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Abstract

This paper presents an overview of recently-
developed, simplified Volterra series based, behavioral
modeling approaches for radio frequency and
microwave power amplifiers. Various model
topologies and modelpruning strategies are discussed,
together a presentation of their comparative
advantages and limitations.

1. Introduction

Behavioral modeling of RF power amplifiers (PAs)
has received much attention from many researchers in
recent years [1]. In this kind of system-level modeling,
the PA is considered as a "black-box", i.e., in
principle, no knowledge of internal structures is
required and the modeling information is completely
contained in external responses, which makes model
structures significantly simplified and therefore
enables fast prediction of system performances.

In a wideband wireless system, the distortion
induced by a power amplifier can be considered to
arise from different sources or can be assigned to
different physical phenomena: (I) Static (device)
nonlinearities; (II) Linear memory effects, arising from
time delays, or phase shifts, in the matching networks
and the device/circuit elements used; and (III)
Nonlinear memory effects, such as those caused by
trapping effects, non-ideal bias networks, or
temperature dependence on the input power, etc.. To
accurately model a PA, an accurate description of high
and low frequency memory effects must be integrated
into inherently nonlinear characteristics, to enable an
accurate prediction of system performances.
A Volterra series is a combination of linear

convolution and a nonlinear power series; it provides a
general way to model a nonlinear system with memory
[2][3], so that it can be employed to describe the
relationship between the input and the output of an
amplifier with memory. However, high computational

complexity makes general methods of this kind rather
impractical in some real applications because the
number of parameters to be estimated in the Volterra
model increases exponentially with the degree of
nonlinearity and with the memory length of the system.

In recent years, extensive research work has been
carried out to simplify the structure of the general
Volterra series based behavioral models, aimed at
reducing the complexity of this kind of method for real
implementations. Different model topologies or
various model pruning strategies may lead to a large
disparity of model capability and model accuracy. This
paper will present an overview of these up-to-date
techniques, discuss their model structures and
modeling capabilities, and thus provide the user with a
clear guideline on how to select a proper model to
characterize a real power amplifier under certain
conditions.

2. Volterra series

In the discrete time domain, a Volterra series can be
written as

(1)
P M M p

y(n) = ES ..E hp (il, -

,ip) I x(n- il)
p=l j1=O ip=O j=l

where x(n) and y(n) represents the input and the
output, respectively, and hp(ij, ,ip) is called the pth
order Volterra kernel. In real applications, and
assumed in (1), the Volterra series is normally
truncated to finite nonlinear order P and finite memory
lengthM [3].

The Volterra series in (1) can be directly employed
to represent the nonlinear transfer function of a power
amplifier. However, in system level analysis and
design, most simulators use baseband complex
envelope signals to evaluate the system performance
since modulation techniques are normally employed in
modern wireless communication systems, where only
the envelopes carry the useful information [4]. To
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handle these carrier-modulated signals, the Volterra
series has to be transferred to the low-pass equivalent
format.

Considerx(t) = 9eFx(t)iejo ] and y(t) = 9eFy(t) ej t] as the

input and output signal of a power amplifier, where co0
is carrier frequency, x(t) and y(t) is the envelope of
input and output signal, respectively. Using A/D
conversion, a discrete time-domain finite-memory
complex baseband Volterra model of power amplifier
has the form:

M

y(n) =,E (i) x x (n - i)
i=O

M M M (2)
+LLLh3(i,i2, i3)xx(n-i )i(n-i2)i (n-i3

i1=0 02='li3=0

where hp(ij,i2,. n,i'p) is the pth-order complex Volterra
kernel, and (.)* represents the conjugate transpose. In
the above equation, we have removed the redundant
items associated with kernel symmetry, and also the
even-order kernels, whose effects can be omitted in
band-limited modulation systems.

