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ABSTRACT
The OMNeT++ discrete event simulation environment has been 
publicly  available  since  1997.  It  has  been  created  with  the 
simulation of communication networks, multiprocessors and other 
distributed  systems in  mind  as  application  area,  but  instead  of 
building a specialized simulator, OMNeT++ was designed to be as 
general as possible. Since then, the idea has proven to work, and 
OMNeT++ has  been  used  in  numerous  domains  from queuing 
network simulations to wireless and ad-hoc network simulations, 
from business process simulation to peer-to-peer network, optical 
switch and storage area network simulations. This paper presents 
an  overview  of  the  OMNeT++  framework,  recent  challenges 
brought  about  by the growing amount  and complexity of third 
party simulation  models,  and the solutions we introduce in  the 
next major revision of the simulation framework.1
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1. INTRODUCTION
OMNeT++[1][2]  is  a  C++-based  discrete  event  simulator  for 
modeling  communication  networks,  multiprocessors  and  other 
distributed or parallel systems. OMNeT++ is public-source, and 
can be used under the Academic Public License that makes the 
software  free  for  non-profit  use.  The  motivation  of  developing 
OMNeT++ was to produce a powerful open-source discrete event 
simulation  tool  that  can  be used  by academic,  educational  and 
research-oriented  commercial  institutions  for  the  simulation  of 
computer networks and distributed or parallel systems. OMNeT++ 
attempts  to  fill  the  gap  between  open-source,  research-oriented 
simulation software such as NS-2 [11] and expensive commercial 
alternatives  like  OPNET  [16].  A  later  section  of  this  paper 
presents a comparison with other simulation packages. OMNeT++ 

1 The 4.0 release is scheduled to appear in Q1 2008.

is available on all common platforms including Linux, Mac OS/X 
and Windows, using the GCC tool chain or the Microsoft Visual 
C++ compiler.

OMNeT++ represents a framework approach. Instead of directly 
providing simulation components for computer networks, queuing 
networks or other domains, it provides  the basic machinery and 
tools  to  write  such  simulations.  Specific  application  areas  are 
supported by various simulation models and frameworks such as 
the Mobility Framework or the INET Framework. These models 
are  developed  completely  independently  of  OMNeT++,  and 
follow their own release cycles. 

Since its first release, simulation models have been developed by 
various  individuals  and  research  groups  for  several  areas 
including: wireless and ad-hoc networks, sensor networks, IP and 
IPv6 networks, MPLS, wireless channels, peer-to-peer networks, 
storage  area  networks  (SANs),  optical  networks,  queuing 
networks, file systems, high-speed interconnections (InfiniBand), 
and others. Some of the simulation models are ports of real-life 
protocol implementations like the Quagga Linux routing daemon 
or the BSD TCP/IP  stack, others have been written directly for 
OMNeT++.  A  later  section  of  this  paper  will  discuss  these 
projects in more detail. In addition to university research groups 
and non-profit  research institutions,  companies  like  IBM,  Intel, 
Cisco,  Thales  and  Broadcom  are  also  using  OMNeT++ 
successfully in commercial projects or for in-house research.

2. THE DESIGN OF OMNeT++
OMNeT++ was designed from the beginning to support network 
simulation on a large scale. This objective lead to the following 
main design requirements:

● To  enable  large-scale  simulation,  simulation  models 
need  to  be  hierarchical,  and  built  from  reusable 
components as much as possible.

● The  simulation  software  should  facilitate  visualizing 
and debugging of simulation models in order to reduce 
debugging  time,  which  traditionally  takes  up  a  large 
percentage of simulation projects. (The same feature set 
is also useful for educational use of the software.)

● The  simulation  software  itself  should  be  modular, 
customizable and should allow embedding simulations 
into  larger  applications  such  as  network  planning 
software.  (Embedding  brings  additional  requirements 
about the memory management, restartability, etc. of the 
simulation).
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● Data interfaces should be open: it should be possible to 
generate  and  process  input  and  output  files  with 
commonly available software tools.

● Should  provide  an  Integrated  Development 
Environment that largely facilitates model development 
and analyzing results.

The following sections go through the most important aspects of 
OMNeT++, highlighting the design decisions that helped achieve 
the above main goals.

2.1 Model Structure
An OMNeT++ model consists of modules that communicate with 
message passing. The active modules are termed simple modules; 
they are written in C++, using the simulation class library. Simple 
modules can be grouped into compound modules and so forth; the 
number of hierarchy levels is not limited. Messages can be sent 
either via connections that span between modules or directly to 
their destination modules. The concept of simple and compound 
modules is similar to DEVS [46][47] atomic and coupled models.

Both  simple  and  compound  modules  are  instances  of  module  
types. While describing the model, the user defines module types; 
instances  of these module  types  serve as components  for  more 
complex  module  types.  Finally,  the  user  creates  the  system 
module as a network module which is a special compound module 
type without gates to the external world. When a module type is 
used as a building block,  there is no distinction whether it is a 
simple  or  a  compound  module.  This  allows  the  user  to 
transparently split a module into several simple modules within a 
compound  module,  or  do  the  opposite,  re-implement  the 
functionality  of  a  compound  module  in  one  simple  module, 
without affecting existing users of the module type. The feasibility 
of  model  reuse is  proven  by the model  frameworks  like  INET 
Framework  [1]  and  Mobility  Framework  [17][18],  and  their 
extensions.

network

compound module

simple modules

Figure 1. Model Structure in OMNeT++. Boxes represent simple 
modules (thick border), and compound modules (thin border). 

