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 ultivariate stochastic optimization plays a major role in the analysis and
control of many engineering systems. In almost all real-world optimization problems,
it is necessary to use a mathematical algorithm that iteratively seeks out the solution
because an analytical (closed-form) solution is rarely available. In this spirit, the
“simultaneous perturbation stochastic approximation (SPSA)” method for difficult
multivariate optimization problems has been developed. SPSA has recently attracted
considerable international attention in areas such as statistical parameter estimation,
feedback control, simulation-based optimization, signal and image processing, and
experimental design. The essential feature of SPSA—which accounts for its power and
relative ease of implementation—is the underlying gradient approximation that requires
only two measurements of the objective function regardless of the dimension of the
optimization problem. This feature allows for a significant decrease in the cost of
optimization, especially in problems with a large number of variables to be optimized.
(Keywords: Gradient approximation, Multivariate optimization, Simulation-based
optimization, Simultaneous perturbation stochastic approximation, SPSA, Stochastic
optimization.)
INTRODUCTION
This article is an introduction to the simultaneous

perturbation stochastic approximation (SPSA) algo-
rithm for stochastic optimization of multivariate
systems. Optimization algorithms play a critical role in
the design, analysis, and control of most engineering
systems and are in widespread use in the work of APL
and other organizations:
482 JOH
The future, in fact, will be full of [optimization] algorithms. They
are becoming part of almost everything. They are moving up the
complexity chain to make entire companies more efficient. They
also are moving down the chain as computers spread. (USA
Today, 31 Dec 1997)

Before presenting the SPSA algorithm, we provide
some general background on the stochastic optimiza-
tion context of interest here.
NS HOPKINS APL TECHNICAL DIGEST, VOLUME 19, NUMBER 4 (1998)



SIMULTANEOUS PERTURBATION METHOD FOR OPTIMIZATION
The mathematical representation of most optimiza-
tion problems is the minimization (or maximization) of
some scalar-valued objective function with respect to
a vector of adjustable parameters. The optimization
algorithm is a step-by-step procedure for changing the
adjustable parameters from some initial guess (or set of
guesses) to a value that offers an improvement in the
objective function. Figure 1 depicts this process for a
very simple case of only two variables, u1 and u2, where
our objective function is a loss function to be minimized
(without loss of generality, we will discuss optimization
in the context of minimization because a maximization
problem can be trivially converted to a minimization
problem by changing the sign of the objective func-
tion). Most real-world problems would have many more
variables. The illustration in Fig. 1 is typical of a sto-
chastic optimization setting with noisy input informa-
tion because the loss function value does not uniformly
decrease as the iteration process proceeds (note the
temporary increase in the loss value in the third step
of the algorithm). Many optimization algorithms have
been developed that assume a deterministic setting and
that assume information is available on the gradient
vector associated with the loss function (i.e., the gra-
dient of the loss function with respect to the parameters
being optimized). However, there has been a growing
interest in recursive optimization algorithms that do
not depend on direct gradient information or measure-
ments. Rather, these algorithms are based on an ap-
proximation to the gradient formed from (generally
noisy) measurements of the loss function. This interest
has been motivated, for example, by problems in the
adaptive control and statistical identification of com-
plex systems, the optimization of processes by large
Monte Carlo simulations, the training of recurrent
neural networks, the recovery of images from noisy

Figure 1. Example of stochastic optimization algorithm minimiz-
ing loss function L(u1, u2).
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sensor data, and the design of complex queuing and
discrete-event systems. This article focuses on the case
where such an approximation is going to be used as a
result of direct gradient information not being readily
available.

Overall, gradient-free stochastic algorithms exhibit
convergence properties similar to the gradient-based
stochastic algorithms [e.g., Robbins-Monro1 stochastic
approximation (R-M SA)] while requiring only loss
function measurements. A main advantage of such
algorithms is that they do not require the detailed
knowledge of the functional relationship between the
parameters being adjusted (optimized) and the loss
function being minimized that is required in gradient-
based algorithms. Such a relationship can be notorious-
ly difficult to develop in some areas (e.g., nonlinear
feedback controller design), whereas in other areas
(such as Monte Carlo optimization or recursive statis-
tical parameter estimation), there may be large compu-
tational savings in calculating a loss function relative
to that required in calculating a gradient.