Unlike Neural Networks or other nonlinear
functions, the output of the Volterra model is linear
with respect to its coefficients. Under the assumption
of stationarity, if we solve for the coefficients with
respect to a minimum mean or least square error
criterion, we will have a single global minimum.
Therefore, it is possible to extract the nonlinear
Volterra model in a direct way by using linear system
identification algorithms, e.g., Least Squares.
However, since all nonlinearities and memory effects
are treated in the same way, the number of coefficients
to be estimated increases exponentially with the degree
of nonlinearity and with the memory length of the
system. This makes general methods of this kind
impractical for modeling a PA with strong
nonlinearities or long-term memory effects.

3. Simplified Volterra series based
behavioral modeling

To reduce the complexity of the classical Volterra
series, several simplified Volterra models have been
proposed in recent years. In the following we discuss
some of the most representative examples.

A. Preset Two-/Three-Box Models
In two-box models, we simply assume that the

nonlinearity and memory effects of a power amplifier
can be characterized separately, and then the PA can
be represented by a single static nonlinearity with a

linear dynamic block preceding or following it, which
is called the Wiener model and the Hammerstein
model, respectively [5].

If the linear dynamic block is represented by a
Finite Impulse Response (FIR) filter, and the static
nonlinearity block is represented by a power series, the
Wiener Model can be written as

(3)
MP

Yw (n) = CPIp h(i)x(n - i)
p=l i=O

and the Hammerstein Model can be represented by
M ,P

Y, (n) =I h(i) E cpxp(n - i)
i=O p=l

(4)

Compared to (1), we can see that the two-box
models are just special cases of the general Volterra
series. For example, in the Wiener model, the pth-
order Volterra kernel can be formulated as

(5)

which indicates that the pth-order Volterra kernel of
the Wiener model is equal to the product ofp copies of
the impulse response function of the linear block
multiplied by the pth-order nonlinearity coefficient [5].
Similarly, the Volterra kernels of a Hammerstein
system are only nonzero along their diagonals, and the
diagonals of each of the kernels will be proportional to
the impulse response of the linear subsystem, i.e.,

hp(ii,...,i) fcph(i) i=i2= =ip (6)
0 otherwise

A filter-nonlinearity-filter cascaded topology, i.e., a
three-box model also is often used. By including a
third box, we create an added dimension of flexibility
which presumably can be used to improve on the two-
box models. These filter and nonlinearity cascaded
structures may be the simplest possible way to
represent both memory and nonlinearity of a PA.
However, in these models, the nonlinearity is normally
obtained from a single-tone measurement at the center
frequency. These models therefore can not predict
interactions between the instantaneous tones, although
it is well known that such interaction occurs in a real
device. For example, the AM-AM and AM-PM
characteristics may depend on the tone spacing in a
wideband PA. Furthermore, the linear filter is normally
identified by using small signal tests while memory
effects of a PA may be present in the nonlinear region,
such as those imposed by the bias networks.

To overcome these limitations, several improved
models have been proposed. In [6], a polyspectral

hp (il , '2, - - -, ip) = cph(il)h(i2) ... h(ip)



technique is employed, in which the model consists of
either a filter-nonlinearity or a nonlinearity-filter in
parallel with a linear filter. Ku et al. [7] presented a
parallel Wiener system whose parameters are extracted
using two-tone measurements with different tone
frequency spacings and power levels. In [8], an
augmented Wiener model was proposed, in which a
new parallel branch is added to the linear FIR filter to
model memory effects more accurately. Although
these enhanced models can be employed to
characterize power amplifiers with reasonable
accuracy, certain conditions have to be satisfied
because they are based on specialized preset structures.
Furthermore, since the model structures have been
changed, the output of the model maybe no longer be
linear with respect to the parameters which causes the
model extraction to become more complicated in some
cases.

B. Direct Pruning
In a practical situation, since nonlinear distortions

and memory effects of an amplifier arise from different
sources, not all of them have the same effects on the
output. Some elements in the input vector may have
less effect than others do, which leads to the result that
some of the coefficients may be very small. It is
reasonable to set them to zero during the model
extraction and then remove them, which thereby
simplifies the structure of the model and improves the
simulation speed: this is called Direct Pruning.

