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Abstract: Visual SLAM (VSLAM) has been developing rapidly due to its advantages of low-cost
sensors, the easy fusion of other sensors, and richer environmental information. Traditional vision-
based SLAM research has made many achievements, but it may fail to achieve wished results in
challenging environments. Deep learning has promoted the development of computer vision, and
the combination of deep learning and SLAM has attracted more and more attention. Semantic
information, as high-level environmental information, can enable robots to better understand the
surrounding environment. This paper introduces the development of VSLAM technology from two
aspects: traditional VSLAM and semantic VSLAM combined with deep learning. For traditional
VSLAM, we summarize the advantages and disadvantages of indirect and direct methods in detail
and give some classical VSLAM open-source algorithms. In addition, we focus on the development
of semantic VSLAM based on deep learning. Starting with typical neural networks CNN and RNN,
we summarize the improvement of neural networks for the VSLAM system in detail. Later, we
focus on the help of target detection and semantic segmentation for VSLAM semantic information
introduction. We believe that the development of the future intelligent era cannot be without the
help of semantic technology. Introducing deep learning into the VSLAM system to provide semantic
information can help robots better perceive the surrounding environment and provide people with
higher-level help.

Keywords: SLAM; deep learning; neural networks; computer vision; semantic; intelligent era

1. Introduction

People need the mobile robot to perform some tasks by themselves, which needs the
robot to be able to adapt to an unfamiliar environment. Therefore, SLAM [1] (Simultaneous
Localization and Mapping), which enables localization and mapping in unfamiliar environ-
ments, has become a necessary capacity for autonomous mobile robots. Since it was first
proposed in 1986, SLAM has attracted extensive attention from many researchers and de-
veloped rapidly in robotics, virtual reality, and other fields. SLAM refers to self-positioning
based on location and map, and building incremental maps based on self-positioning. It is
mainly used to solve the problem of robot localization and map construction when moving
in an unknown environment [2]. SLAM, as a basic technology, has been applied to mobile
robot localization and navigation in the early stage. With the development of computer
technology (hardware) and artificial intelligence (software), robot research has received
more and more attention and investment. Numerous researchers are committed to making
robots more intelligent. SLAM is considered to be the key to promoting the real autonomy
of mobile robots [3] .

Some scholars divide SLAM into Laser SLAM and Visual SLAM (VSLAM) according
to the different sensors adopted [4]. Compared with VSLAM, because of an early start, laser
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SLAM studies abroad are relatively mature and have been considered the preferred solution
for mobile robots for a long time in the past. Similar to human eyes, VSLAM mainly uses
images as the information source of environmental perception, which is more consistent
with human understanding and has more information than laser SLAM. In recent years,
camera-based VSLAM research has attracted extensive attention from researchers. Due
to the advantages of cheap, easy installation, abundant environmental information, and
easy fusion with other sensors, many vision-based SLAM algorithms have emerged [5].
VSLAM has the advantage of richer environmental information and is considered to be able
to give mobile robots stronger perceptual ability and be applied in some specific scenarios.
Therefore, this paper focuses on VSLAM and combs out the algorithms derived from it.
SLAM based on all kinds of laser radar is not within the scope of discussion in this paper.
Interested readers can refer to [6–8] and other sources in the literature.

As one of the solutions for autonomous robot navigation, traditional VSLAM is
essentially a simple environmental understanding based on image geometric features [9].
Because traditional VSLAM only uses the geometric feature of the environment, such as
points and lines, to face this low-level geometry information, it can reach a high level in
real-time. Facing changes in lighting, texture, and dynamic objects are widespread, which
shows the obvious shortage, in terms of position precision and robustness is flawed [10].
Although the map constructed by traditional visual SLAM includes important information
in the environment and meets the positioning needs of the robot to a certain extent. It is
inadequate in supporting the autonomous navigation and obstacle avoidance tasks of the
robot. Furthermore, it cannot meet the interaction needs of the intelligent robot with the
environment and humans [11].

People’s demand for intelligent mobile robots is increasing day by day, which put
forward a high need for autonomous ability and the human–computer interaction ability of
robots [12]. The traditional VSLAM algorithm can meet the basic positioning and navigation
requirements of the robot, but cannot complete higher-level tasks such as “help me close
the bedroom door”, “go to the kitchen and get me an apple”, etc. To achieve such goals,
robots need to recognize information about objects in the scene, find out their locations
and build semantic maps. With the help of semantic information, the data association is
upgraded from the traditional pixel level to the object level. Furthermore, the perceptual
geometric environment information is assigned with semantic labels to obtain a high-level
semantic map. It can help the robot to understand the autonomous environment and
human–computer interaction [13]. We believe that the rapid development of deep learning
provides a bridge for the introduction of semantic information into VSLAM. Especially in
semantic map construction, combining it with VLAM can enable robots to gain high-level
perception and understanding of the scene. It significantly improves the interaction ability
between robots and the environment [14].

In 2016, Cadena et al. [15] first proposed to divide the development of SLAM into
three stages. In their description, we are in a stage of robust perception, as shown in
Figure 1. They describe the emphasis and contribution of SLAM in different times from
three aspects: Classical, Algorithmic, and Robust. Ref. [16] summarizes the development of
vision-based SLAM algorithms from 2010 to 2016 and provides a toolkit to help beginners.
Yousif et al. [17] discussed the elementary framework of VSLAM and summarized several
mathematical problems to help readers make the best choice. Bavle et al. [18] summa-
rized the robot SLAM technology and pointed out the development trend of robot scene
understanding. Starting from the fusion of vision and visual inertia, Servieres et al. [19] re-
viewed and compared important methods and summarized excellent algorithms emerging
in SLAM. Azzam et al. [20] conducted a comprehensive study on feature-based methods.
They classified the reviewed methods according to the visual features observed in the
environment. Furthermore, they also proposed possible problems and solutions for the
development of SLAM in the future. Ref. [21] introduces in detail the SLAM method based
on monocular, binocular, RGB-D, and visual-inertial fusion, and gives the existing problems
and future direction. Ref. [22] describes the opportunities and challenges of VSLAM from
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geometry to deep learning and forecasts the development prospects of VSLAM in the future
semantic era.