Arrows connecting small boxes represent connections and gates.

Modules communicate with messages which – in addition to usual 
attributes such as timestamp – may contain arbitrary data. Simple 
modules typically send messages via gates, but it is also possible 
to send them directly to their destination modules.  Gates are the 
input  and  output  interfaces  of  modules:  messages  are  sent  out 
through output gates and arrive through input gates. An input and 
an output gate can be linked with a connection. Connections are 
created  within  a  single  level  of  module  hierarchy:  within  a 
compound module, corresponding gates of two submodules, or a 
gate of one submodule and a gate of the compound module can be 
connected. Connections spanning across hierarchy levels are not 
permitted, as it would hinder model reuse. Due to the hierarchical 

structure of the model, messages typically travel through a chain 
of connections, to start and arrive in simple modules. Compound 
modules  act  as  'cardboard  boxes'  in  the  model,  transparently 
relaying  messages  between  their  inside  and  the  outside  world. 
Properties such as propagation delay, data rate and bit error rate, 
can be assigned to connections. One can also define connection 
types with specific properties (termed channels) and reuse them in 
several places.

Modules can have parameters. Parameters are mainly used to pass 
configuration data to simple modules, and to help define model 
topology. Parameters may take string, numeric or boolean values. 
Because  parameters  are  represented  as  objects  in  the  program, 
parameters – in addition to holding constants – may transparently 
act  as sources of random numbers  with  the actual  distributions 
provided  with  the  model  configuration,  they  may interactively 
prompt  the  user  for  the  value,  and  they  might  also  hold 
expressions  referencing  other  parameters.  Compound  modules 
may  pass  parameters  or  expressions  of  parameters  to  their 
submodules.

2.2 The Design of the NED Language
The user defines the structure of the model (the modules and their 
interconnection)  in  OMNeT++'s  topology description  language, 
NED. Typical ingredients of a NED description are simple module 
declarations,  compound  module  definitions  and  network 
definitions. Simple module declarations describe the interface of 
the module: gates and parameters. Compound module definitions 
consist of the declaration of the module's external interface (gates 
and  parameters),  and  the  definition  of  submodules  and  their 
interconnection. Network definitions are compound modules that 
qualify as self-contained simulation models.

The  NED language  has  been  designed  to  scale  well,  however, 
recent growth in the amount and complexity of OMNeT++-based 
simulation  models  and model frameworks  made it  necessary to 
improve the NED language as well.  In addition to a number of 
smaller  improvements,  the  following  major  features  have  been 
introduced:

Inheritance.  Modules  and  channels  can  now  be  subclassed. 
Derived modules  and channels  may add new parameters,  gates, 
and  (in  the  case  of  compound  modules)  new submodules  and 
connections. They may set existing parameters to a specific value, 
and also set the gate size of a gate vector. This makes it possible, 
for  example,  to  take a  GenericTCPClientApp module  and 
derive an FTPApp from it by setting certain parameters to a fixed 
value; or derive a  WebClientHost compound module from a 
BaseHost  compound  module  by  adding  a  WebClientApp 
submodule and connecting it to the inherited TCP submodule. 

Interfaces. Module and  channel  interfaces  can  be  used  as  a 
placeholder where normally a module or channel type would be 
used, and the concrete module or channel type is determined at 
network setup time by a parameter. Concrete module types have 
to “implement” the interface they can substitute. For example, the 
module  types  ConstSpeedMobility and 
RandomWayPointMobility need to implement IMobility 
to be able to be plugged into a  MobileHost that contains an 
IMobility submodule.

Packages. To address name clashes between different models and 
to simplify specifying which NED files are needed by a specific 



simulation  model,  a Java-like package structure was introduced 
into the NED language.

Inner types. Channel types and module types used locally by a 
compound  module  can  now  be  defined  within  the  compound 
module, in order to reduce namespace pollution.

Metadata  annotations. It  is  possible  to  annotate  module  or 
channel  types,  parameters,  gates  and  submodules  by  adding 
properties.  Metadata  are  not  used  by  the  simulation  kernel 
directly, but they can carry extra information for various tools, the 
runtime environment, or even for other modules in the model. For 
example,  a module's  graphical representation (icon,  etc)  or the 
prompt string and unit (milliwatt, etc) of a parameter are specified 
using properties.

The NED language has an equivalent XML representation, that is, 
NED files can be converted to  XML and back without  loss of 
data,  including  comments.  This  lowers  the  barrier  for 
programmatic manipulation of NED files, for example extracting 
information, refactoring and transforming NED, generating NED 
from information stored in other system like SQL databases, and 
so on.

2.3 Graphical Editor
The  OMNeT++  package  includes  an  Integrated  Development 
Environment  which contains a graphical editor using NED as its 
native file format; moreover, the editor can work with arbitrary, 
even hand-written NED code. The editor is a fully two-way tool, 
i.e. the user can edit the network topology either graphically or in 
NED source view, and switch between the two views at any time. 
This  is  made  possible  by  design  decisions  about  the  NED 
language itself. First, NED is a declarative language, and as such, 
it does not use an imperative programming language for defining 
the internal structure of a compound module. Allowing arbitrary 
programming constructs  would  make it  practically infeasible  to 
write two-way graphical editors which could work directly with 
both generated and hand-made NED files. (Generally, the editor 
would need AI capability to understand the code.)

