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Summary. The vehicle scheduling problem, arising in public transport bus com-
panies, addresses the task of assigning buses to cover a given set of timetabled trips
with consideration of practical requirements, such as multiple depots and vehicle
types as well as further extensions. An optimal schedule is characterized by mini-
mal fleet size and minimal operational costs. Various publications were released as
a result of extensively research in the last decades on this topic. Several model ap-
proaches as well as specialized solving strategies were presented for the problem and
its extensions. This paper discusses the model approaches for different kinds of vehi-
cle scheduling problems and gives an up-to-date and comprehensive overview on the
basis of a general problem definition. Although we concentrate on the presentation
of model approaches, also the basic ideas of solution approaches are given.

1 Introduction

The planing process in public transportation consists of different recurrent
tasks traditionally maintained subsequently. The process starts on the strate-
gic level with collecting or forecasting data of passenger demand. Based on de-
mand matrices, the infrastructure of the public transportation network should
be defined. On this infrastructure planers establish routes and stop points for
different lines. In the next planing step particular trips are defined for given
lines. For each trip the timetable specifies a departure and an arrival time
as well as start and end stations. The further planning process focus on effi-
cient use of resources. It especially assures that vehicles and drivers serve all
scheduled trips (see for example [8]). Due to the fact, that optimal usage of
resources is a hard problem in combinatorial sense, it has been topic of intense
research in the area of Operations Research.

In particular the scheduling of vehicles has become an extensively studied
research area in the last 40-50 years. In the following we define the vehicle
scheduling problem (VSP) as a task arising in the operational planning process
of public transportation.
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1.1 Problem definition

Given a set of timetabled trips with fixed travel (departure and arrival) times
and start and end locations as well as traveling times between all pairs of end
stations, the objective is to find an assignment of trips to vehicles such that

• each trip is covered exactly once,
• each vehicle performs a feasible sequence of trips and
• the overall costs are minimized.

The overall costs can be divided into fixed costs of vehicles (like investment
and maintenance) and operational costs (e.g. fuel and attrition). Operational
costs can be interpreted in various ways: driven distance could be considered
as well as productive time or waiting time. Since these details are modeled
in various ways, this paper only considers the operational costs as a term of
”non-fixed” costs. In most practical situations the cost structure reveals the
prioritized minimization of the vehicle fixed costs and leaves the operational
cost minimization as the secondary objective.

Several extensions for the VSP with different additional requirements were
discussed in literature over the last years, like the existence of more than one
depot, a heterogeneous fleet with multiple vehicle types, the permission of
variable departure times of trips and further restrictions on the routes of the
buses.

The VSP is already topic of well-known survey papers. Most of them con-
sider routing and scheduling problems in transportation or decision support
systems in general (i.e. [3], [4], [48]). There are also specialized vehicle schedul-
ing surveys which consider some models or solution approaches in detail (i.e.
[10], [38]).

Although a lot of surveys on the vehicle scheduling topic exist, there is none
which respects the up-to-date research of modeling and solution approaches.
Since a lot of new research has been done in the last few years, this paper gives
a comprehensive and up-to-date overview on published modeling approaches
and the most important related literature. Therefor we propose the following
parameter definitions in order to explain the model approaches in the following
chapters:

T : set of timetabled trips with |T | = n
si: start station of trip i
ei: end station of trip i
di: departure time of trip i
di: departure time of trip i

tuv: travel time from station u to station v
i α j: compatibility relation - whether trip j can be served after trip i by the

same vehicle (whether ai + tei,sj ≤ dj)
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1.2 Paper structure

In the first section we have given a general definition of the vehicle scheduling
problem and the related data. The formulation will be used in following chap-
ters to show the different network models and Mixed Integer Programming
(MIP) formulations and will be extended, if further problem extensions are
considered. In section 2 the different model approaches for the vehicle schedul-
ing problem with a single depot are presented. Section 3 describes the prob-
lem extension for multiple depots and states the existing model approaches
for this case. Since most approaches are based on a Linear Programming (LP)
Relaxation, the different quality of LP bounds are compared. Further problem
extensions of practical relevance are described in section 4 and existing model
approaches are shown.

