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An Overview on Application of Machine Learning

Techniques in Optical Networks
Francesco Musumeci, Member, IEEE, Cristina Rottondi, Member, IEEE, Avishek Nag, Member, IEEE, Irene

Macaluso, Darko Zibar, Member, IEEE, Marco Ruffini, Senior Member, IEEE, and Massimo

Tornatore, Senior Member, IEEE

Abstract—Today’s telecommunication networks have become
sources of enormous amounts of widely heterogeneous data. This
information can be retrieved from network traffic traces, network
alarms, signal quality indicators, users’ behavioral data, etc.
Advanced mathematical tools are required to extract meaningful
information from these data and take decisions pertaining to the
proper functioning of the networks from the network-generated
data. Among these mathematical tools, Machine Learning (ML)
is regarded as one of the most promising methodological ap-
proaches to perform network-data analysis and enable automated
network self-configuration and fault management.

The adoption of ML techniques in the field of optical com-
munication networks is motivated by the unprecedented growth
of network complexity faced by optical networks in the last
few years. Such complexity increase is due to the introduction
of a huge number of adjustable and interdependent system
parameters (e.g., routing configurations, modulation format,
symbol rate, coding schemes, etc.) that are enabled by the usage
of coherent transmission/reception technologies, advanced digital
signal processing and compensation of nonlinear effects in optical
fiber propagation.

In this paper we provide an overview of the application of
ML to optical communications and networking. We classify and
survey relevant literature dealing with the topic, and we also
provide an introductory tutorial on ML for researchers and
practitioners interested in this field. Although a good number of
research papers have recently appeared, the application of ML
to optical networks is still in its infancy: to stimulate further
work in this area, we conclude the paper proposing new possible
research directions.

Index Terms—Machine learning, Data analytics, Optical com-
munications and networking, Neural networks, Bit Error Rate,
Optical Signal-to-Noise Ratio, Network monitoring.

I. INTRODUCTION

Machine learning (ML) is a branch of Artificial Intelligence

that pushes forward the idea that, by giving access to the

right data, machines can learn by themselves how to solve a

specific problem [1]. By leveraging complex mathematical and

statistical tools, ML renders machines capable of performing

independently intellectual tasks that have been traditionally
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solved by human beings. This idea of automating complex

tasks has generated high interest in the networking field, on

the expectation that several activities involved in the design

and operation of communication networks can be offloaded to

machines. Some applications of ML in different networking

areas have already matched these expectations in areas such

as intrusion detection [2], traffic classification [3], cognitive

radios [4].

Among various networking areas, in this paper we focus

on ML for optical networking. Optical networks constitute

the basic physical infrastructure of all large-provider networks

worldwide, thanks to their high capacity, low cost and many

other attractive properties [5]. They are now penetrating new

important telecom markets as datacom [6] and the access

segment [7], and there is no sign that a substitute technology

might appear in the foreseeable future. Different approaches

to improve the performance of optical networks have been

investigated, such as routing, wavelength assignment, traffic

grooming and survivability [8], [9].

In this paper we give an overview of the application of

ML to optical networking. Specifically, the contribution of

the paper is twofold, namely, i) we provide an introductory

tutorial on the use of ML methods and on their application in

the optical networks field, and ii) we survey the existing work

dealing with the topic, also performing a classification of the

various use cases addressed in literature so far. We cover both

the areas of optical communication and optical networking

to potentially stimulate new cross-layer research directions.

In fact, ML application can be useful especially in cross-layer

settings, where data analysis at physical layer, e.g., monitoring

Bit Error Rate (BER), can trigger changes at network layer,

e.g., in routing, spectrum and modulation format assignments.

The application of ML to optical communication and network-

ing is still in its infancy and the literature survey included

in this paper aims at providing an introductory reference for

researchers and practitioners willing to get acquainted with

existing ML applications as well as to investigate new research

directions.

A legitimate question that arises in the optical networking

field today is: why machine learning, a methodological area

that has been applied and investigated for at least three

decades, is only gaining momentum now? The answer is

certainly very articulated, and it most likely involves not purely

technical aspects [10]. From a technical perspective though, re-

cent technical progress at both optical communication system

and network level is at the basis of an unprecedented growth
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in the complexity of optical networks.

On a system side, while optical channel modeling has

always been complex, the recent adoption of coherent tech-

nologies [11] has made modeling even more difficult by

introducing a plethora of adjustable design parameters (as

modulation formats, symbol rates, adaptive coding rates and

flexible channel spacing) to optimize transmission systems in

terms of bit-rate transmission distance product. In addition,

what makes this optimization even more challenging is that

the optical channel is highly nonlinear.

From a networking perspective, the increased complexity of

the underlying transmission systems is reflected in a series of

advancements in both data plane and control plane. At data

plane, the Elastic Optical Network (EON) concept [12]–[15]

has emerged as a novel optical network architecture able to

respond to the increased need of elasticity in allocating optical

network resources. In contrast to traditional fixed-grid Wave-

length Division Multiplexing (WDM) networks, EON offers

flexible (almost continuous) bandwidth allocation. Resource

allocation in EON can be performed to adapt to the several

above-mentioned decision variables made available by new

transmission systems, including different transmission tech-

niques, such as Orthogonal Frequency Division Multiplexing

(OFDM), Nyquist WDM (NWDM), transponder types (e.g.,

BVT1, S-BVT), modulation formats (e.g., QPSK, QAM), and

coding rates. This flexibility makes the resource allocation

problems much more challenging for network engineers. At

control plane, dynamic control, as in Software-defined net-

working (SDN), promises to enable long-awaited on-demand

reconfiguration and virtualization. Moreover, reconfiguring the

optical substrate poses several challenges in terms of, e.g.,

network re-optimization, spectrum fragmentation, amplifier

power settings, unexpected penalties due to non-linearities,

which call for strict integration between the control elements

(SDN controllers, network orchestrators) and optical perfor-

mance monitors working at the equipment level.

All these degrees of freedom and limitations do pose severe

challenges to system and network engineers when it comes

to deciding what the best system and/or network design

is. Machine learning is currently perceived as a paradigm

shift for the design of future optical networks and systems.

These techniques should allow to infer, from data obtained

by various types of monitors (e.g., signal quality, traffic

samples, etc.), useful characteristics that could not be easily or

directly measured. Some envisioned applications in the optical

domain include fault prediction, intrusion detection, physical-

flow security, impairment-aware routing, low-margin design,

traffic-aware capacity reconfigurations, but many others can

be envisioned and will be surveyed in the next sections.

The survey is organized as follows. In Section II, we

overview some preliminary ML concepts, focusing especially

on those targeted in the following sections. In Section III

we discuss the main motivations behind the application of

ML in the optical domain and we classify the main areas of

applications. In Section IV and Section V, we classify and

1For a complete list of acronyms, the reader is referred to the Glossary at
the end of the paper.

summarize a large number of studies describing applications

of ML at the transmission layer and network layer. In Section

VI, we quantitatively overview a selection of existing papers,

identifying, for some of the applications described in Section

III, the ML algorithms which demonstrated higher effective-

ness for each specific use case, and the performance metrics

considered for the algorithms evaluation. Finally, Section VII

discusses some possible open areas of research and future

directions, whereas Section VIII concludes the paper.

II. OVERVIEW OF MACHINE LEARNING METHODS USED IN

OPTICAL NETWORKS

This section provides an overview of some of the most

popular algorithms that are commonly classified as machine

learning. The literature on ML is so extensive that even a

superficial overview of all the main ML approaches goes far

beyond the possibilities of this section, and the readers can

refer to a number of fundamental books on the subjects [16]–

[20]. However, in this section we provide a high level view of

the main ML techniques that are used in the work we reference

in the remainder of this paper. We here provide the reader

with some basic insights that might help better understand the

remaining parts of this survey paper. We divide the algorithms

in three main categories, described in the next sections, which

are also represented in Fig. 1: supervised learning, unsuper-

vised learning and reinforcement learning. Semi-supervised

learning, a hybrid of supervised and unsupervised learning, is

also introduced. ML algorithms have been successfully applied

to a wide variety of problems. Before delving into the different

ML methods, it is worth pointing out that, in the context of

telecommunication networks, there has been over a decade

of research on the application of ML techniques to wireless

networks, ranging from opportunistic spectrum access [21] to

channel estimation and signal detection in OFDM systems

[22], to Multiple-Input-Multiple-Output communications [23],

and dynamic frequency reuse [24].

A. Supervised learning

Supervised learning is used in a variety of applications, such

as speech recognition, spam detection and object recognition.

The goal is to predict the value of one or more output variables

given the value of a vector of input variables x. The output

variable can be a continuous variable (regression problem)

or a discrete variable (classification problem). A training

data set comprises N samples of the input variables and

the corresponding output values. Different learning methods

construct a function y(x) that allows to predict the value

of the output variables in correspondence to a new value of

the inputs. Supervised learning can be broken down into two

main classes, described below: parametric models, where the

number of parameters to use in the model is fixed, and non-

parametric models, where their number is dependent on the

training set.

1) Parametric models: In this case, the function y is a

combination of a fixed number of parametric basis functions.

These models use training data to estimate a fixed set of

parameters w. After the learning stage, the training data can
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(a) Supervised Learning: the algorithm is trained on dataset that
consists of paths, wavelengths, modulation and the corresponding
BER. Then it extrapolates the BER in correspondence to new inputs.

(b) Unsupervised Learning: the algorithm identifies unusual patterns
in the data, consisting of wavelengths, paths, BER, and modulation.

(c) Reinforcement Learning: the algorithm learns by receiving
feedback on the effect of modifying some parameters, e.g. the
power and the modulation

Fig. 1: Overview of machine learning algorithms applied to

optical networks.

be discarded since the prediction in correspondence to new

inputs is computed using only the learned parameters w.

Linear models for regression and classification, which consist

of a linear combination of fixed nonlinear basis functions,
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Fig. 2: Example of a NN with two layers of adaptive param-

eters. The bias parameters of the input layer and the hidden

layer are represented as weights from additional units with

fixed value 1 (x0 and h0).

are the simplest parametric models in terms of analytical and

computational properties. Many different choices are available

for the basis functions: from polynomial to Gaussian, to

sigmoidal, to Fourier basis, etc. In case of multiple output

values, it is possible to use separate basis functions for each

component of the output or, more commonly, apply the same

set of basis functions for all the components. Note that these

models are linear in the parameters w, and this linearity

results in a number of advantageous properties, e.g., closed-

form solutions to the least-squares problem. However, their

applicability is limited to problems with low-dimensional input

space. In the remainder of this subsection we focus on neural

networks (NNs)2, since they are the most successful example

of parametric models.

NNs apply a series of functional transformations to the

inputs (see chapter V in [16], chapter VI in [17], and chapter

XVI in [20]). A NN is a network of units or neurons. The

basis function or activation function used by each unit is

a nonlinear function of a linear combination of the unit’s

inputs. Each neuron has a bias parameter that allows for any

fixed offset in the data. The bias is incorporated in the set of

parameters by adding a dummy input of unitary value to each

unit (see Figure 2). The coefficients of the linear combination

are the parameters w estimated during the training. The most

commonly used nonlinear functions are the logistic sigmoid

and the hyperbolic tangent. The activation function of the

output units of the NN is the identity function, the logistic

sigmoid function, and the softmax function, for regression,

binary classification, and multiclass classification problems

respectively.

Different types of connections between the units result in

different NNs with distinct characteristics. All units between

the inputs and output of the NN are called hidden units. In

2Note that NNs are often referred to as Artificial Neural Networks (ANNs).
In this paper we use these two terms interchangeably.
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the case of a NN, the network is a directed acyclic graph.

Typically, NNs are organized in layers, with units in each layer

receiving inputs only from units in the immediately preceding

layer and forwarding their output only to the immediately

following layer. NNs with one layer of hidden units and linear

output units can approximate arbitrary well any continuous

function on a compact domain provided that a sufficient

number of hidden units is used [25].

Given a training set, a NN is trained by minimizing an error

function with respect to the set of parameters w. Depending

on the type of problem and the corresponding choice of

activation function of the output units, different error functions

are used. Typically in case of regression models, the sum

of square error is used, whereas for classification the cross-

entropy error function is adopted. It is important to note that

the error function is a non convex function of the network

parameters, for which multiple optimal local solutions exist.

