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An Overview on Regression Models for
Discrete Longitudinal Responses
Brajendra C. Sutradhar

Abstract. In the longitudinal regression setup, interest may be focused
primarily on the regression parameters for the marginal expectations of
the longitudinal responses, the longitudinal correlation parameters being of
secondary interest. Second, interest may be focused on both the regression
and the longitudinal correlation parameters. Under the first setup, there exists
a “working” correlation matrix based generalized estimating equation (GEE)
approach for the estimation of the regression parameters. Under the second
setup, there exist two approaches for the joint estimation of the regression and
the longitudinal correlations. In one approach, true longitudinal correlations
are modeled and the regression and the true correlation parameters are
jointly estimated based on a GEE approach. The second approach avoids
the specification of the true longitudinal correlation structure and deals with
the joint estimation of the regression and a vector of “working” correlation
parameters. In this second approach under the second setup, there again exist
two joint estimation methods, one requiring moments up to order 4 and the
other somehow using moments up to order 2 for the construction of the
estimating equations for the “working” correlation parameters. In this paper,
we first provide an outline of the desirable features and drawbacks of each of
these four existing approaches. By using a general autocorrelation structure
to model the true longitudinal correlations, we then provide an outline of
the advantages of three new approaches. In the first new approach, the true
longitudinal correlations are estimated by the method of moments, whereas
the regression estimates are obtained based on a generalized quasi-likelihood
(GQL) estimation approach. The other two new approaches simultaneously
estimate the regression and the true longitudinal correlation parameters. It is
shown through a simulation study that, among these three new approaches,
the first approach performs the best in estimating both the regression and
the true correlation parameters, even though the longitudinal correlations are
estimated separately by the method of moments.

Key words and phrases: Binary and count responses, repeated measures,
time dependence between the responses, marginal models, consistent and
efficient estimators.

1. INTRODUCTION

In longitudinal studies, a small number of repeated
observations of a response variable and a set of covari-
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ates are made on a large number of individuals across
occasions. For example, in health care utilization data,
the number of visits to the physician by a large
number of independent individuals may be recorded
over a period of several years. Also, the information on
the covariates—gender, number of chronic conditions,
education level and age—may be recorded for each
individual. Note that as the number of visits to the
physician over the years may be treated as repeated
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measurements made on the same individual, it is
likely that these responses will be correlated. The
scientific concern is to find the effects of the covariates
on the physician visits after taking the longitudinal
correlations into account.

Note that as the joint probability model for the dis-
crete responses, such as for the Poisson responses in
the above example, is unknown, the estimation of the
regression effects, after taking the longitudinal correla-
tion structure into account, has proven to be difficult.
In a seminal paper, Liang and Zeger (1986) have by-
passed the joint probability model and introduced a
“working” correlation structure based generalized es-
timating equation (GEE) approach to obtain consistent
and efficient estimators for the regression parameters
that relate the expectation of the response to a set of co-
variates by some known link functions. To be specific,
Liang and Zeger (1986) estimate the working corre-
lation parameters by the method of moments and use
these estimates in the GEE for the regression parame-
ters. This GEE approach is usually referred to as the
GEE1 approach, which, for convenience, we refer to as
the GEE1M approach to distinguish this method of mo-
ments based GEE approach from other existing “work-
ing” correlation based approaches.

Fitzmaurice, Laird and Rotnitzky [1993, (2)–(4)]
discuss a GEE approach following Liang and Zeger
(1986) but estimate the “working” correlations through
a second set of estimating equations which is quite
similar to the set of estimating equations for the regres-
sion parameters. Note that, in this approach, the con-
struction of the estimating equations for the “working”
correlation parameters requires another “working”
correlation matrix consisting of the third- and fourth-
order moments of the responses, although Fitzmaurice,
Laird and Rotnitzky (1993) use a “working” indepen-
dence approach to construct such higher-order mo-
ments based estimating equations. We refer to this
approach as the GEE1J1 approach, which is a “work-
ing” correlation based GEE1 approach but the “work-
ing” correlation parameters are jointly estimated along
with the regression parameters through an iterative
process. For simplicity, Lipsitz, Fitzmaurice, Orav
and Laird (1994) introduced a one-step estimator for
the regression parameters as opposed to the fully
iterated GEE estimator. This approach is, however,
a special case of the GEE1J1 approach discussed by
Fitzmaurice, Laird and Rotnitzky (1993), where the
“working” correlations are estimated by using a sec-
ond set of estimating equations.

Note that under the assumption that the cluster cor-
relations of binary responses arise due to a common
random effect shared by the individuals of the cluster,
Neuhaus (1993) examined the efficiencies of the in-
dependence and pairwise “working” correlation based
GEE approaches. One of the problems with this type of
approach is that the lag correlations of the repeated re-
sponses in a cluster cannot be well explained through
the mixed model. Thus, the mixed model considered
by Neuhaus (1993) appears to be appropriate for the
analysis of cluster data with responses collected from
different individuals of the cluster as opposed to the
cluster data with responses collected repeatedly from
an individual.

Similar to Fitzmaurice, Laird and Rotnitzky (1993),
Hall and Severini (1998) also estimate the regression
and the “working” correlation parameters simultane-
ously. Hall and Severini (1998) referred to their ap-
proach as the extended generalized estimating equation
(EGEE) approach. This EGEE approach, unlike the ap-
proach of Fitzmaurice, Laird and Rotnitzky, does not
require any third- and fourth-order moments based es-
timating equations for the “working” correlation para-
meters. It rather uses a second moments based set of
estimating equations for the “working” correlation pa-
rameters. We refer to the EGEE approach of Hall and
Severini as the GEE1J2 approach as it yields joint esti-
mates for the regression and the “working” correlation
parameters.

Zhao and Prentice (1990), Prentice and Zhao (1991)
and Zhao, Prentice and Self (1992) have described ex-
tensions of the GEE methodology to allow for joint
estimation of the regression and the true longitudi-
nal correlation parameters. More specifically, Zhao
and Prentice (1990) propose a joint probability model
that is based on the “quadratic exponential family,”
with the three- and higher-way association parameters
equal to 0. The “quadratic exponential family” based
association parameters are then estimated by using the
likelihood estimating or, equivalently, the generalized
estimating equation approach. Similarly, a partly expo-
nential model is introduced by Zhao, Prentice and Self
(1992) which accommodates the association between
the responses and the likelihood, or, equivalently, the
GEE approach is used to estimate the mean and the as-
sociation parameters of the model. These GEE based
methods for the joint estimation are referred to as the
GEE2 approaches.

In Section 2, we discuss the advantages and draw-
backs of each of the above-mentioned GEE1M,
GEE1J1, GEE1J2 and GEE2 approaches. In Section 3,
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we review the performance of the generalized quasi-
likelihood (GQL) approach introduced by Sutradhar
and Das (1999) for the estimation of the regression pa-
rameters, the true longitudinal correlation parameters
being of secondary interest. In the same section, we in-
troduce two new approaches for the joint estimation of
the regression and the true correlation parameters. One
of these two approaches is developed along the lines
of the GEE2 approach of Zhao and Prentice (1990)
and Prentice and Zhao (1991), whereas the second ap-
proach is developed following the EGEE approach of
Hall and Severini (1998). These two techniques will be
referred to as the general GEE2 (GGEE2) and general
EGEE (GEGEE) approaches, respectively. A simula-
tion study in Section 4, however, shows that the GQL
approach is superior to the GGEE2 and GEGEE ap-
proaches for the estimation of the regression and the
correlation parameters of the longitudinal model. The
GQL approach is then applied to analyze two sets of
longitudinal data as an illustration. Some concluding
remarks are made in Section 6.

2. REGRESSION MODELS FOR
LONGITUDINAL DATA

Suppose that a scalar response yit and a p-dimensio-
nal vector of covariates xit are observed for clusters
i = 1, . . . ,K at a time point t , t = 1, . . . , n. For the ith
cluster, let yi = (yi1, . . . , yit , . . . , yin)

T be the response
vector and let Xi = (xi1, . . . , xit , . . . , xin)

T be the
n × p matrix of covariates. Furthermore, suppose that
the marginal density of the response yit is of the
exponential family form

f (yit ) = exp
[{yit θit − a(θit )}φ + b(yit , φ)

]
(2.1)

(Liang and Zeger, 1986), where θit = h(ηit ) with
ηit = xT

it β , a(·), b(·) and h(·) are of known functional
form, φ is a possibly unknown scale parameter and
β is the p × 1 vector of parameters of interest. In
many important situations, for example, for binary and
Poisson data, one may use φ = 1. Consequently, for
simplicity, we use φ = 1 in (2.1) and write the mean
and the variance of yit as

E(Yit ) = a′(θit ) and var(Yit ) = a′′(θit ),

where a′(θit ) and a′′(θit ) are, respectively, the first and
second derivatives of a(θit ) with respect to θit . For the
health care utilization problem introduced in Section 1,

a′(θit ) = a′′(θit ) = exp(xT
it β),

where xit is the 4 × 1 vector of covariates—gender,
number of chronic conditions, education level and
age—for the ith individual at time t , t = 1, . . . , n.

