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overview paper

An overview on video forensics
simone milani1, marco fontani2,4, paolo bestagini1, mauro barni2,4, alessandro piva3,4,
marco tagliasacchi1, and stefano tubaro1

The broad availability of tools for the acquisition and processing of multimedia signals has recently led to the concern that

images and videos cannot be considered a trustworthy evidence, since they can be altered rather easily. This possibility raises

the need to verify whether a multimedia content, which can be downloaded from the internet, acquired by a video surveillance

system, or received by a digital TV broadcaster, is original or not. To cope with these issues, signal processing experts have been

investigating e�ective video forensic strategies aimed at reconstructing the processing history of the video data under investigation

and validating their origins. The key assumption of these techniques is that most alterations are not reversible and leave in the

reconstructed signal some “footprints”, which can be analyzed in order to identify the previous processing steps. This paper

presents an overview of the video forensic techniques that have been proposed in the literature, focusing on the acquisition,

compression, and editing operations, trying to highlight strengths and weaknesses of each solution. It also provides a review of

simple processing chains that combine di�erent operations. Anti-forensic techniques are also considered to outline the current

limitations and highlight the open research issues.
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I . I NTRODUCT ION

In the recent years the availability of inexpensive, portable,
and highly usable digital multimedia devices (such as cam-
eras, mobile-phones, digital recorders, etc.) has increased
the possibility of generating digital audiovisual data with-
out any time, location, and network-related constraints. In
addition, the versatility of the digital support allows copy-
ing, editing, and distributing the multimedia data with little
e�ort. As a consequence, the authentication and validation
of a given content have become more and more di cult,
due to the possible diverse origins and the potential alter-
ations that could have been operated. This di culty has
severe implications when the digital content is used to sup-
port legal evidences. Digital videos and photographs can be
no longer considered “proof of evidence/occurrence” since
their origin and integrity cannot be trusted [1]. Moreover,
the detection of copyright infringements and the validation
of the legal property of multimedia data may be di cult
since there is no way to identify the original owner.
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From these premises, a signi!cant research e�ort has
been recently devoted to the forensic analysis ofmultimedia
data. A large part of the research activities in this !eld are
devoted to the analysis of still images, since digital pho-
tographs are largely used to provide objective evidence in
legal, medical, and surveillance applications [2]. In par-
ticular, several approaches target the possibility of vali-
dating, detecting alterations, and recovering the chain of
processing steps operated on digital images. As a result,
nowadays digital image forensic techniques enable to deter-
mine: whether an image is original or arti!cially cre-
ated via cut and paste operations from di�erent photos;
which source generated an image (camera model, ven-
dors); whether the whole image or parts of it have been
arti!cially modi!ed and how; what was the processing his-
tory of an image. These solutions rely on the consideration
that many processing steps are not reversible and leave
some traces in the resulting signal (hereby called “foot-
prints”). Detecting and analyzing these footprints allow the
reconstruction of the chain of processing steps. In other
words, the detection of these footprints allows a sort of
reverse engineering of digital content, in order to identify
the type and order of the processing steps that a digi-
tal content has undergone, from its !rst generation to its
actual form.
Despite the signi!cant available literature on digital

image forensics, video forensics still presents many unex-
plored research issues, because of the peculiarities of video
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signals with respect to images and the wider range of pos-
sible alterations that can be applied on this type of digital
content. In fact, all the potential modi!cations concerning
digital images can be operated both on the single frames
of a video sequence and along the temporal dimension.
This might be aimed at hiding or erasing details from the
recorded scene, concealing the originating source, redis-
tributing the original signal without the owner’s permission
or pretending on its characteristics (e.g. low-quality con-
tents re-encoded at high quality) [3, 4]. Moreover, forensic
analysis of video content proves to be harder with respect
to the analysis of still images since video data are practically
always available in compressed formats and several times a
high compression factor is used to store it. Strong compres-
sion ratios may cancel or fatally compromise the existing
footprints so that the processing history is, entirely or in
part, no longer recoverable.
On top of that, forensic analysts must now face the

problem of anti-forensic techniques, which consist in mod-
ifying the forging process in order to make the unau-
thorized alterations transparent to forgery detection algo-
rithms. Since each of these techniques is usually targeted to
erase one speci!c trace left during the manipulation, anti-
forensic methods are very heterogeneous. Nevertheless, all
of them should satisfy two basic principles: do not hinder
signi!cantly the quality of the forged content that is pro-
duced; do not introduce artifacts that are easily detectable,
so that anti-forensic techniques could be countered by
the content owner. Although most of the anti-forensic
strategies presented in literature have been developed for
still images only, there are some techniques concerning
video data.
The original contribution of this paper relies in provid-

ing an overview of the main forensic techniques that have
been designed so far in the video content analysis. Previ-
ous overview papers in the literature mainly address image
forensics and just a few details are provided about video
content analysis. We believe that video forensic analysis has
been maturely developed so that a review of the proposed
techniques is widely justi!ed.
In the following, we outline the structure of the paper.

Section II provides the necessary background on digital
image forensics, as it provides the foundations for anal-
ogous techniques targeting video content. The remaining
sections deal with various aspects related to video foren-
sics. We start addressing video acquisition in Section III,
presenting several strategies to identify the device that cap-
tured a given video content. Then, in Section IV we con-
sider the traces left by video coding, which are used to
determine, e.g., the coding parameters, the coding stan-
dard, or the number of multiple compression steps. Video
doctoring is addressed in Section V, which presents foren-
sic analysis methods based on detecting inconsistencies in
acquisition and coding-based footprints, as well as meth-
ods that reveal traces left by the forgery itself. Section VI
concludes the survey, indicating open issues in the !eld
of video forensics that might be tackled by future research
e�orts.

I I . A QU ICK OVERV IEW OF THE

STATE -OF -THE -ART IN IMAGE

FORENS ICS

As mentioned in the previous section, image forensic tools
have been widely studied in the past years due to the many
applications of digital images that require some kind of vali-
dation. Many of them can be applied to video signals as well
by considering each frame as single images, while others can
be extended including the temporal dimension as well.
For this reason, a preliminary review of the state-of-

the-art on image forensics is necessary in order to outline
the baseline scenario from where video forensics departs.
Many detailed overviews can be found in literature on
digital image forensics (e.g. see [5, 6]). Here, we just out-
line some of the most important works that o�ered a sort
of common background for the current and future video
forensic techniques. In particular, we will discuss methods
dealing with camera artifacts, compression footprints, and
geometric inconsistencies.
The methods that follow enable to perform image

authentication and, in some cases, tampering localization,
without resorting to additional side information explicitly
computed by the content owner. This is in contrast with
other approaches based on, e.g., digital watermarking [7, 8]
ormultimedia hashing [9–13], or a combination of both [14].

A) Camera artifacts

Studies on camera artifacts that are left during the acqui-
sition pipeline have laid the basis for image forensics. The
far more studied artifact is the multiplicative noise intro-
duced byCCD/CMOS sensors, named photo response non-
uniformity (PRNU) noise. PRNU has been exploited both
for digital camera identi!cation [15] and for image integrity
veri!cation [16], and it proves to be a reliable trace alsowhen
an image is compressed using the JPEG codec.
Since common digital cameras are equipped with just

one sensor, color images are obtained by overlaying a color
!lter array (CFA) to it, and using a demosaicing algorithm
for interpolating missing values. The speci!c correlation
pattern introduced during this phase allows to perform
device model identi!cation and tampering detection [17],
provided that images are not (or very little) compressed.
The last artifact that wemention is chromatic aberration,

that is due to the camera lens shape; inconsistencies in this
e�ect can be searched on to identify tampered regions in the
image, as explained in [18, 19].

B) Image compression

A signi!cant investigation activity has been carried on
image coding forensics since the lossy nature of many com-
pression strategies leaves peculiar traces on the resulting
images. These footprints allow the forensic analyst to infer
whether an image has been compressed, which encoder
and which parameters have been used, and if the image
has undergone multiple compression steps [20]. In order to
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understand whether an image has been compressed, in [21]
the authors show how to exploit a statistic model called
Benford’s law. Alternatively, in [22], the authors focus on
identifying if an image has been block-wise processed, also
estimating the horizontal and vertical block dimensions. If
the image has been compressed, in [23] the authors propose
a method capable of identifying the used encoder, which is
useful, for example, to di�erentiate between discrete cosine
transform (DCT)- and DWT-based coding architectures.
A method to infer the quantization step used for a JPEG
compressed image is shown in [24, 25]. Finally, in [26–30]
the authors propose some methods to expose double JPEG
compression based on the analysis of the histograms ofDCT
coe cients.