Let us elaborate on the distinction between algo-
rithms based on direct gradient measurements and those
based on gradient approximations from measurements
of the loss function. The prototype gradient-based
algorithm is R-M SA, which may be considered a gen-
eralization of such techniques as deterministic steepest
descent and Newton–Raphson, neural network back-
propagation, and infinitesimal perturbation analysis–
based optimization for discrete-event systems. The gra-
dient-based algorithms rely on direct measurements of
the gradient of the loss function with respect to the
parameters being optimized. These measurements typ-
ically yield an estimate of the gradient because the
underlying data generally include added noise. Because
it is not usually the case that one would obtain direct
measurements of the gradient (with or without added
noise) naturally in the course of operating or simulating
a system, one must have detailed knowledge of the
underlying system input–output relationships to calcu-
late the R-M gradient estimate from basic system output
measurements. In contrast, the approaches based on
gradient approximations require only conversion of the
basic output measurements to sample values of the loss
function, which does not require full knowledge of the
system input–output relationships. The classical method
for gradient-free stochastic optimization is the Kiefer–
Wolfowitz finite-difference SA (FDSA) algorithm.2

Because of the fundamentally different information
needed in implementing these gradient-based (R-M)
and gradient-free algorithms, it is difficult to construct
meaningful methods of comparison. As a general rule,
however, the gradient-based algorithms will be faster to
converge than those using loss function–based gradient
approximations when speed is measured in number of
iterations. Intuitively, this result is not surprising given
1998) 483
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the additional information required for the gradient-
based algorithms. In particular, on the basis of asymptotic
theory, the optimal rate of convergence measured in
terms of the deviation of the parameter estimate from
the true optimal parameter vector is of order k–1/2 for
the gradient-based algorithms and of order k–1/3 for the
algorithms based on gradient approximations, where k
represents the number of iterations. (Special cases exist
where the maximum rate of convergence for a non-
gradient algorithm is arbitrarily close to, or equal to,
k–1/2.)

In practice, of course, many other factors must be
considered in determining which algorithm is best for
a given circumstance for the following three reasons:
(1) It may not be possible to obtain reliable knowledge
of the system input–output relationships, implying that
the gradient-based algorithms may be either infeasible
(if no system model is available) or undependable (if
a poor system model is used). (2) The total cost to
achieve effective convergence depends not only on the
number of iterations required, but also on the cost
needed per iteration, which is typically greater in
gradient-based algorithms. (This cost may include
greater computational burden, additional human effort
required for determining and coding gradients, and
experimental costs for model building such as labor,
materials, and fuel.) (3) The rates of convergence are
based on asymptotic theory and may not be represen-
tative of practical convergence rates in finite samples.
For these reasons, one cannot say in general that a
gradient-based search algorithm is superior to a gradient
approximation-based algorithm, even though the
gradient-based algorithm has a faster asymptotic rate of
convergence (and with simulation-based optimization
such as infinitesimal perturbation analysis requires only
one system run per iteration, whereas the approximation-
based algorithm may require multiple system runs per
iteration). As a general rule, however, if direct gradient
information is conveniently and reliably available, it is
generally to one’s advantage to use this information in
the optimization process. The focus in this article is the
case where such information is not readily available.

The next section describes SPSA and the related
FDSA algorithm. Then some of the theory associated
with the convergence and efficiency of SPSA is
summarized. The following section is an illustration of
the implications of the theory in an example related to
neural networks. Then practical guidelines for
implementation are presented, followed by a summary
of some ancillary results and some extensions of the
algorithm. Not covered here are global optimization
methods such as genetic algorithms and simulated
annealing; Spall3 presents some discussion of such
methods in the context of stochastic approximation.
484 JOH
FDSA AND SPSA ALGORITHMS
This article considers the problem of minimizing a

(scalar) differentiable loss function L(u), where u is a
p-dimensional vector and where the optimization
problem can be translated into finding the minimizing
u* such that ∂L/∂u = 0. This is the classical formulation
of (local) optimization for differentiable loss functions.
It is assumed that measurements of L(u) are available
at various values of u. These measurements may or may
not include added noise. No direct measurements of
∂L/∂u are assumed available, in contrast to the R-M
framework. This section will describe the FDSA and
SPSA algorithms. Although the emphasis of this article
is SPSA, the FDSA discussion is included for compar-
ison because FDSA is a classical method for stochastic
optimization.

The SPSA and FDSA procedures are in the general
recursive SA form:

ˆ ˆ – ˆ (ˆ ) ,u u uk k k k ka g+ =1 (1)

where ˆ (ˆ )gk ku  is the estimate of the gradient g(u) ;
∂L/∂u at the iterate ûk  based on the previously men-
tioned measurements of the loss function. Under appro-
priate conditions, the iteration in Eq. 1 will converge
to u* in some stochastic sense (usually “almost surely”)
(see, e.g., Fabian4 or Kushner and Yin5).