Furthermore, in the longitudinal setup, the compo-
nents of the vector yi are repeated responses, which are
likely to be correlated. Let C(ρ) be the n × n true cor-
relation matrix of yi , i = 1, . . . ,K , which is unknown
in practice. Here ρ is, say, an s ×1 vector of correlation
parameters which fully characterizes C(ρ). It is of pri-
mary interest to estimate β after taking the longitudinal
correlation structure C(ρ) into account. For the health
care utilization data, this amounts to the estimation of
the effects of all four covariates after taking the longi-
tudinal correlations of the individuals into account.

2.1 “Working” Correlation Based GEE Approaches
and Their Limitations

For Ai = diag[a′′(θi1), . . . , a
′′(θit ), . . . , a

′′(θin)] and
for known C(ρ), the quasi-likelihood estimator β̂Q

of β under (2.1) is the solution of the score equation

K∑
i=1

XT
i Ai�

−1
i (ρ)(yi − µi) = 0(2.2)

(McCullagh, 1983), where µi = (a′(θi1), . . . , a
′(θit ),

. . . , a′(θin))
T and �i(ρ) = A

1/2
i C(ρ)A

1/2
i is the true

covariance of yi . As C(ρ) is unknown in practice, it
is impossible to estimate β by solving the estimating
equations (2.2). To overcome this problem of unknown
C(ρ), Liang and Zeger (1986) introduced a “working”
correlation approach, where the estimate of β is ob-
tained by solving the estimating equations

K∑
i=1

XT
i A

1/2
i R−1

i (α̂)A
−1/2
i (yi − µi) = 0,(2.3)

where R(α) is the “working” correlation matrix used
for C(ρ) with α as, say, an s2 × 1 vector of correlation
parameters which fully characterizes the R(α) matrix.
In this “working” correlation approach, α̂ is a moment
estimator of α computed based on the Pearson residu-
als rit = (yit − a′(θit ))/{a′′(θit )}1/2. The exact form of
the estimator of α, however, depends on the assumed
form of R(α).

2.1.1 GEE1M approach. Let α̂M be the moment es-
timator of α and let β̂M be the solution of (2.3) for β

by using α̂ = α̂M. Recall that this technique for the es-
timation of β based on the moment estimator α̂M is
referred to as the GEE1M approach. This GEE1M ap-
proach has, however, many pitfalls which are discussed
by Crowder (1995) and Sutradhar and Das (1999). To
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be specific, as demonstrated by Crowder (1995), there
may not exist any solutions for α̂M for various pos-
sible reasons, leading to the complete breakdown of
the estimation of the regression parameters. Second,
even if α̂M exists, as α is not defined as the correla-
tion parameter of the model, the limiting value of α̂M
will depend on the forms chosen for R(α) and the sup-
plementary estimating equations defining α̂M. Suppose
that α̂M converges in probability to a quantity α̃. In this
case, the GEE approach still gives a consistent estima-
tor of the regression parameter β , but this estimator
(β̂M) is generally less efficient than the regression esti-
mator β̂I obtained based on the independence estimat-
ing equation approach. To verify this, by (2.3), one may
compute the asymptotic (K → ∞) covariance matrix
of β̂M and β̂I as

VM = lim
K→∞

{
K∑

i=1

XT
i A

1/2
i R−1(α̃)A

1/2
i Xi

}−1

·
{

K∑
i=1

XT
i A

1/2
i R−1(α̃)C(ρ)R−1(α̃)A

1/2
i Xi

}
(2.4)

·
{

K∑
i=1

XT
i A

1/2
i R−1(α̃)A

1/2
i Xi

}−1

and

VI = lim
K→∞

{
K∑

i=1

XT
i AiXi

}−1

·
{

K∑
i=1

XT
i A

1/2
i C(ρ)A

1/2
i Xi

}
(2.5)

·
{

K∑
i=1

XT
i AiXi

}−1

,

respectively, and compare their respective diagonal
elements.

Note that, for a given true correlation structure
C(ρ) and various choices of the “working” correlation
matrix R(α), it may be shown that, in most cases, the
diagonal elements of the VI matrix are smaller than
those of the VM matrix (Sutradhar and Das, 1999). The
reverse is true in some cases, especially when C(ρ) has
the Gaussian AR(1) structure. Thus, β̂M is generally
less efficient than β̂I. Consequently, as β̂I is always
consistent, and as it is also easier to compute, there
is no reason to prefer β̂M over β̂I for the estimation
of β . Note, however, that as β̂I is not uniformly more
efficient than β̂M, in Section 3 we review a generalized
quasi-likelihood (GQL) estimator which is consistent
and always more efficient than β̂I for β .

2.1.2 GEE1J1 approach. In this approach, the re-
gression parameters are estimated as in the GEE1M
approach but the “working” correlation parameter α is
estimated by using a second set of estimating equations
given by

K∑
i=1

∂σT
i

∂α

−1

is (α)
(
si − σi(α)

) = 0(2.6)

[cf. Fitzmaurice, Laird and Rotnitzky, 1993, (4),
page 287], where si = [(yi − µi1)(yi2 − µi2), . . . ,

(yi(n−1)−µi(n−1))(yin−µin)]′ is the {n(n − 1)/2} × 1
vector of distinct products, σi(α) = E(Si) and

is(α) = cov(Si) under the “working” correlation
structure. More specifically,

σi(α) = [
α|1−2|{a′′(θi1)a

′′(θi2)}1/2, . . . ,

α|t−t ′ |{a′′(θit )a
′′(θit ′)}1/2, . . . ,(2.7)

α|(n−1)−n|{a′′(θi(n−1))a
′′(θin)}1/2]T

for R(α) = (α|t−t ′ |) with α0 = 1, but the computation
of 
is(α) requires the formulas for the fourth-order
moments, which are unknown. Fitzmaurice, Laird and
Rotnitzky (1993) have used 
is(α) = In(n−1)/2, where
In(n−1)/2 is the {n(n − 1)/2} × {n(n − 1)/2} identity
matrix. Let α̂G be the solution of (2.6) for this choice
of the weight matrix 
is(α). Note, however, that as
E(Si) under the true correlation structure is a function
of ρ|t−t ′ |, contrary to the claim by Fitzmaurice, Laird
and Rotnitzky (1993), α̂G converges to a quantity
different from α. Let this quantity be α∗. Consequently,
similar to the GEE1M estimator, the α̂G based solution
of (2.3), say β̂G, may also be less efficient than β̂I
(Sutradhar and Kumar, 2001). For the computation of
the efficiency of β̂G as compared to β̂I, we provide the
formula for the asymptotic covariance of β̂G as

VJ1 = lim
K→∞

{
K∑

i=1

XT
i A

1/2
i R−1(α∗)A1/2

i Xi

}−1

·
{

K∑
i=1

XT
i A

1/2
i R−1(α∗)C(ρ)R−1(α∗)Z1/2

i Xi

}
(2.8)

·
{

K∑
i=1

XT
i A

1/2
i R−1(α∗)A1/2

i Xi

}−1

,

whereas the formula for the covariance matrix of β̂I is
given by (2.5).

Note that some authors, for example, Prentice and
Zhao (1991), suggest using a normal based pseudo
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weight matrix 
is , which is different from the iden-
tity weight matrix used by Fitzmaurice, Laird and
Rotnitzky (1993). For this purpose, Prentice and Zhao
constructed the fourth-order moments by pretending
that yi follows an n-dimensional normal distribution
with mean vector µi and covariance matrix Vi(α) =
A

1/2
i R(α)A

1/2
i . For example, for t < t ′ < l < m, the

formula for the covariance between the distinct cor-
rected products (yit − µit )(yit ′ − µit ′) and (yil −
µil)(yim − µim) is given by

α|t−l|α|t ′−m|{a′′(θit )a
′′(θil)}1/2

· {a′′(θit ′)a
′′(θim)}1/2

(2.9)
+α|t−m|α|t ′−l|{a′′(θit )a

′′(θim)}1/2

· {a′′(θit ′)a
′′(θil)}1/2.

Once the 
is is constructed following (2.9), the es-
timating equation (2.6) is solved for α. The estimate
of α is then used in (2.3) to estimate β . Note, how-
ever, that as the estimating equation for β still uses the
“working” correlation matrix, this approach of Prentice
and Zhao (1991), similar to the GEE1M approach, may
also produce a less efficient estimator of β than β̂I.