The classical age

(1986 2004)

The algorithmic-analysis age

(2004 2015)

The roboust-perception age

(2015 present)

Theoretical framework and 

mathematical model of SLAM.

Observability consistency convergence

and algorithm efficiency of SLAM.

Robustness of SLAM and ability 

to understand high-level 

environmental information.

Figure 1. Overview of SLAM development era. The development of SLAM has gone through three
main stages: theoretical framework, algorithm analysis, and advanced robust perception. The time
points are not strictly limited, but rather represent the development of SLAM at a certain stage and
the hot issues that people are interested in.

As you can see, there are some surveys and summaries of vision-based SLAM tech-
nologies. However, most of them only focus on one aspect of VSLAM, without a more
comprehensive summary of the development of VSLAM. Furthermore, the above review
focuses more on traditional visual SLAM algorithms, while semantic SLAM combined
with deep learning is not introduced in detail. So, a comprehensive review of vision-based
SLAM algorithms is necessary to help researchers and students launch their efforts at visual
SLAM technologies to obtain an overview of this large field.

To give readers a deeper and more comprehensive understanding of the field of SLAM,
we reviewed the history of general SLAM algorithms from inception to the present. In
addition, we summarize the key solutions driving the technological evolution of SLAM
solutions. The work of SLAM is described from the formation of point problems to the
most commonly used state methods. Rather than focusing on just one aspect, we present
the key main approaches to show the connections between the research that has brought
the SLAM approach to its current state. In addition, we review the evolution of SLAM from
traditional to semantic, a perspective that covers major, interesting, and leading design
approaches throughout history. On this basis, we make a comprehensive summary of
DEEP learning SLAM algorithms. Semantic VSLAM is also explained in detail to help
readers better understand the characteristics of semantic VSLAM. We think our work can
help readers better understand robot environment perception. Our work on semantic
VSLAM can provide readers with a better idea and provide a useful reference for future
SLAM research and even robot autonomous sensing. Therefore, this paper comprehensively
supplements and updates the development of vision-based SLAM technology. Furthermore,
this paper divides the development of vision-based SLAM into two stages: traditional
VSLAM and semantic VSLAM integrating deep learning. So readers can better understand
the research hot spots of VSLAM and grasp the development direction of VSLAM. We
believe the traditional phase SLAM problem mainly solves the framework problem of the
algorithm. In the semantic era, SLAM focuses on advanced situational awareness and
system robustness in combination with deep learning.

Our review makes the following contributions to the state of the art:

• We have reviewed the development of vision-based SLAM more comprehensively,
we review the recent research progress in the field of simultaneous localization and
map construction based on environmental semantic information.

• Starting with a convolutional neural network (CNN) and a recurrent neural net-
work (RNN), we describe the application of deep learning in VSLAM in detail. To
our knowledge, this is the first review to introduce VSLAM from a neural network
perspective.
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• We describe the combination of semantic information and VSLAM in detail and point
out the development direction of VSLAM in the semantic era. We mainly introduce
and summarize the outstanding research achievements in the combination of semantic
information and traditional visual SLAM in system localization and map construction,
and make an in-depth comparison between traditional visual SLAM and semantic
SLAM. Finally, the future research direction of semantic SLAM is proposed.

Specifically, in Section 1, this paper introduces the characteristics of traditional VSLAM
in detail, including the direct method and the indirect method based on the front-end vision
odometer, and makes a comparison between the depth camera-based VSLAM and the
classical VSLAM integrated with IMU. In Section 2, this paper is divided into two parts. We
firstly introduce the combination of deep learning and VSLAM from two neural networks,
CNN and RNN. We believe that introducing deep learning into semantic VSLAM is the
precondition for the development of semantic VSLAM. Furthermore, this stage can also
be regarded as the beginning of semantic VSLAM. Then, this paper describes the process
of deep learning leading semantic VSLAM to the advanced stage from the aspects of
target detection and semantic segmentation. So this paper summarizes the development
direction of semantic VSLAM from three aspects of localization, mapping, and elimination
of dynamic objects. In Section 3, this paper introduces some mainstream SLAM data sets,
and some outstanding laboratories in this area. In the end, we summarize the current
research and point out the direction of VSLAM research in the future. The section table of
contents for this article is shown in Figure 2.

VSLAM

Tranditional 

VSLAM

Development 

Status of SLAM

Semantic 

VSLAMConclusion and prospect

Monocular / 

Stereo VSLAM

Section2

Section5

Section3

Sensors Commonly Used in VSLAM

Section2.1

Assessment Tools and Dataset

Section2.2

SLAM Development Analysis Based on 

Literature Data

Section2.3

Section4

Section3.1

Section3.1.1

VSLAM Based on the 

Feature-Based Method

VSLAM Based on Direct Method

Section3.2

Visual-Inertial 

SLAM

RGB-D SLAM

 Loosely-Coupled Visual-Inertial

Section3.1.2

Section3.3.1

Section3.3.2

Tightly-Coupled Visual-Inertial

Traditional 

VSLAM

Deep learning 

with VSLAM

Modern semantic 

VSLAM

Semantic VSLAM

Outstanding Scholars and Teams

Section2.4

Section3.3

Neural Networks with 

VSLAM

Section4.1

CNN with VSLAM

RNN with VSLAM

Section4.1.1

Section4.1.2

Modern 

Semantic 

VSLAM

Section4.2

Image Information Extraction

Section4.2.1

Semantic with Location

Section4.2.2

Semantic with Mapping

Elimination of 

Dynamic Objects

Section4.2.3

Section4.2.4

Figure 2. Structure diagram for the rest of this paper. This paper focuses on the second chapter of
semantic VSLAM. We consider the introduction of neural networks as the beginning of semantic
VSLAM. We start with a deep neural network, describe its combination with VSLAM, and then explain
modern semantic VSLAM in detail from the aspects of object detection and semantic segmentation
based on deep learning, and make a summary and prospect.