The essential part of Eq. 1 is the gradient approx-
imation ˆ (ˆ )gk ku . We discuss the two forms of interest
here. Let y(·) denote a measurement of L(·) at a design
level represented by the dot (i.e., y(·) =L(·) + noise)
and ck be some (usually small) positive number. One-
sided gradient approximations involve measurements
y (ˆ )uk  and y( ûk + perturbation), whereas two-sided
gradient approximations involve measurements of the
form y( ûk ± perturbation). The two general forms of
gradient approximations for use in FDSA and SPSA are
finite difference and simultaneous perturbation, respec-
tively, which are discussed in the following paragraphs.

For the finite-difference approximation, each com-
ponent of ûk  is perturbed one at a time, and corre-
sponding measurements y(·) are obtained. Each com-
ponent of the gradient estimate is formed by
differencing the corresponding y(·) values and then
dividing by a difference interval. This is the standard
approach to approximating gradient vectors and is
motivated directly from the definition of a gradient as
a vector of p partial derivatives, each constructed as the
limit of the ratio of a change in the function value over
a corresponding change in one component of the
argument vector. Typically, the ith component of
ˆ (ˆ )gk ku  (i = 1, 2,…, p) for a two-sided finite-difference

approximation is given by
NS HOPKINS APL TECHNICAL DIGEST, VOLUME 19, NUMBER 4 (1998)



SIMULTANEOUS PERTURBATION METHOD FOR OPTIMIZATION
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where ei denotes a vector with a one in the ith place
and zeros elsewhere (an obvious analogue holds for the
one-sided version; likewise for the simultaneous pertur-
bation form below), and ck denotes a small positive
number that usually gets smaller as k gets larger.

The simultaneous perturbation approximation has
all elements of ûk  randomly perturbed together to ob-
tain two measurements of y(·), but each component
ˆ (ˆ )gki ku  is formed from a ratio involving the individual

components in the perturbation vector and the differ-
ence in the two corresponding measurements. For two-
sided simultaneous perturbation, we have
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where the distribution of the user-specified p-dimen-
sional random perturbation vector, Dk = (Dk1, Dk2,…,
Dkp)

T, satisfies conditions discussed later in this article
(superscript T denotes vector transpose).

Note that the number of loss function measurements
y(·) needed in each iteration of FDSA grows with p,
whereas with SPSA, only two measurements are need-
ed independent of p because the numerator is the same
in all p components. This circumstance, of course, pro-
vides the potential for SPSA to achieve a large savings
(over FDSA) in the total number of measurements
required to estimate u when p is large. This potential
is realized only if the number of iterations required for
effective convergence to u* does not increase in a way
to cancel the measurement savings per gradient approx-
imation at each iteration. A later section of this article
will discuss this efficiency issue further, demonstrating
when this potential can be realized by establishing that:

Under reasonably general conditions, SPSA and FDSA
achieve the same level of statistical accuracy for a given
number of iterations, even though SPSA uses p times fewer
function evaluations than FDSA (because each gradient
approximation uses only 1/p the number of function
evaluations).

SELECTED APPLICATIONS OF SPSA
The efficiency issue mentioned in the preceding

section (and treated in more detail in the next section)
has profound implications for practical multivariate
optimization. Many problems that formerly may have
been considered intractable with conventional (say,
FDSA) methods, may now be solvable. In this section,
we summarize three distinct examples, based on work
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at APL, where SPSA is providing a solution to a prob-
lem that appeared intractable using other available
methods. In addition, to illustrate some of the other
possible applications, we close with a brief summary of
some additional projects based on SPSA, most of which
have been developed at other institutions.

Signal Timing for Vehicle Traffic Control
A long-standing problem in traffic engineering is to

optimize the flow of vehicles through a given road
network (Fig. 2). Improving the timing of the traffic
signals at intersections in a network is generally the
most powerful and cost-effective means of achieving
this goal. However, because of the many complex as-
pects of a traffic system—human behavioral consider-
ations, vehicle flow interactions within the network,
weather effects, traffic accidents, long-term (e.g., sea-
sonal) variation, etc.—it has been notoriously difficult
to determine the optimal signal timing, especially on
a system-wide (multiple intersection) basis. Much of
this difficulty has stemmed from the need to build
extremely complex models of the traffic dynamics as a
component of the control strategy. A “strategy” in this
context is a set of rules providing real-time signal tim-
ing in response to minute-by-minute changes in the
traffic conditions. The APL approach is fundamentally
different from those in existence in that it eliminates
the need for such complex models. SPSA is central to
the approach by providing a means for making small
simultaneous changes to all the signal timings in a
network and using the information gathered in this way
to update the system-wide timing strategy. By avoiding
conventional “one-signal-at-a-time” changes to the
signal timing strategies, the time it would take to pro-
duce an overall optimal strategy for the system is re-
duced from years or decades (obviously impractical!) to
several months (quite reasonable). Note that, unlike
the two examples that follow, the savings here is not
computational per se, but is inherent in the need for
data on a daily basis (and hence represents a reduction
in physical experimental costs such as labor and time).
This approach is described in detail in Spall and Chin6

and Chin et al.,7 including realistic simulations of a 9-
intersection network within the central business dis-
trict of Manhattan, New York, and a 12-intersection
network in Montgomery County, Maryland.