Iterative numerical methods based on gradient information are

the most common methods used to find the vector w that min-

imizes the error function. For a NN the error backpropagation

algorithm, which provides an efficient method for evaluating

the derivatives of the error function with respect to w, is the

most commonly used.

We should at this point mention that, before training the

network, the training set is typically pre-processed by applying

a linear transformation to rescale each of the input variables

independently in case of continuous data or discrete ordinal

data. The transformed variables have zero mean and unit

standard deviation. The same procedure is applied to the target

values in case of regression problems. In case of discrete

categorical data, a 1-of-K coding scheme is used. This form of

pre-processing is known as feature normalization and it is used

before training most ML algorithms since most models are

designed with the assumption that all features have comparable

scales3.

2) Nonparametric models: In nonparametric methods the

number of parameters depends on the training set. These

methods keep a subset or the entirety of the training data

and use them during prediction. The most used approaches

are k-nearest neighbor models (see chapter IV in [17]) and

support vector machines (SVMs) (see chapter VII in [16] and

chapter XIV in [20]). Both can be used for regression and

classification problems.

In the case of k-nearest neighbor methods, all training

data samples are stored (training phase). During prediction,

the k-nearest samples to the new input value are retrieved.

For classification problem, a voting mechanism is used; for

regression problems, the mean or median of the k nearest

samples provides the prediction. To select the best value of k,

cross-validation [26] can be used. Depending on the dimension

of the training set, iterating through all samples to compute

the closest k neighbors might not be feasible. In this case, k-d

trees or locality-sensitive hash tables can be used to compute

the k-nearest neighbors.

In SVMs, basis functions are centered on training samples;

the training procedure selects a subset of the basis functions.

3However, decision tree based models are a well-known exception.

The number of selected basis functions, and the number of

training samples that have to be stored, is typically much

smaller than the cardinality of the training dataset. SVMs

build a linear decision boundary with the largest possible

distance from the training samples. Only the closest points to

the separators, the support vectors, are stored. To determine

the parameters of SVMs, a nonlinear optimization problem

with a convex objective function has to be solved, for which

efficient algorithms exist. An important feature of SVMs is

that by applying a kernel function they can embed data into a

higher dimensional space, in which data points can be linearly

separated. The kernel function measures the similarity between

two points in the input space; it is expressed as the inner

product of the input points mapped into a higher dimension

feature space in which data become linearly separable. The

simplest example is the linear kernel, in which the mapping

function is the identity function. However, provided that we

can express everything in terms of kernel evaluations, it is not

necessary to explicitly compute the mapping in the feature

space. Indeed, in the case of one of the most commonly used

kernel functions, the Gaussian kernel, the feature space has

infinite dimensions.

B. Unsupervised learning

Social network analysis, genes clustering and market re-

search are among the most successful applications of unsu-

pervised learning methods.

In the case of unsupervised learning the training dataset

consists only of a set of input vectors x. While unsupervised

learning can address different tasks, clustering or cluster

analysis is the most common.

Clustering is the process of grouping data so that the intra-

cluster similarity is high, while the inter-cluster similarity

is low. The similarity is typically expressed as a distance

function, which depends on the type of data. There exists

a variety of clustering approaches. Here, we focus on two

algorithms, k-means and Gaussian mixture model as exam-

ples of partitioning approaches and model-based approaches,

respectively, given their wide area of applicability. The reader

is referred to [27] for a comprehensive overview of cluster

analysis.

k-means is perhaps the most well-known clustering algo-

rithm (see chapter X in [27]). It is an iterative algorithm

starting with an initial partition of the data into k clusters.

Then the centre of each cluster is computed and data points are

assigned to the cluster with the closest centre. The procedure

- centre computation and data assignment - is repeated until

the assignment does not change or a predefined maximum

number of iterations is exceeded. Doing so, the algorithm may

terminate at a local optimum partition. Moreover, k-means is

well known to be sensitive to outliers. It is worth noting that

there exists ways to compute k automatically [26], and an

online version of the algorithm exists.

While k-means assigns each point uniquely to one cluster,

probabilistic approaches allow a soft assignment and provide

a measure of the uncertainty associated with the assign-

ment. Figure 3 shows the difference between k-means and
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Fig. 3: Difference between k-means and Gaussian mixture

model clustering a given set of data samples.

a probabilistic Gaussian Mixture Model (GMM). GMM, a

linear superposition of Gaussian distributions, is one of the

most widely used probabilistic approaches to clustering. The

parameters of the model are the mixing coefficient of each

Gaussian component, the mean and the covariance of each

Gaussian distribution. To maximize the log likelihood function

with respect to the parameters given a dataset, the expectation

maximization algorithm is used, since no closed form solution

exists in this case. The initialization of the parameters can be

done using k-means. In particular, the mean and covariance

of each Gaussian component can be initialized to sample

means and covariances of the cluster obtained by k-means,

and the mixing coefficients can be set to the fraction of data

points assigned by k-means to each cluster. After initializing

the parameters and evaluating the initial value of the log

likelihood, the algorithm alternates between two steps. In the

expectation step, the current values of the parameters are

used to determine the “responsibility” of each component for

the observed data (i.e., the conditional probability of latent

variables given the dataset). The maximization step uses these

responsibilities to compute a maximum likelihood estimate of

the model’s parameters. Convergence is checked with respect

to the log likelihood function or the parameters.

C. Semi-supervised learning

Semi-supervised learning methods are a hybrid of the pre-

vious two introduced above, and address problems in which

most of the training samples are unlabeled, while only a few

labeled data points are available. The obvious advantage is that

in many domains a wealth of unlabeled data points is readily

available. Semi-supervised learning is used for the same type

of applications as supervised learning. It is particularly useful

when labeled data points are not so common or too expensive

to obtain and the use of available unlabeled data can improve

performance.

Self-training is the oldest form of semi-supervised learning

[28]. It is an iterative process; during the first stage only la-

beled data points are used by a supervised learning algorithm.

Then, at each step, some of the unlabeled points are labeled

according to the prediction resulting for the trained decision

function and these points are used along with the original

labeled data to retrain using the same supervised learning

algorithm. This procedure is shown in Fig. 4.

Since the introduction of self-training, the idea of using la-

beled and unlabeled data has resulted in many semi-supervised

Fig. 4: Sample step of the self-training mechanism, where an

unlabeled point is matched against labeled data to become part

of the labeled data set.

learning algorithms. According to the classification proposed

in [28], semi-supervised learning techniques can be organized

in four classes: i) methods based on generative models4; ii)

methods based on the assumption that the decision boundary

should lie in a low-density region; iii) graph-based methods;

iv) two-step methods (first an unsupervised learning step to

change the data representation or construct a new kernel; then

a supervised learning step based on the new representation or

kernel).

D. Reinforcement Learning

Reinforcement Learning (RL) is used, in general, to address

applications such as robotics, finance (investment decisions),

inventory management, where the goal is to learn a policy, i.e.,

a mapping between states of the environment into actions to

be performed, while directly interacting with the environment.

The RL paradigm allows agents to learn by exploring the

available actions and refining their behavior using only an

evaluative feedback, referred to as the reward. The agent’s

goal is to maximize its long-term performance. Hence, the

agent does not just take into account the immediate reward,

but it evaluates the consequences of its actions on the future.

Delayed reward and trial-and-error constitute the two most

significant features of RL.

RL is usually performed in the context of Markov deci-

sion processes (MDP). The agent’s perception at time k is

represented as a state sk ∈ S, where S is the finite set of

environment states. The agent interacts with the environment

by performing actions. At time k the agent selects an action

ak ∈ A, where A is the finite set of actions of the agent,

which could trigger a transition to a new state. The agent will

4Generative methods estimate the joint distribution of the input and
output variables. From the joint distribution one can obtain the conditional
distribution p(y|x), which is then used to predict the output values in
correspondence to new input values. Generative methods can exploit both
labeled and unlabeled data.
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receive a reward as a result of the transition, according to the

reward function ρ : S×A×S → R. The agents goal is to find

the sequence of state-action pairs that maximizes the expected

discounted reward, i.e., the optimal policy. In the context of

MDP, it has been proved that an optimal deterministic and

stationary policy exists. There exist a number of algorithms

that learn the optimal policy both in case the state transition

and reward functions are known (model-based learning) and

in case they are not (model-free learning). The most used RL

algorithm is Q-learning, a model-free algorithm that estimates

the optimal action-value function (see chapter VI in [19]). An

action-value function, named Qfunction, is the expected return

of a state-action pair for a given policy. The optimal action-

value function, Q∗, corresponds to the maximum expected

return for a state-action pair. After learning function Q∗, the

agent selects the action with the corresponding highest Q-value

in correspondence to the current state.

A table-based solution such as the one described above

is only suitable in case of problems with limited state-

action space. In order to generalize the policy learned in

correspondence to states not previously experienced by the

agent, RL methods can be combined with existing function

approximation methods, e.g., neural networks.

E. Overfitting, underfitting and model selection

In this section, we discuss a well-known problem of ML

algorithms along with its solutions. Although we focus on

supervised learning techniques, the discussion is also relevant

for unsupervised learning methods.

Overfitting and underfitting are two sides of the same coin:

model selection. Overfitting happens when the model we use is

too complex for the available dataset (e.g., a high polynomial

order in the case of linear regression with polynomial basis

functions or a too large number of hidden neurons for a

neural network). In this case, the model will fit the training

data too closely5, including noisy samples and outliers, but

will result in very poor generalization, i.e., it will provide

inaccurate predictions for new data points. At the other end of

the spectrum, underfitting is caused by the selection of models

that are not complex enough to capture important features in

the data (e.g., when we use a linear model to fit quadratic

data). Fig. 5 shows the difference between underfitting and

overfitting, compared to an accurate model.

Since the error measured on the training samples is a poor

indicator for generalization, to evaluate the model performance

the available dataset is split into two, the training set and the

test set. The model is trained on the training set and then

evaluated using the test set. Typically around 70% of the

samples are assigned to the training set and the remaining 30%
are assigned to the test set. Another option that is very useful

in case of a limited dataset is to use cross-validation so that as

much of the available data as possible is exploited for training.

In this case, the dataset is divided into k subsets. The model

5As an extreme example, consider a simple regression problem for pre-
dicting a real-value target variable as a function of a real-value observation
variable. Let us assume a linear regression model with polynomial basis
function of the input variable. If we have N samples and we select N as
the order of the polynomial, we can fit the model perfectly to the data points.

Fig. 5: Difference between underfitting and overfitting.

is trained k times using each of the k subset for validation and

the remaining (k − 1) subsets for training. The performance

is averaged over the k runs. In case of overfitting, the error

measured on the test set is high and the error on the training

set is small. On the other hand, in the case of underfitting,

both the error measured on the training set and the test set are

usually high.

There are different ways to select a model that does not

exhibit overfitting and underfitting. One possibility is to train a

range of models, compare their performance on an independent

dataset (the validation set), and then select the one with

the best performance. However, the most common technique

is regularization. It consists of adding an extra term - the

regularization term - to the error function used in the training

stage. The simplest form of the regularization term is the sum

of the squares of all parameters, which is known as weight

decay and drives parameters towards zero. Another common

choice is the sum of the absolute values of the parameters

(lasso). An additional parameter, the regularization coefficient

λ, weighs the relative importance of the regularization term

and the data-dependent error. A large value of λ heavily

penalizes large absolute values of the parameters. It should

be noted that the data-dependent error computed over the

training set increases with λ. The error computed over the

validation set is high for both small and high λ values. In the

first case, the regularization term has little impact potentially

resulting in overfitting. In the latter case, the data-dependent

error has little impact resulting in a poor model performance.