2. Development Status of SLAM
2.1. Sensors Commonly Used in VSLAM

The sensors used in the VSLAM typically include the monocular camera, stereo camera,
and RGB-D camera. The monocular camera and the stereo camera have similar principles
and can be used in a wide range of indoor and outdoor environments. As a special form of
camera, the RGB-D camera can directly obtain image depth mainly by actively emitting
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infrared structured light or calculating time-of-flight (TOF). It is convenient to use, but
sensitive to light, and can only be used indoors in most cases [23]. Events camera as
appeared in recent years, a new camera sensor, a picture of a different from the traditional
camera. Events camera is “events”, can be as simple as “pixel brightness change”. The
change of events camera output is pixel brightness, SLAM algorithm based on the event
camera is still only in the preliminary study stage [24]. In addition, as a classical SLAM
system based on vision, visual-inertial fusion has achieved excellent results in many aspects.
In Figure 3, we compare the main features of different cameras.

Camera Advantage Disadvantage

Simple structure, low cost, can be 

used indoor and outdoor.

Images alone cannot 

determine this true scale.

The farther the distance that 

can be measured; it can be used 

indoors and outdoors.

Parallax calculation is 

very resource-intensive.

Can provide richer information, 

and also does not need to be as 

time-consuming or binocular 

depth calculation.

Narrow measuring range, 

large noise, small field of 

vision, susceptible to 

sunlight interference.

Event camera has the advantages 

of low delay, high dynamic range 

(HDR), no motion blur, very low 

power consumption, and low data 

bandwidth.

Single event has little 

effective information 

and sparse and 

incomplete data.

Monocular

Stereo

Event

Depth sensor

(IR Projector +IR Camera)

Color Camera

Microphone Array

RGB-D

Figure 3. Comparison between different cameras. An event camera is not a specific type of camera,
but a camera that can obtain “event information”. “Traditional cameras” work at a constant frequency
and have natural drawbacks, such as lag, blurring, and overexposure when shooting high-speed
objects. However, the event camera, a neuro-based method of processing information similar to the
human eye, has none of these problems.

2.2. Assessment Tools and Dataset

SLAM problems have been around for decades. In the past few decades, many
excellent algorithms have emerged, each of which has contributed to the rapid development
of SLAM technology to varying degrees, despite its different focus. Each algorithm has to
be compared fairly. Generally speaking, we can evaluate a SLAM algorithm from multiple
perspectives such as time consumption, complexity, and accuracy. However, the most
important one is that we pay the most attention to its accuracy. ATE (Absolute Trajectory
Error) and RPE (Relative Pose Error) are the two most important indicators used to evaluate
the accuracy of SLAM. The relative pose error is used to calculate the difference of pose
changes in the same two-time stamps, which is suitable for estimating system drift. The
absolute trajectory error directly calculates the difference between the real value of the
camera pose and the estimated value of the SLAM system. The basic principles of ATE and
RPE are as follows.
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Assumptions: The given pose estimate is ∆. The subscript represents time t (or frame),
where it is assumed that the time of each frame of the estimated pose and the real pose are
aligned, and the total number of frames is the same.

ATE: The absolute trajectory error is the direct difference between the estimated pose
and the real pose, which can directly reflect the accuracy of the algorithm and the global
trajectory consistency. It should be noted that the estimated pose and ground truth are
usually not in the same coordinate system, so we need to pair them first: For stereo SLAM
and RGB-D SLAM, the scale is uniform, so we need to calculate a transformation matrix
from the estimated pose to the real pose by the least square method S ∈ SE (3). For
monocular cameras with scale uncertainties, we need to calculate a similar transformation
matrix S ∈ Sim (3) from the estimated pose to the real pose. So the ATE of frame i is defined
as follows:

Fi := Qi
−1SPi (1)

Similar to RPE, RMSE is recommended for ATE statistics.

RMSE(F1:n, ∆) := (
1
m

m

∑
i=1
‖trans(Fi)‖2)

1
2 (2)

RPE: Relative pose error mainly describes the accuracy (compared with real pose) of
two frames separated by a fixed time difference ∆, which is equivalent to the error of the
odometer directly measured. So the RPE of the frame I is defined as follows:

Ei := (Qi
−1Qi+∆)

−1(Pi
−1Pi+∆) (3)

Given the total number n and the interval ∆ , we can obtain (m = n− ∆) RPE.Then
we can use the root mean square error RMSE to calculate this error and obtain a popula-
tion value:

RMSE(E1:n, ∆ =
1
m

m

∑
i=1
‖trans(Ei)‖2)

1
2 (4)

trans(Ei) represents the translation part of the relative pose error. We can evaluate the
performance of the algorithm from the size of the RMSE value. However, in practice, we
find that there are many choices for the selection of ∆. To comprehensively measure the
performance of the algorithm, we can calculate the average RMSE traversing all ∆:

RMSE = (E1:n =
1
n

n

∑
∆=1

RMSE(E1:n, ∆) (5)

EVO [25] is an evaluation tool for the Python version of the SLAM system that can
be used with a variety of data sets. In addition to ATE and RPE, data can be obtained, it
can also draw a comparison diagram of the test algorithm and real trajectory. Is a very
convenient assessment kit. SLAMBench2 [26] is a publicly available software framework
that evaluates current and future SLAM systems through an extensible list of data sets.
It includes open and closed source code while using a comparable and specified list of
performance metrics. It supports a variety of existing SLAM algorithms and datasets,
such as ElasticFusion [27], ORB-SLAM2 [28], and OKVIS [29], and integrating new SLAM
algorithms and datasets are straightforward.