2 Models for the Single Depot Case

The VSP for a single depot (SD-VSP) is comparatively ”easy” to solve in the
sense that it could be formulated as a problem for which polynomial time
algorithms are known. In this section we present the different approaches to
model the single depot case. Since a lot of standard as well as specialized
polynomial time algorithms for the solution of the SD-VSP models can be
found in literature we only give some hints for solution approaches and do not
discuss these in details.

2.1 Minimal Decomposition Model

The first approach for solving the SD-VSP optimally was reported in [44].
The author defines a partial ordered set among the elements of the trip

set T . An ordered relationship β is proposed that admits the service of a trip
t2 after trip t1 if t2 starts at the end station of t1 and the departure time t2 is
later or equal to the arrival time of t1. Since no deadheading is allowed between
two end stations, β is a weaker formulation of the compatibility function α
presented in 1.1.

The model idea is based on the Dilworth Theorem for partial ordered sets
(cmp. [14]) which states that the partial order width is equal to the minimum
number of chains needed to cover P . Transferred to the VSP the maximum
cardinality set of pairwise incompatible trips is equal to the minimum number
of vehicles to cover T .

The resulting model is:
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max
n∑

i=1

n∑

j=1

cijxij (1)

s.t.
∑

j

xij ≤ 1 ∀ i = 1, 2, . . . , n (2)

∑

i

xij ≤ 1 ∀ j = 1, 2, . . . , n (3)

xij ≥ 0 (4)
with cij = 1 if i β j otherwise cij = −∞

[44] solved the problem by a reformulation as a network flow problem. A
labeling algorithm is used to solve instances of up to 319 trips. In [5] this
formulation is used to solve SD-VSP with deadheading (use of relation α
instead of β). The problem is solved in a two-phase heuristic approach. The
first phase only regards short connections. The second phase solves the whole
problem with fixed connections taken from the first phase. It is reported, that
instances having up to 650 trips have been solved successfully.

A drawback of the Minimal Decomposition Model is that it only solves the
minimum fleet size, but operational costs are not respected. Also no upper
bound for the fleet size can be set. This is fixed by the assignment model
which we will describe in the following section.

2.2 Assignment Model

[40] formulates the SD-VSP as an assignment problem which we visualize in
this paper as a complete bipartite graph (cmp. figure 1).

1'
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n''
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N''

Fig. 1. Assignment Model

Each trip is represented by an arrival node i′ and a departure node i′′.
While in the Minimal Decomposition Model only fixed costs are taken into
account, each arc aij has costs equal to the operational costs cij . In addition
to this each arc aij with i α j gets the fixed costs cv of a vehicle, because an
additional vehicle would be needed to cover both trips.
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min
n∑

i=1

n∑

j=1

cijxij (5)

s.t.
∑

j

xij = 1 ∀ i ∈ N ′ (6)

∑

i

xij = 1 ∀ j ∈ N ′′ (7)

xij ≥ 0 (8)

No computational results were published in [40]. The approach was also
used later in [27] for dealing with subproblems in the multiple depot case
(cmp. section 3).

Although operational costs are considered in this approach, a fixed or
maximal number of vehicles could not be modeled.

2.3 Transportation Model

The Transportation Model approach was published in [22] and can also be
demonstrated by a bipartite graph structure (cmp. figure 2). In contrast to
the Assignment Model, only arcs aij with i α j are inserted into the graph
(continuous lines). In addition to this two depot nodes (marked by n + 1)
are connected to each trip by additional depot arcs (dashed lines). Half of
the vehicle fixed costs are assigned to each one of them. The depot arcs can
be interpreted as empty trips from the depot to a start station (pull-out)and
back to the depot at the end of a route (pull-in).