C) Geometric/physics inconsistencies

Since human brain is notoriously not good in calculating
projections and perspectives, most forged images contain
inconsistencies at the “scene” level (e.g. in lighting, shadows,
perspective, etc.). Although being very di cult to perform
in a fully automatic fashion, this kind of analysis is a pow-
erful instrument for image integrity veri!cation. One of the
main advantages of this approach is that, being fairly inde-
pendent on low-level characteristics of images, it is well
suited also for strongly compressed or low-quality images.
Johnson and Farid proposed a technique allowing

to detect inconsistencies in scene illumination [31] and
another one that reveals inconsistencies in spotlight re#ec-
tion in human eyes [32]. Zhang et al. [33] introduced
methods for revealing anomalous behavior of shadows
geometry and color. Also, inconsistencies in the perspective
of an image have been exploited, for example, in the work
from Conotter et al. [34], which detects anomalies in the
perspective of signs and billboards writings.

I I I . FORENS IC TOOLS FOR V IDEO

ACQU IS IT ION ANALYS IS

The analysis of image acquisition is one of the earliest
problems that emerged in multimedia forensics, being very
similar to the “classical” forensic technique of ballistic !n-
gerprinting. Its basic goal is to understand the very !rst
steps of the history of a content, namely identifying the orig-
inating device. The source identi!cation problem has been
approached from several standpoints. We may be inter-
ested in understanding: (i) which kind of device/technique

generated the content (e.g. camera, scanner, photo realistic
computer graphics, etc.), (ii) which model of a device was
used or, more speci!cally, (iii) which device generated the
content.
Di�erent techniques address each of these problems in

image forensics, and some of them have naturally laid
the basis for the corresponding video forensic approaches.
However, Section III (A)will show that source identi!cation
has not yet reached a mature state in the case of videos.
Another interesting application that recently emerged

in the !eld of video forensics is the detection of ille-
gal reproductions, noticeably bootlegs videos and captured
screeenshots. This problem will be separately discussed in
Section III (B).
Before deepening the discussion, we introduce in

Figure 1 a simpli!ed model of the acquisition chain, when
a standard camcorder is adopted. First, the sensed scene is
distorted by optical lenses and then mosaiced by an RGB
CFA. Pixel values are stored on the internal CCD/CMOS
array, and then further processed by the in-camera software.
The last step usually consists in lossy encoding the resulting
frames, typically using MPEG-x or H.26x codecs for cam-
eras and 3GP codecs for mobile phones (see Section IV).
The captured images are then either displayed/projected on
screen or printed, and can be potentially recaptured with
another camera.

A) Identi�cation of acquisition device

In the !eld of image forensics, many approaches have
been developed to investigate each of the aforementioned
questions about the acquisition process. Conversely, the
works on video forensics assume that the content has been
recorded using a camcorder, or a modern cell phone. To the
best of our knowledge, no video-speci!c approaches have
been developed to distinguish between computer graphics
and real scenes. Instead, all the works in this !eld focus
on identifying the speci!c device that originated a given
content.
Kurosawa et al. [35] were the !rst to introduce the prob-

lem of camcorder !ngerprinting. They proposed a method
to identify individual video cameras or video camera mod-
els by analyzing videotaped images. They observed that
dark-current noise of CCD chips, that is determined dur-
ing themanufacturing process, creates a !xed pattern noise,
which is practically unique for each device, and they also
proposed a way to estimate this !xed pattern. Due to

Fig. 1. Typical acquisition pipeline: light enters the camera through the lens, is !ltered by the CFA and converted to a digital signal by the sensor. Usually, this is
followed by some in-camera post-processing and compression. In some cases, the video can be projected/displayed and re-acquired with another camera, usually
undergoing lighting and spatial distortions.
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very strong hypotheses on the pattern extraction procedure
(hundreds of frames recording a black screen were needed)
this work did not allow to understand if a given video came
from a speci!c camera. Nevertheless, it can be considered
as one of the pioneering works in video forensics. Later,
research in image forensics demonstrated that PRNU noise
could provide a much more strong and reliable !ngerprint
of a CCD array and, consequently, more recent works tar-
geting source identi!cation for video are based on this kind
of feature.

PRNU based source identification
Many source identi!cation techniques in image forensics
exploit the PRNU noise introduced by the sensor. Although
not being the only kind of sensor noise [36], PRNU has
proven to be the most robust feature. Indeed, being a mul-
tiplicative noise, it is di cult for device manufacturers to
remove it. First, we describe how this method works in the
case of images. Then, we discuss its extension to videos,
highlighting the challenging issues that arise.
Given a noise free image I0, the image I acquired by the

sensor is modeled as

I = I0 + γ I0K + N , (1)

where γ is a multiplicative factor, K is the PRNU noise,
and N models all the other additive noise sources (see
[36] for details). Note that all operations are intended
element-wise.
If we could perfectly separate I from I0, it would be

easy to compute a good estimate of K from a single image.
Unfortunately, this cannot be done in general: separating
content from noise is a challenging task, as demonstrated
by several works on image denoising. Consequently, the
common approach is to estimate K from a group of authen-
tic images I j , j = 1, . . . , n. Each image I j is !rst denoised
using an appropriate !lter. Then, the denoised version Ī j is
subtracted from I j , yielding

Wj = I j − Ī j , (2)

whereWj is the residual noise for the j th image. The PRNU
is then estimated as

K =

∑n
j=1 Wj I j

∑n
j=1 I 2

j

. (3)

From a technical point of view, two factors are of primary
importance to obtain a good estimate of K :

1. using a group of #at, well illuminated images, e.g. pic-
tures of a wall, of the sky, etc. Few tens of images usually
su ce;

2. choosing an appropriate denoising !lter (see [37]).

Once K is obtained for a device, checking if a query
image S has been generated from that device reduces to
evaluating the correlation between the noise component of
the query image and the reference noise of the device. For-
mally, S is denoisedwith the same !lter and subtracted from

itself, yieldingWS . Then, the correlation between the query
image and the PRNU mask is obtained as

ρ = SK ⊗ WS , (4)

where the operator ⊗ denotes normalized correlation. The
value of ρ is usually low (e.g. ρ ≃ 0.2) even for images that
were actually acquired with the device that originated the
mask. However, ρ is su ciently discriminative, since cor-
relation values with extraneous images is smaller by two
or three orders of magnitude. Furthermore, experiments
demonstrated that this kind of analysis is robust to JPEG
compression at large quality factors (e.g.>80).
Having provided the background for PRNU-based

source identi!cation in the case of still images, we move
the scope of the discussion to the case of videos. At a !rst
glance, it may seem that estimating the PRNU of a cam-
corder from a video sequence should be easier, due to the
usually large amount of frames available. However, this is
not true for two main reasons. First, typical spatial resolu-
tion of videos is much lower than that of images. Second,
frames usually undergo strong quantization and aggressive
coding that introduce more artifacts than those a�ecting
JPEG-compressed images.
The !rst work about camcorder identi!cation was pro-

posed byChen et al. [38]. They rely on themethoddescribed
above for extracting the PRNU mask. However, a signif-
icant e�ort is devoted to the proper choice the denoising
!lter, which led to the selection of a wavelet-based !l-
ter designed to remove Gaussian noise [39]. In addition,
a pre-processing step is included to mitigate quantization
artifacts introduced by lossy coding. More speci!cally, the
authors observe that blocking artifacts and ringing artifacts
at frame boundaries (introduced to adjust the size of the
frame to a multiple of the block size) introduce a noise pat-
tern that strongly depends on the compression algorithm
rather than on the acquisition hardware. They propose a
method to identify the frequencies of the DFT transform
where such noise contribution is located and suppress them,
thus increasing noticeably the performance of the estima-
tion. The experiments in [38] showed that a tradeo� exists
between video quality (in terms of bitrate) and length to
achieve successful detection. If the video is compressed at
high quality (e.g. 4–6Mb/s), then a relatively short sequence
(40 s) su ces for a good estimation of themask. Conversely,
for low quality videos (e.g. 150 Kb/s) the length of the
training sequence must be doubled to obtain comparable
performance.
The challenging problem of video source identi!ca-

tion from low-quality videos has been deeply explored by
van Houten et al. [40–42] in several works. The authors
recorded videos using several di�erent cameras, with var-
ious resolutions and bitrates. Then, they uploaded these
videos on YouTube and downloaded them. Since YouTube
re-encodes video during uploading, frames underwent at
least double compression. After a large set of experiments,
the authors came to the !nal conclusion that PRNU-based
source identi!cation is still possible for very low-quality
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videos, provided that the forensic analyst can extract the
PRNU mask from a #at !eld video and that the aspect
ratio of the video is not (automatically) changed during
uploading.
In all the aforementioned works, video compression is

considered to be a factor signi!cantly hindering the iden-
ti!cation of the PRNU-related footprints. However, digi-
tal video content mainly exists in compressed format, and
the !rst compression step is operated by the camera itself
using a proprietary codec. Therefore, the identi!cation of
the acquisition device could also be based on the identi-
!cation the codec, leveraging the techniques described in
Section IV.