Most graphical editors only allow the creation of fixed topologies. 
However, NED contains declarative constructs (resembling loops 
and  conditionals  in  imperative  languages),  which  enable 
parametric topologies:  it  is  possible  to  create  common  regular 
topologies  such  as  ring,  grid,  star,  tree,  hypercube,  or  random 
interconnection  whose  parameters  (size,  etc.)  are  passed  in 
numeric-valued  parameters.  The  potential  of  parametric 
topologies and associated design patterns have been investigated 
in [7][9]. With parametric topologies, NED holds an advantage in 
many simulation  scenarios  both over  OPNET where only fixed 
model topologies can be designed, and over NS-2 where building 
model topology is programmed in Tcl and often intermixed with 
simulation logic, so it is generally impossible to write graphical 
editors which could work with existing, hand-written code.

2.4 Separation of Model and Experiments
It is always a good practice to try to separate the different aspects 
of a simulation as much as possible. Model behavior is captured  
in C++ files as code, while  model topology (and of course the 
parameters defining this  topology)  is  defined by the NED files. 
This approach allows the user to keep the different aspects of the 
model in different places which in turn allows having a cleaner 

model and better tooling support. In a generic simulation scenario, 
one  usually  wants  to  know  how  the  simulation  behaves  with 
different  inputs.  These variables neither  belong to  the  behavior 
(code) nor the topology (NED files) as they can change from run 
to run. INI files are used to store these values. INI files provide a 
great way to specify how these parameters change and enable us 
to  run  our  simulation  for  each  parameter  combination  we  are 
interested  in.  The  generated  simulation  results  can  be  easily 
harvested  and  processed  by the  built  in  analysis  tool.  We will 
explore later, in the Result Analysis paragraph, how the INI files 
are  organized  and  how they can  make experimenting  with  our 
model a lot easier.

2.5 Simple Module Programming Model
Simple  modules are  the  active  elements  in  a  model.  They are 
atomic elements in the module hierarchy: they cannot be divided 
any further. Simple modules are programmed in C++, using the 
OMNeT++  simulation  class  library.  OMNeT++  provides  an 
Integrated  C++  Development  Environment  so  it  is  possible  to 
write,  run  and  debug the  code  without  leaving  the  OMNeT++ 
IDE.  The  simulation  kernel  does  not  distinguish  between 
messages and events – events are also represented as messages.

Simple  modules  are  programmed  using  the  process-interaction 
method. The user implements the functionality of a simple module 
by  subclassing  the  cSimpleModule class.  Functionality  is 
added  via  one  of  two  alternative  programming  models:  (1) 
coroutine-based, and  (2) event-processing function. When using 
coroutine-based programming, the module code runs in its own 
(non-preemptively scheduled) thread, which receives control from 
the  simulation  kernel  each  time  the  module  receives  an  event 
(=message).  The  function  containing  the  coroutine  code  will 
typically never  return:  usually it  contains  an infinite  loop  with 
send and receive calls. 

When  using  event-processing  function, the  simulation  kernel 
simply calls  the  given  function  of  the  module  object  with  the 
message as  argument  –  the  function  has  to  return  immediately 
after processing the message. An important difference between the 
coroutine-based and  event-processing  function programming 
models is that with the former, every simple module needs an own 
CPU  stack,  which  means  larger  memory  requirements  for  the 
simulation program. This is of interest when the model contains a 
large number of modules (over a few ten thousands).

It  is  possible  to  write  code  which  executes  on  module 
initialization and finalization: the latter takes place on successful 
simulation  termination,  and  finalization  code is  mostly used  to 
save  scalar  results  into  a  file.  OMNeT++ also  supports  multi-
stage initialization: situations where model initialization needs to 
be done in several "waves".  Multi-stage initialization support  is 
missing from most simulation packages, and it is usually emulated 
with broadcast events scheduled at zero simulation time, which is 
a less clean solution.

Message  sending  and  receiving are  the  most  frequent  tasks  in 
simple modules. Messages can be sent either via output gates, or 
directly to another module. Modules receive messages either via 
one  of  the  several  variations  of  the  receive call  (when  using 
coroutine-based programming), or messages are delivered to the 
module in an invocation from the simulation kernel (when using 
the  event-processing  function).  Messages  can  be  defined  by 
specifying their content in an MSG file. OMNeT++ takes care of 



creating  the  necessary  C++  classes.  MSG  files  allow  the  
OMNeT++ kernel to generate reflection code which enables us to 
peek into messages and explore their content at runtime.

It is possible to modify the topology of the network dynamically: 
one  can  create  and  delete  modules  and  rearrange  connections 
while the simulation is executing. Even compound modules with 
parametric internal topology can be created on the fly.

2.6 Design of the Simulation Library
The OMNeT++ provides a rich object library for simple module 
implementers.  There  are  several  distinguishing  factors  between 
this library and other general-purpose or simulation libraries. The 
OMNeT++ class  library provides  reflection  functionality which 
makes it possible to implement high-level debugging and tracing 
capability,  as  well  as  automatic  animation  on  top  of  it  (as 
exemplified by the Tkenv user interface, see later). Memory leaks, 
pointer  aliasing  and  other  memory  allocation  problems  are 
common in C++ programs not written by specialists; OMNeT++ 
alleviates this problem by tracking object ownership and detecting 
bugs caused by aliased pointers and misuse of shared objects. The 
requirements for ease of use, modularity, open data interfaces and 
support  of embedding also heavily influenced the design of the 
class  library.  The  consistent  use  of  object-oriented  techniques 
makes  the  simulation  kernel  compact  and  slim.  This  makes  it 
relatively  easy  to  understand  its  internals,  which  is  a  useful 
property for both debugging and educational use.