2.1.3 GEE1J2 approach. The construction of the
estimating equation (2.6) for the “working” correla-
tion parameter α is complicated. This is because the
weight matrix involved in this estimating equation re-
quires the computation of the fourth-order moments of
the responses. Hall and Severini (1998) avoided this
problem and estimated the “working” correlation para-
meter by using the estimating equation

K−1
K∑

i=1

[
sT
id,WT

id̄

]
(2.10)

· [
(ui − νi)

T ,
(
si − σi(α)

)T ] = 0,

which requires second-order moments only. Note that,
in (2.10), si and σi(α) are as in (2.6), ui = [(yi1 −
µi1)

2, . . . , (yit −µit )
2, . . . , (yin −µin)

2]T is the n× 1
vector of corrected squares and νi = E(Ui) under the
“working” correlation model and Wid and Wid̄ are
n × 1 and {n(n − 1)/2} × 1 vectors consisting of
the diagonal and distinct off-diagonal elements of the
Wi(α) matrix, respectively, with

Wi(α) = ∂V −1
i (α)

∂α
(2.11)

= −A
−1/2
i R−1(α)

∂R(α)

∂α
R−1(α)A

−1/2
i ,

where the specific form of ∂R(α)/∂α will depend
on the structure of the R(α) matrix. Let α̂EG be the
solution of (2.10) for α.

Furthermore, in (2.10), E(Ui) and E(Si) are com-
puted under the “working” correlation model. But,
in reality, these expectations are the functions of the
true correlation parameters ρ|t−t ′ |. Consequently, sim-
ilar to α̂G under the GEE1J1 approach, α̂EG obtained
from (2.10) may also not converge to α. Let α̂EG
converge to ᾱ. Then the estimator of β , say β̂EG,
is obtained from (2.3) by putting α̂ = α̂EG. Since
the estimating equations (2.3) and (2.10) are jointly
solved under this approach, under some mild condi-
tions (β̂T

EG, α̂EG)T has the asymptotic covariance ma-
trix given by

V ∗
J2

= lim
K→∞

[
K∑

i=1

(
Ai11 Ai12

Ai21 Ai22

)]−1

·
[

K∑
i=1

(
Mi11 Mi12

Mi21 Mi22

)]
(2.12)

·
[

K∑
i=1

(
Ai11 Ai12

Ai21 Ai22

)]−1

,

where

Ai11 = −D̃T
i V −1

i (ᾱ)D̃i, Ai12 = 0,

Ai21 = −W̃T
i λ′

iβ , Ai22 = −Q̃T
i λ′

iα,

with

D̃i = ∂µi

∂βT
, W̃i = [

WT
id,WT

id̄

]T
,

λi = (
νT
i , σ T

i (α)
)T

, λ′
iβ = ∂λi

∂βT
, λ′

iα = ∂λi

∂α
,

and where

Mi11 = D̃T
i V −1

i (α)�i(ρ)V −1
i (α)D̃i,

Mi12 = D̃T
i V −1

i (α) cov(Yi,Fi)W̃i,

Mi21 = MT
i12, Mi22 = W̃T

i var(Fi)W̃i,

with fi = (uT
i , sT

i )T . The covariance matrices,
cov(Yi,Fi) and var(Fi), may be computed follow-
ing (2.9) by using a pseudo-normal distribution for yi .
The leading p × p matrix of V ∗

J2
(2.12) provides the

cov(β̂EG), which is used to compute the efficiency of
β̂EG as compared to β̂I. By numerical comparisons as
in the GEE1J1 approach, it can be shown that β̂EG may
be less efficient than β̂I under misspecification of the
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“working” correlation structure (Sutradhar and Kumar,
2001). Thus, from an efficiency point of view, none
of the three “working” correlation based approaches,
namely, GEE1M, GEE1J1 and GEE1J2, performs well
when estimating the regression parameter vector β .
This is because they may produce inefficient estima-
tors as compared to the “working” independence based
estimating equation approach. Furthermore, estimation
of β is naturally more complicated under these ap-
proaches as compared to the computation of β̂I.

Note, however, that although β̂I performs, in general,
better than any of the three estimators β̂M or β̂G or β̂EG,
this is not a uniformly more efficient estimator. The
efficiency of β̂I can be considerably low, for example,
for the case when the true correlation structure is AR(1)
(Sutradhar and Das, 1999, Table 2). This suggests
that we seek a better estimator than β̂I in terms of
both consistency and efficiency, which we discuss in
Section 3.

2.2 GEE2 Approach and Its Limitations

As opposed to the “working” correlation struc-
ture based GEE1M, GEE1J1 and GEE1J2 approaches,
one may construct a true correlation structure based
joint estimating equation approach (Prentice and Zhao,
1991) for the estimation of β and α. For true corre-
lation structure C(ρ), these estimating equations for
β and ρ may be written as

K∑
i=1

XT
i A

1/2
i C−1(ρ)A

−1/2
i (yi − µi) = 0(2.13)

and

K∑
i=1

∂σ̃ T
i (ρ)

∂ρ

̃−1

is (ρ)
(
si − σ̃i(ρ)

) = 0,(2.14)

respectively. Let β∗
G and ρ∗

G be the solutions of
(2.13) and (2.14) for β and ρ, respectively. Note
that σ̃i(ρ) and 
̃is(ρ) in (2.14) are the expectation
and the covariance matrix of si (2.6) under the true
correlation structure C(ρ). Thus, for known C(ρ)

and 
̃is(ρ), β∗
G and ρ∗

G are the well-known quasi-
likelihood (QL) estimators of β and ρ, respectively.
Consequently, β∗

G will be consistent and also more effi-
cient than β̂I. Note that even if one can write a suitable
structure for the C(ρ) matrix in the longitudinal setup
(see Section 3), the construction of the 
̃is(ρ) matrix
is extremely difficult. Thus, the estimating equations
(2.13) and (2.14) become useless, in general, in the lon-
gitudinal setup.

Furthermore, note that some authors have exploited
the estimating equations (2.13) and (2.14) under cer-
tain special correlation models. For example, Zhao
and Prentice (1990) attempt to use these estimat-
ing equations by modeling the correlations of the re-
sponses arising from a “quadratic exponential family”
model. Similarly, Fitzmaurice and Laird (1993) mod-
eled the correlation structure based on a mixed parame-
ter model. Note that these approaches, however, are not
able to model the Gaussian-type AR(1), MA(1) and ex-
changeable correlation structures appropriately for the
longitudinal data.

In the next section, the true longitudinal correla-
tions of the data are modeled through a general au-
tocorrelation structure which accommodates the usual
AR(1), MA(1) and exchangeable-type correlation pat-
terns. This general correlation structure is then used to
obtain a generalized quasi-likelihood (GQL) estimator
for the regression vector β , which requires only a mo-
ment estimate for the true correlation parameter ρ.

3. GENERAL AUTOCORRELATION STRUCTURE
BASED GEE APPROACHES

The “working” correlation structure based GEE
estimators β̂M, β̂G and β̂EG were originally developed
to gain efficiency in β estimation, as compared to the
“working” independence based estimator β̂I. But, as
was demonstrated in the previous section (see also
Sutradhar and Das, 1999; Sutradhar and Kumar, 2001),
these three estimators are rather less efficient than β̂I
in many situations. So, it remains as an important
issue to find an estimator of β which will always
be more efficient than β̂I. In this section, we review
the longitudinal model with true correlation structure
as suggested by Sutradhar and Das (1999, Section 3)
and include three new estimation approaches for the
estimation of β under such a longitudinal model.

In the first approach, we follow Sutradhar and Das
(1999) and construct a generalized quasi-likelihood
(GQL) estimator for β , where the associated longitu-
dinal correlations are estimated by the method of mo-
ments. In the second approach, we exploit the true
correlation structure as in the first approach but es-
timate the regression and the correlation parameters
jointly following the GEE2 approach of Prentice and
Zhao (1991). The third approach is similar to the sec-
ond approach, but it estimates the regression and the
correlation parameters jointly by following the EGEE
approach of Hall and Severini (1998). We refer to these
approaches as the GQL, GGEE2 and GEGEE, respec-
tively.
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3.1 GQL Estimation Approach

In this approach, the quasi-likelihood estimator of β

is the root of the score equation

K∑
i=1

XT
i Ai�

−1
i (ρ)(yi − µi) = 0,(3.1)

where �i(ρ) = A
1/2
i C(ρ)A

1/2
i , with C(ρ) as the true

correlation structure, given by

C(ρ1, . . . , ρn−1)

=




1 ρ1 ρ2 · · · ρn−1
ρ1 1 ρ1 · · · ρn−2
...

...
...

...