Optimal Targeting of Weapon Systems
This is an example of the use of simulations to

optimize processes, something done in a wide range of
DoD and non-DoD applications. More specifically,
given a number of projectiles that are going to be di-
rected at a target, the problem is to optimally select a
set of aim points with the goal of maximizing damage
to the target while minimizing so-called collateral
998) 485
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Figure 2. Overall system-wide traffic control concept. Traffic control center provides timing information to signals in traffic network;
information on traffic flow is fed back to traffic control center.
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damage (damage to sensitive locations not directly
associated with the military mission, e.g., schools and
hospitals). The projectiles have inherent random vari-
ation and may be statistically dependent. So the tar-
geter must allow for the statistical variation between
the aim point and actual impact point in developing
a strategy for determining aim points. In such cases it
is desirable to use patterning of multiple projectiles.
“Patterning” in this context means aiming the projec-
tiles at a set of points that may not overlap each other
or be within the target boundaries. Figure 3 illustrates
the concept for one target and five projectiles; a bias
away from the “stay-out zone” (e.g., a civilian facility)
is apparent in this case where it is desired to destroy the
target while minimizing the chances of producing dam-
age to the stay-out zone. For scenarios with many pro-
jectiles that are independently targeted, the damage
function—which must be evaluated to find the best aim
point pattern—is likely to be analytically unavailable
and will require estimation by Monte Carlo simulation.
In particular, to evaluate the effectiveness of a given set
of aim points, it is necessary to run one or more
486 JO
simulations (recall that there is random variation in the
outcome of one “volley” of projectiles corresponding to
one simulation). Commonly used techniques for solv-
ing the optimization problem by simulation are com-
putationally intensive and prohibitively time-consum-
ing since the damage function for many different sets
of aim points must be evaluated (i.e., many simulations
must be run). The SPSA method provides an efficient
means of solving this multivariate problem, which for
planar targets has a dimension of p = 2 3 [no. of
projectiles] (so p = 10 in the small-scale example of Fig.
3). SPSA works by varying all of the aim point coor-
dinates simultaneously and running a simulation in the
process of producing the gradient approximation for the
optimization process. This procedure is repeated as the
iteration for the optimization proceeds. This method
contrasts significantly with conventional methods
where one would vary only one of the coordinates for
one of the aim points prior to running a simulation,
repeating that process as each coordinate for each aim
point was changed at a specified nominal set of aim
points to construct a gradient approximation at the
HNS HOPKINS APL TECHNICAL DIGEST, VOLUME 19, NUMBER 4 (1998)



SIMULTANEOUS PERTURBATION METHOD FOR OPTIMIZATION
given nominal point. The process is repeated as the
nominal aim points are varied over the course of the
optimization. By simultaneously changing the aim
points, one is able to reduce by a factor of p the number
of simulations needed, possibly reducing the run times
from days to minutes or hours. A more complete de-
scription of this approach to determining aim points is
given in Heydon et al.8 and Hill and Heydon.9

Locating Buried Objects via Electrical
Conductivity

ECOL (electrical conductivity object locator) is an
approach to determining the location of buried objects
via injecting electrical current into the ground in an
area surrounding a candidate object. Measurements of
the electric potential are taken near the surface, which
then form the basis for constructing a subsurface char-
acterization of the conductivity. The object being
sought must have conductivity different from the sur-
rounding soil, which would include metal or plastic
objects of potential interest in mine sweeping or buried
waste detection. Present technology is limited to
searching for objects from 5 to 500 cm below the surface
in an area ranging from 10 to 30 m2. Several field
demonstrations have been conducted on APL property,
and the setup for one is shown in Fig. 4. The basis for
ECOL is to use the contrast in conductivity between
the buried object and surrounding soil to construct a
finite-element model of the subsurface. This represents
a demanding optimization problem attributable to the
uncertainty about the nature of the subsurface and the
many potential impurities (stones, sticks, tree roots,
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Figure 3. Example of optimal aim points (3) given stay-out zone.
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etc.) that can affect conductivity and the high dimen-
sionality of the finite-element model. The inherent
uncertainty about the subsurface makes gradient-based
methods infeasible, and the high dimensionality makes
the “one-variable-at-a-time” methods very time-
consuming. SPSA was used to provide a relatively easy
and rapid solution to this problem. For example, with
surface data from one of the field experiments, effective
convergence of the algorithm was achieved after about
4 min on a 180-MHz Pentium PC; the conventional
finite-difference method would have taken approxi-
mately 6 to 7 h on the same PC. Larger-scale practical
implementations would show an even much larger
relative savings. A description of ECOL and some of
the field experiments is given in Chin and Srinivasan.10