Recently it has become more common to do large scale network 
simulations with OMNeT++, with several ten thousand or more 
network nodes. To address this requirement, aggressive memory 
optimization  has  been  implemented  in  the  simulation  kernel, 
based on shared objects and copy-on-write semantics.

Until recently,  simulation time has been represented as with C's 
double  type  (IEEE double  precision).  Well-known  precision 
problems with floating point  calculations however,  have caused 
problems in simulations from time to time. To address this issue, 
simulation time has been recently changed to 64-bit integer-based 
fixed-point representation. One of the major problems that had to 
be solved here was how to detect numeric overflows, as the C and 
C++ languages, despite their explicit goals of being “close to the 
hardware”, lack any support to detect integer overflows.

2.7 Contents of the Simulation Library
This section  provides  a very brief catalog of the  classes in the 
OMNeT++ simulation class library. The classes were designed to 
cover most of the common simulation tasks.

OMNeT++  has  the  ability  to  generate  random  numbers from 
several  independent  streams.  The  common  distributions  are 
supported, and it is possible to add new distributions programmed 
by the user. It is also possible to load user distributions defined by 
histograms.

The  class  library  offers  queues and  various  other  container 
classes. Queues can also operate as priority queues.

Messages are objects which may hold arbitrary data structures and 
other objects (through aggregation or inheritance),  and can also 
embed other messages.

OMNeT++ supports  routing traffic in the network.  This feature 
provides the ability to explore actual network topology, extract it 

into  a  graph  data  structure,  then  navigate  the  graph  or  apply 
algorithms such as Dijkstra to find shortest paths.

There  are  several  statistical  classes,  from  simple  ones  which 
collect the mean and the standard deviation of the samples to a 
number of distribution estimation classes. The latter include three 
highly configurable histogram classes and the implementations of 
the  P2 [10] and the k-split [8] algorithms. It is also supported to 
write time series result data into an output file during simulation 
execution, and there are tools for post-processing the results.

2.8 Parallel Simulation Support
OMNeT++  also  has  support  for  parallel  simulation  execution. 
Very large simulations may benefit from the parallel distributed 
simulation  (PDES)  feature,  either  by  getting  speedup,  or  by 
distributing  memory  requirements.  If  the  simulation  requires 
several Gigabytes of memory, distributing it over a cluster may be 
the  only  way to  run  it.  For  getting  speedup  (and  not  actually 
slowdown, which is also easily possible), the hardware or cluster 
should  have  low latency  and  the  model  should  have  inherent 
parallelism.  Partitioning  and  other  configuration  can  be 
configured in the INI file, the simulation model itself doesn't need 
to be changed (unless, of course, it contains global variables that 
prevents  distributed  execution  in  the  first  place.)  The 
communication layer is MPI,  but it's actually configurable, so if 
the user does not have MPI it is still possible to run some basic 
tests  over  named  pipes.  The  figure  below explains  the  logical 
architecture of the parallel simulation kernel:

Simulation Kernel
Parallel simulation subsystem

Synchronization

Communication

Partition (LP)

Simulation Model

Event scheduling,
sending, receiving

communications library (MPI, sockets, etc.)

Figure 2. Logical Architecture of the OMNeT++ Parallel 
Simulation kernel
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OMNeT++ simulation programs possess a modular structure. The 
logical architecture is shown on Figure 3.

The Model Component Library consists of the code of compiled 
simple and compound modules. Modules are instantiated and the 
concrete simulation model is built  by the simulation kernel and 
class library (Sim) at the beginning of the simulation execution. 
The simulation executes in an environment provided by the user 
interface libraries (Envir,  Cmdenv and Tkenv) – this environment 
defines where input data come from, where simulation results go 
to, what happens to debugging output arriving from the simulation 
model,  controls  the  simulation  execution,  determines  how  the 
simulation model is visualized and (possibly) animated, etc. 
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Figure 4. Embedding OMNeT++

By replacing the user interface libraries, one can customize the 
full environment in which the simulation runs, and even embed an 
OMNeT++ simulation into a larger application (Figure 4). This is 
made possible by the existence of a generic interface between Sim 
and the user interface libraries, as well as the fact that all  Sim, 
Envir,  Cmdenv and  Tkenv are physically separate libraries. It  is 
also possible for the embedding application to assemble models 
from the available module types on the fly – in such cases, model 
topology will often come from a database.

2.10 Real-Time Simulation, Network 
Emulation
Network  emulation,  together  with  real-time  simulation  and 
hardware-in-the-loop  like  functionality,  is  available  because the 
event  scheduler  in  the  simulation  kernel  is  pluggable  too.  The 
OMNeT++ distribution contains a demo of real-time simulation 
and  a  simplistic  example  of  network  emulation.  Interfacing 
OMNeT++ with  other  simulators  (hybrid  operation)  or  HLA is 
also largely a matter of implementing one's own scheduler class.

2.11 Animation and Tracing Facility
An important requirement for OMNeT++ was easy debugging and 
traceability  of  simulation  models.  Associated  features  are 
implemented  in  Tkenv,  the  GUI  user  interface  of  OMNeT++. 
Tkenv uses  three methods:  automatic  animation,  module  output 
windows  and  object  inspectors.  Automatic  animation (i.e. 
animation without any programming) in OMNeT++ is capable of 
animating the flow of messages on network charts and reflecting 
state changes of the nodes in  the  display.  Automatic animation 
perfectly  fits  the  application  area,  as  network  simulation 
applications  rarely  need  fully  customizable,  programmable 
animation capabilities.