A simple automatic procedure for selecting the best λ consists

of training the model with a range of values for the regular-

ization parameter and select the value that corresponds to the

minimum validation error. In the case of NNs with a large

number of hidden units, dropout - a technique that consists of

randomly removing units and their connections during training

- has been shown to outperform other regularization methods

[29].
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III. MOTIVATION FOR USING MACHINE LEARNING IN

OPTICAL NETWORKS AND SYSTEMS

In the last few years, the application of mathematical

approaches derived from the ML discipline have attracted the

attention of many researchers and practitioners in the optical

communications and networking fields. In a general sense,

the underlying motivations for this trend can be identified as

follows:

• increased system complexity: the adoption of advanced

transmission techniques, such as those enabled by coher-

ent technology [11], and the introduction of extremely

flexible networking principles, such as, e.g., the EON

paradigm, have made the design and operation of optical

networks extremely complex, due to the high number

of tunable parameters to be considered (e.g., modulation

formats, symbol rates, adaptive coding rates, adaptive

channel bandwidth, etc.); in such a scenario, accurately

modeling the system through closed-form formulas is

often very hard, if not impossible, and in fact “margins”

are typically adopted in the analytical models, leading

to resource underutilization and to consequent increased

system cost; on the contrary, ML methods can capture

complex non-linear system behaviour with relatively sim-

ple training of supervised and/or unsupervised algorithms

which exploit knowledge of historical network data, and

therefore to solve complex cross-layer problems, typical

of the optical networking field;

• increased data availability: modern optical networks are

equipped with a large number of monitors, able to provide

several types of information on the entire system, e.g.,

traffic traces, signal quality indicators (such as BER),

equipment failure alarms, users’ behaviour etc.; here, the

enhancement brought by ML consists of simultaneously

leveraging the plethora of collected data and discover

hidden relations between various types of information.

The application of ML to physical layer use cases is mainly

motivated by the presence of non-linear effects in optical

fibers, which make analytical models inaccurate or even too

complex. This has implications, e.g., on the performance pre-

dictions of optical communication systems, in terms of BER,

quality factor (Q-factor) and also for signal demodulation [30],

[31], [32].

Moving from the physical layer to the networking layer, the

same motivation applies for the application of ML techniques.

In particular, design and management of optical networks is

continuously evolving, driven by the enormous increase of

transported traffic and drastic changes in traffic requirements,

e.g., in terms of capacity, latency, user experience and Quality

of Service (QoS). Therefore, current optical networks are

expected to be run at much higher utilization than in the past,

while providing strict guarantees on the provided quality of

service. While aggressive optimization and traffic-engineering

methodologies are required to achieve these objectives, such

complex methodologies may suffer scalability issues, and in-

volve unacceptable computational complexity. In this context,

ML is regarded as a promising methodological area to address

this issue, as it enables automated network self-configuration

and fast decision-making by leveraging the plethora of data

that can be retrieved via network monitors, and allowing net-

work engineers to build data-driven models for more accurate

and optimized network provisioning and management.

Several use cases can benefit from the application of ML

and data analytics techniques. In this paper we divide these use

cases in i) physical layer and ii) network layer use cases. The

remainder of this section provides a high-level introduction to

the main applications of ML in optical networks, as graphically

shown in Fig. 6, and motivates why ML can be beneficial

in each case. A detailed survey of existing studies is then

provided in Sections IV and V, for physical layer and network

layer use cases, respectively.

A. Physical layer domain

As mentioned in the previous section, several challenges

need to be addressed at the physical layer of an optical net-

work, typically to evaluate the performance of the transmission

system and to check if any signal degradation influences

existing lightpaths. Such monitoring can be used, e.g., to

trigger proactive procedures, such as tuning of launch power,

controlling gain in optical amplifiers, varying modulation

format, etc., before irrecoverable signal degradation occurs.

In the following, a description of the applications of ML at

the physical layer is presented.

• QoT estimation.

Prior to the deployment of a new lightpath, a system

engineer needs to estimate the Quality of Transmission

(QoT) for the new lightpath, as well as for the already

existing ones. The concept of Quality of Transmission

generally refers to a number of physical layer param-

eters, such as received Optical Signal-to-Noise Ratio

(OSNR), BER, Q-factor, etc., which have an impact on

the “readability” of the optical signal at the receiver. Such

parameters give a quantitative measure to check if a pre-

determined level of QoT would be guaranteed, and are

affected by several tunable design parameters, such as,

e.g., modulation format, baud rate, coding rate, physical

path in the network, etc. Therefore, optimizing this choice

is not trivial and often this large variety of possible

parameters challenges the ability of a system engineer

to address manually all the possible combinations of

lightpath deployment.

As of today, existing (pre-deployment) estimation tech-

niques for lightpath QoT belong to two categories: 1)

“exact” analytical models estimating physical-layer im-

pairments, which provide accurate results, but incur heavy

computational requirements and 2) marginated formulas,

which are computationally faster, but typically introduce

high marginations that lead to underutilization of network

resources. Moreover, it is worth noting that, due to the

complex interaction of multiple system parameters (e.g.,

input signal power, number of channels, link type, mod-

ulation format, symbol rate, channel spacing, etc.) and,

most importantly, due to the nonlinear signal propagation

through the optical channel, deriving accurate analytical

models is a challenging task, and assumptions about the
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Fig. 6: The general framework of a ML-assisted optical network.

system under consideration must be made in order to

adopt approximate models. Conversely, ML constitutes

a promising means to automatically predict whether un-

established lightpaths will meet the required system QoT

threshold.

Relevant ML techniques: ML-based classifiers can be

trained using supervised learning6 to create direct input-

output relationship between QoT observed at the receiver

and corresponding lightpath configuration in terms of,

e.g., utilized modulation format, baud rate and/or physical

route in the network.

• Optical amplifiers control.

In current optical networks, lightpath provisioning is

becoming more dynamic, in response to the emergence

of new services that require huge amount of bandwidth

over limited periods of time. Unfortunately, dynamic set-

up and tear-down of lightpaths over different wavelengths

forces network operators to reconfigure network devices

“on the fly” to maintain physical-layer stability. In re-

sponse to rapid changes of lightpath deployment, Erbium

Doped Fiber Amplifiers (EDFAs) suffer from wavelength-

dependent power excursions. Namely, when a new light-

path is established (i.e., added) or when an existing

lightpath is torn down (i.e., dropped), the discrepancy

of signal power levels between different channels (i.e.,

between lightpaths operating at different wavelengths)

depends on the specific wavelength being added/dropped

into/from the system. Thus, an automatic control of pre-

amplification signal power levels is required, especially

in case a cascade of multiple EDFAs is traversed, to

avoid that excessive post-amplification power discrepancy

6Note that, specific solutions adopted in literature for QoT estimation, as
well as for other physical- and network-layer use cases, will be detailed in
the literature surveys provided in Sections IV and V.

between different lightpaths may cause signal distortion.

Relevant ML techniques: Thanks to the availability of

historical data retrieved by monitoring network status,

ML regression algorithms can be trained to accurately

predict post-amplifier power excursion in response to the

add/drop of specific wavelengths to/from the system.

• Modulation format recognition (MFR).

Modern optical transmitters and receivers provide high

flexibility in the utilized bandwidth, carrier frequency and

modulation format, mainly to adapt the transmission to

the required bit-rate and optical reach in a flexible/elastic

networking environment. Given that at the transmission

side an arbitrary coherent optical modulation format can

be adopted, knowing this decision in advance also at the

receiver side is not always possible, and this may affect

proper signal demodulation and, consequently, signal

processing and detection.

Relevant ML techniques: Use of supervised ML algo-

rithms can help the modulation format recognition at the

receiver, thanks to the opportunity to learn the mapping

between the adopted modulation format and the features

of the incoming optical signal.

• Nonlinearity mitigation.

Due to optical fiber nonlinearities, such as Kerr effect,

self-phase modulation (SPM) and cross-phase modulation

(XPM), the behaviour of several performance param-

eters, including BER, Q-factor, Chromatic Dispersion

(CD), Polarization Mode Dispersion (PMD), is highly

unpredictable, and this may cause signal distortion at the

receiver (e.g., I/Q imbalance and phase noise). Therefore,

complex analytical models are often adopted to react to

signal degradation and/or compensate undesired nonlinear

effects.

Relevant ML techniques: While approximated analytical
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models are usually adopted to solve such complex non-

linear problems, supervised ML models can be designed

to directly capture the effects of such nonlinearities, typi-

cally exploiting knowledge of historical data and creating

input-output relations between the monitored parameters

and the desired outputs.

• Optical performance monitoring (OPM).

With increasing capacity requirements for optical com-

munication systems, performance monitoring is vital to

ensure robust and reliable networks. Optical performance

monitoring aims at estimating the transmission parame-

ters of the optical fiber system, such as BER, Q-factor,

CD, PMD, during lightpath lifetime. Knowledge of such

parameters can be then utilized to accomplish various

tasks, e.g., activating polarization compensator modules,

adjusting launch power, varying the adopted modula-

tion format, re-route lightpaths, etc. Typically, optical

performance parameters need to be collected at various

monitoring points along the lightpath, thus large number

of monitors are required, causing increased system cost.

Therefore, efficient deployment of optical performance

monitors in the proper network locations is needed to

extract network information at reasonable cost.

Relevant ML techniques: To reduce the amount of mon-

itors to deploy in the system, especially at intermediate

points of the lightpaths, supervised learning algorithms

can be used to learn the mapping between the optical fiber

channel parameters and the properties of the detected

signal at the receiver, which can be retrieved, e.g., by

observing statistics of power eye diagrams, signal ampli-

tude, OSNR, etc.

B. Network layer domain

At the network layer, several other use cases for ML arise.

Provisioning of new lightpaths or restoration of existing ones

upon network failure require complex and fast decisions that

depend on several quickly-evolving data, since, e.g., oper-

ators must take into consideration the impact onto existing

connections provided by newly-inserted traffic. In general, an

estimation of users’ and service requirements is desirable for

an effective network operation, as it allows to avoid over-

provisioning of network resources and to deploy resources

with adequate margins at a reasonable cost. We identify the

following main use cases.

• Traffic prediction.

Accurate traffic prediction in the time-space domain

allows operators to effectively plan and operate their

networks. In the design phase, traffic prediction allows

to reduce over-provisioning as much as possible. During

network operation, resource utilization can be optimized

by performing traffic engineering based on real-time

data, eventually re-routing existing traffic and reserving

resources for future incoming traffic requests.

Relevant ML techniques: Through knowledge of his-

torical data on users’ behaviour and traffic profiles in the

time-space domain, a supervised learning algorithm can

be trained to predict future traffic requirements and conse-

quent resource needs. This allows network engineers to

activate, e.g., proactive traffic re-routing and periodical

network re-optimization so as to accommodate all users

traffic and simultaneously reduce network resources uti-

lization.

Moreover, unsupervised learning algorithms can be also

used to extract common traffic patterns in different por-

tions of the network. Doing so, similar design and man-

agement procedures (e.g., deployment and/or reservation

of network capacity) can be activated also in different

parts of the network, which instead show similarities in

terms of traffic requirements, i.e., belonging to a same

traffic profile cluster.

Note that, application of traffic prediction, and the rel-

ative ML techniques, vary substantially according to

the considered network segment (e.g., approaches for

intra-datacenter networks may be different than those

for access networks), as traffic characteristics strongly

depend on the considered network segment.

• Virtual topology design (VTD) and reconfiguration.

The abstraction of communication network services by

means of a virtual topology is widely adopted by network

operators and service providers. This abstraction consists

of representing the connectivity between two end-points

(e.g., two data centers) via an adjacency in the virtual

topology, (i.e., a virtual link), although the two end-

points are not necessarily physically connected. After the

set of all virtual links has been defined, i.e., after all

the lightpath requests have been identified, VTD requires

solving a Routing and Wavelength Assignment (RWA)

problem for each lightpath on top of the underlying

physical network. Note that, in general, many virtual

topologies can co-exist in the same physical network,

and they may represent, e.g., service required by different

customers, or even different services, each with a specific

set of requirements (e.g., in terms of QoS, bandwidth,

and/or latency), provisioned to the same customer.

VTD is not only necessary when a new service is pro-

visioned and new resources are allocated in the network.

In some cases, e.g., when network failures occur or

when the utilization of network resources undergoes re-

optimization procedures, existing (i.e., already-designed)

virtual topologies shall be rearranged, and in these cases

we refer to the VT reconfiguration.

To perform design and reconfiguration of virtual topolo-

gies, network operators not only need to provision (or

reallocate) network capacity for the required services, but

may also need to provide additional resources according

to the specific service characteristics, e.g., for guaran-

teeing service protection and/or meeting QoS or latency

requirements. This type of service provisioning is often

referred to as network slicing, due to the fact that each

provisioned service (i.e., each VT) represents a slice of

the overall network.

