
Systems and Services (IEEE/IFIP WONS 2008), Garmisch-
Partenkirchen, Germany, January 2008.

[34] A. Hennig, D. Revill and M. Pönitsch. 2003. From UML to
Performance Measures - Simulative Performance Predictions
of IT-Systems using the JBoss Application Server with
OMNET++. Proceedings of ESS2003 conference. Siemens
AG, Corporate Technology, CT SE 1.

[35] Michael, J. B., Shing, M., Miklaski, M. H., and Babbitt, J.
D. 2004. Modeling and Simulation of System-of-Systems
Timing Constraints with UML-RT and OMNeT++. In
Proceedings of the 15th IEEE international Workshop on
Rapid System Prototyping (Rsp'04) - Volume 00 (June 28 -
30, 2004). RSP. IEEE Computer Society, Washington, DC,
202-209. DOI= http://dx.doi.org/10.1109/RSP.2004.30.

[36] T. R. Henderson, S. Roy, S. Floyd, G. F. Riley. ns3 Project
Goals. WNS2 ns-2: The IP Network Simulator, Pisa, Italy -
Oct. 10, 2006.
http://www.nsnam.org/docs/meetings/wns2/wns2-ns3.pdf

[37] Ahmed Sobeih, Wei-Peng Chen, Jennifer C. Hou, Lu-Chuan
Kung, Ning Li, Hyuk Lim, Hung-Ying Tyan, and Honghai
Zhang,.J-Sim: a simulation and emulation environment for
wireless sensor networks. IEEE Wireless Communications
Magazine, Vol. 13, No. 4, pp. 104--119, August 2006.

[38] J-SIM home page: http://www.j-sim.org [accessed on
September, 2007]

[39] Cowie, J. H., Nicol, D. M., and Ogielski, A. T. 1999.
Modeling the Global Internet. Computing in Science and
Engg. 1, 1 (Jan. 1999), 42-50.
DOI=http://dx.doi.org/10.1109/5992.743621

[40] X. Zeng, R. Bagrodia, M. Gerla.GloMoSim: a Library for
Parallel Simulation of Large-scale Wireless Networks.
PADS '98, May 26-29, 1998 in Banff, Alberta, Canada.

[41] Qualnet home page: http://www.qualnet.com [accessed on
September, 2007]

[42] R. Barr, Z. J. Haas, R. van Renesse. 2004. JiST: Embedding
Simulation Time into a Virtual Machine. Proceedings of
EuroSim Congress on Modelling and Simulation, September
2004. Computer Science and Electrical Engineering, Cornell
University, Ithaca NY 14853.

[43] SimSAN home page. http://simsan.storwav.com/ [accessed
on September, 2007]

[44] OppBSD home page.
https://projekte.tm.uka.de/trac/OppBSD [accessed on
September, 2007]

[45] E. Wu, S. Woon, J. Lai and Y. A. Sekercioglu, 2005.
"IPv6Suite: A Simulation Tool for Modeling Protocols of
the Next Generation Internet", In Proceedings of the Third
International Conference on Information Technology:
Research and Education (ITRE 2005), June 2005, Taiwan.

[46] Zeigler, B. 1990. Object-oriented Simulation with
Hierarchical, Modular Models. Academic Press, 1990.

[47] Chow, A and Zeigler, B. 1994. Revised DEVS: A Parallel,
Hierarchical, Modular Modeling Formalism. In Proceedings
of the Winter Simulation conference 1994.

https://projekte.tm.uka.de/trac/OppBSD
http://simsan.storwav.com/
http://www.qualnet.com/
http://dx.doi.org/10.1109/5992.743621
http://www.j-sim.org/
http://www.j-sim.org/
http://www.j-sim.org/
http://www.nsnam.org/docs/meetings/wns2/wns2-ns3.pdf
http://www7.informatik.uni-erlangen.de/syntony
http://www7.informatik.uni-erlangen.de/syntony
http://www.omnetpp.org/filemgmt/singlefile.php?lid=133
http://www.cs.uni-paderborn.de/en/research-group/research-group-computer-networks/projects/chsim.html
http://www.cs.uni-paderborn.de/en/research-group/research-group-computer-networks/projects/chsim.html
http://www.cs.uni-paderborn.de/en/research-group/research-group-computer-networks/projects/chsim.html
http://csc.lsu.edu/sensor_web
http://csc.lsu.edu/sensor_web/publications.html
http://www.oversim.org/
http://nesct.sourceforge.net/
http://castalia.npc.nicta.com.au/
http://www.tkn.tu-berlin.de/~koepke/