B) Detection of (illegal) reproduction
of videos

An important problem in copyright protection is the pro-
liferation of bootleg videos: many illegal copies of movies
are made available on the Internet even before their o -
cial release. A great deal of these fake copies are pro-
duced by recording !lms with camcorders in cinemas (the
last steps reported in Fig. 1). Video forensics contributes
to facing these problems by: (i) detecting re-projected
videos, as described in Section III. (B)(1); (ii) providing
video retrieval technique based on device !ngerprinting
described in Section III B(2).

detection of re-acquisition
Re-acquisition occurs when a video sequence that is repro-
duced on a display or projected on a screen is recaptured.
In the literature, some approaches were proposed based on
active watermarking to perform both the identi!cation of
bootleg video [43] and to locate pirate’s position in cin-
emas [44]. Recently, blind techniques are also emerging.
Wang and Farid [3] developed the most signi!cant work in
this !eld, exploiting the principles of multiple view geom-
etry. They observed that re-acquisition captures a scene
that is constrained to belong to a planar surface (e.g. the
screen), whereas the original acquisition of the video was
taken projecting objects from the real world to the camera
plane. The authors show both mathematically and experi-
mentally that re-projection usually causes non-zero skew1

in the intrinsic matrix of the global projection. Assuming
that the skew of the camera used for the !rst acquisition
was zero, signi!cant deviations of this parameter in the
estimated intrinsic matrix can be used as evidence that
a video has been re-projected. Although very promising,
this approach su�ers from some limitations. Speci!cally,
the original acquisition is modeled under several simplify-
ing hypotheses, and skew estimation on real-world video is
di cult to performwithout supervision. In [3],many exper-
iments are conducted in a synthetic setting, yielding good
performance (re-projected videos are detected with 88
accuracy and with 0.4 false alarm probability). However,
only one experiment is based on real-world video content,

1Camera skew accounts for the inclination of pixels: if pixels are
assumed to be rectangular, camera skew is zero.

Fig. 2. A simple !eld weaving algorithm for video de-interlacing. This scheme
uses T !elds to produce a de-interlaced video of T/2 frames.

presumably because of the complexity of skew estimation in
this setting.
Lee et al. [45] addressed the problem of detecting if an

imagemight be a screenshot re-captured from an interlaced
video. In an interlaced video, half of the lines are recorded at
time t in the �eld f (x, y, t), and the other half are recorded
at time t + 1 in the !eld f (x, y, t + 1). There are several
possible ways to obtain the full (spatial) resolution frame,
i.e. F (x, y, t), and one of the simplest is to weave !elds
together, as in Fig. 2. Therefore, lines of the full resolu-
tion frame are acquired at di�erent, though very near, time
instants. If the video contains rapidly moving objects (or,
equivalently, the camera is moving rapidly), this will intro-
duce artifacts that are referred to as “combing”. In [45], the
authors exploit the directional property of combing arti-
facts to devise six discriminative features. These features are
extracted fromwavelet transform subbands (since combing
artifacts are most evident near edges) and from vertical and
horizontal di�erential histograms (whichwill expose strong
di�erences in the presence of such artifacts). Experimental
results show an average accuracy higher than 97.

detection of copying
The most common approach in video copy detection is
to extract salient features from visual content that do not
depend on the device used to capture the video. However,
in [46], Bayram et al. pointed out that robust content-
based signaturesmay hinder the capability of distinguishing
between videos which are similar, although they are not
copies of each other. This issue might arise, e.g., in the case
of videos taken by two di�erent users of the same scene. For
this reason, they proposed to use source device character-
istics extracted from videos to construct a copy detection
technique. In [46], a video signature is obtained by esti-
mating the PRNU !ngerprints of camcorders involved in
the generation of the video. The authors suggest to com-
pute the PRNU !ngerprint in the classical way. In the case
of professional content, video is usually acquired using
more than one device. As a consequence, this automati-
cally yields a weighted mean of the di�erent PRNU pat-
terns, in which more frames taken with the same camera
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will result in a stronger weight assigned to it. Further-
more, it was observed that PRNU signatures are not totally
insensible to the underlying frame content. Therefore, the
weighted mean will also implicitly carry information about
the content of the video. Notice that this method aims at
obtaining a !ngerprint for the content rather than for the
device. Although it reuses PRNU !ngerprinting techniques
described in Section III. A(1), it does so with a completely
di�erent objective. The authors also show that the !nger-
print is robust against a set of common processing opera-
tions, i.e., contrast enhancement, blurring, frame dropping,
subtitles, brightness adjustment, compression. Experiments
performed on video downloaded fromYouTube show a 96
detection rate for a 5 false alarm probability. However,
slight rotation or resizing, not mentioned in [46], are likely
to completely destroy the !ngerprint.

I V . FORENS IC TOOLS FOR V IDEO

COMPRESS ION

Video content is typically available in a lossy compression
format due to the large bit rate that is necessary to repre-
sent motion pictures either in an uncompressed or lossless
format. Lossy compression leaves characteristic footprints,
which might be detected by the forensic analyst. At the
same time, the study of e�ective forensic tools dealing with
compressed videos is a challenging task since coding oper-
ations have the potential e�ect of erasing the footprints
left by previous manipulations. In this way, the process-
ing history cannot be recovered anymore. Moreover, the
wide set of video coding architectures that have been stan-
dardized during the last two decades introduces several
degrees of freedom in the way di�erent compression steps
can be composed. As such, the codec adopted to com-
press a video sequence represents a distinctive connotative
element. Therefore, if detected, it can be useful for the iden-
ti!cation of the acquisition device, as well as for revealing
possible manipulations.
Most of the existing video coding architectures build

on top of coding tools originally designed for images. The
JPEG standard is, by far, the most widely adopted coding
technique for still images and many of its principles are
reused for the compression of video signals [47]. A JPEG
codec converts color images into a suitable color space
(e.g. YCbCr), and processes each color component inde-
pendently. The encoder operates according to three main
steps:

• The image is divided into non-overlapping 8 × 8 pixel
blocks X = [X(i , j)], i , j = 0, . . . , 7, which are trans-
formed using a DCT into coe cients Y(i , j) (grouped
into 8 × 8 blocks Y).

• The DCT coe cients Y(i , j) are uniformly quantized
into levels Yq (i , j) with quantization steps�(i , j), which
depend on the desired distortion and the spatial frequency
(i , j), i.e.

Yq (i , j) = sign(Y(i , j))round

(

|Y(i , j)|

�(i , j)

)

. (5)

Fig. 3. Simpli!ed block diagram of a conventional video codec. P computes
the prediction, T the orthonormal transform, Q is the quantizer, and F is
responsible of rounding and in-loop !ltering.

At the decoder, the reconstructed DCT coe cients
Yr (i , j) are obtained by multiplying the quantization
levels, i.e., Yr (i , j) = Yq (i , j)�(i , j).

• The quantization levels Yq (i , j) are lossless coded into a
binary bitstream by means of Hu�man coding tables.