Some Other Applications
Some additional recent applications of SPSA,

initiated both in and out of APL, are described in Hill
and Fu11 and Fu and Hill12 (queuing systems),
Hopkins13 (control of a heavy ion beam), Rezayat14

(industrial quality improvement), Maeda et al.15 (pat-
tern recognition), Kleinman et al.16 (simulation-based
optimization with applications to air traffic manage-
ment), Cauwenberghs17 (neural network training),
Spall and Cristion18,19 and Maeda and De Figueiredo20

(neural network training for adaptive control of dynamic
systems), Gerencsér21 (classification of ECG signals for
heart monitoring), Luman22 (simulation-based decision
aiding), Alessandri and Parisini23 (statistical model pa-
rameter estimation/fault detection), Nechyba and Xu24

(human–machine interaction), Sadegh and Spall25

(sensor placement and configuration), and Chin26 (sig-
nal inversion for a complex physical model).

BASIC ASSUMPTIONS AND
SUPPORTING THEORY

With the goal of minimizing a loss function L(u)
over feasible values of u, the SPSA algorithm works by

5 cm

40 cm

0 cm 300 cm

Object

Power source

Figure 4. APL demonstration site for ECOL. Indicated probes
measure the electric potential.
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iterating from an initial guess of the optimal u, where the
iteration process depends on the aforementioned simul-
taneous perturbation approximation to the gradient g(u).

Spall27,28 presents sufficient conditions for conver-
gence of the SPSA iterate ( ûk → u* in the stochastic
“almost sure” sense) using a differential equation ap-
proach well known in general SA theory (e.g, Kushner
and Yin5). To establish convergence, conditions are
imposed on both gain sequences (ak and ck), the user-
specified distribution of Dk, and the statistical relation-
ship of Dk to the measurements y(·). We will not repeat
the conditions here since they are available in
Spall.27,28 The essence of the main conditions is that
ak and ck both go to 0 at rates neither too fast nor too
slow, that L(u) is sufficiently smooth (several times
differentiable) near u*, and that the {Dki} are indepen-
dent and symmetrically distributed about 0 with finite
inverse moments E(|Dki|

–1) for all k, i. One particular
distribution for Dki that satisfies these latter conditions
is the symmetric Bernoulli ±1 distribution; two com-
mon distributions that do not satisfy the conditions (in
particular, the critical finite inverse moment condi-
tion) are the uniform and normal distributions.

In addition to establishing the formal convergence
of SPSA, Spall (Ref. 28, Sect. 4) shows that the prob-
ability distribution of an appropriately scaled ûk  is ap-
proximately normal (with a specified mean and cova-
riance matrix) for large k. This asymptotic normality
result, together with a parallel result for FDSA, can be
used to study the relative efficiency of SPSA. This
efficiency is the major theoretical result justifying the
use of SPSA. The efficiency depends on the shape of
L(u), the values for {ak} and {ck}, and the distributions
of the {Dki} and measurement noise terms. There is no
single expression that can be used to characterize the
relative efficiency; however, as discussed in Spall (Ref.
28, Sect. 4) and Chin,29 in most practical problems
SPSA will be asymptotically more efficient than FDSA.
For example, if ak and ck are chosen as in the guidelines
of Spall,30 then by equating the asymptotic mean-
squared error E(i ûk –u*i2) in SPSA and FDSA, we find

No. of measurements of ( ) in SPSA
No. of measurements of ( ) in FDSA

L
L p

u

u
→ 1

(4)

as the number of loss measurements in both procedures
gets large. Hence, Expression 4 implies that the p-fold
savings per iteration (gradient approximation) trans-
lates directly into a p-fold savings in the overall
optimization process despite the complex nonlinear
ways in which the sequence of gradient approximations
manifests itself in the ultimate solution ûk .

Relative to implementation in a practical problem,
another way of looking at Expression 4 is that:
488 JOH
One properly chosen simultaneous random change in all the
variables in a problem provides as much information for
optimization as a full set of one-at-a-time changes of each
variable.