In addition, we also need to use datasets to test specific visualization of the algorithm.
Common data sets used to test various aspects of SLAM performance are illustrated in
Table 1. TUM data sets mainly include multi-view data sets, 3D object recognition and
segmentation, scene recognition, 3D model matching, VSALM, and other data in various
directions. According to the direction applied, it can be divided into TUM RGB-D [30],
TUM MonoVO [31], and TUM VI [32]. Among them, the TUM RGB-D data set mainly
contains indoor images with real ground tracks. Furthermore, it provides two measures
to evaluate local accuracy and global consistency of orbit, namely relative attitude error
and absolute trajectory error. TUM MonoVO is used to assess monocular systems, which
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contain both indoor and outdoor images. Due to the variety of scenarios, ground au-
thenticity is not available, but rather large sequences with the same starting position are
performed, allowing evaluation of cyclic drift. TUM VI is employed to the evaluation
of the visual-inertial odometer. The KITTI [33] dataset is a famed outdoor environment
data set jointly founded by the Karlsruhe Institute of Technology and Toyota American
Institute of Technology. It is the largest computer vision algorithm evaluation data set in
the world under autonomous driving scenarios, including monocular vision, binocular
vision, Velodyne Lidar, POS trajectory, etc. It is the most widely used outdoor data set.
The EuRoc [34] dataset A visual inertia data set developed by ETH Zurich. Cityscapes [35]
is a dataset related to autonomous driving, focusing on pixel-level scene segmentation
and instance annotation. In addition, many datasets are used in various scenarios, such as
ICL-NUIM [36], NYU RGB-D [37], MS COCO [38], etc.

Table 1. Common open-source datasets for SLAM.

Dataset Sensor Environment Ground-
Truth Availability Development

Cityscapes Stereo Outdoor GPS [35] Daimler AG R&D, Max Planck Institute for
Informatics, TU Darmstadt Visaul Inference
Group

KITTI Stereo/3D
laser scanner Outdoor GPS/INS [33] Karlsruhe Institute of Technology and

Toyota American Institute of Technology

TUM RGB-D RGB-D Indoor Motion
capture [30]

TUM
MonoVO Monocular Indoor/Outdoor Loop drift [31] Technical University of Munich

TUM VI Stereo/IMU Indoor/Outdoor Motion
capture [32]

EuRoc Stereo/IMU Indoor Station/Motion
capture [34] Eidgenössische Technische Hochschule

Zürich

ICL-NUIM RGB-D Indoor
3D surface
model SLAM
estimation

[36] Imperial College Lodon

2.3. SLAM Development Analysis Based on Literature Data

Since the advent of SLAM, it has been widely used in the field of robotics. As shown
in Figure 4, this paper selected about 1000 hot articles related to mobile robots in the last
two decades and made this keyword heat map. The larger the circle is, the higher the
frequency of the keyword appears. The circle layer shows the time from the past to the
present from the inside out, and the redder the color, the more attractive it is. Connecting
lines indicate that there is a connection between different keywords (data from the Web of
Science Core Collection). As shown in Figure 5, the number of citations of visual SLAM
and semantic SLAM-related papers is increasing rapidly. Especially around 2017, visual
SLAM and semantic SLAM saw their citations skyrocket. Many advances have been made
in traditional VSLAM research. To enable robots to perceive the surrounding environment
from a higher level, the research of semantic VSLAM has received extensive attention.
Semantic SLAM has attracted more and more attention in recent years. Furthermore, as
shown in Figure 6, this paper has selected about 5000 articles from the Web of Science Core
Collection. Judging from the titles of journals about SLAM published, SLAM is a topic of
interest in robotics.

As can be seen from the above data, SLAM research has always been a hot topic.
With the rapid development of deep learning, the field of computer vision has made
unprecedented progress. Therefore, VSLAM also ushered in a period of rapid development.
Combining semantic information with VSLAM is going to be a hot topic for a long time.
The development of semantic VSLAM can make robots truly autonomous.
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Figure 4. Hot words in mobile robot field.

2

Figure 5. Citations for Web of Science articles on visual SLAM and semantic SLAM in recent years
(Data are as of December 2021).
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Figure 6. Publication titles about SLAM on Web of Science.
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2.4. Outstanding Scholars and Teams

In addition, many scholars and teams have made indelible contributions to the research
of SLAM. As shown in Figure 7, we analyzed approximately 4000 articles from 2000 to 2022
(data from the Web of Science website). A larger font indicates that the author has received
the most attention, and vice versa. The countries to which they belong are presented in
Figure 8. The computer vision group at the Technical University of Munich in Germany
is a leader in this field. The team published a variety of classic visual SLAM solutions
such as DSO [39] and LSD-SLAM [40], which improved the performance of all aspects of
visual SLAM. The robotics and Perception group at the University of Zurich, Switzerland,
also contributed to the rapid development of SLAM technology by developing SVO and
VO/VIO trajectory assessment tools. In addition, the Computer Vision and Ensemble
Laboratory of ETH Zurich has also made a lot of efforts in this field. Furthermore, they
have made a lot of breakthrough progress in the field of visual semantic localization in
large-scale outdoor mapping. The LABORATORY of ROBOTICS, Sensing, and Real-time
Group SLAM at the University of Zaragoza in Spain is one of the biggest contributors to the
development of SLAM. The ORB-SLAM series launched by the laboratory is a landmark
scheme in visual SLAM, which has a far-reaching influence on the research of SLAM. In
addition, the efforts of many scholars and teams have promoted the rapid development of
visual semantic SLAM and laid a foundation for solving various problems in the future.
Table 2 shows the works of some excellent teams and their team websites for your reference,
you can check the website of the team by the number quoted after its name.