ρn−1 ρn−2 ρn−3 · · · 1




(3.2)

(Sutradhar and Das, 1999, Section 3). The GQL (gener-
alized quasi-likelihood) estimate of β is then computed
by solving the estimating equation

K∑
i=1

XT
i Ai�

−1
i (ρ̂)(yi − µi) = 0,(3.3)

where �i(ρ̂) = A
1/2
i C(ρ̂1, . . . , ρ̂n−1)A

1/2
i , and for l =

|t − t ′|, t �= t ′, t, t ′ = 1, . . . , n, the autocorrelation of
lag l, ρl , is estimated by the method of moments as

ρ̂l =
∑K

i=1
∑n−l

t=1 ỹit ỹi,t+l/K(n − l)∑K
i=1

∑n
t=1 ỹ2

it /Kn
(3.4)

[cf. Sutradhar and Kovacevic, 2000, (2.18)], where
ỹit is the standardized residual, defined as ỹit =
(yit − µit )/{a′′(θit )}1/2. Let β̂GQL denote this estima-
tor, which is consistent for β . Under some mild con-
ditions, it can be shown that β̂GQL has the asymptotic
covariance matrix V ∗

G given by

V ∗
G = lim

K→∞

{
K∑

i=1

XT
i A

1/2
i C−1

(3.5)

· (ρ1, . . . , ρn−1)A
1/2
i Xi

}−1

.

Next, as the β̂I has the asymptotic covariance matrix
given by (2.5), similar to the correlated linear model
case, a comparison of (3.5) with (2.5) shows that β̂GQL

is always more efficient than β̂I.

3.2 GGEE2 Approach for Regression and
Longitudinal Correlation Parameters

As opposed to the GQL approach, we now estimate
β and ρl , l = 1, . . . , n − 1, by solving two sets of

estimating equations. The estimating equation for β

remains the same as (3.3), whereas a new set of
estimating equations for ρl , l = 1, . . . , n−1, is defined
as

K∑
i=1

∂σ̃ T
i (ρ1, . . . , ρn−1)

∂ρl


̃−1
is (ρ1, . . . , ρn−1)

(3.6)

· (
si − σ̃i(ρ1, . . . , ρn−1)

) = 0.

Note that although the estimating equations (3.6)
are similar to the estimating equations (2.14), they
are, however, quite different. This is because the es-
timating equations (2.14) use a “quadratic exponential
family” based correlation structure under the GEE2 ap-
proach of Prentice and Zhao (1991), whereas (3.6) use
a general longitudinal autocorrelation structure which
accommodates Gaussian-type AR(1), MA(1) and ex-
changeable correlations. Furthermore, note that al-
though Prentice and Zhao (1991) solve the estimating
equations for β and correlation parameters simultane-
ously, for simplicity, we solve (3.3) and (3.6) sepa-
rately (cf. Fitzmaurice, Laird and Rotnitzky, 1993), in
a cycle of iterations, to obtain the estimates of β and
ρ1, . . . , ρn−1.

To be specific, in (3.6) σ̃i(ρ1, . . . , ρn−1) is given by

σ̃i (ρ1, . . . , ρn−1)

= [
ρ1{a′′(θi1)a

′′(θi2)}1/2, . . . ,
(3.7)

ρ|t−t ′ |{a′′(θit )a
′′(θit ′)}1/2, . . . ,

ρ1{a′′(θi(n−1))a
′′(θin)}1/2]T ,

so that

∂σ̃i(ρ1, . . . , ρn−1)

∂ρl

= [
δT
n−1,l{a′′(θi1)a

′′(θi(l+1))}1/2, . . . ,(3.8)

δT
n−t,l{a′′(θit )a

′′(θi(t+l))}1/2, . . . ,

δT
n−(n−1),l{a′′(θi(n−l))a

′′(θin)}1/2]T ,

where δT
n−t,l is the 1 × (n − t) vector with 1 at the

lth position and 0 elsewhere whenever l ≤ n − t , for
t ranging from 1 to n − 1. For l > n − t , δT

n−t,l is a
zero vector always. Now, by constructing the covari-
ance matrix 
̃is(ρ1, . . . , ρn−1) of si , based on the nor-
mality assumption of yi with mean µi and covariance
matrix �i(ρ1, . . . , ρn−1) = A

1/2
i C(ρ1, . . . , ρn−1)A

1/2
i ,

one obtains the GEE2 estimators of ρ1, . . . , ρn−1 by
solving the estimating equations (3.6). Let β̂GGEE2 and
ρ̂1,GGEE2, . . . , ρ̂n−1,GGEE2 be the GGEE2 estimators of
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β and ρ1, . . . , ρn−1, respectively, which are obtained
by solving the estimating equations (3.3) and (3.6).

It then follows that β̂GGEE2 has the same asymp-
totic covariance structure as V ∗

G, the covariance of
β̂GQL given in (3.5), but the estimates of V ∗

G un-
der the two approaches GGEE2 and GQL are gener-
ally different. This is because these two approaches
yield different estimates for ρ1, . . . , ρn−1. Note that as

̃is(ρ1, . . . , ρn−1) is a “working” covariance matrix,
an estimate of the (n − 1) × (n − 1) covariance ma-
trix of ρ̂GGEE2 = (ρ̂1,GGEE2, . . . , ρ̂n−1,GGEE2)

T may be
obtained by using a “sandwich”-type formula given by

ˆcov(ρ̂GGEE2) =
[

K∑
i=1

(
∂σ̃i

∂ρT

)T


̃−1
is

(
∂σ̃i

∂ρT

)]−1

·
[

K∑
i=1

(
∂σ̃i

∂ρT

)T


̃−1
is (si − σ̃i )

(3.9)

· (si − σ̃i)
T 
̃−1

is

(
∂σ̃i

∂ρT

)T
]

·
[

K∑
i=1

(
∂σ̃i

∂ρT

)T


̃−1
is

(
∂σ̃i

∂ρT

)]−1

,

evaluated at ρ = ρ̂GGEE2 and β = β̂GGEE2.

3.3 GEGEE Approach for Regression and
Longitudinal Correlation Parameters

One of the disadvantages of the GGEE2 approach
discussed in the previous section is that it requires the
formulas for the fourth-order moments to construct the
weight matrix 
̃is in (3.6), which are not possible to
compute exactly even if the true correlation structure is
known. Note that the extended generalized estimating
equations (2.3) and (2.10) (Hall and Severini, 1998) for
the regression and the correlation parameters, in con-
trast, avoid the computations of the third- and fourth-
order moments. But, as the estimating equation (2.10)
is constructed to estimate the so-called “working” cor-
relation parameters, this EGEE approach consequently
suffers from various pitfalls (Sutradhar and Kumar,
2001) similar to those of the GEE2 approach. As a rem-
edy, one may still follow the EGEE approach but esti-
mate the regression parameter β by exploiting the true
correlation structure. This means that the estimating
equation for the regression parameter vector β will be
a function of the true correlation parameters instead of
the so-called “working” correlation parameters. Con-
sequently, one is required to construct the estimating

equations for the true correlation parameters following
the same technique as used by Hall and Severini (1998)
for the “working” correlation parameters.

To be specific, similar to the GQL and GGEE2
approaches, for known ρ1, . . . , ρn−1, the estimating
equation for β under the present GEGEE approach is
given by

K∑
i=1

XT
i Ai�

−1
i (ρ1, . . . , ρn−1)(yi − µi) = 0,(3.10)

which is the same as the estimating equation (3.3).
For the construction of the estimating equations for
ρ = (ρ1, . . . , ρn−1)

T , we, however, follow Hall and
Severini (1998) and, for l = 1, . . . , n − 1, construct the
Wil(ρ1, . . . , ρn−1) matrix as

Wil(ρ1, . . . , ρn−1)

= ∂�−1
i (ρ1, . . . , ρn−1)

∂ρl

= −A
−1/2
i C−1(ρ1, . . . , ρn−1)(3.11)

· ∂C(ρ1, . . . , ρn−1)

∂l

· C−1(ρ1, . . . , ρn−1)A
−1/2
i ,

where, unlike the “working” correlation approach, the
form of ∂C(ρ1, . . . , ρn−1)/∂ρl is completely specified.
For example, as the autocorrelation matrix C(ρ1, . . . ,

ρn−1) has ρ1 only in the first upper and lower diago-
nals, for l = 1, ∂C(ρ1, . . . , ρn−1)/∂ρl has the specific
form given by

∂C(ρ1, . . . , ρn−1)

∂ρ1
=




0 1 0 · · ·0
1 0 1 · · ·0
0 1 0 · · ·0
...
...
...

...