Relevant ML techniques: To address VTD and VT

reconfiguration, ML classifiers can be trained to optimally

decide how to allocate network resources, by simulta-

neously taking into account a large number of different

and heterogeneous service requirements for a variety of
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virtual topologies (i.e., network slices), thus enabling fast

decision making and optimized resources provisioning,

especially under dynamically-changing network condi-

tions.

• Failure management.

When managing a network, the ability to perform failure

detection and localization or even to determine the cause

of network failure is crucial as it may enable operators

to promptly perform traffic re-routing, in order to main-

tain service status and meet Service Level Agreements

(SLAs), and rapidly recover from the failure. Handling

network failures can be accomplished at different levels.

E.g., performing failure detection, i.e., identifying the

set of lightpaths that were affected by a failure, is a

relatively simple task, which allows network operators

to only reconfigure the affected lightpaths by, e.g., re-

routing the corresponding traffic. Moreover, the ability of

performing also failure localization enables the activation

of recovery procedures. This way, pre-failure network

status can be restored, which is, in general, an optimized

situation from the point of view of resources utilization.

Furthermore, determining also the cause of network fail-

ure, e.g., temporary traffic congestion, devices disruption,

or even anomalous behaviour of failure monitors, is useful

to adopt the proper restoring and traffic reconfiguration

procedures, as sometimes remote reconfiguration of light-

paths can be enough to handle the failure, while in some

other cases in-field intervention is necessary. Moreover,

prompt identification of the failure cause enables fast

equipment repair and consequent reduction in Mean Time

To Repair (MTTR).

Relevant ML techniques: ML can help handling the

large amount of information derived from the continuous

activity of a huge number of network monitors and

alarms. E.g., ML classifiers algorithms can be trained

to distinguish between regular and anomalous (i.e., de-

graded) transmission. Note that, in such cases, semi-

supervised approaches can be also used, whenever labeled

data are scarce, but a large amount of unlabeled data

is available. Further, ML classifiers can be trained to

distinguish failure causes, exploiting the knowledge of

previously observed failures.

• Traffic flow classification.

When different types of services coexist in the same

network infrastructure, classifying the corresponding traf-

fic flows before their provisioning may enable efficient

resource allocation, mitigating the risk of under- and

over-provisioning. Moreover, accurate flow classification

is also exploited for already provisioned services to apply

flow-specific policies, e.g., to handle packets priority, to

perform flow and congestion control, and to guarantee

proper QoS to each flow according to the SLAs.

Relevant ML techniques: Based on the various traffic

characteristics and exploiting the large amount of in-

formation carried by data packets, supervised learning

algorithms can be trained to extract hidden traffic charac-

teristics and perform fast packets classification and flows

differentiation.

• Path computation.

When performing network resources allocation for an

incoming service request, a proper path should be se-

lected in order to efficiently exploit the available network

resources to accommodate the requested traffic with the

desired QoS and without affecting the existing services,

previously provisioned in the network. Traditionally, path

computation is performed by using cost-based routing

algorithms, such as Dijkstra, Bellman-Ford, Yen algo-

rithms, which rely on the definition of a pre-defined

cost metric (e.g., based on the distance between source

and destination, the end-to-end delay, the energy con-

sumption, or even a combination of several metrics) to

discriminate between alternative paths.

Relevant ML techniques: In this context, use of su-

pervised ML can be helpful as it allows to simultane-

ously consider several parameters featuring the incoming

service request together with current network state in-

formation and map this information into an optimized

routing solution, with no need for complex network-

cost evaluations and thus enabling fast path selection and

service provisioning.

C. A bird-eye view of the surveyed studies

The physical- and network-layer use cases described above

have been tackled in existing studies by exploiting several

ML tools (i.e., supervised and/or unsupervised learning, etc.)

and leveraging different types of network monitored data (e.g.,

BER, OSNR, link load, network alarms, etc.).

In Tables I and II we summarize the various physical- and

network-layer use cases and highlight the features of the ML

approaches which have been used in literature to solve these

problems. In the tables we also indicate specific reference

papers addressing these issues, which will be described in the

following sections in more detail. Note that another recently

published survey [33] proposes a very similar categorization

of existing applications of artificial intelligence in optical

networks.

IV. DETAILED SURVEY OF MACHINE LEARNING IN

PHYSICAL LAYER DOMAIN

A. Quality of Transmission estimation

QoT estimation consists of computing transmission quality

metrics such as OSNR, BER, Q-factor, CD or PMD based

on measurements directly collected from the field by means

of optical performance monitors installed at the receiver side

[105] and/or on lightpath characteristics. QoT estimation is

typically applied in two scenarios:

• predicting the transmission quality of unestablished light-

paths based on historical observations and measurements

collected from already deployed ones;

• monitoring the transmission quality of already-deployed

lightpaths with the aim of identifying faults and malfunc-

tions.

QoT prediction of unestablished lightpaths relies on intelli-

gent tools, capable of predicting whether a candidate lightpath
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TABLE I: Different use cases at physical layer and their characteristics.

Use Case ML category ML methodology Input data Output data Training data Ref.

QoT
estimation

supervised kriging, L2-norm
minimization

OSNR (historical data) OSNR synthetic [34]

OSNR/Q-factor BER synthetic [35], [36]
OSNR/PMD/CD/SPM blocking prob. synthetic [37]

CBR error vector magnitude, OSNR Q-factor real [38]
lightpath route, length, number
of co-propagating lightpaths

Q-factor synthetic [39], [40]

RF lightpath route, length, MF,
traffic volume

BER synthetic [41]

regression SNR (historical data) SNR synthetic [42]
NN lightpath route and length,

number of traversed EDFAs,
degree of destination, used
channel wavelength

Q-factor synthetic [43], [44]

k-nearest neighbor,
RF, SVM

total link length, span length,
channel launch power, MF and
data rate

BER synthetic [45]

NN channel loadings and launch
power settings

Q-factor real [46]

NN source-destination nodes, link
occupation, MF, path length,
data rate

BER real [47]

OPM supervised NN eye diagram and amplitude
histogram param.

OSNR/PMD/CD real [48]

NN, SVM asynchronous amplitude his-
togram

MF real [49]

NN asyncrhonous constellation di-
agram and amplitude his-
togram param.

OSNR/PMD/CD synthetic [50]–[53]

Kernel-based ridge
regression

eye diagram and phase por-
traits param.

PMD/CD real [54]

NN Horizontal and Vertical polar-
ized I/Q samples from ADC

OSNR, MF, symbol rate real [55]

Gaussian Processes monitoring data (OSNR vs λ) Q-factor real [56]

Optical ampli-
fiers control

supervised CBR power mask param. (NF, GF) OSNR real [57], [58]

NNs EDFA input/output power EDFA operating point real [59], [60]
Ridge regression,
Kernelized Bayesian
regr.

WDM channel usage post-EDFA power
discrepancy

real [61]

unsupervised evolutional alg. EDFA input/output power EDFA operating point real [62]

MF
recognition

unsupervised 6 clustering alg. Stokes space param. MF synthetic [63]

k-means received symbols MF real [64]
supervised NN asynchronous amplitude his-

togram
MF synthetic [65]

NN, SVM asynchronous amplitude his-
togram

MF real [66], [67], [49]

variational Bayesian
techn. for GMM

Stokes space param. MF real [68]

Non-linearity
mitigation

supervised Bayesian filtering,
NNs, EM

received symbols OSNR, Symbol error rate real [31], [32], [69]

ELM received symbols self-phase modulation synthetic [70]
k-nearest neighbors received symbols BER real [71]
Newton-based SVM received symbols Q-factor real [72]
binary SVM received symbols symbol decision bound-

aries
synthetic [73]

NN received subcarrier symbols Q-factor synthetic [74]
GMM post-equalized symbols decoded symbols with im-

pairment estimated and/or
mitigated

real [75]

Clustering received constellation with
nonlinearities

nonlinearity mitigated
constellation points

real [76]

NN sampled received signal se-
quences

equalized signal with re-
duced ISI

real [77]–[82]

unsupervised k-means received constellation density-based spatial
constellation clusters and
their optimal centroids

real [83]
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TABLE II: Different use cases at network layer and their characteristics.

Use Case ML category ML methodology Input data Output data Training data Ref.

Traffic prediction
and virtual topol-
ogy (re)design

supervised ARIMA historical real-time traffic ma-
trices

predicted traffic matrix synthetic [84], [85]

NN historical end-to-end
maximum bit-rate traffic

predicted end-to-end traf-
fic

synthetic [86], [87]

Reinforcement learning previous solutions of a multi-
objective GA for VTD

updated VT synthetic [88], [89]

Recurrent NN historical aggregated traffic at
different BBU pools

predicted BBU pool traffic real [90]

NN historical traffic in intra-DC
network

predicted intra-DC traffic real [91]

unsupervised NMF, clustering CDR, PoI matrix similarity patterns in base
station traffic

real [92]

Failure manage-
ment

supervised Bayesian Inference BER, received power list of failures for all light-
paths

real [93]

Bayesian Inference, EM FTTH network dataset with
missing data

complete dataset real [94], [95]

Kriging previously established light-
paths with already available
failure localization and moni-
toring data

estimate of failure local-
ization at link level for all
lightpaths

real [96]

(1) LUCIDA: Regres-
sion and classification
(2) BANDO: Anomaly
Detection

(1) LUCIDA: historic BER
and received power, notifica-
tions from BANDO
(2) BANDO: maximum BER,
threshold BER at set-up, mon-
itored BER

(1) LUCIDA: failure clas-
sification
(2) BANDO: anomalies in
BER

real [97]

Regression, decision
tree, SVM

BER, frequency-power pairs localized set of failures real [98]

SVM, RF, NN BER set of failures real [99]
regression and NN optical power levels, ampli-

fier gain, shelf temperature,
current draw, internal optical
power

detected faults real [100]

Flow
classification

supervised HMM, EM packet loss data loss classification:
congestion-loss or
contention-loss

synthetic [101]

NN source/destination IP
addresses, source/destination
ports, transport layer protocol,
packet sizes, and a set of
intra-flow timings within the
first 40 packets of a flow

classified flow for DC synthetic [102]

Path computation supervised Q-Learning traffic requests, set of can-
didate paths between each
source-destination pair

optimum paths for each
source-destination pair to
minimize burst-loss prob-
ability

synthetic [103]

unsupervised FCM traffic requests, path lengths,
set of modulation formats,
OSNR, BER

mapping of an optimum
modulation format to a
lightpath

synthetic [104]

will meet the required quality of service guarantees (mapped

onto OSNR, BER or Q-factor threshold values): the problem is

typically formulated as a binary classification problem, where

the classifier outputs a yes/no answer based on the lightpath

characteristics (e.g., its length, number of links, modulation

format used for transmission, overall spectrum occupation of

the traversed links etc.).

In [39] a cognitive Case Based Reasoning (CBR) approach

is proposed, which relies on the maintenance of a knowl-

edge database where information on the measured Q-factor

of deployed lightpaths is stored, together with their route,

selected wavelength, total length, total number and standard
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deviation of the number of co-propagating lightpaths per link.

Whenever a new traffic requests arrives, the most “similar”

one (where similarity is computed by means of the Euclidean

distance in the multidimensional space of normalized fea-

tures) is retrieved from the database and a decision is made

by comparing the associated Q-factor measurement with a

predefined system threshold. As a correct dimensioning and

maintenance of the database greatly affect the performance

of the CBR technique, algorithms are proposed to keep it up

to date and to remove old or useless entries. The trade-off

between database size, computational time and effectiveness

of the classification performance is extensively studied: in

[40], the technique is shown to outperform state-of-the-art ML

algorithms such as Naive Bayes, J48 tree and Random Forests

(RFs). Experimental results achieved with data obtained from

a real testbed are discussed in [38].

A database-oriented approach is proposed also in [42]

to reduce uncertainties on network parameters and design

margins, where field data are collected by a software defined

network controller and stored in a central repository. Then,

a QTool is used to produce an estimate of the field-measured

Signal-to-Noise Ratio (SNR) based on educated guesses on the

(unknown) network parameters and such guesses are iteratively

updated by means of a gradient descent algorithm, until

the difference between the estimated and the field-measured

SNR falls below a predefined threshold. The new estimated

parameters are stored in the database and yield to new design

margins, which can be used for future demands. The trade-off

between database size and ranges of the SNR estimation error

are evaluated via numerical simulations.