Some scholars have made outstanding contributions to semantic VSLAM research.
Niko Sünderhauf [41] and their team, for example, have made many advances in robot scene
understanding and semantic VSLAM. The team is dedicated to making a robot understand
what it sees is one of the most fascinating goals. To this end, they develop novel methods
for Semantic Mapping and Semantic SLAM by combining object detection with simulta-
neous localization and mapping (SLAM) techniques. The team [42] of researchers is part
of the Australian Centre for Robotic Vision and is based at the Queensland University of
Technology in Brisbane, Australia. They work on novel approaches to SLAM (Simultaneous
Localization and Mapping) that create semantically meaningful maps by combining geomet-
ric and semantic information. We believe such semantically enriched maps will help robots
understand our complex world and will ultimately increase the range and sophistication of
interactions that robots can have in domestic and industrial deployment scenarios.

Table 2. Some great teams and their contributions.

Team Works

The Dyson Robotics Lab at Imperial College [43] Code-SLAM [44], ElasticFusion [27], Fusion++ [45],
SemanticFusion [46]

Computer Vision Group TUM Department of Informatics
Technical University of Munich [47] D3VO [48], DM-VIO [49], LSD-SLAM [40], LDSO [50], DSO [39]

Autonomous Intelligent Systems University of Freiburg [51] Gmapping [52], RGB-D SLAMv2 [53]

HKUST Aerial Robotics Group [54] VINS-Mono [55], VINS-Fusion [56], Event-based stereo visual
odometry [57]

UW Robotics and State Estimation Lab [58] DART [59] , DA-RNN [60], RGB-D Mapping [61]

Robotics, Perception and Real Time Group UNIVERSIDAD DE
ZARAGOZA [62] ORB-SLAM2 [28], Real-time monocular objects slam [63]
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Figure 7. A distinguished scholar in the field of visual SLAM.

Contribution

Lower Low Middle High Higher

Figure 8. Contribution of different countries in the SLAM field(Colors from light to dark indicate
contributions from low to high).

3. Traditional VSLAM

Cadena et al. [15] proposed a classical VSLAM framework, which mainly consists
of two parts: front-end and back-end, as shown in Figure 9. The front end provides
real-time camera pose estimation, while the back end provides map updates and optimiza-
tions. Specifically, mature visual SLAM systems include sensor data collection, front-end
visual odometer, back-end optimization, loop closure detection, and map construction
modules [64].
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Figure 9. The typical visual SLAM system framework.

3.1. Monocular/Stereo VSLAM

In this section, we will elaborate on the VSLAM algorithm based on monocular or
stereo cameras. For the VSLAM system, the visual odometer, as the front-end of SLAM, is
an indispensable part [65]. Ref. [20] points out that VSLAM can be divided into the direct
method and indirect method according to the different image information collected by
the front-end visual odometer. The indirect method needs to select a certain number of
representative points from the collected images, called key points, and detect and match
them in the following images to gain the camera pose. It not only saves the key information
of the image but also reduces the amount of calculation, so it is widely used. The direct
method uses all the information of the image without preprocessing and directly operates
on pixel intensity, which has higher robustness in an environment with sparse texture [66].
Both the indirect method and direct method have been widely concerned and developed to
different degrees.

3.1.1. VSLAM Based on the Feature-Based Method

The core of indirect VSLAM is to detect, extract and match geometric features( points,
lines, or planes), estimate camera pose, and build an environment map while retaining
important information, it can effectively reduce calculation, so it has been widely used [67].
The VSLAM method based on point feature has long been taken into account as the
mainstream method of indirect VSLAM due to its simplicity and practicality [68].

Feature extraction mostly adopted corner extraction methods in the early, such as
Harris [69], FAST [70], GFTT [71], etc. However, in many scenarios, simple corners can-
not provide reliable features, which prompts researchers to seek more stable local image
features. Nowadays, typical VSLAM methods based on point features firstly use feature
detection algorithms, such as SIFT [72], SURF [73], and ORB [74], to extract key points in the
image for matching. Then gain pose after minimizing reprojection error. Feature points and
corresponding descriptors in the image are employed for data association. Furthermore,
data association in initialization is completed through the matching of feature descrip-
tors [75]. In Table 3, we list common traditional feature extraction algorithms and compare
their main performance to help readers have a more comprehensive understanding.

Table 3. Comparison table of commonly used feature extraction algorithms.

Method Year Type Speed Rotation
Invariance

Scale
Invariance

Illumination
Invariance

Anti-
Invariance

ORB [74] 2011 Point High Yes Yes Yes Stronger
SURF [73] 2008 Point Middle Yes Yes No Week
FAST [70] 2006 Point High No Yes No Week
SIFT [72] 2004 Point Low Yes Yes Yes Strong
Shi-Tomasi [71] 1994 Coner Middle Yes No Yes Week
Harris [69] 1988 Coner Low Yes No Yes Week
LSD [76] 2010 Line Middle Yes Yes Yes Stronger
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Davidson et al. [77] proposed MonoSLAM in 2007. This algorithm is considered to
be the first real-time monocular VSLAM algorithm, which can achieve real-time drift free-
motion structure recovery. The front end tracks the sparse feature points shi-Tomasi corner
point for feature point matching, and the back end uses Extended Kalman Filter (EKF) [78]
for optimization, which can build the sparse environment map online in real-time. This
algorithm has a milestone significance in SLAM research, but the EKF method leads to
a square growth between storage and state quantity, so it is not suitable for large-scale
scenarios. In the same year, the advent of PTAM [79] improved MonoSLAM’s inability
to work steadily for long periods in a wide range of environments. PTAM, as the first
SLAM algorithm using nonlinear optimization at the back end, solves the problem of fast
data growth in the filter-based method. Furthermore, it separated tracking and mapping
into two different threads for the first time. The front end uses FAST corner detection to
extract and estimate camera motion using image features, and the back end is responsible
for nonlinear optimization and mapping. It not only ensures the real-time performance of
SLAM in the calculation of camera pose but also ensures the accuracy of the whole SLAM
system. However, because there is no loopback detection module, it will accumulate errors
during long-running