Video coding architectures are more complex than those
adopted for still images. Most of the widely used coding
standards (e.g. those of MPEG-x or H.26x families) inherit
the use of block-wise transform coding from the JPEG stan-
dard. However, the architecture is complicated by several
additional coding tools, e.g., spatial and temporal predic-
tion, in-loop !ltering, image interpolation, etc. Moreover,
di�erent transforms might be adopted within the same
coding standard.
Fig. 3 illustrates a simpli!ed block diagram representing

the main steps in a conventional video coding architecture.
First, the encoder splits the video sequence into frames, and
each frame is divided into blocks of pixels X. Each block is
subtracted to a prediction generated by P exploiting either
spatial and/or temporal correlation. Then, the prediction
residual is encoded following a sequence of steps similar to
those adopted by the JPEG standard. In this case, though,
the values of the quantization steps and the characteristics of
transform might change according to the speci!c standard.
Quantization is a non-invertible operation and it is the

main source for information loss. Thus, it leaves character-
istic footprints, which depend on the chosen quantization
steps and quantization strategy. Therefore, the analysis of
coding-based footprints might be leveraged to: (i) infer
details about the encoder (e.g. coding standard, coding
parameters, non-normative tools); (ii) assess the quality of
a sequence in a no-reference framework; or (iii) study the
characteristics of the channel used to transmit the sequence.
In addition, block-wise processing introduces an arti!-

cial partition of the coded frame, which is further enhanced
by the following processing steps. Unlike JPEG, the actual
partitioning strategy is not !xed, as it depends on the
speci!cations of coding standard and on the adopted rate–
distortion optimization policy. Therefore, blockiness arti-
facts can be used to infer information about the adopted
codec.
Finally, di�erent codec implementations may adopt

diverse spatial or temporal prediction strategies, according
to rate–distortion requirements and computational con-
straints. The identi!cation of the adopted motion vectors
and coding modes provides relevant footprints that can
be exploited by the forensic analyst, e.g. to validate the
originating devices.
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When each frame is considered as a single image, it is
possible to apply image-based forensic analysis techniques.
However, to enable amore thorough analysis, it is necessary
to consider coding operations along the temporal dimen-
sion. In the following, we provide a survey of forensic tools
aimed at reconstructing the coding history of video con-
tent. Whenever applicable, we start by brie#y illustrating
the techniques adopted for still images. Then, we show how
they can be modi!ed, extended, and generalized to the case
of video.

A) Video coding parameter identi�cation

In image and video coding architectures, the choice of the
coding parameters is driven by non-normative tools, which
depend on the speci!c implementation of the codec and on
the characteristics of the coded signal. In JPEG compres-
sion, the user-de!ned coding parameters are limited to the
selection of the quantizationmatrices, which are adopted to
improve the coding e ciency based on the psycho-visual
analysis of human perception. Conversely, in the case of
video compression, the number of coding parameters that
can be adjusted is signi!cantly wider. As a consequence, the
forensic analyst needs to take into account a larger number
of degrees of freedom when detecting the codec identity.
This piece of information might enable the identi!cation
of vendor-dependent implementations of video codecs. As
such, it could be potentially used to: (i) verify intellectual
property infringements; (ii) identify the codec that gener-
ated the video content; (iii) estimate the quality of the recon-
structed videowithout the availability of the original source.
In the literature, the methods aiming at estimating di�erent
coding parameters and syntax elements characterizing the
adopted codec can be grouped into three main categories,
which are further described below: (i) approaches detecting
block boundaries; (ii) approaches estimating the quantiza-
tion parameters, and (iii) approaches estimating themotion
vectors.

block detection
Most video coding architectures encode frames on a block-
by-block basis. For this reason, artifacts at block boundaries
can be exploited to reveal traces of previous compression
steps. Typical blocking artifacts are shown in Fig. 4. Iden-
tifying block boundaries allows also estimating the block
size. It is possible to detect block-wise coding operations
by checking local pixel consistency, as shown in [24, 25].
There, the authors evaluate whether the statistics of pixel
di�erences across blocks di�er from those of pixels within
the same block. In this case, the image is supposed to be the
result of block-wise compression.
In [48], the block size in a compressed video sequence

is estimated by analyzing the reconstructed picture in the
frequency domain and detecting those peaks that are related
to discontinuities at block boundaries, rather than intrinsic
features of the underlying image.
However, some modern video coding architectures

(including, e.g., H.264/AVC as well as the recent HEVC

Fig. 4. Original (a) and compressed (b) frames of a standard video sequence.
The high compression rate is responsible for blocking artifacts.

Fig. 5. Histograms of DCT coe cients (c1, c2, c3) before (!rst row) and after
(second row) quantization. The quantization step �(i , j) can be estimated by
the gaps between consecutive peaks.

standard under development) enable to use a deblocking !l-
ter to smooth artifacts at block boundaries, in addition to
variable block sizes (also with non-square blocks). In these
situations, traditional block detection methods fail, leaving
this as an open issue for further investigations.

quantization step detection
Scalar quantization in the transform domain leaves a very
common footprint in the histogram of transform coe -
cients. Indeed, the histogram of each coe cient Yr (i , j)
shows a typical comb-like distribution, in which the peaks
are spaced apart by �(i , j), instead of a continuous distri-
bution (Fig. 5). Ideally, the distribution can be expressed as
follows:

p(Yr ; �) =
∑

k

wkδ(Yr − k�), (6)

where δ is the Dirac delta function and wk are weights that
depend on the original distribution (note that indexes (i , j)
are omitted for the sake of clarity). For this reason, the
quantization step �(i , j) can be recovered by studying the
distance between peaks of these histograms.
To this end, the work in [24, 25] proposes to exploit

this footprint to estimate the quality factor of JPEG



8 s. milani ET AL.

compression. Speci!cally, the envelope of the comb-shaped
histogram is approximated by means of a Gaussian distri-
bution for DC coe cients, and a Laplacian distribution for
AC coe cients. Then, the quality factor is estimated with
a maximum likelihood (ML) approach, where the quan-
tized coe cients are used as observations, and data coming
from uniform and saturated blocks is discarded tomake the
estimation more robust.
In [49] the authors propose a method for estimating

the elements of the whole quantization table. Separate his-
tograms are computed for each DCT coe cient subband
(i , j). Analyzing the periodicity of the power spectrum, it
is possible to extract the quantization step �(i , j) for each
subband. Periodicity is detectedwith amethod based on the
second-order derivative applied to the histograms.
In [23], anothermethod based on the histograms of DCT

coe cients is proposed. There, the authors estimate the
quantization table as a linear combination of existing quan-
tization tables. A !rst estimate of the quantization step size
for each DCT band is obtained from the distance between
adjacent peaks of the histogram of transformed coe cients.
However, in most cases, high-frequency coe cients do not
contain enough information. For this reason some elements
of the quantization matrix cannot be reconstructed, and
they are estimated as a linear combination (preserving the
already obtained quantization steps) of other existing quan-
tization tables collected into a database.
A similar argument can be used to estimate the quanti-

zation parameter in video coding, when the same quanti-
zation matrix is used for all blocks in a frame. In [50, 51],
the authors consider the case of MPEG-2 and H.264/AVC
coded video, respectively. There, the histograms are com-
puted fromDCT coe cients of prediction residuals. To this
end, motion estimation is performed at the decoder side
to recover an approximation of the motion-compensated
prediction residuals available at the encoder.
Based on the proposed method for quantization step

estimation a possible future line of investigation could be
the inference of the rate-control algorithm applied at the
encoder side, by tracking how quantization parameters vary
over time. This could be an important hint to identify
vendor-speci!c codec implementations.

identification of motion vectors
A signi!cant di�erence between image and video coding
is the use of predictors exploiting temporal correlation
between consecutive frames. The idea is that of reduc-
ing temporal redundancy by exploiting similarities among
neighboring video frames. This is achieved constructing a
predictor of the current video frame by means of motion
estimation and compensation. In most video coding archi-
tectures, a block-basedmotionmodel is adopted. Therefore,
for each block, a motion vector (MV) is estimated, in such a
way to generate a motion-compensated predictor. In [52], it
is shown how to estimate, at the decoder, themotion vectors
originally adopted by the encoder, also when the bitstream
is missing. The key tenet is to perform motion estimation
by maximizing, for each block, an objective function that

measures the comb-like shape of the resulting prediction
residuals in the DCT domain.
Although the estimation of coding parameters has been

investigated, mainly focusing on block detection and quan-
tization parameter estimation, there are still many unex-
plored areas due to the wide variety of coding options that
can be enabled and the presence of a signi!cant number of
non-normative aspects in the standard de!nition (i.e. rate–
distortion optimization,motion estimation algorithm, etc.).
These coding tools o�er a signi!cant amount of degrees of
freedom to the video codec designer, who can implement in
di�erent ways an encoder producing a bitstream compliant
with the target coding standard. On the other hand, the task
of forensic analyst becomes more and more di cult, when
it comes to characterize and detect the di�erent footprints
left by each operation.