A transportation problem with demand/supply of one flow unit for each
trip node and m units for the vehicle nodes was formulated with m equal
to the number of available vehicles. To respect the possibility that not all
vehicles are necessary to serve the trips, an arc between the depot nodes has
been inserted with zero cost (bold line).
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Fig. 2. Transportation Model
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For the case of infeasibility the model has been extended by introducing
arcs with penalty costs between all trip nodes as shown in figure 2 (dotted
lines). These costs represent the penalty of not serving a trip at all. In the case
that not enough vehicles are available, a solution is obtained which gives feasi-
ble vehicle schedules and a list of unserved trips. This approach was described
in [10].

min
n+1∑

i=1

n+1∑

j=1

cijxij (9)

s.t.

n+1∑

j=1

xij = 1 ∀ i = 1, 2, . . . , n (10)

n+1∑

i=1

xij = 1 ∀ j = 1, 2, . . . , n (11)

n+1∑

j=1

xn+1,j = n (12)

n+1∑

i=1

xi,n+1 = n (13)

xij ≥ 0 (14)

In literature this Transportation Model is often called Quasi-Assignment
Model, because the supply/demand vectors have only one entry not equal to
one. Due to this characteristic specialized assignment algorithms have been
adapted to this problem (cmp. [42],[21]). An arc generation approach is pre-
sented in [46] where the problem is solved with only short deadhead arcs in
the initial master problem and a column generation process is applied to solve
the problem to proven optimality.

2.4 Network Flow Model

A network flow approach presented in [4] was motivated by the early works
of Dantzig about tanker scheduling (cmp. [12]).

Each trip is represented by two nodes connected via a trip arc. We define
the set of trip arcs as AT and the set of all nodes in the network as N . Two
additional nodes n+1′ and n+1′′ for the depot are connected by pull-out and
pull-in arcs. In this model the depot arcs are provided with operational costs
for driving from/to the depot only. The fixed costs are assigned to a single
arc leading back from the second depot node to the first one. An example for
such kind of graph is shown in figure 3. A feasible flow from nodes n + 1′ to
n + 1′′ represents a feasible route for a vehicle.
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Fig. 3. Network Flow Model

The solution is obtained by solving a minimum cost flow problem consid-
ering the transshipment nodes only. Lower and upper bounds on the trip arcs
are set to one to assure the serving of all trips and that the upper bound on
the arc leading back is equal to the number of vehicles available. Optionally
the minimum number of available vehicles can be set as the lower bound on
the circulation flow arc.

min
∑

(i,j)∈A

cijxij (15)

s.t.
∑

i:(i,j)∈A

xij −
∑

i:(j,i)∈A

xji = 0 ∀ n ∈ N (16)

1 ≤ xij ≤ 1 ∀ (i, j) ∈ AT (17)
xij ≥ 0 and integer (18)

[1] shows a reformulation of a capacitated matching problem into an equiv-
alent variant of this network flow model. The version presented here with a
circulation flow arc for vehicle capacities was published in [10].

3 Models for the Multiple Depots Case

In the multiple depot case of the vehicle scheduling problem (MD-VSP) dif-
ferent locations – namely the depots – for starting bus routes are possible. As
an additional restriction vehicles have to return to its start depot at the end
of their route. This extends the problem to NP-hard complexity which was
proven in [1].

We extend our problem formulation from section 1.1 by the definition of
the set of depots H with |H| = h. Furthermore we define dj as the number of
available vehicles of depot j for each j = 1, . . . h.

In the following we describe different formulations for the main three mod-
eling approaches for MD-VSP given in literature:
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1. Single-commodity models
2. Multi-commodity models
3. Set partitioning models

3.1 Single-Commodity Models

In the following formulations the MD-VSP is modeled in a graph with one
node per trip and additional nodes for the depots or vehicles (dependent on
the formulation). The objective is to find the minimum cost set of elementary
circuits such that

1. each node is covered by exactly one circuit,
2. each circuit contains exactly one depot/vehicle node,
3. the number of circuits with a node belonging to depot j never exceeds the

depot capacity dj .

Single-Commodity Model with Subtour Breaking Constraints

[6] proposes a network structure having each available vehicle per depot mod-
eled as one node. For each one of these nodes arcs are inserted to all trip nodes
as well as arcs from all trips back to the vehicle node. These arcs are provided
with fixed costs for a vehicle plus the operational costs for the empty trip. In
order to prevent using unnecessary vehicles, additional arcs with zero costs
are inserted for each vehicle node. These arcs point on the same node so that
unused vehicles can be indicated. Since the depot nodes and arcs have to be
inserted for each possible vehicle, the network has an extremely high amount
of elements. Figure 4 shows an example for this graph with two depots.