In 2015, MUR-Artal et al. proposed the ORB-SLAM [80]. This algorithm is regarded
as the excellent successor of PTAM, and based on PTAM, added a loop closure detection
module, which effectively reduces the cumulative error. As a real-time monocular visual
SLAM system that uses ORB feature matching, the whole process is carried out around
ORB features. As shown in Figure 10, the three threads of tracking, local mapping, and
loop closure detection are used innovatively. In addition, the loop closure detection
thread uses the word bag model DBoW [81] for loop closure. The loop closure method
based on the BoW model can detect the loop closure quickly by detecting the image
similarity. Furthermore, achieve good results in the processing speed and the accuracy of
map construction. In later years, the team launched ORB-SLAM2 [28] and ORB-SlAM3 [82].
The ORB-SLAM family is one of the most widely used visual SLAM solutions due to its
real-time CPU performance and robustness. However, the ORB-SLAM series relies heavily
on environmental features, so it may be difficult to obtain enough feature points in an
environment without texture features.

The point feature-based SLAM system relies too much on the quality and quantity of
point features. It is difficult to detect enough feature points in weak texture scenes, such as
corridors, windows, white walls, etc. Thus, affecting the robustness and accuracy of the
system and even leading to tracking failure. In addition, due to the rapid movement of
the camera, illumination changes, and other reasons, the matching quantity and quality of
point features will decline seriously. To improve the feature-based SLAM algorithms, the
application of line features in SLAM systems has attracted more and more attention [83].
The commonly used line feature extraction algorithm is LSD [76].

In recent years, with the improvement of computer computing capacity, VSLAM-based
online features have also been developed rapidly. Smith et al. [84] proposed a monocular
VSLAM algorithm-based online feature extraction in 2006. Lines are represented by two
endpoints, and line features are used in the SLAM system to detect and track the two
endpoints of lines in small scenes. The system can use line features alone or in combination
with point-line features, which is of groundbreaking significance in VSLAM research. In
2014, Perdices et al. proposed LineSLAM, a line-based monocular SLAM algorithm [85].
For line extraction, this scheme adopts the line extraction scheme in [86]. It detects the
lines every time the keyframes are acquired. Then uses the Unscented Kalman Filter (UKF)
to predict the current camera state and vector probability distribution of the ground line.
Then, matches the line prediction result with the detected lines. Because the scheme has no
loop closure and the line segment is of infinite length instead of finite length, it is difficult
to be used in practice.
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Figure 10. Flow chart of ORB-SLAM.

As shown in Figure 11, compared with point feature or line feature alone, the combi-
nation of point feature and line feature increases the number of feature observations and
data association. Furthermore, line feature is less sensitive to light changes than the point
feature, which improves the positioning accuracy and robustness of the original system [76].
In 2016, Klein et al. [87] adopted the method of point-line fusion to improve the tracking
failure of the SLAM system due to image blur caused by fast camera movement. In 2017,
Pumarola et al. [88] published monocular PL-SLAM, and Gomez-Ojeda et al. [89] published
stereo PL-SLAM in the same year. Based on ORB-SLAM, the two algorithms use the LSD
detection algorithm to detect line features and then combine the point-line features in each
link of SLAM. It can work even when most of the point features disappear. Furthermore,
it improves the accuracy, robustness, and stability of the SLAM system, but the real-time
performance is not good.

Figure 11. Comparison of point and line feature extraction in a weak texture environment. From left
to right are ORB point feature extraction, LSD line feature extraction, and point-line combination
feature extraction.

In addition, in some environments, there are some obvious surface features, which
have aroused great interest of some researchers. Ref. [90] proposed a map construction
method combining planes and lines. By introducing surface features into the real-time
VSLAM system, the errors are reduced and the system robustness is improved by com-
bining low-level features. In 2017, Li et al. [91] proposed a VSLAM algorithm based on
point, line, and plane fusion for an artificial environment. Point features are used for
the initial estimation of the robot’s current pose. Lines and planes are used to describe
the environment. However, most planes only exist in the artificial environment, and few
suitable planes can be found in the natural environment. These limit its application range.
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Compared with the methods that rely only on point features, SLAM systems that
rely only on lines or planes can only work stably in artificial environments in most cases.
The VSLAM method combining point, line, and surface features improve the localization
accuracy and robustness in weak texture scenes, illumination changes, and fast camera
movement. However, the introduction of line and surface features increases the time
consumption of feature extraction and matching, which reduces the efficiency of the SLAM
system. Therefore, the VSLAM algorithm based on the point feature still occupies the
mainstream position [92]. Table 4 shows a comparison of geometric features.

Table 4. Comparison table of geometric features.

Feature Benefits Disbenefits

Point Is the most popular and commonly
used feature, easy to store and match,
and the speed is generally faster.

It is difficult to extract sufficient features in an
environment of intense light and rapid camera
rotation.

Line It has natural lighting and viewing
Angle invariance, while more ad-
vanced features also improve tracking
robustness and accuracy. Especially in
certain artificial scenes (indoor, corri-
dor), the interference of untextured or
unreliable textures can be overcome.

The detection and matching time of the line
segment is longer than that of the feature point.
There is also no standard, universal SLAM op-
timization and loopback module on the back
end. Line feature matching is also difficult, for
example, line segments are easy to fracture, do
not have strong geometric constraints (such as
polar line geometric constraints), and do not
have strong identification of texture missing
places.