0 0 0 · · ·0




.(3.12)

Similarly, we can compute the other derivatives with
respect to ρ2, . . . , ρn−1. Now, following (2.10), one
may write the estimating equations for ρ1, . . . , ρn−1 as

K−1
K∑

i=1

[
W ∗T

id ,W ∗T
id̄

]
· [

(ui − νi)
T ,

(
si − σ̃i (ρ1, . . . , ρn−1)

)T ]
= 0,

(3.13)

where W ∗T
id and W ∗T

id̄
are the n × (n − 1) and {n(n −

1)/2} × (n − 1) matrices such that the lth, l = 1, . . . ,

n − 1, column of the W ∗T
id matrix consists of the
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diagonal elements of the Wil(ρ1, . . . , ρn−1) matrix
in (3.11), and similarly the lth, l = 1, . . . , n − 1, col-
umn of the W ∗T

id̄
matrix consists of the distinct off-

diagonal elements of the Wil(ρ1, . . . , ρn−1) matrix.
In (3.13), σ̃1(ρ1, . . . , ρn−1) is the {n(n − 1)/2} × 1
vector defined as in (3.7). Next, the regression vec-
tor β and the true correlation parameters ρ1, . . . , ρn−1
are estimated by solving the estimating equations
(3.10) and (3.13) simultaneously. Let β̂GEGEE and
ρ̂GEGEE = (ρ̂1,GEGEE, . . . , ρ̂n−1,GEGEE)T denote the
GEGEE estimator of β and ρ = (ρ1, . . . , ρn−1)

T , re-
spectively.

Furthermore, it may be shown that, under some
mild conditions, ξ̂GEGEE = (β̂T

GEGEE, ρ̂T
GEGEE)T has the

asymptotic covariance matrix given by

cov(ξ̂GEGEE) = lim
K→∞

[
K∑

i=1

(
A∗

i11 A∗
i12

A∗
i21 A∗

i22

)]−1

·
[

K∑
i=1

(
M∗

i11 M∗
i12

M∗
i21 M∗

i22

)]
(3.14)

·
[

K∑
i=1

(
A∗

i11 A∗
i12

A∗
i21 A∗

i22

)]−1

,

where A∗
i11 = −D̃T

i �−1
i (ρ1, . . . , ρn−1)D̃i , A∗

i12 = 0,
A∗

i21 = −W ∗T
i λ∗′

iβ and Ai22 = −W ∗T
i λ∗′

iρ , with W ∗
i =

[W ∗T
id ,W ∗T

id̄
]T , λ∗

i = (νT
i , σ̃−1

i (ρ1, . . . , ρn−1))
T , λ∗′

iβ =
∂λ∗

i /∂β
T and λ∗′

iρ = [∂λ∗
i /∂ρ1, . . . , ∂λ∗

i /∂ρn−2], and
where

M∗
i11 = D̃T

i �−1
i (ρ1, . . . , ρn−1)D̃i,

M∗
i12 = D̃T

i �−1
i (ρ1, . . . , ρn−1) cov(Yi,Fi)W

∗
i ,

M∗
i21 = M∗T

i12, Mi22 = W ∗T
i var(Fi)W

∗
i ,

with fi = (uT
i , sT

i )T as in (2.12). The covariance
matrices, cov(Yi,Fi) and var(Fi), are computed by
using a pseudo-normal distribution for yi with mean µi

and covariance matrix �i (ρ1, . . . , ρn−1).
In the following section, the performance of the

GQL, GGEE2 and GEGEE approaches will be ex-
amined through a simulation study for the estimation
of both the regression and the correlation parameters.
More specifically, the purpose of the simulation study
will be to examine the performance of the regression
and correlation estimators, as well as the performance
of the estimators of standard errors of the regres-
sion estimates computed from (3.5) by using (3.4) for
the GQL approach, from (3.5) by using (3.6) for the
GGEE2 approach and from (3.14) for the GEGEE ap-
proach.

4. A SIMULATION STUDY

To compare the performance of the GQL, GGEE2
and GEGEE approaches through a simulation study,
we generate correlated Poisson data following three
widely used AR(1), MA(1) and exchangeable autocor-
relation structures. For convenience, we describe these
three probability models in brief as follows.

Poisson AR(1) probability model. Let the response
yit at time t be related to yi,t−1 at time t − 1 as

yit = ρ ∗ yi,t−1 + dit(4.1)

(McKenzie, 1988), where yi,t−1 has the Poisson distri-
bution with parameter µi· = exp(xT

i·β) with xi· = xit

for all t = 1, . . . , n (i.e., covariates are not time de-
pendent). Let yi,t−1 ∼ P (µi·) denote this Poisson
distribution. In (4.1), ρ is a constant scale parameter
satisfying the range restriction 0 ≤ ρ ≤ 1. Further, for
given yi,t−1, ρ ∗ yi,t−1 in (4.1) is computed through a
binomial thinning operation (McKenzie, 1988). To be
specific, ρ ∗ yi,t−1 is the sum of yi,t−1 binary observa-
tions, where each observation is generated with proba-
bility ρ. In notation,

ρ ∗ yi,t−1 =
yi,t−1∑
j=1

bj (ρ)

(4.2)

= zi,t−1, say,

with Pr[bj (ρ) = 1] = ρ and Pr[bj (ρ) = 0] = 1 − ρ.
It then follows that, conditional on yi,t−1, zi,t−1 has
the binomial distribution. Denote this binomial distri-
bution by B(yi,t−1, ρ). Next, by assuming that dit ∼
P (µi·(1 − ρ)) and is independent of zi,t−1, it may
be shown that yit ∼ P (µi·). It also follows that
E(yit , yi,t−l ) = µ2

i· + µi·ρl , yielding the lag l corre-
lation between yit and yi,t−l as ρl , which is the same
as the lag l correlation under the Gaussian AR(1) au-
tocorrelation structure. Note, however, that ρ in (4.1)
satisfies the range restriction 0 ≤ ρ ≤ 1, whereas in
the Gaussian AR(1) structure ρ lies in the range
−1 < ρ < 1.

Poisson MA(1) probability model. In this process,
the response yit is related to the dit ’s as

yit = ρ ∗ di,t−1 + dit ,(4.3)

where dit
i.i.d.∼ P (µi·/(1 + ρ)) for all t = 1, . . . , n.

By similar calculations as in the AR(1) process, one
obtains

corr(yit , yi,t−l ) =
{

ρ/(1 + ρ), for l = 1,

0, otherwise,
(4.4)



386 B. C. SUTRADHAR

which has the same form as in the Gaussian MA(1)
correlation structure, except that in the present setup
0 ≤ ρ ≤ 1, whereas under the Gaussian structure −1 <

ρ < 1.
Poisson equicorrelation probability model. Suppose

that yi0 is a Poisson variable with mean parameter µi·.
Also suppose that dit

i.i.d.∼ P (µi·(1 − ρ)) for all t =
1, . . . , n. By similar arguments as for the AR(1) and
MA(1) processes, one can show that yit given by

yit = ρ ∗ yi0 + dit(4.5)

also follows the Poisson distribution, that is, yit ∼
P (µi·). Further, it can be shown that

corr(yit , yi,t−k) = ρ(4.6)

for all l = 1,2, . . . , with 0 ≤ ρ ≤ 1 instead of −1/(n −
1) ≤ ρ ≤ 1 under the Gaussian equicorrelation model.

In the simulation, we consider large values of ρ =
0.6 and 0.8 under the AR(1) process, ρ = 0.2 and 0.4
under the MA(1) process and ρ = 0.6 and 0.8 for the
equicorrelation process. Irrespective of the correlation
processes, we consider p = 2 with β1 = β2 = 0. Fur-
ther, we consider K = 100 clusters each with n = 4 re-
peated Poisson observations generated following each
of the above three correlation processes. As far as
the selection of covariates is concerned, we consider
two design matrices. The two covariates under the first
design (D1) were chosen as

xij1 =




−1, for j = 1, . . . , n;
i = 1, . . . ,K/4,

0, for j = 1, . . . , n;
i = (K/4) + 1, . . . ,K/2,

0, for j = 1, . . . , n;
i = (K/2) + 1, . . . ,3K/4,

1, for j = 1, . . . , n;
i = (3K/4) + 1, . . . ,K

and

xij2 = z∗
i for j = 1, . . . , n; i = 1, . . . ,K,

where z∗
i is a standard normal value. Under the second

design (D2), the second covariate was chosen to be the
same as in the first design D1, but the first covariate
was chosen to be cluster as well as time dependent.
More specifically,

xij1 =




−j/n, for j = 1, . . . , n;
i = 1, . . . ,K/4,

j, for j = 1, . . . , n;
i = (K/4) + 1, . . . ,K/2,

j − (n + 1)/2, for j = 1, . . . , n;
i = (K/2) + 1, . . . ,3K/4,

j/n, for j = 1, . . . , n;
i = (3K/4) + 1, . . . ,K.

Based on the above designs, we then generated four
correlated Poisson observations under the ith (i =
1, . . . ,K) cluster, following (4.1) for the AR(1)
process, (4.3) for the MA(1) process, and (4.5) for the
equicorrelation process.