1

1 2

1 2 dh2

dh1

Fig. 4. Single-Commodity Model with Subtour Breaking

The model is formulated as a transportation problem with additional sub-
tour elimination constraints which forbid every elementary path P ∈ Π with
more than one depot. The number of such constraints – called subtour break-
ing constraints – is extremely high so that MIP-based solution approaches
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can not consider these constraints explicitly. We define the node set V ⊂ N
that contains all nodes except the depot nodes and the set A which contains
all arcs of the network.

The resulting mathematical model is:

min
∑

(i,j)∈A

cijxij (19)

s.t.
∑

j:(i,j)∈A

xij = 1 ∀ i ∈ V (20)

∑

i:(i,j)∈A

xij = 1 ∀ j ∈ V (21)

∑

(i,j)∈P

xij ≤ |P | − 1 ∀ P ∈ Π (22)

xij ∈ {0, 1} ∀ (i, j) ∈ A (23)

The model was used in [6] to present a branch-and-bound algorithm which
was the the first one that could solve the MD-VSP in an exact way. In [18]
specialized path elimination cuts are published and used in a branch-and-cut
framework. This approach was further extended in [17].

The main drawback of this formulation is the exponential growth of the
number of constraints.

Single-Commodity Model with Assignment Variables

Another single-commodity approach was published in [37] where a more com-
prehensive network structure is used. The vehicle nodes as described above are
aggregated and combined to one node per depot. Figure 5 shows an example
of the graph.

1

Fig. 5. Single-Commodity Model with Assignment Variables
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A second group of variables yi,h is introduced and used to assign a trip i
to the depot h. By this the number of constraints as well as the number of
variables is reduced in comparison with the formulation in [6].

min
∑

(i,j)∈A

cijxij (24)

s.t.
∑

j:(i,j)∈A

xij = 1 ∀ i ∈ V (25)

∑

i:(i,j)∈A

xij = 1 ∀ j ∈ V (26)

∑

j∈N

xh,j ≤ dh ∀ h ∈ H (27)

xh,j − yj,h ≤ 0 ∀ h ∈ H, ∀ j ∈ V (28)
xi,h − yi,h ≤ 0 ∀ h ∈ H, ∀ i ∈ V (29)
yi,h + xij − yj,h ≤ 1 ∀ h ∈ H, ∀ (i, j) ∈ A (30)
yj,h + xij − yi,h ≤ 1 ∀ h ∈ H, ∀ (i, j) ∈ A (31)
∑

h∈H

yi,h = 1 ∀ i ∈ V (32)

xij ∈ {0, 1} ∀ (i, j) ∈ A (33)
yi,h ∈ {0, 1} ∀ h ∈ H, ∀ i ∈ V (34)

3.2 Multi-Commodity Models

In general the multi-commodity formulations are extensions of the network
flow approach for the SD-VSP. For each depot an independent network is
built. The multi-commodity formulations are then based on the multigraph
generated by combining these networks.

We will distinguish two different model approaches. Although the math-
ematical models are similar, they are based on different underlying graph
models.

Connection-Based Networks

In the first model the possible connections between the timetabled trips are
modeled by considering all trip compatibilities explicitly. For each possible
connection an arc is inserted in the underlying network. The number of con-
nection arcs grows quadratically with the number of trips. We will refer to
approaches of this kind as connection-based approaches.

An example for a connection-based network is shown in figure 6. The
subnetworks are generated in the same way as in the network flow approach



Overview: Vehicle Scheduling Models 11

       depot n

         depot 2

          depot 1

Fig. 6. Connection-based Network

for the single depot case (described in section 2.4). Only the subnetwork of
the first depot is visible in this example.

Different mathematical models for this network have similar formulations.
Therefore we will show the idea at only one example:

Like in the SD-VSP case the flow conservation constraints (36) are inserted
for each node of the multigraph. Since every trip in the model is related to
more than one arc, the bounds on the arcs can not just be set to one as in the
SD-VSP formulation. Instead new constraints – often called cover constraints
– have to be added (37). These constraints guarantee the service of all trips
by allowing exactly one arc of the trip arcs of a special trip to be chosen in a
feasible solution. The depot capacities can be considered by setting the upper
bound for the circulation flow arc of a depot h equal to dh (38).