Plane It has a more stable effect in artificial
environments.

The range is small and can only be operated in
certain artificial environments.

3.1.2. VSLAM Based on Direct Method

Different from feature-based methods, the direct method operates directly on pixel
intensity and can retain all information about the image. Furthermore, the direct method
cancels the process of feature extraction and matching, so the computational efficiency is
better than the indirect method. Furthermore, it has good adaptability to the environment
with complex textures. It can still keep a good effect in the environment with missing
features [93]. The direct method is similar to the optical flow, and they both have a strong
assumption: gray-level invariance, the principle of which is shown in Figure 12.
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In 2011, Newcombe et al. [94] proposed the DTAM algorithm, which was considered
the first practical direct method sof VSLAM. DTAM allows tracking by comparing the
input images with those created by reconstructed maps. The algorithm performs a precise
and detailed reconstruction of the environment. However, it affects the computational
cost of storing and processing the data, so it can only run in real-time on GPU. LSD-
SLAM [40] neglects texture-free areas to improve operational efficiency and can run in real-
time on CUP. LSD-SLAM, another major approach indirect method, combines featureless
extraction with semi-dense reconstruction, and its core is a visual odometer using semi-
dense reconstruction. The algorithm consists of three steps: tracking, depth estimation, and
map optimization. Firstly, the photometric error is minimized to estimate the sensor pose.
Secondly, select a keyframe for in-depth estimation. Finally, in the map optimization step,
the new keyframe is merged into the map and optimized by using the posture optimization
algorithm. In 2014, Forster et al. [95] proposed the semi-direct visual SLAM algorithm
SVO. Since the algorithm does not need to extract features for each frame, it can run at high
frame rates, which enables it to run in low-cost embedded systems [80]. SVO combines
the advantages of the feature point method and direct method. The algorithm is divided
into two main threads: motion estimation and mapping. Motion estimation is carried out
by feature point matching, but mapping is carried out by the direct method. SVO has
good results, but as a purely visual method, it only performs short-term data association,
which limits its accuracy [82]. In 2018, Engel et al. [39] proposed DSO. DSO can effectively
use any image pixel, which makes it robust even in featureless regions and can gain more
accurate results than SVO. DSO can calculate accurate camera attitude in poor feature point
detector performance, improving the robustness of low-texture areas or blurred images.
In addition, the DSO uses both geometric and photometric camera calibration results for
high accuracy estimation. However, DSO only considers local geometric consistency, so it
inevitably produces cumulative errors. Furthermore, it is not a complete SLAM because it
does not include loop closure, map reuse, etc.

Up to now, VSLAM has made many achievements in direct and indirect methods.
Table 5 compares the advantages and disadvantages of the direct method and the indirect
method to help readers better understand.

Table 5. Comparison between direct method and indirect method.

Method Benefits Shortcomings

Indirect (1) The feature point itself is not sensi-
tive to light, motion, and rotation, so
it is relatively stable. (2) The camera
moves faster (relatively direct method)
and can track successfully, with better
robustness. (3) The research time is long
and the scheme is mature.

(1) It takes a long time to extract, describe
and match key points. (2) The feature point
loss scenario cannot be used. (3) Only
sparse maps can be constructed.

Direct (1) Fast speed, can save the calculation
of feature points, and descriptors time.
(2) It can be used in situations where fea-
tures are missing (such as white walls),
and the feature point method will de-
teriorate rapidly in this case. (3) Semi-
dense and even dense maps can be con-
structed.

(1) Since the gray level is assumed to be
unchanged, it is susceptible to the change
in illumination. (2) Slow camera movement
or high sampling frequency is required (can
be improved by image pyramid). (3) The
differentiation of single-pixel or pixel blocks
is not strong, and the strategy of quantity
instead of quality is adopted.

3.2. RGB-D SLAM

An RGB-D camera is a visual sensor launched in recent years. It can simultaneously
collect environmental color images and depth images, and directly gain depth maps mainly
by actively emitting infrared structured light or calculating time-of-flight (TOF) [96]. The
RGB-D camera, as a special camera, can gain three-dimensional information in space
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more conveniently. So it has been widely concerned and developed in three-dimensional
reconstruction [97].

KinectFusion [98] is the first real-time 3D reconstruction system based on an RGB-D
camera. It uses a point cloud created by the depth to estimate the camera pose through
ICP (Iterative Closest Point). Then splices multi-frame point cloud collection based on the
camera pose, and expresses reconstruction result by the TSDF (Truncated signed distance
Function) model. The 3D model can be constructed in real-time with GPU acceleration.
However, the system has not been optimized by loop closure. Furthermore, there will be
obvious errors in long-term operation, and the RGB information of the RGB-D camera has
not been fully utilized. In contrast, ElasticFusion [27] makes full use of the color and depth
information of the RGB-D camera. It estimates the camera pose by the color consistency
of RGB and estimates the camera pose by ICP. Then improves the estimation accuracy of
the camera pose by constantly optimizing and reconstructing the map. Finally, the surfel
model was used for map representation, but it could only be reconstructed in a small indoor
scene. Kinitinuous [99] adds loop closure based on KinectFusion and makes non-rigid
body transformation for 3d rigid body reconstruction by using a deformation graph for
the first time. So it makes the results of two-loop closure reconstruction overlap, achieving
good results in an indoor environment. Compared with the above algorithms, RGB-D
SLAMv2 [53] is a very excellent and comprehensive system. It includes image feature
detection, optimization, loop closure, and other modules, which are suitable for beginners
to carry out secondary development.