B) Video re-encoding

Every time a video sequence that has already been com-
pressed is edited (e.g. scaling, cropping, brightness/contrast
enhancement, local manipulation, etc.), it has to be
re-compressed. Studying processing chains consisting of
multiple compression steps is useful, e.g. for tampering
detection or to identify the original encoder being used.
This is a typical situation that arises, e.g. when video content
is downloaded from video-sharing websites.
Of course, it is straightforward to obtain the parame-

ters used in the last compression stage, as they can be read
directly from the bitstream. However, it is much more chal-
lenging to extract information about the previous coding
steps. For this reason, some authors have studied the foot-
prints left by double video compression. The solutions pro-
posed so far in the literature are mainly focused on MPEG
video, and they exploit the same ideas originally used for
JPEG double compression.

double compression
Double JPEG compression can be approximated by double
quantization of transform coe cients Y(i , j), such that

YQ1 ,Q2
= �2 sign(Y) round

(

�1

�2

round

(

|Y|

�1

))

, (7)

where indexes (i , j) have been omitted for the sake of clar-
ity. Re-quantizing already quantized coe cients with dif-
ferent quantization step sizes a�ects the histogram of DCT
coe cients. For this reason, most solutions are based on the
statistical footprints extracted from such histograms.
In [26], Lukáš and Fridrich show how double compres-

sion introduces characteristic peaks in the histogram,which
alter the original statistics and assume di�erent con!gura-
tions according to the relationship between the quantiza-
tion step sizes of consecutive compression operations, i.e.,
respectively, �1 and �2. More precisely, the authors high-
light how peaks can be more or less evident depending on
the relationship between the two step sizes, and propose a
strategy to identify double compression. Special attention is
paid to the presence of double peaks and missing centroids
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(i.e. those peaks with very small probability) in the DCT
coe cient histograms, as they are identi!ed to be robust
features providing information about the primary quanti-
zation. Their approach relies on cropping the reconstructed
image (in order to disrupt the structure of JPEG blocks)
and compressing it with a set of candidate quantization
tables. The image is then compressed using�2(i , j) and the
histogram of DCT coe cients is computed. The proposed
method chooses the quantization table such that the result-
ing histogram is as close as possible to that obtained from
the reconstructed image. This method is further explored
in [53], providing a way to automatically detect and locate
regions that have gone through a second JPEG compression
stage. A similar solution is proposed in [54], which consid-
ers only the histograms related to the nine most signi!cant
DCT subbands, which are not quantized to zero. The cor-
responding quantization steps, i.e. those employed in the
!rst compression stage, are computed via a support vec-
tor machine classi!er. The remaining quantization steps are
computed via a ML estimator.
A widely adopted strategy for the detection of double

compression relies on the so-called Benford’s law or !rst
digit law [21]. In a nutshell, it relies on the analysis of the dis-
tribution of themost signi!cant decimal digitm (also called
“!rst digit”) of the absolute value of quantized transformed
coe cients. Indeed, in the case of an original uncompressed
image, the distribution is closely related to the Benford’s
equation or its generalized version, i.e.,

p(m) = N log10

(

1 +
1

m

)

or p(m)

= N log10

(

1 +
1

α + mβ

)

, (8)

respectively (where N is a normalizing constant). When-
ever the empirical distribution deviates signi!cantly from
the interpolated logarithmic curve, it is possible to infer that
the image was compressed twice. Then, it is also possible
to estimate the compression parameters of the !rst cod-
ing stage. Many double-compression detection approaches
based on Benford’s law have been designed focusing on still
images [21], giving detection accuracy higher than 90.
These solutions have also been extended to the case of video
signals, but the prediction units (spatial or temporal) that
are part of the compression scheme reduce the e ciency of
the detector, leading to an accuracy higher than 70. More
recently, this approach has also been extended to the case
of multiple JPEG compression steps since in many prac-
tical cases images and videos are compressed more than
twice [20].
In [4], the authors address the problem of estimating

the traces of double compression of an MPEG coded video.
Two scenarios are considered, depending on whether the
group of pictures (GOP) structure used in the !rst com-
pression is preserved or not. In the former situation, every
frame is re-encoded in a frame of the same kind, so that I,B,
or P frames remain, respectively, I,B, or P. Since encoding

I-frames is not dissimilar from JPEG compression, when
an I-frame is re-encoded at a di�erent bitrate, DCT coef-
!cients are subject to two levels of quantization. Therefore,
the histograms of DCT coe cients assume a characteristic
shape that deviates from the original distribution. In par-
ticular, when the quantization step size decreases from the
!rst to the second compression, some bins in the histogram
are left empty. Conversely, when the step size increases, the
histogram is a�ected in a characteristic way. Instead, the lat-
ter situation typically arises in the case of frame removal
or insertion attacks. Since the GOP structure is changed,
I-frames can be re-encoded into another kind of frame.
However, this gives rise to larger prediction residuals after
motion compensation. The authors show that by looking
at the Fourier transform of the energy of the displaced
frame di�erence over time, the presence of spikes reveals
a change in the GOP structure, which is a clue of double
compression.
In [55], the authors propose another method for detect-

ingMPEG double-compression based on blocking artifacts.
A metric for computing the block artifact strength (BAS)
for each frame is de!ned. This score is inspired to the
method in [25] and relies on the di�erence of pixel values
across a grid. The mean BAS is computed for sequences
obtained removing from 1 to 11 frames, obtaining a feature
vector of BAS values. If the sequence has been previously
tampered with by frame removal and re-compression, the
feature vector presents a characteristic behavior.
In [56], MPEG double quantization detection is

addressed on a macroblock-by-macroblock basis. In par-
ticular, a probability distribution model for DCT coe -
cients of a macroblock in an I-frame is discussed. With
an estimation-maximization (EM) technique, the proba-
bility distribution that would arise if a macroblock were
double quantized is estimated. Then, such distribution is
compared with the actual distribution of the coe cients.
From this comparison, the authors extract the probability
that a block has been double compressed. These solutions
can be extended to enable the detection of double video
compression even in a realistic scenario in which di�erent
codecs are employed in each compression stage.
The approach in [57] presents an e�ective codec iden-

ti!cation strategy that allows to determine the codec used
in the !rst compression stage in the case of double video
compression (note that the codec used in the second com-
pression stage is known since the bitstream is usually avail-
able). The proposed algorithm relies on the assumption that
quantization is an idempotent operator, i.e., whenever a
quantizer is applied to a value that has already been pre-
viously quantized and reconstructed by the same quantizer,
the output value is highly correlated with the input value.
As a matter of fact, it is possible to identify the adopted
codec and its con!guration by re-encoding the analyzed
sequence a third time, with di�erent codecs and parameter
settings. Whenever the output sequence presents the high-
est correlation with the input video, it is possible to infer
that the adopted coding set-up corresponds to that of the
!rst compression.
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Although the detection of double compression for
images is a widely investigated issue, double video compres-
sion still proves to be an open research problem, because
of the complexity and diversity of video coding architec-
tures.Whenever two di�erent codecs are involvedwith sim-
ilar parameters, the detection of double video compression
becomes signi!cantly more di cult [57]. Moreover, mul-
tiple compression is a current and poorly explored topic
despite the fact that multimedia content available on the
internet has been often coded more than twice [20].