Let AT t ⊆ AT ⊂ A be the set of trip arcs related to trip t. Furthermore
we define Ah as the set of circulation flow arcs (in this case only one) of depot
h.

min
∑

(i,j)∈A

cijxij (35)

s.t.
∑

i:(i,j)∈A

xij −
∑

i:(j,i)∈A

xji = 0 ∀ j ∈ N (36)

∑

(i,j)∈AT t

xij = 1 ∀ t ∈ T (37)

∑

(i,j)∈Ah

xij ≤ dh ∀ h ∈ H (38)

xij ∈ {0, 1} ∀ (i, j) ∈ A \
⋃

h∈H

Ah (39)

xij ≥ 0 and integer ∀ (i, j) ∈
⋃

h∈H

Ah (40)
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Several different approaches use this kind of formulation to solve the MD-
VSP: in [1] an assignment formulation is extended to the multi-commodity
model and heuristically solved by lagrangean relaxation of the cover con-
straints combined with a repairing procedure. The approach described in
[32] uses a bundle of depot nodes per depot to model different daytimes
and presents a lagrangean relaxation of depot-related flow conservation con-
straints in combination with a subgradient algorithm. An exact approach for
the multi-commodity model given in [19] use a lagrangean relaxation to run
a dual simplex algorithm to obtain a linear programming (LP) solution. The
authors of [19] also observe that the potentially fractional solution of the LP is
in most cases integer or near-integer for real-life instances. Because of this fact
the integer solution was obtained by a standard branch-and-bound algorithm.
This near-integer property of the LP was reported also by other authors. The
authors of [19] conjecture that the property might arise from the underly-
ing network structure since every detached subnetwork always has an integer
solution. An arc generation approach in combination with a branch-and-cut
algorithm was proposed in [36]. The decision of which arcs to be added in
the master problem was done with a specialized pricing technique called la-
grangean pricing. In [26] the amount of arcs needed in the connection-based
network was heuristically reduced by defining three daytimes (morning, mid-
day and evening). Each trip is assigned to one time period and the assumption
is made that no evening trip will be served directly after a morning trip. This
assumption gains a reduction of the model size of up to 40%.

Time-Space Networks

The approach using a multi-commodity formulation with a different underly-
ing network structure was published in [30] and [31]. It avoids the drawback
of explicit consideration of all possible connections between compatible trips.
The idea is to exploit the transitivity property of partial ordered sets which
says that for trips i, j, k the following conclusion applies:

(i α j) ∧ (j α k) → i α k

A time-space network (TSN) is constructed in which possible connections
between groups of compatible trips are aggregated. Thus the number of com-
patibility arcs in the network decreases drastically (stable by 97 to 99 %)
compared to the connection-based approaches without losing any feasible ve-
hicle schedule. An example for a TSN is shown in figure 7.

The mathematical model is a multi-commodity formulation similar to the
one for the connection-based model. Different to the connection-based formu-
lation with mainly binary variables, flow variables in the time-space network
based formulation are provided with general integer bounds.

In [31] a standard MIP optimization software is used for solving prob-
lems. In [23]) a two-phase heuristic approach is presented which fixes some
connections a priori to solve very large-scale instances of MD-VSP.
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       depot n

         depot 2

stop point 2             

     depot 1             

stop point 1              

    1       2

    n  

Fig. 7. Time-Space Network

3.3 Set Partitioning Models

The main idea of the set partitioning models is to enumerate all feasible routes
for the vehicles and choose a subset of these routes which fulfills all restrictions.
This model can be obtained by applying Dantzig-Wolfe decomposition to the
multi-commodity model which was shown in [24] so that the same underlying
graph structure is used (cmp. figure 6).