This surprising and significant result seems to run
counter to all that one learns in engineering and sci-
entific training. It is the qualifier “for optimization”
that is critical to the validity of the statement. To view
an online animated demonstration of this concept, se-
lect the blue box.

Let us provide some informal mathematical ratio-
nale for this key result. Figure 5 provides an example
of a two-variable problem, where the level curves show
points of equal value in the loss function. In a low- or
no-noise setting, the FDSA algorithm will behave sim-
ilarly to a traditional gradient descent algorithm in
taking steps that provide the locally greatest reduction
in the loss function. A standard result in calculus shows
that this “steepest descent” direction is perpendicular
to the level curve at that point, as shown in the steps
for the FDSA algorithm of Fig. 5 (each straight segment
is perpendicular to the level curve at the origin of the
segment). Hence, the FDSA algorithm is behaving
much as an aggressive skier might act in descending a
hill by going in small segments that provide the steepest
drop from the start of each segment. SPSA, on the
other hand, with its random search direction, does not
follow the path of locally steepest descent. On average,
though, it will nearly follow the steepest descent path
because the gradient approximation is an almost unbi-
ased estimator of the gradient (i.e., E[ ĝ k (u)] = g(u) +
small bias, where small bias is proportional to ck

2 , and
ck is the small number mentioned earlier). Over the
course of many iterations, the errors associated with the
“misdirections” in SPSA will average out in a manner
analogous to the way random errors cancel out in form-
ing the sample mean of almost any random process (the
ak sequence in Eq. 1 governs this averaging). Figure 5
shows this effect at work in the way the SPSA search
direction tends to “bounce around” the FDSA search
direction, while ultimately settling down near the so-
lution in the same number of steps. Although this
discussion was motivated by the two-variable (p = 2)
problem with no- or low-noise loss function measure-
ments (so that the FDSA algorithm behaves very nearly
like a true gradient descent algorithm), the same essen-
tial intuition applies in higher-dimension settings and
noisier loss measurements. Noisy loss measurements
imply that the FDSA algorithm will also not closely
track a gradient descent algorithm as in Fig. 5; however,
the relationship between SPSA and FDSA (which is
what Expression 4 pertains to) will still be governed by
the idea of averaging out the errors in directions over
a large number of iterations.
NS HOPKINS APL TECHNICAL DIGEST, VOLUME 19, NUMBER 4 (1998)
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EXPERIMENTAL RESULTS
Figure 6 shows the implications of the theoretical

result just discussed in a practical setting. This graph
shows the results of a simulation using a neural network
to regulate the water purity and methane gas by-
product of a wastewater treatment process (Spall and
Cristion19 discuss this problem in detail). The vertical
axis represents a normalized (for units) version of the
loss function L(u) (measuring the deviation from cer-
tain target values in water cleanliness and methane gas
by-product), and the horizontal axis measures the iter-
ations of the algorithms. The dimension of the u vector
in this case was 412, corresponding to the number of
“connection weights” in the neural network. The es-
sential point to observe in this graph is that the FDSA
and SPSA approaches achieve very similar levels of
accuracy for a given number of iterations after the first
few iterations, but that SPSA only uses 2 experiments
(loss evaluations) per iteration, whereas FDSA uses 824
experiments! This difference obviously leads to a very
substantial savings—representing computational sav-
ings in a simulation exercise or direct time and money
savings in a real waste treatment plant—in the overall
problem of estimating the neural network weights.
(The sharp initial decline of FDSA in Fig. 6 may be
slightly misleading because the weights had yet to begin
stabilizing and because the number of measurements is
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SPSA iteratively p
boxed insert prese
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ficients a, c, A, a
ak = a/(A + k)a an
sequences (ak and
SPSA (as with al

Figure 6. Relative pe
in a wastewater treat

Figure 5. Example of relative search paths for SPSA and FDSA in p = 2 problem.
Deviations of SPSA from FDSA average out in reaching a solution in the same number of
iterations; FDSA nearly follows the gradient descent path (perpendicular to level curves)
in the low-noise setting.
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still large: over 1600 in the first
two FDSA iterations versus 160 for
all the iterations of SPSA.)

The numerical study in Fig. 6 is
only one of many such examples.
Further, there have been compar-
isons with other types of stochastic
optimization algorithms. For ex-
ample, Chin26 performs a compar-
ison with the popular simulated
annealing algorithm in the con-
text of model estimation for a
magnetosphere model and finds
that SPSA significantly outper-
forms simulated annealing. The
author has also performed compar-
isons with simulated annealing
and several types of directed ran-
dom search, and found similar su-
perior relative performance. An
open issue is to conduct a careful
comparison with the popular ge-
netic algorithm and related evolu-
tionary methods.