Figure 5. Screenshot of the Tkenv User Interface of OMNeT++

Simple  modules  may  write  textual  debugging  or  tracing 
information to a special output stream. Such debug output appears 
in  module  output  windows.  It  is  possible  to  open  separate 
windows for the output of individual modules or module groups, 
so compared to  the  traditional  printf()-style  debugging,  module 
output  windows  make  it  easier  to  follow the  execution  of  the 
simulation program.

Further  introspection  into  the  simulation  model  is  provided  by 
object  inspectors. An  object  inspector is  a  GUI  window 
associated with a simulation object. Object inspectors can be used 
to  display  the  state  or  contents  of  an  object  in  the  most 
appropriate way (i.e. a histogram object is displayed graphically, 
with a histogram chart), as well as to manually modify the object. 
In  OMNeT++,  it  is  automatically  possible  to  inspect  every 
simulation object; there is no need to write additional code in the 
simple modules to make use of inspectors.

It  is  also  possible  to  turn  off  the  graphical  user  interface 
altogether,  and  run  the  simulation  as  a  pure  command-line 
program. This feature is useful for batched simulation runs.

2.12 Visualizing Dynamic Behavior
The  behavior  of  large  and  complex  models  is  usually  hard  to 
understand because of the complex interaction between different 
modules. OMNeT++ helps to reduce complexity by mandating the 
communication  between  modules  using predefined  connections. 
The  graphical  runtime  environment  allows  the  user  to  follow 
module  interactions  to  a  certain  extent:  one  can  animate,  slow 
down or single-step the simulation, but sometimes it is still hard 
to  see the  exact sequence of the events,  or to  grasp the timing 
relationships  (as,  for  practical  reasons,  simulation  time  is  not 
proportional  to  real  time;  also,  when  single-stepping  through 
events,  events  with  the  same  timestamp  get  animated 
sequentially).

OMNeT++ helps the user to visualize the interaction by logging 
interactions  between  modules  to  a  file.  This  log  file  can  be 
processed after (or even during)  the  simulation  run and can be 
used  to  draw interaction  diagrams.  The  OMNeT++ IDE  has  a 
sequence chart diagramming tool which provides a sophisticated 
view of how the events follow each other. One can focus on all, or 



just selected modules, and display the interaction between them. 
The tool can analyze and display the causes or consequences of an 
event, and display all of them (using  a non-linear time axis) on a 
single screen even if time intervals between events are of different 
magnitudes.  One  can  go  back  and  forth  in  time  and  filter  for 
modules and events.

Figure 6. 
Screenshot of a Sequence Chart from the OMNeT++ IDE

2.13 Organizing and Performing Experiments
The ultimate goal of running a simulation is to obtain results and 
to  get  some  insight  into  the  system  by  analyzing the  results. 
Thorough simulation studies very often produce large amounts of 
data,  which  are  nontrivial  to  organize  in  a  meaningful  way. 
OMNeT++  organizes  simulation  runs  (and  the  results  they 
generate) around the following concepts:

model – the executable (C++ model files, external libraries, etc.) 
and NED files. (INI files are considered to be part of the study and 
experiment rather than the  model.) Model files are considered to 
be invariant for the purposes of experimentation, meaning that if a 
C++ source or NED file gets modified,  then it  will  count  as a 
different model.

study – a series of experiments to study some phenomenon on one 
or  more  models;  e.g.  “handover  optimization for mobile  IPv6”. 
For a  study one usually performs a number of  experiments from 
which  conclusions  can  be  drawn.  One  study may  contain 
experiments on  different  models,  but  one  experiment is  always 
performed on one specific model.

experiment – exploration of a parameter space on a  model, e.g. 
“the  adhocNetwork model’s  behavior  with  
numhosts=5,10,20,50,100  and  load=2..5  step  0.1  (Cartesian  
product)”; consists of several measurements.

measurement – a set of simulation runs on the same model with 
the  same  parameters  (e.g.  “numhosts=10,  load=3.8”),  but 
potentially different seeds. May consist of several  replications of 
whose  results  get  averaged  to  supply  one  data  point  for  the 
experiment.  A  measurement can  be  characterized  with  the 
parameter settings and simulation kernel settings in the INI file, 
minus the seeds. 

replication – one repetition of a  measurement.  Very often,  one 
would  perform several  replications,  all  with  different  seeds.  A 
replication can be characterized by the seed values it uses.

run – or actual run: one instance of running the simulation; that 
is,  a  run  can  be  characterized  with  an  exact  time/date  and  the 
computer (e.g. the host name).

OMNeT++  supports  the  execution  of  whole  (or  partial) 
experiments  as  a  single  batch.  After  specifying  the  model 
(executable file + NED files) and the  experiment parameters (in 
the INI file) one can further refine which  measurements one is 
interested  in.  The  simulation  batch  can  be  executed  and  its 
progress monitored from the IDE. Multiple CPUs or CPU cores 
can  be  exploited  by  letting  the  launcher  run  more  than  one 
simulation  at  a  time.  The  significance  of  running  multiple 
independent simulations concurrently is often overlooked, but it is 
not only a significantly  easier way of reducing overall execution 
time of an experiment than distributed parallel simulation (PDES) 
but also more efficient (as it guarantees linear speedup which is 
not possible with PDES).