The resulting mathematical model is a set partitioning problem (SPP)
which has only a few constraints (in fact a constraint for each trip to be
covered) but a large number of variables since every feasible path through the
network for each depot is a variable in the model. We define Ω as the set of
all feasible paths in the multigraph. The constraints guarantee the service of
all trips (42) and the adherence to the depot capacities (43):

min
∑

d∈D

∑

p∈Ωd

cpxp (41)

s.t.
∑

d∈D

∑

p∈Ωd

ajpxp = 1 ∀ j ∈ T (42)

∑

p∈Ωd

xp ≤ kd ∀ d ∈ D (43)

xp ∈ {0, 1} ∀ p ∈ Ω (44)

The first SPP approach was published in [43] with a column generation
algorithm considering all feasible paths in an implicit way. The column gener-
ation process is divided into a master and a subproblem. The master problem
solves the partitioning part considering only a subset of all columns. In the
subproblem new promising columns are identified by solving a Shortest Path
Problem on a graph containing dual information from the master problem
(cmp. [43] for further details). [2] apply heuristics on the dual problem to
eliminate candidate variables by means of a reduced cost criterium. After-
wards the SPP can be solved without column generation. In [24] new valid
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inequalities for the SPP formulation are introduced and the MD-VSP is solved
within a branch-and-cut algorithm. Recently [41] presents a stabilized column
generation approach which efficiently handles high degenerate problems.

A further advantage of the SPP formulation – in contrast to the other
formulations – is that duty related constraints (like time or fuel restrictions
for a bus route) can be easily recognized by excluding the infeasible routes
from the route set Ω.

3.4 Comparison of LP Bounds

In this section we present the different qualities of the lower bounds obtained
by the different model approaches for the MD-VSP. Since the optimal integer
solution is the same, the LP quality is an important factor on a branch and
bound algorithm or any other technique to obtain the optimal integer solution.

In [38] it is proven that the lower bound obtained by the LP solution of the
single-commodity model with subtour breaking constraints is smaller or equal
to the bound of the single-commodity model with assignment variables (cmp.
section 3.1). Both single-commodity formulations provide weaker LP bounds
than the (connection-based) multi-commodity flow formulation (also proven
in [38]). [43] presents the proof that the LP bound of the multi-commodity
model and the set partitioning model has the same value.

A summary of the LP bound relationships is given in figure 8 where the
approaches are sorted according to their bound quality.

Set Partitioning 

Model

Multi Commodity 

Flow Model
(Connection based)

Single Commodity 
(with subtour breaking 

Constraints)

Single Commodity 
(with assignment-

variables)

Ribeiro, Soumis (1994)Mesquita, Paixão (1997) Mesquita, Paixão (1997) to be proven

Fig. 8. Quality of LP-Bounds

4 Practical Extensions

This section describes the three extensions that have been reported to be
important in practical applications of vehicle scheduling.

4.1 Multiple Vehicle Types and Vehicle Type Groups

For some trips – for example with stations close to hospitals – probably special
vehicle types have to be used for service. We will define V T as the set of all
given vehicle types. The different types may also have different fixed and/or
operational costs or different speeds for deadheading between stations. In
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addition to this, every vehicle type j ∈ V T has a limited capacity vj . This
problem is called a vehicle scheduling problem with multiple vehicle types
(MVT-VSP). It is (already without multiple depots) NP-hard (cmp. [33]).

A lot of heuristical as well as exact optimization approaches were pub-
lished. They all consider multiple vehicle types (cmp. [47],[15]). The most
common technique to model the extension is to apply the following idea:

As shown in section 3 the multi-commodity and set partitioning models
are based on a multigraph with a subnetwork for each depot in the problem. In
case of multiple vehicle types the multigraph can be build with a subnetwork
for each combination of depot and vehicle type. The costs on the network arcs
are build accordingly to the related vehicle type and in the case of different
vehicle speeds possibly the number of compatibility arcs in the subnetworks
may differ.

This approach was published for the single depot case (SD-MVT-VSP) in
[4] and also used in [7].

If the timetabled trips are restricted in that way that they could only be
serviced by a subset of all vehicle types, a further extension – called vehicle
type groups (VTG) – is inserted. [19] and [35] considers the multiple depot
case with vehicle type groups within a connection-based multi-commodity
approach and the realization within a time-space network based approach
was done in [31].

4.2 Time Windows

A further problem extension in the application of vehicle scheduling is the
consideration of variable trip departure and arrival times called time windows.

Typically public transit bus timetables consist of two different types of
trips. The first group are regular trips which are timetabled in the line fre-
quency. Additionally there are irregular trips (for example for school buses
or additional buses during rush hours). Usually time windows are set espe-
cially on irregular trips because a shift will not lead to a disruption of the line
frequency. Nevertheless slight changes can also be applied to regular trips.