IMPLEMENTATION OF
SPSA

 step-by-step summary shows how
roduces a sequence of estimates. The
nts an implementation of the follow-
LAB code.

n and coefficient selection. Set counter
initial guess and non-negative coef-
, and g in the SPSA gain sequences
d ck = c/kg. The choice of the gain

 ck) is critical to the performance of
l stochastic optimization algorithms

rformance of SPSA and FDSA for controller
ment system.

inimum achievable long-run value

DSA
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and the choice of their respective algorithm coeffi-
cients). Spall30 provides some guidance on picking
these coefficients in a practically effective manner.  (In
cases where the elements of u have very different
magnitudes, it may be desirable to use a matrix scaling
of the gain ak if prior information is available on the
relative magnitudes. The next section discusses a
second-order version of SPSA that automatically scales
for different magnitudes.)

Step 2: Generation of the simultaneous perturbation vec-
tor. Generate by Monte Carlo a p-dimensional random
perturbation vector Dk, where each of the p compo-
nents of Dk are independently generated from a zero-
mean probability distribution satisfying the preceding
conditions. A simple (and theoretically valid) choice
for each component of Dk is to use a Bernoulli ±1
distribution with probability of 1/2 for each ±1 out-
come. Note that uniform and normal random variables
are not allowed for the elements of Dk by the SPSA
regularity conditions (since they have infinite inverse
moments).

Step 3: Loss function evaluations. Obtain two measure-
ments of the loss function L(·) based on the simulta-
neous perturbation around the current ûk :y( ûk + ckDk)
and y( ûk– ckDk) with the ck and Dk from Steps 1 and 2.

MATLAB CODE
The accompanying figure presents a sample MATLAB

code for performing n iterations of the standard (first-
order) SPSA algorithm. Algorithm initialization for pro-
gram variables theta, n, p, a, A, c, alpha,
gamma is not shown here since that can be handled in
many ways (e.g., read from another file, direct inclusion
in the program, and user input during execution). The
program calls an external function “loss” to obtain the
(possibly noisy) measurements. The Dki elements are gen-
erated according to a Bernoulli ±1 distribution.

For k=1:n
ak=a/(k+A)^alpha;
ck=c/k^gamma;
delta=2*round(rand(p,1))-1;
thetaplus=theta+ck*delta;
thetaminus=theta-ck*delta;
yplus=loss(thetaplus);
yminus=loss(thetaminus);
ghat=(yplus-yminus)./(2*ck*delta);
theta=theta-ak*ghat;

end
theta

If maximum and minimum values on the values of theta
can be specified, say thetamax  and thetamin , then the
following two lines can be added below the theta  update
line to impose the constraints

theta=min(theta, thetamax);
theta=max(theta, thetamin);
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Step 4: Gradient approximation. Generate the simulta-
neous perturbation approximation to the unknown
gradient g (ˆ )uk :

ˆ (ˆ )
(ˆ ) – (ˆ – )
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where  Dki is the ith component of the Dk vector (which
may be ±1 random variables as discussed in Step 2);
note that the common numerator in all p components
of ˆ (ˆ )gk ku  reflects the simultaneous perturbation of all
components in ûk  in contrast to the component-by-
component perturbations in the standard finite-differ-
ence approximation.

Step 5: Updating u estimate. Use the standard SA form

ˆ ˆ – ˆ (ˆ )u u uk k k k ka g+ =1 (6)

to update ûk  to a new value ûk+1 . Modifications to the
basic updating step in Eq. 6 are sometimes desirable to
enhance convergence and impose constraints. These
modifications block or alter the update to the new value
of u if the “basic” value from Eq. 6 appears undesirable.
Reference 31 (Sect. 2) discusses several possibilities.
One easy possibility if maximum and minimum allow-
able values can be specified on the components of u is
shown at the bottom of the boxed insert.

Step 6: Iteration or termination. Return to Step 2 with
k+1 replacing k. Terminate the algorithm if there is
little change in several successive iterates or the max-
imum allowable number of iterations has been reached
(more formal termination guidance is discussed in Pflug,
Ref. 32, pp. 297–300).

FURTHER RESULTS AND
EXTENSIONS TO BASIC
SPSA ALGORITHM

Sadegh and Spall33 consider the problem of choosing
the best distribution for the Dk vector. On the basis of
asymptotic distribution results, it is shown that the
optimal distribution for the components of Dk is sym-
metric Bernoulli. This simple distribution has also
proven effective in many finite-sample practical and
simulation examples. The recommendation in Step 2
of the algorithm description follows from these find-
ings. (It should be noted, however, that other distribu-
tions are sometimes desirable. Since the user has full
NS HOPKINS APL TECHNICAL DIGEST, VOLUME 19, NUMBER 4 (1998)
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control over this choice and since the generation of Dk

represents a trivial cost toward the optimization, it may
be worth evaluating other possibilities in some appli-
cations. For example, Maeda and De Figueiredo20 used
a symmetric two-part uniform distribution, i.e., a uni-
form distribution with a section removed near 0 [to
preserve the finiteness of inverse moments], in an
application for robot control.)