2.14 Result Analysis
Analyzing the simulation result is a lengthy and time consuming 
process.  In most cases the user wants to see the same type of data 
for  each  run  of  the  simulation  or  display the  same graphs  for 
different modules in the model, so automation is very important. 
(The user does not want to repeat the steps of re-creating charts 
every time simulations have to be re-run for some reason.) The 
lack of automation support drives many users away from existing 
GUI analysis tools, and forces them to write scripts.

OMNeT++  solves  this  by  making  result  analysis  rule-based. 
Simulations and series of simulations produce various result files. 
The user selects the input of the analysis by specifying file names 
or file name patterns (e.g. "adhoc-*.vec"). Data of interest can be 
selected into datasets by further pattern rules. The user completes 
datasets by adding various processing, filtering and charting steps, 
all using the GUI (Figure  7).  Whenever the underlying files or 
their contents change, dataset contents and charts are recalculated. 
The editor only saves the "recipe" and not the actual numbers, so 
when simulations are re-run and so result files get replaced, charts 
are automatically up-to-date. Data in result files are tagged with 
meta information: experiment, measurement and replication labels 
are added to the result files to make the filtering process easy. It is 
possible to create very sophisticated filtering rules, for example, 
“all 802.11 retry counts of host[5..10] in experiment X, averaged 
over replications”. In addition datasets can use other datasets as 
their input so datasets can build on each other.

Figure 7. Rule based processing



OMNeT++ supports  several  fully customizable  chart  and graph 
types which are rendered directly from datasets (Figure 8). The 
visual properties of the charts are also stored in the “recipe”.

Figure 8. Charts in the OMNeT++ IDE

3. CONTRIBUTIONS TO OMNeT++
Currently  there  are  two  major  network  simulation  model 
frameworks for OMNeT++: the Mobility Framework [17][18] and 
the INET Framework [1].

The Mobility Framework was designed at TU Berlin to provide 
solid  foundations  for  creating  wireless  and  mobile  networks 
within  OMNeT++.  It  provides  a  detailed  radio  model,  several 
mobility  models,  MAC  models  including  IEEE  802.11b,  and 
several  other  components.  Other model  frameworks for mobile, 
ad-hoc  and  sensor  simulations  [26][33][13]  have  also  been 
published  (LSU  SenSim  [25][26]  and  Castalia  [19][20],  for 
example), but they have so far failed to make significant impact. 
Further  related  simulation  models  are  NesCT for  TinyOS [21] 
simulations, MACSimulator and Positif [13] which are continued 
in the MiXiM [5] project, EWsnSim, SolarLEACH, ChSim [27], 
AdHocSim, AntNet, etc.

The  INET Framework  has  evolved  from the  IPSuite  originally 
developed  at  the  University  of  Karlsruhe.  It  provides  detailed 
protocol  models  for  TCP,  IPv4,  IPv6,  Ethernet,  Ieee802.11b/g, 
MPLS, OSPFv4, and several other protocols.  INET also includes 
the Quagga routing daemon directly ported from Linux code base.

Several authors have developed various extensions for the INET 
Framework.  OverSim  [22][23][24]  is  used  to  model  P2P 
protocols  on top  of the INET Framework.  AODV-UU, DSR is 
also available as an add-on for the INET Framework. IPv6Suite 
[45]  (discontinued  by  2007)  supported  MIPv6  and  HMIPv6 
simulations over wired and wireless networks.

The  OppBSD  [44]  model  allows  using  the  FreeBSD  kernel 
TCP/IP  protocol stack directly inside an OMNeT++ simulation. 
Other  published  simulation  models  include  Infiniband  [28], 
FieldBus [14] and SimSANs [43].

A very interesting application area of OMNeT++ is the modeling 
of  dynamic  behavior  of  software  systems  based  on  the  UML 
standard, by translating annotated UML diagrams into OMNeT++ 
models.  A representative of this  idea is the SYNTONY project 
[30][31][32]; similar approach have been reported in [35] where 
the  authors  used  UML-RT,  and  in  [34]  where  performance 
characteristics  of  web  applications  running  on  the  JBoss 
Application Server were studied.

The  Simulation  Library  API  can  be  mapped  to  programming 
languages other than C++. There is already 3rd party support for 
Java  and  C#  which  makes  it  possible  to  write  simple  module 
behavior in these languages.

4. COMPARISON WITH OTHER 
SIMULATION TOOLS
The network simulation scene has changed a lot in the past ten 
years, simulation tools coming and going. This section presents an 
overview  of  various  commercial  and  noncommercial  network 
simulation  tools  in  wide  use  today,  and  compares  them  to
OMNeT++.  Specialized  network  simulators  (like  TOSSIM,  for 
TinyOS simulations), and simulation packages not or rarely used 
for network simulations (such as Ptolemy or Ptolemy II)  are not 
considered.  Also,  the  discussion  only  covers  the  features  and 
services of the simulation environments themselves, but  not the 
availability or  characteristics of specific  simulation  models  like 
IPv6 or QoS (the reason being that they do not form part of the 
OMNeT++ simulation package.)