Similarly, in the context of multicast transmission in optical

network, a NN is trained in [43], [44], [46], [47] using as

features the lightpath total length, the number of traversed

EDFAs, the maximum link length, the degree of destination

node and the channel wavelength used for transmission of

candidate lightpaths, to predict whether the Q-factor will

exceed a given system threshold. The NN is trained online with

data mini-batches, according to the network evolution, to allow

for sequential updates of the prediction model. A dropout

technique is adopted during training to avoid overfitting. The

classification output is exploited by a heuristic algorithm for

dynamic routing and spectrum assignment, which decides

whether the request must be served or blocked. The algorithm

performance is assessed in terms of blocking probability.

A random forest binary classifier is adopted in [41] to

predict the probability that the BER of unestablished lightpaths

will exceed a system threshold. As depicted in Figure 7, the

classifier takes as input a set of features including the total

length and maximum link length of the candidate lightpath,

the number of traversed links, the amount of traffic to be

transmitted and the modulation format to be adopted for

transmission. Several alternative combinations of routes and

modulation formats are considered and the classifier identifies

the ones that will most likely satisfy the BER requirements.

In [45], a random forest classifier along with two other tools

namely k-nearest neighbor and support vector machine are

used. The authors in [45] use three of the above-mentioned

classifiers to associate QoT labels with a large set of lightpaths

Fig. 7: The classification framework adopted in [41].

to develop a knowledge base and find out which is the best

classifier. It turns out from the analysis in [45], that the support

vector machine is better in performance than the other two but

takes more computation time.

Two alternative approaches, namely network kriging7 (first

described in [107]) and norm L2 minimization (typically used

in network tomography [108]), are applied in [36], [37] in

the context of QoT estimation: they rely on the installation

of probe lightpaths that do not carry user data but are

used to gather field measurements. The proposed inference

methodologies exploit the spatial correlation between the QoT

metrics of probes and data-carrying lightpaths sharing some

physical links to provide an estimate of the Q-factor of already

deployed or perspective lightpaths. These methods can be

applied assuming either a centralized decisional tool or in a

distributed fashion, where each node has only local knowledge

of the network measurements. As installing probe lightpaths is

costly and occupies spectral resources, the trade-off between

number of probes and accuracy of the estimation is studied.

Several heuristic algorithms for the placement of the probes are

proposed in [34]. A further refinement of the methodologies

which takes into account the presence of neighbor channels

appears in [35].

Additionally, a data-driven approach using a machine learn-

ing technique, Gaussian processes nonlinear regression (GPR),

is proposed and experimentally demonstrated for performance

prediction of WDM optical communication systems [49].

The core of the proposed approach (and indeed of any ML

technique) is generalization: first the model is learned from the

measured data acquired under one set of system configurations,

and then the inferred model is applied to perform predictions

for a new set of system configurations. The advantage of

the approach is that complex system dynamics can be cap-

tured from measured data more easily than from simulations.

Accurate BER predictions as a function of input power,

transmission length, symbol rate and inter-channel spacing are

reported using numerical simulations and proof-of-principle

experimental validation for a 24 × 28 GBd QPSK WDM

optical transmission system.

7Extensively used in the spatial statistics literature (see [106] for details),
kriging is closely related to Gaussian process regression (see chapter XV in
[20]).
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Fig. 8: EDFA power mask [60].

Finally, a control and management architecture integrating

an intelligent QoT estimator is proposed in [109] and its

feasibility is demonstrated with implementation in a real

testbed.

B. Optical amplifiers control

The operating point of EDFAs influences their Noise Figure

(NF) and gain flatness (GF), which have a considerable

impact on the overall ligtpath QoT. The adaptive adjustment

of the operating point based on the signal input power can

be accomplished by means of ML algorithms. Most of the

existing studies [57]–[60], [62] rely on a preliminary amplifier

characterization process aimed at experimentally evaluating

the value of the metrics of interest (e.g., NF, GF and gain

control accuracy) within its power mask (i.e., the amplifier

operating region, depicted in Fig. 8).

The characterization results are then represented as a set

of discrete values within the operation region. In EDFA im-

plementations, state-of-the-art microcontrollers cannot easily

obtain GF and NF values for points that were not measured

during the characterization. Unfortunately, producing a large

amount of fine grained measurements is time consuming. To

address this issue, ML algorithms can be used to interpolate

the mapping function over non-measured points.

For the interpolation, authors of [59], [60] adopt a NN im-

plementing both feed-forward and backward error propagation.

Experimental results with single and cascaded amplifiers re-

port interpolation errors below 0.5 dB. Conversely, a cognitive

methodology is proposed in [57], which is applied in dynamic

network scenarios upon arrival of a new lightpath request: a

knowledge database is maintained where measurements of the

amplifier gains of already established lightpaths are stored,

together with the lightpath characteristics (e.g., number of

links, total length, etc.) and the OSNR value measured at the

receiver. The database entries showing the highest similarities

with the incoming lightpath request are retrieved, the vectors

of gains associated to their respective amplifiers are considered

and a new choice of gains is generated by perturbation of such

Fig. 9: Stokes space representation of DP-BPSK, DP-QPSK

and DP-8-QAM modulation formats [68].

values. Then, the OSNR value that would be obtained with the

new vector of gains is estimated via simulation and stored in

the database as a new entry. After this, the vector associated

to the highest OSNR is used for tuning the amplifier gains

when the new lightpath is deployed.

An implementation of real-time EDFA setpoint adjustment

using the GMPLS control plane and interpolation rule based

on a weighted Euclidean distance computation is described in

[58] and extended in [62] to cascaded amplifiers.

Differently from the previous references, in [61] the issue of

modelling the channel dependence of EDFA power excursion

is approached by defining a regression problem, where the

input feature set is an array of binary values indicating the

occupation of each spectrum channel in a WDM grid and the

predicted variable is the post-EDFA power discrepancy. Two

learning approaches (i.e., the Ridge regression and Kernelized

Bayesian regression models) are compared for a setup with 2

and 3 amplifier spans, in case of single-channel and superchan-

nel add-drops. Based on the predicted values, suggestion on

the spectrum allocation ensuring the least power discrepancy

among channels can be provided.

C. Modulation format recognition

The issue of autonomous modulation format identification in

digital coherent receivers (i.e., without requiring information

from the transmitter) has been addressed by means of a

variety of ML algorithms, including k-means clustering [64]

and neural networks [66], [67]. Papers [63] and [68] take

advantage of the Stokes space signal representation (see Fig.

9 for the representation of DP-BPSK, DP-QPSK and DP-8-

QAM), which is not affected by frequency and phase offsets.

The first reference compares the performance of 6 unsuper-

vised clustering algorithms to discriminate among 5 different

formats (i.e. BPSK, QPSK, 8-PSK, 8-QAM, 16-QAM) in

terms of True Positive Rate and running time depending on the

OSNR at the receiver. For some of the considered algorithms,

the issue of predetermining the number of clusters is solved by

means of the silhouette coefficient, which evaluates the tight-

ness of different clustering structures by considering the inter-

and intra-cluster distances. The second reference adopts an

unsupervised variational Bayesian expectation maximization

algorithm to count the number of clusters in the Stokes space

representation of the received signal and provides an input

to a cost function used to identify the modulation format.

The experimental validation is conducted over k-PSK (with
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k = 2, 4, 8) and n-QAM (with n = 8, 12, 16) modulated

signals.

Conversely, features extracted from asynchronous amplitude

histograms sampled from the eye-diagram after equalization

in digital coherent transceivers are used in [65]–[67] to train

NNs. In [66], [67], a NN is used for hierarchical extraction

of the amplitude histograms’ features, in order to obtain a

compressed representation, aimed at reducing the number of

neurons in the hidden layers with respect to the number of

features. In [65], a NN is combined with a genetic algorithm

to improve the efficiency of the weight selection procedure

during the training phase. Both studies provide numerical

results over experimentally generated data: the former obtains

0% error rate in discriminating among three modulation for-

mats (PM-QPSK, 16-QAM and 64-QAM), the latter shows

the tradeoff between error rate and number of histogram bins

considering six different formats (NRZ-OOK, ODB, NRZ-

DPSK, RZ-DQPSK, PM-RZ-QPSK and PM-NRZ-16-QAM).

D. Nonlinearity mitigation

One of the performance metrics commonly used for optical

communication systems is the data-rate×distance product.

Due to the fiber loss, optical amplification needs to be em-

ployed and, for increasing transmission distance, an increasing

number of optical amplifiers must be employed accordingly.

Optical amplifiers add noise and to retain the signal-to-noise

ratio optical signal power is increased. However, increasing

the optical signal power beyond a certain value will enhance

optical fiber nonlinearities which leads to Nonlinear Inter-

ference (NLI) noise. NLI will impact symbol detection and

the focus of many papers, such as [31], [32], [69]–[73] has

been on applying ML approaches to perform optimum symbol

detection.

In general, the task of the receiver is to perform optimum

symbol detection. In the case when the noise has circularly

symmetric Gaussian distribution, the optimum symbol de-

tection is performed by minimizing the Euclidean distance

between the received symbol yk and all the possible symbols

of the constellation alphabet, s = sk|k = 1, ...,M . This type

of symbol detection will then have linear decision boundaries.

For the case of memoryless nonlinearity, such as nonlinear

phase noise, I/Q modulator and driving electronics nonlinear-

ity, the noise associated with the symbol yk may no longer be

circularly symmetric. This means that the clusters in constel-

lation diagram become distorted (elliptically shaped instead of

circularly symmetric in some cases). In those particular cases,

optimum symbol detection is no longer based on Euclidean

distance matrix, and the knowledge and full parametrization of

the likelihood function, p(yk|xk), is necessary. To determine

and parameterize the likelihood function and finally perform

optimum symbol detection, ML techniques, such as SVM,

kernel density estimator, k-nearest neighbors and Gaussian

mixture models can be employed. A gain of approximately

3 dB in the input power to the fiber has been achieved,

by employing Gaussian mixture model in combination with

expectation maximization, for 14 Gbaud DP 16-QAM trans-

mission over a 800 km dispersion compensated link [31].

Furthermore, in [71] a distance-weighted k-nearest neigh-

bors classifier is adopted to compensate system impairments

in zero-dispersion, dispersion managed and dispersion unman-

aged links, with 16-QAM transmission, whereas in [74] NNs

are proposed for nonlinear equalization in 16-QAM OFDM

transmission (one neural network per subcarrier is adopted,

with a number of neurons equal to the number of symbols).

To reduce the computational complexity of the training phase,

an Extreme Learning Machine (ELM) equalizer is proposed

in [70]. ELM is a NN where the weights minimizing the

input-output mapping error can be computed by means of

a generalized matrix inversion, without requiring any weight

optimization step.

SVMs are adopted in [72], [73]: in [73], a battery of

log2(M) binary SVM classifiers is used to identify decision

boundaries separating the points of a M -PSK constellation,

whereas in [72] fast Newton-based SVMs are employed to

mitigate inter-subcarrier intermixing in 16-QAM OFDM trans-

mission.

All the above mentioned approaches lead to a 0.5-3 dB

improvement in terms of BER/Q-factor.

In the context of nonlinearity mitigation or in general,

impairment mitigation, there are a group of references that

implement equalization of the optical signal using a variety of

ML algorithms like Gaussian mixture models [75], clustering

[76], and artificial neural networks [77]–[82]. In [75], the

authors propose a GMM to replace the soft/hard decoder

module in a PAM-4 decoding process whereas in [76], the

authors propose a scheme for pre-distortion using the ML

clustering algorithm to decode the constellation points from

a received constellation affected with nonlinear impairments.

In references [77]–[82] that employ neural networks for

equalization, usually a vector of sampled receive symbols act

as the input to the neural networks with the output being

equalized signal with reduced inter-symbol interference (ISI).

In [77], [78], and [79] for example, a convolutional neural

network (CNN) would be used to classify different classes of

a PAM signal using the received signal as input. The number of

outputs of the CNN will depend on whether it is a PAM-4, 8,

or 16 signal. The CNN-based equalizers reported in [77]–[79]

show very good BER performance with strong equalization

capabilities.