Probably the simplest non-trivial pruned Volterra
model is the diagonal Volterra model, also called the
memory polynomial model [9]. In this model, all off-
diagonal terms of the Volterra series are set to zero,
i.e., Jim-in=O where im or in represents the delay of the
input signal, then the Volterra model is simplified to

P-1

(7)

i,1<1, where I is a small integral. With the "near-
diagonality" structural restriction, only the coefficients
which are "far away" from the main diagonal in the
model are removed. Although the number of
coefficients is increased compared to the memory
polynomial model, this solution gives us more
flexibility on trading off the model accuracy and the
model complexity, by selecting different 1. For
example, in [11], measurement results indicated that
the model fidelity can be significantly improved if the
second off-diagonals were included. Furthermore, this
model can be implemented by a group of filter-banks,
where the coefficients in the same diagonal line of the
weight vector fall in the same FIR filter.

C. Modified/Dynamic Volterra series
The Modified Volterra Series [12-14], or Dynamic

Volterra Series [15], is based on introducing the
dynamic deviation function e(n,i):

e(n, i) = x(n - i) - x(n) (8)

which represents the deviation of the delayed input
signal x(n-i) with respect to the current input x(n).
Substituting (8) in (1), the input/output relationship for
a nonlinear system with memory can be described as

(9)

where yS(n) is the static part and can be expressed as a
power series of the current input signal x(n):

(10)
p

y, (n) = E apx' (n)
p=l

in which ap are the coefficients of the polynomial
function, while yd(n) is the purely-dynamic part:

P P

Yd (n) = x,Y,x (n)
p=l r=l (1 1)

(n) = EEka2k-O i0 (n-i)| x(n-i)
k=O i=O

This model can be implemented by a block which is
similar to a Finite Impulse Response (FIR) filter, but
odd-order polynomials are used instead of the linear
gain taps of the filter. In [10], the uniform time tap
delays were replaced by non-uniform ones, i.e., sparse

delays, to further reduce the number of coefficients.
This diagonal restriction reduces the model complexity
tremendously; however, it also has significant
behavioral consequences, e.g. decreasing fidelity of the
model, because, in some cases, the off-diagonal terms
may be more important than the diagonal ones.

To improve the accuracy of the model, the all-zero
off-diagonal restriction condition, jmi'-in=0, was relaxed
in [11] to the "near-diagonality" restriction, i.e., jim-

M M r

EY Y pV,r ('I ,ir)fle(n, ij)
il =0 ir =0 j=1

where wp,r() represents the rth-order dynamic kernel
of the pth order nonlinearity.

The most important property of this modified series
is that it separates the purely static effects from the
dynamic ones, which are intimately mixed together in
the classical series. However, this modified Volterra
series loses the property of linearity with respect to
model parameters, which means that the output of the
model is no longer linear with respect to the
coefficients [14]. This leads to the consequence that
models of this kind cannot be extracted in a direct way
using established linear system estimation procedures

y(n) = y, (n) + y, (n)



such as the least squares techniques, as is usual in the
classical case. In fact, although the static part and
different order dynamics can be estimated separately,
extracting higher-order dynamics involves complicated
measurement procedures [13-15].

In [16][17], the present authors extended the
Modified Volterra Series to the discrete time domain,
and rewrote it in the classical format after dynamic-
order truncation. Then a new format of representation
for the Volterra model was proposed as following,

p

y(n) h,Eh (0o ...IO)xp (n)
p=l

P p M M (12)
+I I[xp-'(n)l--..E

p=1 r=l

*hp r(O,O,il, ,ir)7 x(n- i)]}
}=1

in which the input elements are reorganized according
to the order of dynamics involved in the model. This is
similar to the Modified Volterra Series, but retains the
property of linearity in the parameters of the model, as
for the classical Volterra series.