4.1 NS
NS-2 [11] is currently the most widely used network simulator in 
academic and  research  circles.  NS-2  does  not  follow the same 
clear separation of simulation kernel and models as OMNeT++: 
the  NS-2  distribution  contains  the  models  together  with  their 
supporting infrastructure,  as one inseparable unit.  This is  a key 
difference: the NS-2 project goal is to build a  network simulator, 
while  OMNeT++ intends  to  provide  a  simulation platform,  on 
which  various  research  groups  can  build  their  own  simulation 
frameworks. The latter approach is what called the abundance of 
OMNeT++-based simulation models and model frameworks into 
existence, and turned OMNeT++ into a kind of an “ecosystem”.

NS-2  lacks  many  tools  and  infrastructure  components  that 
OMNeT++ provides: support for hierarchical models, a graphical 
editor,  GUI-based  execution  environment  (except  for  nam), 
separation of models from experiments, graphical analysis tools, 
simulation  library features  such  as  multiple  RNG streams with 
arbitrary  mapping  and  result  collection,  seamlessly  integrated 
parallel simulation support, etc. This is because the NS-2 project 
concentrates on developing the simulation models, and much less 
on simulation infrastructure. 

NS-2  is  a  dual-language  simulator:  simulation  models  are  Tcl 
scripts2,  while  the  simulation  kernel  and  various  components 
(protocols, channels, agents, etc) are implemented in C++ and are 
made  accessible  from  the  Tcl  language.  Network  topology  is 
expressed  as  part  of  the  Tcl  script,  which  usually  deals  with 
several  other  things  as  well,  from setting parameters  to  adding 
application  behavior  and  recording  statistics.  This  architecture 
makes  it  practically  impossible  to  create  graphical  editors  for 
NS-2 models3.

NS-3 is an ongoing effort to consolidate all patches and recently 
developed  models  into  a  new  version  of  NS.  Although  work 
includes refactoring of the simulation core as well, the concepts 

2 In fact, OTcl, which is an object-oriented extension to Tcl.
3 Generating  a  Tcl  script  from a graphical  representation  is  of 

course  possible,  but  not  the  other  way  round:  no  graphical 
editor will ever be able to understand an arbitrary NS-2 script, 
and let the user edit it graphically.



are essentially unchanged.  The NS-3 project  goals  [36]  include 
some features (e.g.  parallel  simulation,  use of real-life protocol 
implementations as simulation models) that have already proven 
to be useful with OMNeT++.

4.2 J-Sim
J-Sim [37][38]  (formerly  known  as  JavaSim)  is  a  component-
based,  compositional  simulation  environment,  implemented  in 
Java. J-Sim is similar to OMNeT++ in that simulation models are 
hierarchical  and  built  from self-contained  components,  but  the 
approach  of  assembling  components  into  models  is  more  like 
NS-2: J-Sim is also a dual-language simulation environment, in 
which classes are written in Java, and glued together using Tcl (or 
Java).  The use of Tcl in  J-Sim has the same drawback as with 
NS-2: it makes implementing graphical editors impossible. In fact, 
J-Sim does  provide  a  graphical  editor  (gEditor),  but  its  native 
format  is  XML.  Although  gEditor  can  export  Tcl  scripts, 
developers recommend that XML files are directly loaded into the 
simulator, bypassing Tcl. This way, XML becomes the equivalent 
of OMNeT++ NED. However, the problem with XML as native 
file format is that it is hard to read and write by humans.

Simulation  models  are  provided  in  the  Inet  package,  which 
contains IPv4, TCP, MPLS and other protocol models.

The fact that J-Sim is Java-based has some implications. On one 
hand,  model  development  and  debugging  can  be  significantly 
faster than C++, due to existence of excellent Java development 
tools.  However,  simulation  performance is  significantly weaker 
than with C++, and it is also not possible to reuse existing real-life 
protocol implementations written in C as simulation models. (The 
feasibility and usefulness of the latter has been demonstrated with 
OMNeT++, where simulation models include port of the Quagga 
Linux routing daemon, the TCP stack from the FreeBSD kernel, 
the port of the UU-AODV routing package, etc. The NS-3 team 
has similar plans as well.)

Development of the J-Sim core and simulation models seem to 
have  stalled  after  2004  when  version  1.3  was  published;  later 
entries  on  the web site  are  patches and  contributed  documents 
only. There are no independent (3rd party) simulation models for 
J-Sim.

4.3 SSFNet
SSFNet  [39]  (Scalable  Simulation  Framework)  is  defined  as  a 
“public-domain  standard  for  discrete-event  simulation  of  large, 
complex systems in Java and C++.” The SSFNet standard defines 
a  minimalist  API (which,  however,  was  designed  with  parallel 
simulation in mind). The topology and configuration of SSFNet 
simulations are given in DML files. DML is a text-based format 
comparable  to  XML,  but  has  its  own  syntax.  DML  can  be 
considered  the  SSFNet  equivalent  of  NED,  however  it  lacks 
expressing power and features to scale up to support large model 
frameworks built  from reusable components.  SSFNet also lacks 
OMNeT++'s  INI  files,  all  parameters  need  to  be  given  in  the 
DML.

SSFNet has four implementations: DaSSF and CSSF in C++, and 
two Java implementations  (Renesys Raceway and  JSSF).  There 
were significantly more simulation models developed for the Java 
versions than for DaSSF. Advantages and disadvantages of using 
Java in SSFNet are the same as discussed with J-Sim.

As with J-Sim, development of the SSFNet simulation framework 
and models seem to have stalled after 2004 (date of the SSFNet 
for Java 2.20 release), and little activity can be detected outside 
the main web site as well.