C) Network footprints identi�cation

Video transmission over a noisy channel leaves character-
istic footprints in the reconstructed video content. Indeed,
packet losses and errors might a�ect the received bitstream.
As a consequence, some of the coded data will be missing
or corrupted. Error concealment is designed to take care of
this, trying to recover the correct information and mitigate
the channel-induced distortion. However, this operation
introduces some artifacts in the reconstructed video, which
can be detected to infer the underlying loss (or error) pat-
tern. The speci!c loss pattern permits the identi!cation of
the characteristics of the channel that was employed dur-
ing the transmission of the coded video. More precisely, it
is possible to analyze the loss (error) probability, the bursti-
ness, and other statistics related to the distribution of errors
in order to identify, e.g. the transmission protocol or the
streaming infrastructure.
Most of the approaches targeting the identi!cation of

network footprints are intended for no-reference quality
monitoring, i.e. the estimation of the quality of the video
sequence without having access to the original source as a
reference signal. These solutions are designed to provide
network devices and client terminals with e�ective tools
that measure the quality-of-experience o�ered to the end
user. The proposed approaches can be divided into two
main groups.
The !rst class of network footprint identi!cation algo-

rithms takes into consideration transmission statistics
to estimate the channel distortion on the reconstructed
sequence. In [58], the authors present an algorithm based
on several quality assessment metrics to estimate the packet
loss impairment in the reconstructed video. However, the
proposed solution adopts full-reference quality metrics that
require the availability of the original uncompressed video
stream. A di�erent approach is presented in [59], where
the channel distortion a�ecting the received video sequence
is computed according to three di�erent strategies. A !rst
solution computes the !nal video quality from the network
statistics; a second solution employs the packet loss statistics
and evaluates the spatial and temporal impact of losses on
the !nal sequence; the third one evaluates the e�ects of error
propagation on the sequence. These solutions target con-
trol systems employed by network service providers, which
need to monitor the quality of the !nal video sequences
without having access to the original signal. Another no-
reference PSNR estimation strategy is proposed in [60]. The

proposed solution evaluates the e�ects of temporal and spa-
tial error concealment without having access to the original
video sequence, and the output values present a good cor-
relation with MOS scores. As a matter of fact, it is possible
to consider this approach as a hybrid solution, in that it
exploits both the received bitstream and the reconstructed
pixel values.
A second class of strategies assumes that the transmitted

video sequence has been decoded and that only the recon-
structed pixels are available. This situation is representative
of all those cases in which the video analyst does not have
access to the bitstream. The solution proposed in [61] builds
on top of the metrics proposed in [60], but no-reference
quality estimation is carried out without considering the
availability of the bitstream. Therefore, the proposed solu-
tion processes only pixel values, identifying which video
slices were lost, and producing as output a quality value
that presents good correlation with the MSE value obtained
in full reference fashion. The method assumes that slices
correspond to rows of macroblocks. However, modern
video coding standard enable more #exible slicing schemes.
Hence, the method has been recently extended in [62], in
which a maximum a posteriori approach is devised to take
into account a spatial prior on the distribution of lost slices.

D) Video compression anti-forensics

The design of novel forensic strategies aimed at charac-
terizing image and video compression is paralleled by the
investigation of corresponding anti-forensic methods. That
is, a malicious adversary might tamper with video content
in such a way to disguise its traces.
An anti-forensic approach for JPEG compression has

been recently proposed in [63]. There, the traces of com-
pression are hidden by adding a dithering noise signal.
Dithering is devised to reshape the histogramofDCTcoe -
cients in such a way that the original Laplacian distribution
is restored. In a following work by the same authors [64],
a similar strategy is proposed to erase the traces of tamper-
ing from an image and hide double JPEG compression. This
is achieved by a combined strategy, i.e., removing blocking
artifacts bymeans ofmedian !ltering and restoring the orig-
inal distribution of DCT coe cients with the same method
as in [63]. In this way, the forensic analyst is not able to iden-
tify the tampered region by inspecting the distribution of
DCT coe cients. However, it has been recently shown that
anti-forensic methods are prone to leave their own foot-
prints. In [65, 66], the authors study the distortion which
is inevitably introduced by the anti-forensic method in [63]
and propose an e�ective algorithm to counter it.
The aforementioned anti-forensic methods might be

potentially applied to videos on a frame-by-frame basis.
To the authors’ knowledge, the only work that addresses
an anti-forensic method speci!cally tailored to video com-
pression is [67]. There, the authors propose a method to
fool the state-of-the-art frame deletion and detection tech-
nique in [4], which is based on the analysis of the motion-
compensated prediction error sequence. However, this is
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achieved by paying a cost in terms of coding e ciency, since
some of the frames of the video sequence need to be re-
encoded at a bitrate higher than the one originally used.
However, this research !eld is quite recent and just a few
works can be found on the subject.

V . FORENS IC TOOLS FOR V IDEO

DOCTOR ING DETECT ION

Although beingmore complicated than for images, creating
a forged video is now easier than before, due to the avail-
ability of video editing suites. At the same time, videos are
extensively used for surveillance, and they are usually con-
sidered a much stronger proof than a single shot. There
are many di�erent ways of tampering with a video, and
some of them are not complicated at all: one may be inter-
ested in replacing or removing some frames (e.g. from a
video-surveillance recording), replicating a set of frames,
introducing, duplicating, or removing some objects from
the scene.
It is possible to classify both video forgery and video

forensic techniques as intra-frame (attack/analysis is per-
formed frame-wise, considering one frame at a time), or
inter-frame (relationships between adjacent frames are con-
sidered). Although it would be possible to analyze the
integrity of a video by simply applying image forensic tools
to each separate frame, this approach is considered unprac-
tical, mainly for these reasons:

• complexity: tools for detecting forgeries in images are
usually computationally demanding;

• reliability: replication/deletion of frames would not be
detected by any image forensic tools;

• convenience: creating doctored videos that are temporally
consistent is very di cult, so these kinds of inter-frame
relationships are a valuable asset for forgery identi!cation.

In the following subsections we survey existing tech-
niques for video doctoring detection. We group them
according to the type of analysis they rely on. Section
V(A) covers camera-based techniques. Section V(B) cov-
ers coding-based techniques and Section V(C) discusses
some pioneering works that exploit geometrical/physical
inconsistencies to detect tampering. In Section V(D), we
analyze the problem of identifying frames, or portion of
frames, copy-move forgeries. In Section V(E), we dis-
cuss anti-forensic strategies. Finally, in Section V(F) we
present a solution to the problem of understanding the rela-
tionships between objects in large multimedia collections
(phylogeny).

A) Camera-based editing detection

As discussed in Section III, camcorders usually leave a
characteristic !ngerprint in recorded videos. Although
these kinds of artifacts are usually exploited just for
device identi!cation, some works leverage on them also
for tampering detection. The main contributions in this

!eld are from Mondaini et al. [68], Hsu et al. [69], and
Kobayashi et al. [70].
Mondaini et al. [68] proposed a direct application of

the PRNU !ngerprinting technique (see Section III. A(1)
to video sequences: the characteristic pattern of the cam-
corder is estimated on the !rst frames of the video, and is
used to detect several kinds of attacks. Speci!cally, authors
evaluate three correlations coe cient (see equation 4)): (i)
the one between each frame noise and the reference noise,
(ii) the one between the noise of two consecutive frames,
and (iii) the one between frames (without noise extrac-
tion). Each of these correlation coe cients is thresholded
to obtain a binary event, and di�erent combinations of
events allow to detect di�erent kind of doctoring, among
which: frame insertion, object insertion within a frame
(cut-and-paste attack), frame replication. Experiments are
carried both on uncompressed and on MPEG compressed
videos: results show that the method is reliable (only some
case studies are reported, not averaged values) on uncom-
pressed videos, whileMPEG encoding a+icts performances
signi!cantly.
Hsu et al. [69] adopt a technique based on temporal cor-

relation of noise residues, where the “noise residue” of a
frame is de!ned as what remains after subtracting from
the frame its denoised version (the !ltering technique pro-
posed in [39] is used). Each frame is divided into blocks,
and the correlation between the noise residue of tempo-
rally neighboring blocks (i.e. blocks in the same position
belonging to two adjacent frames) are evaluated. When a
region is forged, the correlation value between temporal
noise residues will be radically changed: it will be decreased
if pixels of the blocks are pasted from another frame/region
(or automatically generated through inpainting), while it
will be raised to 1 if a frame replication occurs. Authors
propose a two-step detection approach to lower the com-
plexity of the scheme: !rst a rough threshold decision is
applied to correlations and, if the frame contains a sig-
ni!cant number of suspect blocks, a more deep statisti-
cal analysis is performed, modeling the behavior of noise
residue correlation through a Gaussian mixture and esti-
mating its parameters. Performances are far from ideal:
when working on copy-paste attacked videos, on aver-
age only 55 of forged blocks are detected (false positive
rate being 3.3); when working on synthetically inpainted
frames, detection raises to 74 but also false positive rate
increases to 7 on average. Furthermore, when the video is
lossy encoded, performances drop rapidly with the quanti-
zation strength. Nevertheless, despite authors do not pro-
vide experiments in this direction, this method should
be e�ective for detecting frame replication, which is an
important attack in the video-surveillance scenario. It is
worth noting that, although exploiting camera character-
istics, this work does not target the !ngerprinting of the
device at all.
Another camera-based approach is the one from