Note that as we have generated a proper discrete
correlated data set under each of the three correlation
processes, we may now apply the GQL, GGEE2 and
GEGEE estimation approaches discussed in Section 3
to examine their performances in estimating ρ1, ρ2, ρ3
and β1, β2. Further, note that although we have gener-
ated the count data under AR(1), MA(1) and equicorre-
lation structures, the correlation model is, however, not
known in practice except that we may use the form of
the correlation structure given by (3.2) for the purpose
of estimation. We have used 500 simulations and it was
found that the GEGEE approach of Hall and Severini
(1998), in general, has serious convergence problems
for the estimation of ρ1, ρ2 and ρ3, yielding inconsis-
tent estimates for β1 and β2. Consequently, we do not
report the simulation results for this approach, but ex-
plain the behavior of the GQL approach of Sutradhar
and Das (1999) and the GGEE2 approach of Zhao
and Prentice (1990). Note that the GQL approach uses
the sample autocorrelation formula (3.4) to estimate
its population counterpart, whereas the GGEE2 ap-
proach uses the estimating equation (3.6) to estimate
ρl , l = 1,2,3, which requires the construction of a nor-
mality based “working” fourth-order covariance matrix
with general elements given by

cov
(
(Yit − µit )(Yit ′ − µit ′), (Yil − µil)(Yim − µim)

)
= ρ|t−l|ρ|t ′−m|{a′′(θit )a

′′(θil)}1/2

· {a′′(θit ′)a
′′(θim)}1/2

+ ρ|t−m|ρ|t ′−l|{a′′(θit )a
′′(θim)}1/2

· {a′′(θit ′)a
′′(θil)}1/2,

where, for example, a′′(θit ) = µit = exp(x′
itβ) un-

der the present Poisson model. The GQL and GGEE2
approaches, however, use the same estimating equa-
tion (3.3) to obtain the regression estimates. Thus, the
regression estimates under these two approaches would
be different only because of different correlation esti-
mates used in (3.3) under the two approaches. The sim-
ulated mean (SM) and simulated standard error (SSE)
are computed for each of the two regression estimates,
as well as for the estimates of all three lag correla-
tions. The estimated standard errors of the regression
estimates are also computed by using the estimate of
the covariance matrix of regression estimates given
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TABLE 1
Simulated means (SM), simulated standard errors (SSE) and estimated standard errors (ESE) of the GQL and

GGEE2 estimates for regression coefficients and autocorrelation for selected values of the true correlation
parameter for the Poisson AR(1) process with n = 4, K = 100, β1 = β2 = 0, based on 500 simulations

AR(1) Number of Estimate
correlation convergent

Design Method parameter (ρ) simulations Statistic β̂1 β̂2 ρ̂1 ρ̂2 ρ̂3

D1 GQL 0.6 500 SM −0.003 −0.001 0.595 0.352 0.203
SSE 0.085 0.049 0.061 0.088 0.108
ESE 0.086 0.050

486 SM −0.002 0.000 0.584 0.348 0.205
SSE 0.087 0.050 0.060 0.085 0.109
ESE 0.085 0.049

0.8 500 SM 0.000 0.003 0.791 0.626 0.496
SSE 0.096 0.056 0.043 0.070 0.098
ESE 0.098 0.057

425 SM 0.000 0.000 0.784 0.616 0.483
SSE 0.100 0.056 0.041 0.067 0.093
ESE 0.098 0.056

GGEE2 0.6 486 SM −0.004 0.000 0.592 0.348 0.199
SSE 0.085 0.050 0.058 0.085 0.106
ESE 0.086 0.050

0.8 425 SM 0.001 0.000 0.734 0.580 0.459
SSE 0.100 0.056 0.113 0.110 0.129
ESE 0.096 0.056

D2 GQL 0.6 500 SM −0.004 −0.004 0.592 0.349 0.208
SSE 0.044 0.087 0.051 0.078 0.105
ESE 0.040 0.083

495 SM −0.004 0.000 0.591 0.348 0.208
SSE 0.044 0.087 0.050 0.077 0.105
ESE 0.040 0.083

0.8 500 SM −0.004 −0.005 0.794 0.636 0.510
SSE 0.033 0.089 0.036 0.055 0.082
ESE 0.037 0.096

435 SM −0.004 −0.002 0.788 0.630 0.503
SSE 0.029 0.090 0.032 0.051 0.079
ESE 0.037 0.096

GGEE2 0.6 495 SM −0.005 0.000 0.587 0.351 0.214
SSE 0.046 0.087 0.107 0.105 0.129
ESE 0.040 0.083

0.8 435 SM −0.005 −0.002 0.737 0.594 0.482
SSE 0.032 0.092 0.108 0.108 0.124
ESE 0.037 0.094

in (3.5). The simulation results based on 500 simula-
tions are reported in Tables 1–3 for the AR(1), MA(1)
and equicorrelation processes, respectively.

The results in Tables 1–3 show that while there is no
convergence problem in the GQL approach to estimate
ρl by ρ̂l (3.4), the estimating equations (3.6) of the
GGEE2 approach, however, yielded ρ̂l greater than 1 in
many simulations under the AR(1) and equicorrelation
processes. The problem becomes serious for larger ρ, ρ
being the correlation parameter of a given process. For

example, for ρ = 0.8, the GGEE2 approach yielded
correlation estimates within the permissible range only
in 425 out of 500 simulations. For the GGEE2 ap-
proach, the selection of the design matrix does not ap-
pear to have a significant effect on the convergence for
correlation estimates. For example, for the equicorre-
lation process with ρ = 0.8, it is clear from Table 3
that the convergence was achieved in 471 simulations
with design D1, and in 465 simulations with design D2,
showing a slight change only. The number of conver-
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TABLE 2
Simulated means (SM), simulated standard errors (SSE) and estimated standard errors (ESE) of the GQL and

GGEE2 estimates for regression coefficients and autocorrelation for selected values of the true correlation
parameter for the Poisson MA(1) process with n = 4, K = 100, β1 = β2 = 0, based on 500 simulations

MA(1) Number of Estimate
correlation convergent

Design Method parameter (ρ) simulations Statistic β̂1 β̂2 ρ̂1 ρ̂2 ρ̂3

D1 GQL 0.2 500 SM 0.002 0.002 0.191 −0.006 0.004
SSE 0.083 0.063 0.058 0.073 0.100
ESE 0.081 0.063

0.4 500 SM −0.004 −0.004 0.396 −0.005 −0.004
SSE 0.085 0.069 0.059 0.074 0.097
ESE 0.088 0.070

GGEE2 0.2 500 SM 0.002 0.002 0.184 −0.006 0.005
SSE 0.083 0.063 0.063 0.070 0.098
ESE 0.080 0.063

0.4 500 SM −0.004 −0.004 0.381 −0.002 −0.004
SSE 0.085 0.069 0.075 0.074 0.107
ESE 0.088 0.069

D2 GQL 0.2 500 SM 0.000 0.000 0.192 −0.004 0.007
SSE 0.038 0.062 0.058 0.073 0.100
ESE 0.035 0.063

0.4 500 SM 0.000 −0.001 0.397 −0.004 −0.001
SSE 0.038 0.068 0.050 0.075 0.098
ESE 0.038 0.069

GGEE2 0.2 500 SM 0.000 0.000 0.185 −0.004 0.007
SSE 0.038 0.062 0.063 0.071 0.098
ESE 0.035 0.062

0.4 500 SM 0.000 0.000 0.382 −0.001 −0.001
SSE 0.038 0.068 0.073 0.074 0.108
ESE 0.037 0.068

gent simulations mainly for the GGEE2 approach are
shown in column 4 in each of the three tables, for dif-
ferent ρ values. Note that, for the GQL process, we
have reported two different simulation results under the
AR(1) and equicorrelation processes. First, the simula-
tion results based on all 500 convergent simulations are
reported. Next, we have also reported the simulation re-
sults for this GQL approach based on those simulations
which yielded correlation estimates under the GGEE2
approach.

Note that the GQL approach performs almost the
same even if the simulation estimates are obtained
based on fewer simulations. For example, for the
AR(1) process with ρ = 0.8 under D1, the GQL ap-
proach produces lag correlation estimates of 0.791,
0.626 and 0.496 based on all 500 simulations, whereas
these correlation estimates are 0.784, 0.616 and 0.483
based on 425 simulations. When these estimates are
compared with the GGEE2 of estimates 0.734, 0.580
and 0.459, it is clear that the GQL approach produces

less biased estimates for ρl = ρl with ρ = 0.8. The
GQL approach continues to perform better than the
GGEE2 approach in estimating lag correlations under
the MA(1) and equicorrelation models, too. The sim-
ulated standard errors (SSEs) of the correlation esti-
mates are, in general, larger for the GGEE2 approach
as compared to the GQL approach. For example, un-
der the equicorrelation process with design D2 and
ρ = 0.8, the GQL approach produces SMs of 0.793,
0.793 and 0.794 and corresponding SSEs of 0.041,
0.039 and 0.058 for the three lag correlation estimates,
whereas the GGEE2 approach produces SMs of 0.734,
0.733 and 0.732 and corresponding standard errors of
0.115, 0.116 and 0.116. This leads to relative mean
squared error efficiencies of 16%, 15.46% and 16.41%
for the GGEE2 approach as compared to the GQL ap-
proach.