While [77]–[79] report CNN-based equalizers, [81] shows

another interesting application of neural network in impair-

ment mitigation of an optical signal. In [81], a neural network

approximates very efficiently the function of digital back-

propagation (DBP), which is a well-known technique to solve

the non-linear Schroedinger equation using split-step Fourier

method (SSFM) [110]. In [80] too, a neural network is

proposed to emulate the function of a receiver in a nonlinear

frequency division multiplexing (NFDM) system. The pro-

posed NN-based receiver in [80] outperforms a receiver based

on nonlinear Fourier transform (NFT) and a minimum-distance

receiver.

The authors in [82] propose a neural-network-based ap-

proach in nonlinearity mitigation/equalization in a radio-over-

fiber application where the NN receives signal samples from

different users in an Radio-over-Fiber system and returns a
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impairment-mitigated signal vector.

An example of unsupervised k-means clustering technique

applied on a received signal constellation to obtain a density-

based spatial constellation clusters and their optimal centroids

is reported in [83]. The proposed method proves to be an

efficient, low-complexity equalization technique for a 64-

QAM long-haul coherent optical communication system.

E. Optical performance monitoring

Artificial neural networks are well suited machine learning

tools to perform optical performance monitoring as they can

be used to learn the complex mapping between samples or

extracted features from the symbols and optical fiber chan-

nel parameters, such as OSNR, PMD, Polarization-dependent

loss (PDL), baud rate and CD. The features that are fed

into the neural network can be derived using different ap-

proaches relying on feature extraction from: 1) the power

eye diagrams (e.g., Q-factor, closure, variance, root-mean-

square jitter and crossing amplitude, as in [49]–[53], [69]);

2) the two-dimensional eye-diagram and phase portrait [54];

3) asynchronous constellation diagrams (i.e., vector diagrams

also including transitions between symbols [51]); and 4)

histograms of the asynchronously sampled signal amplitudes

[52], [53]. The advantage of manually providing the features

to the algorithm is that the NN can be relatively simple, e.g.,

consisting of one hidden layer and up to 10 hidden units and

does not require large amount of data to be trained. Another

approach is to simply pass the samples at the symbol level

and then use more layers that act as feature extractors (i.e.,

performing deep learning) [48], [55]. Note that this approach

requires large amount of data due to the high dimensionality

of the input vector to the NN.

Besides the artificial neural network, other tools like Gaus-

sian process models are also used which are shown to perform

better in optical performance monitoring compared to linear-

regression-based prediction models [56]. The authors in [56]

also claims that sometimes simpler ML tools like the Gaussian

Process (compared to ANN) can prove to be robust under

noise uncertainties and can be easy to integrate into a network

controller.

V. DETAILED SURVEY OF MACHINE LEARNING IN

NETWORK LAYER DOMAIN

A. Traffic prediction and virtual topology design

Traffic prediction in optical networks is an important phase,

especially in planning for resources and upgrading them opti-

mally. Since one of the inherent philosophy of ML techniques

is to learn a model from a set of data and ‘predict’ the

future behavior from the learned model, ML can be effectively

applied for traffic prediction.

For example, the authors in [84], [85] propose Autore-

gressive Integrated Moving Average (ARIMA) method which

is a supervised learning method applied on time series data

[111]. In both [84] and [85] the authors use ML algorithms to

predict traffic for carrying out virtual topology reconfiguration.

The authors propose a network planner and decision maker

(NPDM) module for predicting traffic using ARIMA models.

The NPDM then interacts with other modules to do virtual

topology reconfiguration.

Since, the virtual topology should adapt with the variations

in traffic which varies with time, the input dataset in [84] and

[85] are in the form of time-series data. More specifically,

the inputs are the real-time traffic matrices observed over

a window of time just prior to the current period. ARIMA

is a forecasting technique that works very well with time

series data [111] and hence it becomes a preferred choice

in applications like traffic predictions and virtual topology

reconfigurations. Furthermore, the relatively low complexity of

ARIMA is also preferable in applications where maintaining a

lower operational expenditure as mentioned in [84] and [85].

In general, the choice of a ML algorithm is always governed

by the trade-off between accuracy of learning and complexity.

There is no exception to the above philosophy when it comes

to the application of ML in optical networks. For example,

in [86] and [87], the authors present traffic prediction in

an identical context as [84] and [85], i.e., virtual topology

reconfiguration, using NNs. A prediction module based on

NNs is proposed which generates the source-destination traffic

matrix. This predicted traffic matrix for the next period is then

used by a decision maker module to assert whether the current

virtual network topology (VNT) needs to be reconfigured.

According to [87], the main motivation for using NNs is their

better adaptability to changes in input traffic and also the

accuracy of prediction of the output traffic based on the inputs

(which are historical traffic).

In [91], the authors propose a deep-learning-based traffic

prediction and resource allocation algorithm for an intra-data-

center network. The deep-learning-based model outperforms

not only conventional resource allocation algorithms but also

a single-layer NN-based algorithm in terms of blocking per-

formance and resource occupation efficiency. The results in

[91] also bolsters the fact reflected in the previous paragraph

about the choice of a ML algorithm. Obviously deep learning,

which is more complex than a regular NN learning will be

more efficient. Sometimes the application type also determines

which particular variant of a general ML algorithm should be

used. For example, recurrent neural networks (RNN), which

best suits application that involve time series data is applied in

[90], to predict baseband unit (BBU) pool traffic in a 5G cloud

Radio Access Network. Since the traffic aggregated at different

BBU pool comprises of different classes such as residential

traffic, office traffic etc., with different time variations, the

historical dataset for such traffic always have a time dimension.

Therefore, the authors in [90] propose and implement with

good effect (a 7% increase in network throughput and an 18%

processing resource reduction is reported) a RNN-based traffic

prediction system.

Reference [112] reports a cognitive network management

module in relation to the Application-Based Network Op-

erations (ABNO) framework, with specific focus on ML-

based traffic prediction for VNT reconfiguration. However,

[112] does not mention about the details of any specific ML

algorithm used for the purpose of VNT reconfiguration. On

similar lines, [113] proposes bayesian inference to estimate

network traffic and decide whether to reconfigure a given
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Fig. 10: Schematic diagram illustrating the role of control plane housing the ML algorithms and policies for management of

optical networks.

virtual network.

While most of the literature focuses on traffic prediction

using ML algorithms with a specific view of virtual network

topology reconfigurations, [92] presents a general framework

of traffic pattern estimation from call data records (CDR). [92]

uses real datasets from service providers and operates matrix

factorization and clustering based algorithms to draw useful

insights from those data sets, which can be utilized to better

engineer the network resources. More specifically, [92] uses

CDRs from different base stations from the city of Milan.

The dataset contains information like cell ID, time interval of

calls, country code, received SMS, sent SMS, received calls,

sent calls, etc., in the form of a matrix called CDR matrix.

Apart from the CDR matrix, the input dataset also includes

a point-of-interest (POI) matrix which contains information

about different points of interests or regions most likely visited

corresponding to each base station. All these input matrices

are then applied to a ML clustering algorithm called non-

negative matrix factorization (NMF) and a variant of it called

collective NMF (C-NMF). The output of the algorithms factors

the input matrices into two non-negative matrices one of which

gives the different types basic traffic patterns and the other

gives similarities between base stations in terms of the traffic

patterns.

While many of the references in the literature focus on

one or few specific features when developing ML algorithms

for traffic prediction and virtual topology (re)configurations,

others just mention a general framework with some form of

‘cognition’ incorporated in association with regular optimiza-

tion algorithms. For example, [88] and [89] describes a multi-

objective Genetic Algorithm (GA) for virtual topology design.

No specific machine learning algorithm is mentioned in [88]

and [89], but they adopt adaptive fitness function update for

GA. Here they use the principles of reinforcement learning

where previous solutions of the GA for virtual topology design

are used to update the fitness function for the future solutions.

B. Failure management

ML techniques can be adopted to either identify the exact

location of a failure or malfunction within the network or even

to infer the specific type of failure. In [96], network kriging is

exploited to localize the exact position of failure along network

links, under the assumption that the only information available

at the receiving nodes (which work as monitoring nodes)

of already established lightpaths is the number of failures

encountered along the lightpath route. If unambiguous local-

ization cannot be achieved, lightpath probing may be operated

in order to provide additional information, which increases
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the rank of the routing matrix. Depending on the network

load, the number of monitoring nodes necessary to ensure

unambiguous localization is evaluated. Similarly, in [93] the

measured time series of BER and received power at lightpath

end nodes are provided as input to a Bayesian network which

individuates whether a failure is occurring along the lightpath

and try to identify the cause (e.g., tight filtering or channel

interference), based on specific attributes of the measurement

patterns (such as maximum, average and minimum values,

presence and amplitude of steps). The effectiveness of the

Bayesian classifier is assessed in an experimental testbed:

results show that only 0.8% of the tested instances were

misclassified.

Other instances of application of Bayesian models to de-

tect and diagnose failures in optical networks, especially

GPON/FTTH, are reported in [94] and [95]. In [94], the

GPON/FTTH network is modeled as a Bayesian Network

using a layered approach identical to one of their previous

works [114]. The layer 1 in this case actually corresponds

to the physical network topology consisting of ONTs, ONUs

and fibers. Failure propagation, between different network

components depicted by layer-1 nodes, is modeled in layer

2 using a set of directed acyclic graphs interconnected via the

layer 1. The uncertainties of failure propagation are then han-

dled by quantifying strengths of dependencies between layer

2 nodes with conditional probability distributions estimated

from network generated data. However, some of these network

generated data can be missing because of improper measure-

ments or non-reporting of data. An Expectation Maximization

(EM) algorithm is therefore used to handle missing data for

root-cause analysis of network failures and helps in self-

diagnosis. Basically, the EM algorithm estimates the missing

data such that the estimate maximizes the expected log-

likelihood function based on a given set of parameters. In [95]

a similar combination of Bayesian probabilistic models and

EM is used for failure diagnosis in GPON/FTTH networks.

In the context of failure detection, in addition to Bayesian

networks, other machine learning algorithms and concepts

have also been used. For example, in [97], two ML based

algorithms are described based on regression, classification,

and anomaly detection. The authors propose a BER anomaly

detection algorithm which takes as input historical information

like maximum BER, threshold BER at set-up, and monitored

BER per lightpath and detects any abrupt changes in BER

which might be a result of some failures of components along

a lightpath. This BER anomaly detection algorithm, which is

termed as BANDO, runs on each node of the network. The

outputs of BANDO are different events denoting whether the

BER is above a certain threshold or below it or within a pre-

defined boundary.

This information is then passed on to the input of another

ML based algorithm which the authors term as LUCIDA.

LUCIDA runs in the network controller and takes historic

BER, historic received power, and the outputs of BANDO

as input. These inputs are converted into three features that

can be quantified by time series and they are as follows:

1) Received power above the reference level (PRXhigh);

2) BER positive trend (BERTrend); and 3) BER periodicity

(BERPeriod). LUCIDA computes these features’ probabilities

and the probabilities of possible failure classes and finally

maps these feature probabilities to failure probabilities. In this

way, LUCIDA detects the most likely failure cause from a set

of failure classes.

Another notable use case for failure detection in optical

networks using ML concepts appear in [98]. Two algorithms

are proposed viz., Testing optIcal Switching at connection

SetUp time (TISSUE) and FailurE causE Localization for

optIcal NetworkinG (FEELING). The TISSUE algorithm takes

the values of estimated BER calculated at each node across a

lightpath and the measured BER and compares them. If the

differences between the slopes of the estimated and theoretical

BER is above a certain threshold a failure is anticipated. While

it is not clear from [98] whether the estimation of BER in the

TISSUE algorithm is based on ML methods, the FEELING

algorithm applies two very well-known ML methods viz.,

decision tree and SVM.

In FEELING, the first step is to process the input dataset

in the form of ordered pairs of frequency and power for

each optical signal and transform them into a set of features.

The features include some primary features like the power

levels across the central frequency of the signal and also

the power around other cut-off points of the signal spectrum

(interested readers are encouraged to look into [98] for fur-

ther details). In context of the FEELING algorithm, some

secondary features are also defined in [98] which are linear

combinations of the primary features. The feature-extraction

process is undertaken by a module named FeX. The next

step is to input these features into a multi-class classifier in

the form of a decision tree which outputs a predicted class

among three options: ‘Normal, ‘LaserDrift and ‘FilterFailure;

and ii) a subset of relevant signal points for the predicted class.