We will define the time window for a trip i through the earliest and latest
possible departure times li and ui for all trips i ∈ T .

The vehicle scheduling problem with time windows (VSP-TW) is an NP-
complete problem since already the simplest case with one vehicle and one
depot is a traveling salesman problem with time windows (cmp. [45]).

Several solution approaches and practical experiences for dealing with the
VSP-TW have been published (see for example [9]). In general two different
model approaches are proposed for dealing with time windows for timetabled
trips.

Discrete Time Windows

The first approach is to consider only discrete intervals of trip shifting by
adding an additional trip arc in the model for each value between li and ui
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per trip i. The cover constraints that assure the service of all trips have to be
extended by these new variables.

This approach was published in [34] for aircraft fleet routing and later
adopted for the connection based multi-commodity flow model (cmp. [16],[11])
and for the time-space network based approach (cmp. [28]).

Continuous Time Windows

An alternative approach for the VSP-TW considers continuous occurrences of
time windows. It can be applied to the set partitioning model where all feasible
routes are enumerated. In a column generation approach for this model the
time windows can be considered within the column generation process by
solving a shortest path problem with time windows (cmp. [39],[13],[25]).

Both model approaches for time windows cover practical requirements
since the timetables are usually also planned in discrete time intervals.

4.3 Route Constraints

A further extension of practical relevance are restrictions that force a special
property on the routes of a feasible schedule. We call the resulting problem a
Vehicle Scheduling Problem with Route Constraints (VSP-RC).

Typical and often discussed occurrences of route constraints are time re-
strictions on the vehicle routes (cmp. [20]). These are considered for example
for fuel restrictions or maintenance intervals. There are three different model
approaches for the single depot case (SD-VSP-RC) as well as some approaches
for the multiple depot case (MD-VSP-RC) which are compared in the follow-
ing section.

Route Constraints for SD-VSP

The first approach for the single depot case was given in [4] where the network
flow approach as described in section 2.4 is extended. No depot nodes are used,
but instead a new set of arcs – called back arcs – is used to model the feasible
routes. A backing arc between two nodes i and j is inserted for every pair
of related trips that could be served by one vehicle within the given time
restriction. The mathematical model is extended in a similar way as in the
model described in section 3.1: additional constraints guarantee that exactly
one back arc is used within each route.

In [20] a publication (in Portuguese) made by I.M. Branco in 1989 is
mentioned. The authors explain the approach in the following way: the route
time constraints are modeled in an implicit way by building a graph with
multiple levels – in particular one level for each timetabled trip. Each level
consists of one node for the related trip and a part of the whole compatibility
graph containing only the trips that are permitted in a route starting from
this related trip. An example for such a graph with four trips is shown in
figure 9.
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Fig. 9. Multilevel model for the SD-VSP-RC

A third approach is also presented in [20]. Independent network flows for
all possible vehicles are modeled and the mathematical model forbids choosing
a pair of trips (i, j) violating the time restriction.

Route Constraints for MD-VSP

Considering the case of multiple depot the first publication dealing with route
(time) constraints was [39]. It presents a set partitioning formulation for the
MD-VSP extended by the new restriction. As mentioned in section 3.3, the
master problem of the SPP approach consists of all feasible routes. In the case
of the MD-VSP-RC only the subproblem of the column generation process
(where new feasible routes are identified) has to be adapted. Instead of solving
a standard shortest path problem for identifying a promising route a Resource
Constrained Shortest Path Problem with time as a resource is solved.

[26] considers time restrictions in a multi-commodity formulation by solv-
ing iterations of the MD-VSP and adding violated time constraints in the
model. They also proposed two heuristic approaches for dealing with the MD-
VSP-RC.

All the discussed approaches have in common that they consider only time
as a resource for a route constraint. [29] reports a further route constraint with
practical relevance: some bus companies prefer to pose a restriction for bus
line changes in vehicle routes. Different flow decomposition techniques for the
time-space network model generating cost minimal solutions with a ”good”
behavior according to the route constraints (line changes) are presented. Fur-
thermore a model extension is presented having additional arcs with negative
costs which may favor solutions with less line changes. The approaches are
not able to deal with route aspects as hard constraints but instead allow a
trade-of between costs and route behavior.
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