For the estimation of the regression parameters,
the GQL and GGEE2 approaches appear to produce
unbiased estimates, the true regression parameters
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TABLE 3
Simulated means (SM), simulated standard errors (SSE) and estimated standard errors (ESE) of the GQL and

GGEE2 estimates for regression coefficients and autocorrelation for selected values of the true correlation
parameter for the Poisson equicorrelation process with n = 4, K = 100, β1 = β2 = 0, based on 500 simulations

Number of Estimate
Equicorrelation convergent

Design Method parameter (ρ) simulations Statistic β̂1 β̂2 ρ̂1 ρ̂2 ρ̂3

D1 GQL 0.6 500 SM −0.006 −0.005 0.587 0.587 0.587
SSE 0.119 0.096 0.064 0.065 0.088
ESE 0.118 0.093

497 SM −0.005 −0.002 0.586 0.586 0.586
SSE 0.119 0.096 0.064 0.065 0.087
ESE 0.116 0.093

0.8 500 SM −0.009 −0.009 0.790 0.790 0.789
SSE 0.131 0.101 0.043 0.041 0.059
ESE 0.130 0.103

471 SM −0.008 0.002 0.787 0.786 0.786
SSE 0.132 0.101 0.041 0.039 0.058
ESE 0.130 0.103

GGEE2 0.6 497 SM −0.005 −0.002 0.562 0.561 0.560
SSE 0.119 0.096 0.120 0.122 0.131
ESE 0.115 0.091

0.8 471 SM −0.008 0.002 0.728 0.727 0.725
SSE 0.131 0.101 0.117 0.118 0.117
ESE 0.126 0.099

D2 GQL 0.6 500 SM −0.002 −0.002 0.591 0.591 0.592
SSE 0.033 0.094 0.064 0.065 0.088
ESE 0.033 0.092

496 SM −0.002 −0.004 0.590 0.590 0.590
SSE 0.033 0.095 0.064 0.065 0.087
ESE 0.033 0.092

0.8 500 SM −0.002 −0.001 0.793 0.793 0.794
SSE 0.027 0.097 0.042 0.041 0.058
ESE 0.026 0.102

465 SM −0.001 0.000 0.789 0.789 0.790
SSE 0.027 0.098 0.041 0.039 0.058
ESE 0.026 0.102

GGEE2 0.6 496 SM −0.003 −0.004 0.570 0.569 0.568
SSE 0.033 0.095 0.122 0.123 0.132
ESE 0.034 0.090

0.8 465 SM −0.003 0.000 0.734 0.733 0.732
SSE 0.028 0.099 0.115 0.116 0.116
ESE 0.029 0.098

being β1 = β2 = 0. This is evident from all three tables,
as the simulated means (SMs) appear to take values
within the range from −0.009 (for design D1 under the
equicorrelation process with ρ = 0.8) to 0.003 [for D1
under the AR(1) process with ρ = 0.6]. Also, the SSEs
of the regression estimates appear to be the same under
both GQL and GGEE2. For instance, the D2 based
GQL and GGEE2 approaches produce SSE’s of 0.027,
0.097 and 0.028 and 0.099 for the estimates of β1 and
β2, respectively, under the equicorrelation process with

ρ = 0.8. The corresponding standard errors appear to
be very close to each other. Next, the estimates of the
standard errors (ESEs) computed by (3.5) appear to
perform extremely well under both GQL and GGEE2.
This is because all ESEs from the three tables appear
to be very close to the corresponding SSEs for the
regression estimates. With regard to the design effect
on the regression estimation, both GQL and GGEE2
appear to perform the same irrespective of the selection
of the design matrix. For a given method, the SSEs
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of the regression estimates, however, appear to vary in
magnitude from one process to the other. For example,
for the AR(1) count model, D1 based SSEs of the
estimates of β1 are much larger (in the range from
0.085 to 0.100) than D2 based estimates (in the range
from 0.032 to 0.044), whereas the reverse happens
for the estimates of β2. This behavior appears to be
true under both GQL and GGEE2. This estimating
behavior that both GQL and GGEE2 perform equally
in estimating regression effects is not surprising as both
approaches use the same GEE for β (3.3) based on
their own correlation estimates, which are consistent
for their parameters under both approaches.

In summary, the limited simulation study conducted
in the paper indicates the superiority of the GQL ap-
proach over the GGEE2 approach in estimating the
parameters of the longitudinal models. The specific
reasons for this are as follows. First, based on the
same number of convergent simulations, the GQL ap-
proach produces estimates for the longitudinal corre-
lations with smaller bias as well as smaller standard
errors, as compared to the GGEE2 approach. Second,
although both of these approaches perform the same
in estimating the regression parameters, the GQL ap-
proach is relatively much simpler. This is because the
estimation of the correlations by (3.4) under the GQL
approach is straightforward as compared to the esti-
mation of correlations by (3.6) under the GGEE2 ap-
proach. Moreover, if the GGEE2 approach encounters
convergence problems in estimating the longitudinal
correlation parameters for a data set in practice, the
procedure will be subsequently useless for the estima-
tion of the regression parameters. We therefore recom-
mend the use of the proposed general autocorrelation
structure based GQL approach in estimating the para-
meters of the longitudinal models for the discrete data.

To implement the computational formulas for the
GQL estimates of the regression and longitudinal
correlation parameters, one may follow the two-step
procedure given below. First, one solves the estimating
equation for β (3.3) iteratively, using starting values 0
for the longitudinal correlations and small positive or
negative values for the regression parameters. This
interim solution of (3.3) is then used in (3.4) to obtain
the estimates of the autocorrelations, which are used in
turn in (3.3) to compute new β estimates. This cycle of
iterations continues until convergence.

5. APPLICATIONS OF THE GQL APPROACH

Recall that the simulation study in the previous
section indicates that among the three new itera-
tive approaches—GQL, GGEE2 and GEGEE—the

GEGEE approach has serious convergence problems.
To be specific, the GEGEE approach quite often pro-
duces estimates for the correlation parameters beyond
the permissible range, yielding inconsistent estimates
for the regression parameters. The GGEE2 approach
also has convergence problems. This is because it was
found in the simulation study that, under this approach,
the iterations in some simulations did not converge
for the estimation of the correlation parameters. The
GQL approach, however, never encounters any such
convergence problems. Moreover, the GQL approach
is the simplest among the three approaches in estimat-
ing both the regression and the correlation parameters.
Consequently, the GQL approach is recommended in
practice in analyzing discrete (such as count and bi-
nary) longitudinal data. In view of this recommenda-
tion, in this section we illustrate the use of the GQL
approach only, first to analyze a Poisson longitudinal
data set and then a binary longitudinal data set.

5.1 Example 1: Analyzing Poisson
Longitudinal Data

Recall from Section 1 that in a health care utiliza-
tion data analysis, one may be interested in finding the
effects of the related covariates on the physician vis-
its over the years, after taking the longitudinal corre-
lations of the data into account. We now consider a
real-life data set on the health care utilization prob-
lem collected by the General Hospital of the city of
St. John’s, Newfoundland, Canada. The data contain
the complete records for 144 individuals for four years
(n = 4) from 1985 to 1988. To be specific, the num-
ber of visits to a physician by each individual during a
given year was recorded as the response, and this was
repeated for four years. Also, the information on four
covariates, namely, gender, number of chronic condi-
tions in 1985, education level in 1985 and age, was
recorded for each individual. Note that as the responses
are counts, it is appropriate to assume that the response
variable marginally follows the Poisson distribution,
and the repeated counts recorded for four years will
be longitudinally correlated. It is of scientific interest
to take the longitudinal correlations into account and
examine the effects of the above four covariates on the
physician visits.

Following the notation used in Section 3, the four
covariates for the ith, i = 1, . . . ,K = 144, individual
at time t , t = 1, . . . ,4, are denoted by xit1, xit2, xit3
and xit4. The first covariate, sex, was coded as 0 for
female and 1 for male. Thus, at any time t , xit1 = 0 if
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the ith individual is female; otherwise, xit1 = 1. Sim-
ilarly, the number of chronic diseases was coded as
xit2 = 0 for the absence of chronic disease for the ith
individual in 1985 and xit2 = 1 if the ith individual had
one or more chronic diseases in 1985. The third covari-
ate, education level, xit3, was coded as 1 for less than
high school and 0 for high school or more education.
The last covariate, xit4, was taken as the deviation age
from 50. For example, an individual with age 30 has
the covariate value −20 and so on. The effects of these
covariates are denoted by β = (β1, β2, β3, β4)

′, so that
the mean of the count responses for the ith individual
at time t is given by

µit = exp(x′
itβ),(5.1)

where xit = (xit1, xit2, xit3, xit4)
′. Furthermore, it is

assumed that the repeated responses yi1, . . . , yi4 have
an autocorrelation structure as in (3.2).