Some extensions to the basic SPSA algorithm are
reported in the literature. For example, its use in feed-
back control problems, where the loss function changes
with time, is given in Spall and Cristion.18,19,34 Refer-
ence 34 is the most complete methodological and the-
oretical treatment. Reference 18 also reports on a gra-
dient smoothing idea (analogous to “momentum” in
the neural network literature) that may help reduce
noise effects and enhance convergence (and also gives
guidelines for how the smoothing should be reduced
over time to ensure convergence). Alternatively, it is
possible to average several simultaneous perturbation
gradient approximations at each iteration to reduce
noise effects (at the cost of additional function mea-
surements); this is discussed in Spall.28 An implemen-
tation of SPSA for global minimization is discussed in
Chin35 (i.e., the case where there are multiple mini-
mums at which g(u) = 0); this approach is based on a
step-wise (slowly decaying) sequence ck (and possibly
ak). The problem of constrained (equality and inequal-
ity) optimization with SPSA is considered in Sadegh36

and Fu and Hill12 using a projection approach. A one-
measurement form of the simultaneous perturbation
gradient approximation is considered in Spall37;
although it is shown in Ref. 37 that the standard two-
measurement form will usually be more efficient (in
terms of total number of loss function measurements to
obtain a given level of accuracy in the u iterate), there
are advantages to the one-measurement form in real-
time operations where the underlying system dynamics
may change too rapidly to get a credible gradient es-
timate with two successive measurements.

An “accelerated” form of SPSA is reported in Spall.31,38

This approach extends the SPSA algorithm to include
second-order (Hessian) effects with the aim of accel-
erating convergence in a stochastic analogue to the
deterministic Newton–Raphson algorithm. Like the
standard (first-order) SPSA algorithm, this second-
order algorithm is simple to implement and requires
only a small number—independent of p—of loss func-
tion measurements per iteration (no gradient measure-
ments, as in standard SPSA). In particular, only four
measurements are required to estimate the loss-function
gradient and inverse Hessian at each iteration (and one
additional measurement is sometimes recommended as
a check on algorithm behavior). The algorithm is im-
plemented with two simple parallel recursions: one for
u and one for the Hessian matrix of L(u). The recursion
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for u is a stochastic analogue of the well-known New-
ton–Raphson algorithm of deterministic optimization.
The recursion for the Hessian matrix is simply a recur-
sive calculation of the sample mean of per-iteration
Hessian estimates formed using SP-type ideas.

CONCLUSION
Relative to standard deterministic methods, stochas-

tic optimization considerably broadens the range of
practical problems for which one can find rigorous
optimal solutions. Algorithms of the stochastic optimi-
zation type allow for the effective treatment of prob-
lems in areas such as network analysis, simulation-based
optimization, pattern recognition and classification,
neural network training, image processing, and nonlin-
ear control. It is expected that the role of stochastic
optimization will continue to grow as modern systems
increase in complexity and as population growth and
dwindling natural resources force trade-offs that were
previously unnecessary.

The SPSA algorithm has proven to be an effective
stochastic optimization method. Its primary virtues are
ease of implementation and lack of need for loss function
gradient, theoretical and experimental support for rela-
tive efficiency, robustness to noise in the loss measure-
ments, and empirical evidence of ability to find a global
minimum when multiple (local and global) minima
exist. SPSA is primarily limited to continuous-variable
problems and, relative to other methods, is most effective
when the loss function measurements include added
noise. Numerical comparisons with techniques such as
the finite-difference method, simulated annealing, ge-
netic algorithms, and random search have supported the
claims of SPSA’s effectiveness in a wide range of practical
problems. The rapidly growing number of applications
throughout the world provides further evidence of the
algorithm’s effectiveness. To add to the effectiveness,
there have been some extensions of the basic idea, in-
cluding a stochastic analogue of the fast deterministic
Newton–Raphson (second-order) algorithm, adaptations
for real-time (control) implementations, and versions for
some types of constrained and global optimization prob-
lems. Although much work continues in extending the
basic algorithm to a broader range of real-world settings,
SPSA addresses a wide range of difficult problems and
should likely be considered for many of the stochastic
optimization challenges encountered in practice.
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