Kobayashi et al. [70]: they propose to detect suspicious
regions in video recorded from a static scene by using
noise characteristics of the acquisition device. Speci!cally,
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photon shot noise2 is exploited, which mainly depends on
irradiance through a function named noise level function
(NLF). The method computes the probability of forgery
for each pixel by checking the consistency of the NLFs in
forged regions and unforged regions. Since it is not known
a priori which pixels belong to which region, the EM [71]
algorithm is employed to simultaneously estimate the NLF
for each video source and the probability of forgery for each
pixel. The core of the technique resides in correctly estimat-
ing the function from temporal #uctuations of pixel values,
and this estimate is thoroughly discussed from a theoretical
point of view. On the other hand, from a practical point of
view, the estimate can be performed only for pixels whose
temporal variation results entirely from noise and not from
motion of objects or camera. This limits the applicability
of the approach to stationary videos, like those acquired
by steady surveillance cameras. When this assumption is
respected, and the video is not compressed, this method
yields very good performances (97 of forged pixels are
located with 2.5 of false alarm); also, the perfect resolu-
tion of the produced forgery map (each pixel is assigned
a probability) should be appreciated. Unfortunately, since
videos usually undergo some kind of noise reduction during
encoding, performances drop dramatically when the video
is compressed using conventional codecs like MPEG-2 or
H.264, and this further limits the practical applicability of
this work.
Going back to a global view, it can be stated that camera-

basedmethods are e�ective on uncompressed videos. How-
ever, videos are typically stored in compressed format in
most practical applications. This motivates the investiga-
tion of camera footprints that are more robust to aggressive
coding.

B) Detection based on coding artifacts

Fromwhat emerged in the previous section, video encoding
strongly hinders the performances of camera-based detec-
tion techniques. On the other hand, however, coding itself
introduces artifacts that can be leveraged to investigate the
integrity of the content. Since video codecs are designed to
achieve strong compression ratios, they usually introduce
rather strong artifacts in the content (as seen in Section IV).
In the last years, some forensic researchers investigated the
presence or the inconsistencies of these artifacts to asses the
integrity of a video, and to localize which regions are not
original.
The !rst approach in this direction was from Wang and

Farid [4], focusing onMPEG compressed videos, where two
phenomena are explored, one static (inter-frame) and one
temporal (intra-frame). The static phenomena, which has
been discussed in Section IV(B), relies on the fact that a
forged MPEG video will almost surely undergo two com-
pressions the !rst being performed when the video is cre-
ated, and the second when video is re-saved after being
doctored. The temporal phenomena are based on the GOP

2This noise originates from the temporal #uctuations of the number
of photons that fall onto a CCD element.

Fig. 6. In this example, the !rst six frames of the original MPEG compressed
video (!rst row) are deleted, thus obtaining a new sequence (second row).When
this sequence is re-compressed usingMPEG, each GOPwill contain frames that
belonged to di�erent GOPs in the original video (frames highlighted in yellow
in the third row).

structure of MPEG !les. As shown in Fig. 6, when a video is
re-compressed after removing or adding a group of frames,
a desynchronization will occur in the GOP pattern. Due
to the predictive nature of MPEG compression, all the P
frames in a GOP are correlated to the initial I frame. In the
re-compressed sequence, some of the frames are likely to
move from one GOP to another (last row of Fig. 6), so their
correlation with the I frame of the newGOPwill be smaller,
resulting in larger prediction errors. If a single set of frames
is deleted, the shift of P frames will be the same through-
out all the video sequence, and the variability of prediction
error in P frames along time will exhibit a periodic behav-
ior. That is, smaller error values will result for frames that
remained in the same GOP as the original video, and larger
error for those that changed GOP.
This periodicity can be revealed via a Fourier analysis

of the frame-wise average values of motion error. Authors
show the e�ectiveness of this approach on several exam-
ples, although they do not allow us to give a value for
precision-recall or overall accuracy of the method.
Another work from the same authors [56] provides a

more accurate description of double compression inMPEG
videos, which allows them to detect doubly compressed
macro-blocks (16 × 16 pixels) instead of frames. Conse-
quently, this approach allows to detect if only part of
the frame has been compressed twice, which usually hap-
pen when the common digital e�ect of green screening is
applied (that is, a subject is recorded over a uniform back-
ground then it is cut and pasted into the target video).
Performances of this technique depend on the ratio between
the two compression quality factors: for ratios over 1.7 the
method is almost ideal (99.4 detection rate) while for
ratios less then 1.3 detection drops to 2.5.
Quantization artifacts are not the only e�ect that have

been exploited for video doctoring detection: Wang and
Farid proposed another approach [72] for detecting tamper-
ing in interlaced and de-interlaced video (see Section III.
B(1) for a brief explanation of what an interlaced video
is). For de-interlaced video, the authors consider how the
missing rows of the frame are generated (see Fig. 7 for an
example): if they are not tampered with, they should be a
combination of !elds that are adjacent in time and/or space.
Instead, if a region is forged, this relationship should not
hold, thus exposing the doctoring. However, in practice,
both the adopted interpolation method and the possibly
doctored region are not known in advance. The authors
propose to exploit the EM algorithm [71] to simultaneously
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Fig. 7. Video interpolation based on line averaging, which is a !eld extension scheme. Compared to the method in Fig. 2, this one has the advantage of producing
a !nal video with T frames instead of T/2, without showing the combing artifact. On the other hand, vertical resolution is halved.

estimate the parameters of the !lter and assign pixels to
original or tampered regions. To give a simple example, let
us consider the odd rows Fo(x, y, t) of an interlaced frame
F (x, y, t). Pixels that are not tampered with are said to
belong to the model M1, and should satisfy the following
constraint:

Fo(x, y, t) =
∑

i∈{−3,−1,1,3}

αi F (x, y + i , t)

+
∑

i∈{−2,0,2}

βi F (x, y + i , t + 1) + n(x, y),

whereαi andβi are the coe cients of the interpolation !lter
and n(x, y) is i.i.d. Gaussian noise. On the other hand, pix-
els in tampered regions belong to another model, M2, for
which a uniform distribution is assumed. With these set-
tings, the EM algorithm iteratively determines the probabil-
ity of each pixel of Fo(x, y, t) to belong to M1 (expectation
step). Then, it uses these assignments to re!ne the model
M1, by minimizing a cost function expressed in terms of αi

and βi (maximization step). Notice that the !nal result is a
pixel-resolution probability map of tampering, and this is
an important contribution in that tampering localization is
always more di cult than tampering detection.
For interlaced video, in which frames are created by sim-

ply weaving together the odd and even !elds, the presence
of rapidly moving objects introduces the combing artifact,
already mentioned in Section III. B(1). Since the magnitude
of this e�ect depends on the amount of motion between
!elds, authors use incoherence between inter-!eld and
inter-frame motion to reveal tampering. Both techniques
in [56] allow the localization of tampering in time (frame) as
well in space (region of the frame). Furthermore, both algo-
rithms can be adapted to detect frame rate conversion. Since
compression partially removes inter-pixel correlations this
approach is mostly suited for medium/high-quality video.
For interlaced video, instead, compression does not seem to
hinder performance.
We argue that much has still to be discovered in coding-

based doctoring detection for videos. As a matter of fact,
video coding algorithms aremuchmore complex than JPEG
compression. This makes detection of introduced artifacts
more di cult, since mathematical models are not easy to
derive. However, this should also motivate researchers to
look for traces left by such video coding schemes, which

are likely to be much stronger compared to the case of
images, due to the aggressive compression that it is typically
performed.