Now, by applying the two-step approach introduced
through (3.3) and (3.4), we obtain in five cycles of
iterations the GQL based regression estimates as

β̂1(effect of sex) = −0.200,

β̂2(effect of chronic conditions) = 0.398,

β̂3(effect of education level) = −0.116,

β̂4(effect of age) = 0.027,

along with the moment estimates for the three autocor-
relations as

ρ̂1 = 0.538, ρ̂2 = 0.488, ρ̂3 = 0.440.

The autocorrelation values appear to be large, indicat-
ing high longitudinal correlations. Next, the standard
errors of the regression estimates are computed us-
ing the formula for the asymptotic covariance of β̂GQL
given by (3.5). These standard errors are

s.e.(β̂1) = 0.066, s.e.(β̂2) = 0.079,

s.e.(β̂3) = 0.063, s.e.(β̂4) = 0.001.

Note that as the standard errors are quite small as
compared to the corresponding values of the regression
estimates, all four covariates appear to have significant
effects on the physician visits.

We now interpret the effects of the covariates on the
physician visits as follows. As the first covariate, sex,
was coded as 1 for male and 0 for female, it follows
from (5.1) that the negative value of β̂1 = −0.20
suggests that females made more visits to the physician
as compared to males. The positive values of β̂2 =
0.398 and β̂4 = 0.027 suggest that individuals having

one or more chronic diseases or individuals belonging
to the higher age group paid more visits to the
physician, as expected. The third covariate, education
level, was coded as 1 for less than high school and 0
for high school or more. The effect of the education
level on the physician visits, however, appears to be
intriguing. The negative value of β̂3 = −0.117 shows
that highly educated individuals paid more visits as
compared to individuals with low education level. One
of the reasons for this type of behavior of this covariate
may be that individuals with high education level (high
school or more) are more concerned about their health
as compared to individuals with low education level.

5.2 Example 2: Analyzing Binary Longitudinal Data

In this example, we reanalyze a binary longitudi-
nal data set analyzed earlier by Zeger, Liang and
Albert (1988), among others. This data set is a sub-
set of data from the Six Cities study, a longitudi-
nal study of the health effects of air pollution. The
data set contains complete records of 537 children
from Steubenville, Ohio, each of whom was examined
annually at ages 7–10. The repeated response is the
wheezing status (1 = yes,0 = no) of a child on each
occasion. Maternal smoking status was considered as a
covariate and it was recorded as 1 if the mother smoked
regularly and 0 otherwise. It is clear that the responses
are binary by nature, and, consequently, one may use a
longitudinal binary model to analyze such data. Here,
the scientific interest is to examine the effect of smok-
ing by a mother on the wheeze status of her child. Thus,
in our notation, for this particular data set, K = 537,
n = 4 and β = (β1, β2)

′, with β1 as the intercept and
β2 as the effect of smoking by mother on her child’s
wheezing status. As the responses for each child are
repeatedly collected over a period of four years, it is
likely that these binary responses will be longitudinally
correlated. It is of interest to estimate β after taking the
longitudinal correlations into account.

Fitzmaurice and Laird (1993), among others, con-
sidered the time (here it is age) as a specific factor
and found the regression effects of maternal smoking,
age and their interaction on the binary responses. Fur-
ther, because repeated observations are made on the
same individual, the response variables will usually
be correlated. Fitzmaurice and Laird modeled these
associations in terms of conditional log-odds ratios
and, following Zhao and Prentice (1990), applied a
likelihood-based method to compute the regression
effects. This likelihood approach, however, does not
accommodate the autocorrelation structures, such as
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AR(1) and MA(1) structures, appropriate for repeated
binary data.

To model the data, it is assumed that the four bi-
nary responses collected on four occasions are longi-
tudinally correlated with correlation structure given as
in (3.2) (Sutradhar and Das, 1999). The mean response
function for the binary data may be written as

µit = exp(xT
it β)

1 + exp(xT
it β)

(5.2)

for the ith, i = 1, . . . ,537, child at time t , t = 1, . . . ,4.
Now, by applying the GQL approach discussed in
Section 3, we obtain the GQL estimate of β , in four
iterations, as

β̂1(intercept) = −1.820,

β̂2(maternal smoking effect) = 0.263

along with the estimates of the standard errors (3.5) of
the regression estimates given by

s.e.(β̂1) = 0.111, s.e.(β̂2) = 0.177.

The three longitudinal correlation estimates are

ρ̂1 = 0.397, ρ̂2 = 0.310, ρ̂3 = 0.297.

These correlation values appear to be moderately
large. Thus, ignoring these correlations will result in
inefficient regression estimates. Note that as the values
of ρ̂2 and ρ̂3 are almost the same, the wheezing status
does not appear to change within a short span of time
such as in three or four years.

With regard to the effect of the main covariate xit2
(i.e., maternal smoking), as xit2 = 1 for the ith child
whose mother is a regular smoker, the large positive
value of β̂2 = 0.263, by (5.2), indicates an increase in
the rate of wheeze for children of mothers who smoke.

6. CONCLUDING REMARKS

In longitudinal data analysis, estimating the effect of
covariates on a response variable is often of interest,
while longitudinal correlations are typically consid-
ered nuisance parameters. As the so-called “work-
ing” correlation based generalized estimating equation
(GEE) approach may not yield efficient regression es-
timates as compared to the “working” independence
assumption based estimating equation (IEE) approach
(cf. Sutradhar and Das, 1999), in this paper we have
discussed the generalized quasi-likelihood (GQL) ap-
proach which produces consistent as well as more ef-
ficient regression estimates as compared to the IEE
based estimates. This GQL approach assumes a known

longitudinal correlation structure, the correlation para-
meters being unknown. When the correlation structure
is known, there also exist GEE2 and EGEE approaches
where both the regression and the correlation parame-
ters are jointly estimated. One of the main shortcom-
ings of these two approaches is that there is no unique
way to specify the correlation structure. Consequently,
some authors such as Prentice and Zhao (1991) use an
“exponential family quadratic model” to define the cor-
relation structure in their GEE2 approach. In the EGEE
approach, Hall and Severini (1998) use a “working”
correlation model which has pitfalls similar to the GEE
approach. In this paper, we have used a general auto-
correlation structure for the longitudinal correlations as
in Sutradhar and Das (1999) and reviewed the feasi-
ble features and drawbacks of the GGEE2 and GEGEE
approaches. Although, unlike GEGEE, the GGEE2 ap-
proach requires fourth-order moments, the simulation
study indicated that the GGEE2 approach is better than
the GEGEE approach in estimating the autocorrela-
tion structure based correlation parameters as well as
the regression effects. Next, the simulation study also
indicated that although the GQL approach uses a mo-
ment method to compute the correlations, it is a bet-
ter approach than the GGEE2 approach in estimating
the correlation parameters of the model. One of the
main reasons for the poor performance of the GGEE2
approach is that it uses the normality based “work-
ing” fourth-order moments even though the data are
binary or counts by nature. In fact, in some cases, the
GGEE2 approach may yield highly unstable estimates
for the correlations causing convergence problems in
the estimation of the regression parameters. This was
evident in the simulation studies, where the GGEE2
approach failed to converge in a large number of sim-
ulations. The GQL approach, however, does not en-
counter any such convergence problems. Moreover, the
GQL approach is much simpler as compared to the
GGEE2 and GEGEE approaches for the estimation of
both the regression and the longitudinal correlations.
Consequently, the GQL approach is recommended in
practice to analyze discrete such as (binary and count)
longitudinal data. The GQL approach was illustrated in
the paper by analyzing two sets of real-life data.

In the present paper, we have reviewed the regression
analyses of cluster data with cluster level covariates as
in the papers by Liang and Zeger (1986), Fitzmaurice,
Laird and Rotnitzky (1993), Hall and Severini (1998)
and Sutradhar and Das (1999), for example. Some au-
thors have studied the efficiency aspects of the GEE
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approach dealing with longitudinal data with within-
cluster covariates. We refer to Fitzmaurice (1995),
Mancl and Leroux (1996) and Sutradhar and Das
(2000), among others, for such studies. It is shown in
these papers that for the models with within-cluster co-
variates, the generalized GEE approach (based on a
suitable correlation matrix) in general has higher ef-
ficiencies than the independence based GEE approach.
In the spirit of these studies, we have included a within-
cluster covariate (the second covariate) as a part of our
simulation designs, and examined the performance of
the GQL and GGEE2 approaches in estimating the ef-
fect of such within-cluster covariates. The results of the
simulation study suggest that these approaches have
performed almost the same in estimating the effect of
the within-cluster covariate.
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