Basically, the decision tree contains a number of decision rules

to map specific combinations of feature values to classes. This

decision-tree-based component runs in another module named

signal spectrum verification (SSV) module. The FeX and SSV

modules are located in the network nodes. There are two more

modules called signal spectrum comparison (SSC) module and

laser drift estimator (LDE) module which runs on the network

controller.

In the SSC module, a similar classification process takes

place as in SSV. But here a signal is diagnosed based on the

different classes of failures just due to filtering. Here the three

classes are: Normal, FilterShift and TightFiltering. The SSC

module uses Support Vector Machines to classify the signals

based on the above three classes. First, the SVM classifies

whether the signal is ‘Normal’ or has suffered a filter-related

failure. Next, the SVM classifies the signal suffering from

filter-related failures into two classes based on whether the

failure is due to tight filtering or due to filter shift. Once

these classifications are done, the magnitude of failures related

to each of these classes are estimated using some linear

regression based estimator modules for each of the failure

classes. Finally, all these information provided by the different

modules described so far, are used in the FEELING algorithm

to return a final list of failures.

A similar multi-ML algorithm based framework like [98]
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Fig. 11: The failure detection and identification framework

adopted in [99].

for failure detection and classification is also proposed in [99]

and [100]. In [99] several ML algorithms are used and, by

tuning several model parameters, such as BER sampling time

and amount of BER data needed to train the models, one or

more proper optimized algorithm(s) is/are chosen from Binary

and Multiclass SVMs, Random Forests and neural networks.

Moreover, in paper [99], the authors propose the detection

and cause identification algorithms suggesting that a network

operator, able to early-detect a failure (and identify its cause)

before a critical BER threshold is reached, can proactively

re-route the affected traffic onto a new lightpath, so as to

minimize SLA violation and enhance (i.e., speed up) failure

recovery procedures (see Fig. 11).

In [100], optical power levels, amplifier gain, shelf temper-

ature, current draw, internal optical power are used to predict

failures using statistical regression and neural network based

algorithms that sit in the SDN controllers.

C. Flow classification

Another popular area of ML application for optical networks

is flow classification. In [101] for example, a framework is

described that observes different types of packet loss in optical

burst-switched (OBS) networks. It then classifies the packet

loss data as congestion loss or contention loss using a Hidden

Markov Model (HMM) and EM algorithms.

Another example of flow classification is presented in [102].

Here a NN is trained to classify flows in an optical data

center network. The feature vector includes a 5-tuple (source

IP address, destination IP address, source port, destination

port, transport layer protocol). Packet sizes and a set of intra-

flow timings within the first 40 packets of a flow, which

roughly corresponds to the first 30 TCP segments, are also

used as inputs to improve the training speed and to mitigate

the problem of ‘disappearing gradients’ while using gradient

descent for back-propagation.

The main outcome of the NN used in [102] is the classi-

fication of mice and elephant flows in the data center (DC).

The type of neural network used is a multi-layer perceptron

(MLP) with four hidden layers as MLPs are relatively simpler

to implement. The authors of [102] also mention the high

levels of true negative classification associated with MLPs, and

comment on importance of ensuring that mice do not flood

the optical interconnections in the DC network. In general,

mice flows do actually outnumber elephant flows in a practical

DC network, and therefore the authors in [102] suggest to

overcome this class imbalance between mice and elephant

flows by training the NN with a non-proportional amount of

mice and elephant flows.

D. Path computation

Path computation or selection, based on different physical

and network layer parameters, is a commonly studied problem

in optical networks. In Section IV for example, physical

layer parameters like QoT, modulation format, OSNR, etc.

are estimated using ML techniques. The main aim is to

make a decision about the best optical path to be selected

among different alternatives. The overall path computation

process can therefore be viewed as a cross-layer method with

application of machine learning techniques in multiple layers.

In this subsection we identify references [103] and [104] that

addresses the path computation/selection in optical networks

from a network layer perspective.

In [103] the authors propose a path and wavelength selection

strategy for OBS networks to minimize burst-loss probability.

The problem is formulated as a multi-arm bandit problem

(MABP) and solved using Q-learning. An MABP problem

comes from the context of gambling where a player tries to

pull one of the arms of a slot machine with the objective to

maximize sum of rewards over many such pulls of arms. In the

OBS network scenario, the authors in [103] use the concept

of path selection for each source-destination pair as pulling

of one of the arms in a slot machine with the reward being

minimization of burst-loss probability. In general the MABP

problem is a classical problem in reinforcement learning and

the authors propose Q-learning to solve this problem because

other methods does not scale well for complex problems.

Furthermore, other methods of solving MABP, like dynamic

programming, Gittins indices, and learning automata prove to

be difficult when the reward distributions (i.e., the distributions

of the burst-loss probability in case of the OBS scenario) are

unknown. The authors in [103] also argue that the Q-learning

algorithm has a guaranteed convergence compared to other

methods of solving the MABP problem.

In [104] a control plane decision making module for QoS-

aware path computation is proposed using a Fuzzy C-Means

Clustering (FCM) algorithm. The FCM algorithm is added to

the software-defined optical network (SDON) control plane in

order to achieve better network performance, when compared

with a non-cognitive control plane. The FCM algorithm takes

traffic requests, lightpath lengths, set of modulation formats,

OSNR, BER etc., as input and then classifies each lightpath

with the best possible parameters of the physical layer. The

output of the classification is a mapping of each lightpath

with a different physical layer parameter and how closely a

lightpath is associated with a physical layer parameter in terms

of a membership score. This membership score information is
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then utilized to generate some rules based on which real time

decisions are taken to set up the lightpaths.

As we can see from the overall discussion in this section,

different ML algorithms and policies can be used based on

the use cases and applications of interest. Therefore, one

can envisage a concise control plane for the next generation

optical networks with a repository of different ML algorithms

and policies as shown in Fig. 10. The envisaged control

plane in Fig. 10 can be thought of as the ‘brain’ of the

network that interacts constantly with the ‘network body’ (i.e.,

different components like transponders, amplifies, links etc.)

and react to the ‘stimuli’ (i.e., data generated by the network)

and perform certain ‘actions’ (i.e., path computation, virtual

topology (re)configurations, flow classification etc.). A setup

on similar lines as discussed above is presented in [115]

where a ML-based monitoring module drives a Reconfigurable

Optical Add/Drop Multiplexer (ROADM) controller which is

again controlled by a SDN controller.

VI. EVALUATION OF MACHINE LEARNING ALGORITHMS IN

OPTICAL NETWORKS

In this section, we provide a more quantitative comparison

of some of the ML applications described in Section III. To do

this, we first provide an overview of the typical performance

metrics adopted in ML. Then, we select some of the studies

discussed in Sections IV and V, and we concentrate on how the

ML algorithms used these papers are quantitatively compared

using these performance metrics. For each paper, we also

provide a quick description of the main outcome of this

comparison.

A. Performance metrics

When applying ML to a classification problem, a common

approach to evaluate the ML-algorithm performance is to show

its classification accuracy and a meadure of the algorithm

complexity, usually expressed in the form of training-phase

duration. Classification accuracy represents the fraction of

the test samples which are correctly classified. Although this

metric is intuitive, it turns out to be a poor metric in complex

classification problems, especially when the available dataset

contains an amount of samples largely unbalanced among the

various classes (e.g., a binary dataset where 90% of samples

belongs to one class). In these cases, the following and other

measures can be used:

• Confusion matrix: Given a binary classification problem,

where samples in the test set belong to either a posi-

tive or a negative class, the confusion matrix gives a

complete overview of the classifier performance, showing

1) the true positives (TP ) and true negatives (TN ),

i.e., the number of samples of the true and false class,

respectively, which have been correctly classified, and

2) the false positives (FP ) and false negatives (FN ),

i.e., the number of samples of the true and false class,

respectively, which have been misclassified. Note that,

using these definitions, accuracy can be expressed as

(TP + TN)/(TP + TN + FP + FN).

• True Positive Rate, TPR = TP/(TP + FN): This

metric falls in the [0, 1] range and captures the ability of

identifying actually positive samples in the test set (i.e.,

the larger, the better).

• False Positive Rate, FPR = FP/(FP + TN): Also

this metric falls in the [0, 1] range, and it represents

the fraction of negative samples in the test set that

are incorrectly classified as positive (i.e., the lower, the

better).

• Receiver operating characteristic (ROC) curve: In a bi-

nary classifier, an arbitrary threshold γ can be set to

distinguish between true and false instances; by increas-

ing the value of γ, we reduce the number of instances

that we classify as positive and increase the number of

samples that we classify as negative; this has the effect

of decreasing TP while correspondingly increasing FN ,

and increasing TN while correspondingly decreasing

FP ; hence, both the TPR and the FPR are reduced.

For different values of γ, the ROC curve plots the

TPR (on the vertical axis) against the FPR (on the

horizontal axis). For γ = 1, all samples are classified

as negative, therefore TPR = FPR = 0. Conversely,

for γ = 0, all samples are classified as positive, hence

TPR = FPR = 1. For any classifier, its ROC curve

always connects these two extremes. Classifiers capturing

useful information yield a ROC curve above the diagonal

in the (FPR, TPR) plane, and aim at approaching the

ideal classifier, which interconnects points (0,0), (0,1) and

(1,1).

• Area under the ROC curve (AUC): The AUC takes values

in the [0, 1] range and captures how much a given clas-

sifier approaches the performance of an ideal classifier.

While the ROC curve is an efficient graphical means

to evaluate the performance of a classifier, the AUC

is a synthetic numerical measure to indicate algorithm

performance independently from the specific choice of

the threshold γ.

• Akaike Information Criteria (AIC): This is a metric that

captures the goodness of fit for a particular model. It

measures the deviation of a chosen statistical model

from the ‘true model’ by defining a criteria which is

a mathematical function of the number of estimated

parameters by the model and the maximum likelihood

function. The model with minimum AIC is considered as

the best model to fit a given dataset [116].

• Metrics from the optical networking field: Besides nu-

merical and graphical metrics traditionally used in the

ML context, measures from the networking field can

be also adopted in combination with such metrics, in

order to have a quantitative understanding of how the

ML algorithm impacts on the optical network/system.

E.g., an operator might be interested in the minimum

number of optical performance monitors to deploy along

a lightpath to correctly classify a degraded transmission

with a given accuracy; similarly, the minimum OSNR

and/or signal power level required at an optical receiver

to correctly recognize the adopted MF. Furthermore, an

operator might also wonder how often BER samples
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TABLE III: Comparison of ML algorithms and performance metrics for a selection of existing papers.

Use Case Ref. Adopted algorithms Metrics Outcome

QoT estimation (BER
classification)

[40] Naive Bayes, Decision tree,
RF, J4.8 tree, CBR

Accuracy, false posi-
tives

CBR has highest accuracy (above 99%) with low false
positive (0.43%), decision tree reaches lowest false positive
(0.02%) at the price of much lower accuracy (86%)

QoT estimation (BER
classification)

[41] KNN, RF Accuracy, AUC, run-
ning time

RF has higher AUC and accuracy than KNN, the training
time of RF is higher than KNN but the testing time is at
least one order of magnitude lower than RNN

QoT estimation (BER
classification)

[45] KNN, RF, SVM Accuracy, Confusion
Matrix, ROC curves

SVM has the best accuracy among all three ML algorithms,
accuracy improves with size of Knowledge Base (KB)

MF recognition in
Stokes space

[63] K-means, EM, DBSCAN,
OPTICS, spectral cluster-
ing, Maximum-likelihood

Running time,
minimum OSNR to
achieve 95% accuracy

Maximum likelihood requires lowest OSNR level and has
very low running time (comparable to OPTICS, which has
lowest running time but requires much higher OSNR level)

Failure Management [94], [95] Bayesian Inference, EM Confusion Matrix The failure detection based on learning of the network
parameters is more accurate compared to the case where
an expert sets the parameters based on certain deterministic
rules

Failure Management [99] NN, RF, SVM Accuracy versus
model parameters
(BER sampling time,
amount of BER data
etc.)

With right model parameters, binary SVM can reach up to
100% accuracy for failure detection

Flow Classification
(Loss classification in
OBS networks)

[101] HMM, EM Misclassification
probability (similar
to FPR)

HMM has better accuracy and has lower misclassification
probability for static traffic type compared to dynamic
traffic, the misclassification probability also goes down
with increasing number of wavelengths per link

should be collected to predict or correctly localize an

optical failure along a lightpath with a certain accuracy.