C) Detection based on inconsistencies
in content

As already stated in Section II, it is very di cult to under-
stand whether the geometry or the physical/lighting prop-
erties of a scene are consistent. In particular, it is very hard
to do so unless some assistance from the analyst is pro-
vided. If this e�ort from the analyst may be a�ordable when
a single image is to be checked, it would be prohibitive
to check geometric consistencies in video on a frame-by-
frame basis. Existingworks usually exploit phenomena con-
nected to motion in order to detect editing. So far, two
approaches have been proposed: (i) the one in [73], based
on artifacts introduced by video inpainting, (ii) the one in
[74], that reveals inconsistencies in the motion of objects in
free-#ight.
Going into details, Zhang et al. [73] propose a method to

detect video inpainting, which is a technique that automati-
cally replaces somemissing content in a frame by reproduc-
ing surrounding textures. Although originally developed
for still images, this technique is also applicable frame-
by-frame to video signals introducing annoying artifacts,
known as “ghost shadows”, due to temporal discontinu-
ity of the inpainted area. Authors observe that these arti-
facts are well exposed in the accumulative di�erence image
(ADI). This is obtained by comparing a reference image
with every subsequent frame and using each pixel as a
counter, which is incremented if the current frame dif-
fers signi!cantly from the reference image. Unfortunately,
ADI would also detect any moving object. Therefore, the
authors propose a method to automatically detect the pres-
ence of these artifacts, provided that the removed object
was a moving object. The authors point out that only detec-
tion of forgery is possible, and no localization is provided.
Experiments, performed on just a few real world video
sequences, show that the method is robust against strong
MPEG compression.
Before moving to the work in [74], a remark must be

made: if detecting geometrical inconsistencies in an inter-
frame fashion is di cult, it is perhaps more di cult to
detect physical inconsistencies, since this requires to mix
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together tracking techniques and complex physical models
to detect unexpected phenomena. Nevertheless, restrict-
ing the analysis to some speci!c scenarios, it is possible to
develop ad hoc techniques capable of such a task. This is
what has been done by Conotter et al. in [74]: an algorithm
is proposed to detect physically implausible trajectories of
objects in video sequences. The key idea is to explicitly
model the three-dimensional parabolic trajectory of objects
in free-#ight (e.g. a ball #ying towards the basket) and the
corresponding two-dimensional projection into the image
plane. The #ying object is extracted from video, compen-
sating camera motion if needed, then the motion in the
3D space is estimated from 2D frames and compared to
a plausible trajectory. If the deviation between observed
and expected trajectories is large, the object is classi!ed as
tampered. Although analyzing a very speci!c scenario, the
method inherits all the advantages that characterize foren-
sic techniques based on physical and geometrical aspects;
for example, performance does not depend on compression
and video quality.

D) Copy-move detection in videos

Copy and copy-move attacks on images have been consid-
ered in order to prevent the illegal duplication or reusing
of images. More precisely, these approaches check for simi-
larities between pairs of images that are not supposed to be
related (since they have been taken in di�erent time/places
or di�erent origins are claimed). However, it is possible to
verify that di�erent images are copies of the same visual
content checking the similarity between their features [75].
Many approaches for copy detection in images are based
on SIFT, which allows detecting the presence of the same
objects in the acquired scene [76].
Copy-move attacks are de!ned for video both as intra-

and inter-frame techniques. An intra-frame copy-move
attack is conceptually identical to the one for still images,
and consists in replicating a portion of the frame in the
frame itself (the goal is usually to hide or replicate some
object). An inter-frame copy-move, instead, consists in
replacing some frames with a copy of previous ones, usu-
ally to hide something that entered the scene in the original
video. To this end, partial inter-frame attacks can be de!ned,
in which only a portion of a group of frames is substituted
with the same part coming from a selected frame. To the
best of our knowledge, there is only one work authored
by Wang and Farid [77] that targets copy-move detection
directly in video. The method uses a kind of divide-and-
conquer approach: the whole video is split in subparts, and
di�erent kinds of correlation coe cients are computed in
order to highlight similarities between di�erent parts of the
sequence. In the same work, a method for detecting region
duplication, both for the inter-frame and intra-frame case,
is de!ned. Results are good (accuracy above 90) for a sta-
tionary camera, and still interesting for a moving camera
setting (approx. accuracy 80). MPEG compression does
not hinder performance.

E) Anti-forensic strategies

For what concerns video, only a work has been proposed by
Stamm and Liu [78] to fool one of the forensic techniques
described in [4] (see Section V(B)), speci!cally the one
based on GOP desynchronization. Authors of [78] observe
that the simplest way to make the forgery undetectable is to
raise prediction errors of all frames to the values assumed
in the spikes, so that peaks in the error due to desyn-
chronization will be no longer distinguishable. In order to
raise prediction errors, they alter the encoder so that a cer-
tain number of motion vectors will be set to zero even if
they were not null. The quality of the video will not be
reduced, since the error is stored during encoding and com-
pensated before reproduction; furthermore, authors select
which vector will be set to zero starting from those that
are already small, so that the introduced error is spread
on many vectors, and introduced modi!cation is harder to
detect. Authors also point out that the other detection tech-
nique proposed by Wang et al. in the same work [4] can
be attacked using counter forensic methods designed for
still images, in particular those that hide JPEG quantization
e�ects [79].
For what concerns camera-artifact-basedmethods, there

is a straightforward counter forensic method, which also
applies to images: it simply consists in scaling the doctored
video (even by a very low factor) and then re-encode it.
Since rescaling requires an interpolation step, noise arti-
facts will be practically erased; furthermore, the correlation
operator used in equation (4) is performed element-wise,
so frames having di�erent sizes cannot be even compared
directly.

F) Video phylogeny

Two videos are termed “near-duplicate” if they share the
same content but they show di�erences in resolution, size,
colors, and so on. If we have a set of near duplicate videos,
like the one in Fig. 8, it would be interesting to understand
whether one of them has been used to generate the others,
and draw a graph of causal relationships between all these
contents. This problem, which was !rstly posed for images
under the name “image phylogeny” [80] or “image depen-
dencies” [81], is being studied on video under the name of
“video phylogeny”. The !rst (and by now the only) work on
video phylogeny is the one by Dias et al. [82].
Given two near-duplicate and frame-synchronized

videos VA and VB , given a !xed set T�β of possible

video transformations parameterized by �β , the dissimilarity
between VA and VB is de!ned as

dVA,VB
= min

�β

∣

∣VB − T�β(VA)
∣

∣

L
,

where L is a comparisonmethod. The best array of parame-
ter �β is searched by choosing a set of analogous frames from
VA and VB , extracting robust interest points from frames
and !nding the a ne warping between these points. Using
this de!nition of dissimilarity, and for a chosen number f
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Fig. 8. An example of near-duplicate frames of the a video.

Fig. 9. The ground-truth phylogeny tree for the near-duplicate set in Fig. 8.

of frames taken from N near-duplicate videos, authors build
f dissimilarity matrices, and each of them give the dissimi-
larity between all couples of videos evaluated on that frame.
Instead of directly deriving the video phylogeny tree from
these matrices, authors found more convenient to use the
image phylogeny approach [80] to build f phylogeny trees,
one for each set of frames, and then use a tree reconcilia-
tion algorithm that fuses information coming from these
trees into the !nal video phylogeny tree (in our example, the
phylogeny tree resulting from Fig. 8 would be as in Fig. 9).
Experiments carried by authors show that the method is
good (accuracy ∼90) in !nding the root of the tree (cor-
responding to the video originating the whole set) and also
correctly classi!es leafs 77.7 of the times, but the overall
performances in terms of correctly positioned edges are still
poor (∼65.8).

V I . CONCLUS IONS AND FUTURE

WORKS

As it has been shown in the previous sections, video foren-
sics is nowadays a hot research issue in the signal processing
world opening new problems and investigation threads.
Despite several techniques have been mutuated from

image forensics, video signals pose new challenges in the
forensic application world because of the amount and the

complexity of data to be processed and the wide employ-
ment of compression techniques, which may alter or erase
footprints left by previous signal modi!cations.
This paper presented an overview of the state-of-the-art

in video forensic techniques, underlying the future trends
in this research !eld. More precisely, it is possible to divide
video forensic techniques into three macro-areas concern-
ing the acquisition, the compression, and the editing of the
video signals. These three operations can be combined with
di�erent orders and iterated multiple times in the genera-
tion of the !nalmultimedia signal. Current results show that
it is possible to reconstruct simple processing chains (i.e.
acquisition followed by compression, double compression,
etc.) under the assumption that each processing step does
not introduce an excessive amount of distortion on the sig-
nal. This proves to be reasonable since a severe deterioration
of the quality of the signal would make it useless.
The investigation activity on video forensics is still an

ongoing process since the complexity of video editing pos-
sibilities requires additional research e�orts to make these
techniques more robust.
Future research has still to investigatemore complex pro-

cessing chains where each operation on the signal may be
iterated multiple times. These scenarios prove to be more
realistic since the possibility of transmitting and distribut-
ing video content over the internet favors the di�usion of
copies of the same multimedia content which has been
edited multiple times.
Moreover, anti-forensic and counter-anti-forensic strate-

gies prove to be an interesting issue in order to identify
those techniques that could be enacted by a malicious user
in order to hide alterations on the signal and how to prevent
them.
Future applications will include forensics strategies into

existing multimedia applications in order to, e.g., provide
the devices with built-in validating functionalities.
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