Based on this new representation, an effective
model order reduction method was proposed, called
Dynamic Deviation Reduction [16][17], in which
higher order dynamics are removed since the effects of
nonlinear dynamics tend to fade with increasing order
in many real power amplifiers. Unlike the classical
Volterra model, where the number of coefficients
increases exponentially with the nonlinearity order and
memory length, in the proposed reduced-order model,
the number of coefficients increases almost linearly
with the order of nonlinearity and memory length.
Since the model complexity is significantly reduced
after dynamic-order truncation, this Volterra model can
be used to accurately characterize a power amplifier
with static strong nonlinearities and with long-term
linear and low-order nonlinear memory effects.
Furthermore, the proposed model takes advantage of
the properties of the Modified Volterra Series, so that
the static nonlinearities and different order dynamics
can be separated after model extraction, which
provides us with an effective way to derive efficient
distortion compensation approaches for PA
linearization.

D. Orthonormal/Orthogonal Projection
As mentioned earlier, the Volterra series has a clear

nonlinearity structure which is a natural extension
from a linear impulse response model, i.e., a
transversal FIR filter. This FIR expansion may be not a
very efficient description for a system with long-term

memory. Because these finite impulse responses tend
to decay linearly over time, the truncated "memory
length" M directly depends on the duration of actual
memory in the system. It is thus clear that M must be
chosen large enough to include all "memories" which
affect the output response of the system. Otherwise the
approximation error would become too large and the
dynamic representation of the model would be poor.
This leads to the huge number of parameters that must
be estimated in order to characterize a PA which has a
very long memory. To address this issue, a recursive
Infinite Impulse Filter (IIR) in [18] was used to
construct the Volterra model more efficiently.
However, due to its recursive structure, the system
may become unstable in some cases.

In [19], an Orthonomal Basis Function (OBF), i.e.,
the Laguerre function, has been employed as the basis
for the Volterra expansion. In the Laguerre-Volterra
model, the Dirac impulses in the FIR filter, are
replaced by the fixed-pole complex orthonormal
Laguerre functions, which decay exponentially to zero
at a controllable rate. The Laguerre functions have a
similar structure as the IIR filer, but with a pre-decided
fixed pole, so that the system can be stable. With the
Laguerre functions based Volterra model, the long-
term memory effects can be efficiently characterized
[19]. Another orthonomal function, i.e., Kautz
function, was also used in [20]. However, the choice of
the orthonormal basis pole X is critical. Usually, the
pole is selected using a priori knowledge of the
dominant dynamic of the system, such as, for example,
considering the shape of its time or frequency
response. An adequate choice can lead to a more
efficient representation of the system since the better
the pole choice, the faster will be the convergence of
the series and the number of functions can be
decreased.

On the other hand, the nonlinearity part of Volterra
series is expanded from a polynomial function, in
which the contributions of each of the system's
Volterra kernels can not be separated. This leads to a
situation where the coefficients estimated from
different samples of the same signal may be different
because the input vector contains various powers of
the same signal samples. Wiener overcame this
problem in his classical theory of nonlinear systems [2]
by using the so-called G-functions, which are
orthogonal when the input is a white Gaussian process.
Using orthogonal signals for representing nonlinear
systems allows the coefficients of each signal to be
evaluated independently of every other signal and then
the individual Volterra kernels can be isolated.
Unfortunately, a white Gaussian signal is difficult to
construct in real microwave measurements.



Alternatively, a multi-sine of randomized phases can
be employed to build an orthogonal model in the
frequency domain [21]. However, this model still
inherits the high complexity of general Volterra
models because no effort has been made to simplify
the underlying model structure.

4. Conclusions

A short overview of various simplified Volterra
series based behavioral models for RF/microwave
power amplifiers has been presented in this paper.
Both advantages and limitations of different models
have been discussed. In practical applications, model
structure and pruning algorithm selection depends on
the characteristics of the real system, model fidelity
requirements and various specific conditions. Both the
complexity of model structure and the feasibility of
model extraction have to be considered in deciding
which model to use.
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