B. Quantitative algorithms comparison

We now provide a schematic comparison of some ML

algorithms focusing on some of the use cases discussed in

Section III. To perform this comparison, we select, among the

papers surveyed in Sections IV and V, those where different

ML algorithms have been applied and compared with a same

data set. Note that a fair quantitative comparison between

algorithms in different papers is hard due to the fact that, in

each paper, the various algorithms have been designed to fit

with the specific available data set. As a consequence, a given

algorithm may perform incredibly well if applied to a certain

data set, but at the same time it may exhibit poor performance

if the data set is changed, though not substantially.

Table III provides such overview, highlighting, for each

considered use case and corresponding reference, the ML

algorithms and the evaluation metrics used for the comparison.

In the table we also provide a synthetic description of the paper

outcome.

VII. DISCUSSION AND FUTURE DIRECTIONS

In this section we discuss our vision on how this research

area will expand in next years, focusing on some specific areas

that we believe will require more attention during the next

years.

ML methodologies. We notice how the vast majority of

existing studies adopting ML in optical networks use offline

supervised learning methods, i.e., assume that the ML algo-

rithms are trained with historical data before being used to take

decisions on the field. This assumption is often unrealistic for

optical communication networks, where scenarios dynamically

evolve with time due, e.g., to traffic variations or to changes

in the behavior of optical components caused by aging. We

thus envisage that, after learning from a batch of available

past samples, other types of algorithms, in the field of semi-

supervised and/or unsupervised ML, could be implemented to

gradually take in novel input data as they are made available

by the network control plane. Under a different perspective,

re-training of supervised mechanisms must be investigated to

extend their applicability to, e.g., different network infrastruc-

tures (the training on a given topology might not be valid for

a different topology) or to the same network infrastructure at

a different point in time (the training performed in a certain

week/month/year might not be valid anymore after some time).

In a more general sense, novel ML techniques, developed ad-

hoc for optical-networking problems might emerge. Consider,

e.g., active ML algorithms, which can interactively ask the

user to observe training data with specific characteristics. This

way, the number of samples needed to build an accurate

prediction model can be consistently reduced, which may lead

to significant savings in case the dataset generation process is

costly (e.g., when probe lightpaths have to be deployed).

Data availability. As of today, vendors and operators have

not yet disclosed large set of field data to test the practi-

cality of existing solutions. This problem might be partially

addressed by emulating relevant events, as failures or signal

degradations, over optical-network testbeds, even though it

is simply impossible to reproduce the diversity of scenarios

of a real network in a lab environment. Moreover, even in

situations of complete access to real data, for some of the

use cases mentioned before, in practical assets it is difficult to
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collect extensive datasets during faulty operational conditions,

since networks are typically dimensioned and managed via

conservative design approaches which make the probability of

failures negligible (at the price of under-utilization of network

resources).

Timescales. Scarce attention has so far been devoted to

the fact that different applications might have very different

timescales over which monitored data show observable and

useful pattern changes (e.g., aging would make component

behaviour vary slowly over time, while traffic varies quickly,

and at different timescales, e.g., burst, daily, weekly, yearly

level. Understading the right timescale for the monitoring of

the parameters to be fed into ML algorithms is not only

important to optimize the accuracy of the algorithm (and hence

system performance), but it is fundamental to dimension the

amout of control/monitoring bandwidth needed to actually

implement the ML-based system. If a ML-algorithm works

perfectly, but it requires a huge amount of data to be sampled

extremely frequently, then the additional control bandwidth

required will hinder the practical application of the algorithm.

A complete cognitive control system. Another important

consideration is that all existing ML-based solutions have

addressed specific and isolated issues in optical communi-

cations and networking. Considering that software defined

networking has been demonstrated to be capable of success-

fully converging control through multiple network layers and

technologies, such a unified control could also coordinate

(orchestrate) several different applications of ML, to provide

a holistic design for flexible optical networks. In fact, as seen

in the literature, ML algorithms can be adopted to estimate

different system characteristics at different layers, such as

QoT, failure occurrences, traffic patterns, etc., some of which

are mutually dependent (e.g., the QoT of a lightpath is highly

related to the presence of failures along its links or in the

traversed nodes), whereas others do not exhibit dependency

(e.g., traffic patterns and fluctuations typically do not show

any dependency on the status of the transmission equipment).

More research is needed to explore the applicability and assess

the benefits of ML-based unified control frameworks where all

the estimated variables can be taken into account when making

decisions such as where to route a new lightpath (e.g., in terms

of spectrum assignment and core/mode assignment), when

to re-route an existing one, or when to modify transmission

parameters such as modulation format and baud rate.

Failure recovery. Another promising and innovative area for

ML application paired with SDN control is network failure

recovery. State-of-the-art optical network control tools are

tipically configured as rule-based expert systems, i.e., a set

of expert rules (IF <conditions> THEN <actions>) covering

typical failure scenarios. Such rules are specialized and deter-

ministic and usually in the order of a few tens, and cannot

cover all the possible cases of malfunctions. The application

of ML to this issue, in addition to its ability to take into

account relevant data across all the layers of a network, could

also bring in probabilistic characterization (e.g., making use

of Gaussian processes, output probability distributions rather

than single numerical/categorical values) thus providing much

richer information with respect to currently adopted threshold-

based models.

Visualization. Developing effective visualization tools to

make the information-rich outputs produced by ML algorithms

immediately accessible and comprehensible to the end users

is a key enabler for seamless integration of ML techniques

in optical network management frameworks. Though some

preliminary research steps in such direction have been done

(see, e.g., [117], where bubble charts and spectrum color maps

are employed to visualize network links experiencing high

BER), design guidelines for intuitive visualization approaches

depending on the specific aim of ML usage (e.g., network

monitoring, failure identification and localization, etc.) have

yet to be investigated and devised.

Commercialization and standardization. Though in its

infancy, applications of ML to optical networking have al-

ready attracted the interest of network operators and optical

equipment vendors, and it is expected that this attention will

grow rapidly in the near future. Among the others, we notice

some activities on QoT estimation optimization for margin re-

duction and error-aware rerouting [118], on low-margin optical

network design [119], on traffic prediction [120] and anomaly

detection [121]. Furthermore, also standardization bodies have

started looking at the application of ML for the resolution of

networking problems. Although, to the best of our knowledge,

no specific activity is currently undergoing with dedicated

focus on optical networks, it is worth mentioning, e.g., ITU-T

focus group on ML [122], whose activities are concentrated

on various aspects of future networking, such as architectures,

interfaces, protocols, algorithms and data formats.

Optics for Machine Learning (vs. Machine Learning for

optics). Finally, an interesting, though speculative, area of

future research is the application of ML to all-optical devices

and networks. Due to their inherent non-linear behaviour,

optical components could be interconnected to form structures

capable of implementing learning tasks [123]. This approach

represents an all-optical alternative to traditional software

implementations. In [124], for example, semiconductor laser

diodes were used to create a photonic neural network via

time-multiplexing, taking advantage of their nonlinear reaction

to power injection due to the coupling of amplitude and

phase of the optical field. In [125], a ML method called

“reservoir computing” is implemented via a nanophotonic

reservoir constituted by a network of coupled crystal cavities.

Thanks to their resonating behavior, power is stored in the

cavities and generates nonlinear effects. The network is trained

to reproduce periodic patterns (e.g., sums of sine waves).

To conclude, the application of ML to optical networking

is a fast-growing research topic, which sees an increasingly

strong participation from industry and academic researchers.

While in this section we could only provide a short discussion

on possible future directions, we envisage that many more

research topic will soon emerge in this area.

VIII. CONCLUSION

Over the past decade, optical networks have been growing

‘smart’ with the introduction of software defined networking,

coherent transmission, flexible grid, to name only few arising
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technical and technological directions. The combined progress

towards high-performance hardware and intelligent software,

integrated through an SDN platform provides a solid base for

promising innovations in optical networking. Advanced ma-

chine learning algorithms can make use of the large quantity

of data available from network monitoring elements to make

them ‘learn’ from experience and make the networks more

agile and adaptive.

Researchers have already started exploring the application

of machine learning algorithms to enable smart optical net-

works and in this paper we have summarized some of the

work carried out in the literature and provided insight into

new potential research directions.

GLOSSARY

ABNO Application-Based Network Operations

ANN Artificial Neural Network

API Application Programming Interface

AUC Area Under the ROC Curve

ARIMA Autoregressive Integrated Moving Average

BBU Baseband Unit

BER Bit Error Rate

BPSK Binary Phase Shift Keying

BVT Bandwidth Variable Transponders

CBR Case Based Reasoning

CD Chromatic Dispersion

CDR Call Data Records

CNN Convolutional Neural Network

C-NMF Collective Non-negative Matrix Factorization

CO Central Office

DBP Digital Back Propagation

DC Data Center

DP Dual Polarization

DQPSK Differential Quadrature Phase Shift Keying

EDFA Erbium Doped Fiber Amplifier

ELM Extreme Learning Machine

EM Expectation Maximization

EON Elastic Optical Network

FCM Fuzzy C-Means Clustering

FN False negatives

FP False positives

FTTH Fiber-to-the-home

GA Genetic Algorithm

GF Gain flatness

GMM Gaussian Mixture Model

GMPLS Generalized Multi-Protocol Label Switching

GPON Gigabit Passive Optical Network

GPR Gaussian processes nonlinear regression

HMM Hidden Markov Model

IP Internet Protocol

ISI Inter-Symbol Interference

LDE Laser drift estimator

MABP Multi-arm bandit problem

MDP Markov decision processes

MF Modulation Format

MFR Modulation Format Recognition

ML Machine Learning

MLP Multi-layer perceptron

MPLS Multi-Protocol Label Switching

MTTR Mean Time To Repair

NF Noise Figure

NFDM Nonlinear Frequency Division Multiplexing

NFT Nonlinear Fourier Transform

NLI Nonlinear Interference

NMF Non-negative Matrix Factorization

NN Neural Network

NPDM Network planner and decision maker

NRZ Non-Return to Zero

NWDM Nyquist Wavelength Division Multiplexing

OBS Optical Burst Switching

ODB Optical Dual Binary

OFDM Orthogonal Frequency Division Multiplexing

ONT Optical Network Terminal

ONU Optical Network Unit

OOK On-Off Keying

OPM Optical Performance Monitoring

OSNR Optical Signal-to-Noise Ratio

PAM Pulse Amplitude Modulation

PDL Polarization-Dependent Loss

PM Polarization-multiplexed

PMD Polarization Mode Dispersion

POI Point of Interest

PON Passive Optical Network

PSK Phase Shift Keying

QAM Quadrature Amplitude Modulation

Q-factor Quality factor

QoS Quality of Service

QoT Quality of Transmission

QPSK Quadrature Phase Shift Keying

RF Random Forest

RL Reinforcement Learning

RNN Recurrent Neural Network

ROADM Reconfigurable Optical Add/Drop Multiplexer

ROC Receiver operating characteristic

RWA Routing and Wavelength Assignment

RZ Return to Zero

S-BVT Sliceable Bandwidth Variable Transponders

SDN Software-defined Networking

SDON Software-defined Optical Network

SLA Service Level Agreement

SNR Signal-to-Noise Ratio

SPM Self-Phase Modulation

SSC Signal spectrum comparison

SSFM Split-Step Fourier Method

SSV Signal spectrum verification
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SVM Support Vector Machine

TCP Transmission Control Protocol

TN True negatives

TP True positives

VNT Virtual Network Topology

VT Virtual Topology

VTD Virtual Topology Design

WDM Wavelength Division Multiplexing

XPM Cross-Phase Modulation
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[39] T. Jiménez, J. C. Aguado, I. de Miguel, R. J. Durán, M. Angelou,
N. Merayo, P. Fernández, R. M. Lorenzo, I. Tomkos, and E. J. Abril, “A
cognitive quality of transmission estimator for core optical networks,”
IEEE/OSA Journal of Lightwave Technology, vol. 31, no. 6, pp. 942–
951, Jan. 2013.

[40] I. de Miguel, R. J. Durán, T. Jiménez, N. Fernández, J. C. Aguado,
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