4.4 JiST and SWANS
JiST [42][6] represents a very interesting approach to building a 
high performance Java based simulation environment. It modifies 
the Java Virtual Machine to run the programs in simulation time 
instead of real time. JiST is basically just a simulation kernel, and 
as such,  it  lacks most of the features present in the OMNeT++ 
package.
SWANS is a scalable wireless network simulator built  atop the 
JiST platform as a proof of concept model, to prove the efficiency 
of the virtual machine based approach. It appears that no further 
simulation  models  have  been  created  by  the  JiST  team  or 
independent groups.  Development of JiST/SWANS seems to be 
halted after 2005.

4.5 OPNET Modeler
OPNET Modeler is the flagship product of OPNET Technologies 
Inc.  [16].  OPNET  Modeler  is  a  commercial  product  which  is 
freely available worldwide to qualifying universities. OPNET has 
probably  the  largest  selection  of  ready-made  protocol  models 
(including  IPv6,  MIPv6,  WiMAX,  QoS,  Ethernet,  MPLS, 
OSPFv3 and many others).

OPNET  and  OMNeT++  provide  rich  simulation  libraries  of 
roughly  comparable  functionalities.  The  OPNET  simulation 
library is based on C, while the one in OMNeT++ is a C++ class 
library. OPNET's architecture is similar to OMNeT++ as it allows 
hierarchical  models  with  arbitrarily  deep  nesting  (like
OMNeT++), but with some restrictions (namely, the "node" level 
cannot be hierarchical). A significant difference from OMNeT++ 
is  that  OPNET  models  are  always  of  fixed  topology,  while 
OMNeT++'s  NED  and  its  graphical  editor  allow  parametric 
topologies.  In  OPNET,  the  preferred  way of  defining  network 
topology is by using the graphical editor. The editor stores models 
in a proprietary binary file format, which means in practice that 
OPNET models are usually difficult  to  generate by program (it 
requires  writing  a  C program that  uses  an OPNET API,  while 
OMNeT++ models are simple text files which can be generated 
e.g. with Perl).

Both OPNET and OMNeT++ provide a graphical debugger and 
some  form of  automatic  animation  which  is  essential  for  easy 
model development.

OPNET does not  provide  source code to  the  simulation  kernel 
(although  it  ships  with  the  sources  of  the  protocol  models). 
OMNeT++ – like  NS-2  and most other non-commercial tools – 
is  fully  public-source  allowing  much  easier  source  level 
debugging. 

OPNET's main advantage over OMNeT++ is definitely its large 
protocol model library, while its closed nature (proprietary binary 
file formats and the lack of source code) makes development and 
problem solving harder.

4.6 Qualnet
Qualnet [41] is a commercial simulation environment mainly for 
wireless  networks,  which  has  a  significant  client  base  in  the 



military. Qualnet has evolved from the Parsec parallel simulation 
“language”4 [12]  developed  at  the  UCLA  Parallel  Computing 
Laboratory  (PCL),  and  the  GloMoSim (Global  Mobile  system 
Simulation) model written on top of Parsec. The Parsec language 
divides  the  simulation  model  into  entities,  and  provides  a 
minimalistic  simulation  API (timers,  etc)  for  them.  Entities  are 
implemented  with  coroutines.  Because  coroutine  CPU  stacks 
require  relatively  large  amounts  of  memory  (the  manual 
recommends  reserving  200KByte  each),  it  is  rarely feasible  to 
map the natural units of the simulation (say, hosts and routers, or 
protocols) one-to-one onto entities. What GloMoSim and Qualnet 
models do is implement the equivalent of the OMNeT++ model 
structure in model space, above the Parsec runtime. The Parsec 
kernel  is  only  used  to  provide  event  scheduling  and  parallel 
simulation services.

Parsec provides a very efficient parallel simulation infrastructure, 
and  models  (GloMoSim  and  Qualnet  simulation  models)  have 
been  written  with  parallel  execution  in  mind5,  resulting  in  an 
excellent parallel performance for wireless network simulations.

4.7 Summary
In this section we have examined the simulation packages most 
relevant  for  analysis  of  telecommunication  networks,  and 
compared them to OMNeT++. NS-2 is still the most widely used 
network  simulator  in  the  Academia,  but  it  lacks  much  of  the 
infrastructure  provided  by  OMNeT++.  The  other  three 
open-source  network  simulation  packages  examined  (J-Sim, 
SSFNet  and  JiST/SWANS),  have  failed  to  gain  significant 
acceptance, and their  project  web pages indicate near inactivity 
since 2004.
We have  examined  two  commercial  products  as  well.  Qualnet 
emphasizes wireless simulations. OPNET has similar foundations 
as  OMNeT++,  but  ships  with  an  extensive  model  library  and 
provides several additional programs and GUI tools.

5. CONCLUSIONS
In this paper we presented an overview of the OMNeT++ discrete 
event simulation platform, designed to support the simulation of 
telecommunication  networks  and  other  parallel  and  distributed 
systems. The OMNeT++ approach significantly differs from that 
of NS-2, the most widely used network simulator in academic and 
research  circles:  while  the  NS-2  (and  NS-3)  project  goal  is  to 
build  a network simulator,  OMNeT++ aims at  providing a rich 
simulation  platform,  and  leaves  creating  simulation  models  to 
independent research groups. The last ten years have shown that 
the OMNeT++ approach is viable, and several OMNeT++-based 
open-source simulation models and model frameworks have been 
published by various research groups and individuals.
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