Although the RGB-D camera is more convenient to use, the RGB-D camera is extremely
sensitive to light. Furthermore, there are many problems with narrow, noisy, and small
horizons, so most of the situation is only used in the room. In addition, the existing
algorithms must be implemented using GPU. So the mainstream traditional VSLAM system
still does not use the RGB-D camera as the main sensor. However, in three-dimensional
reconstruction in the interior, the RGB-D camera is widely used. In addition, because of the
ability to build a dense environment map, the semantic VSLAM direction, RGB-D camera
is widely used. Table 6 shows the classic SLAM algorithm based on RGB-D cameras.

Table 6. Some SLAM algorithms for sensors with an RGB-D camera.

Method Year Camera Tracking Loop Closure Code Resource

KinectFusion [98] 2011 Direct No [100]
Kinitinuous [99] 2012 Direct Yes [101]
RGB-D SLAMv2 [53] 2013 Indirect Yes [102]
ElasticFusion [27] 2016 Direct Yes [103]
DVO-SLAM [104] 2017 Direct Yes [105]
BundleFusion [106] 2017 Hybrid Yes [107]
RGBDTAM [108] 2017 Direct Yes [109]

3.3. Visual-Inertial SLAM

The pure visual SLAM algorithm has achieved many achievements. However, it is
still difficult to solve the effects of image blur caused by fast camera movement and poor
illumination by using only the camera as a single sensor [110]. IMU is considered to be
one of the most complementary sensors to the camera. It can obtain accurate estimation at
high frequency in a short time, and reduce the impact of dynamic objects on the camera.
In addition, the camera data can effectively correct the cumulative drift of IMU [111].
At the same time, due to the miniaturization and cost reduction of cameras and IMU,
visual-inertial fusion has also achieved rapid development. Furthermore, it become the
preferred method of sensor fusion, which is favored by many researchers [112]. Nowadays,
visual-inertial fusion can be divided into loosely coupled and tightly coupled according
to whether image feature information is added to the state vector [113]. Loosely coupled
means the IMU and the camera estimate their motion, respectively, and then fuse their pose
estimation. Tightly coupled refers to the combination of the state of IMU and the state of
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the camera to jointly construct the equation of motion and observation, and then perform
state estimation [114].

3.3.1. Loosely Coupled Visual-Inertial

The loosely coupled core is to fuse the positions and poses calculated by the vision
sensor and IMU, respectively. The fusion has no impact on the results obtained by the
two. Generally, the fusion is performed through EKF. Stephen Weiss [115] provided
groundbreaking insights in their doctoral thesis. Ref. [116] proposed an efficient loose
coupling method, and good experimental results were obtained by using an RGB-D camera
and IMU. The loose-coupling implementation is relatively simple, but the fusion result is
prone to error and there has been little research in this area.

3.3.2. Tightly Coupled Visual-Inertial

The core of the tightly coupled is to combine the states of the vision sensor and IMU
through an optimized filter. It needs the image features to be added to the feature vector
to jointly construct the motion equation and observation equation. Then perform state
estimation to obtain the pose information. Tightly coupled needs full use of visual and
inertial measurement information, which is complicated in method implementation but
can achieve higher pose estimation accuracy. Therefore, it is also the mainstream method,
and many breakthroughs have been made in this area.

In 2007, Mourikis et al. [117] proposed MSCKF. The core of MSCKF is to fuse IMU
and visual information under the EKF in a tightly coupled way. Compared with the VO
algorithm alone, MSCKF can adapt to more intense motion and texture loss, with higher
robustness. Speed and accuracy can also reach a high level. MSCKF has been widely used
in robot, UAV, and AR/VR fields. However, because the backend uses the Kalman filter
method, global information cannot be used for optimization, and no loopback detection
will cause error accumulation. Ref. [29] proposed OKVIS based on a fusion of binocular
vision and IMU. However, it only outputs six degrees of freedom pose without loopback
detection and map, so it is not a complete SLAM in a strict sense. Although it has good
accuracy, its pose will be loose when it runs for a long time. Although these two algorithms
have achieved good results, they have not been widely promoted. The lack of loop closure
modules inevitably leads to cumulative errors when running for long periods of time.

The emergence of VINS-Mono [55] broke this situation. In 2018, a team from The Hong
Kong University of Science and Technology (HKUST) introduced a monocular inertially
tightly coupled VINS-Mono algorithm. It has since released its expanded version, Vins-
Fusion, which supports multi-sensor integration, including Monocular + IMU, Stereo +
IMU, and even stereo only, and also provides a version with GPS. VINS-mono is a classic
fusion of vision and IMU. Its positioning accuracy is comparable to OKVIS, and it has a
more complete and robust initialization and loop closure detection process than OKVIS.
At the same time, VINS-Mono has set a standard for the research and application of
visual SLAM, which is more monocular +IMU. In the navigation of robots, especially the
autonomous navigation of UAVs, monocular cameras are not limited by RGB-D cameras
(susceptible to illumination and limited depth information) and stereo cameras (occupying
a large space). It can adapt to indoor, outdoor and different illumination environments
with good adaptability.

As a supplement to cameras, inertial sensors can effectively solve the problem that
a single camera cannot cope with. Visual inertial fusion is bound to become a long-term
hot direction of SLAM research. However, the introduction of multiple sensors will lead to
an increase in data, which has a high requirement on computing capacity [118]. Therefore,
we believe that the next hot issue of visual-inertial fusion will be reflected in the efficient
processing of sensor fusion data. How to make better use of data from different sensors
will be a long-term attractive hot issue. Due to the rich information acquisition, convenient
use and low price of visual sensors, the environment map constructed is closer to the real
environment recognized by human beings. After decades of development, vision-based
SLAM technology has achieved many excellent achievements. Table 7 summarizes some of



Remote Sens. 2022, 14, 3010 18 of 47

the best visual-based SLAM algorithms, comparing their performance in key areas, and
providing open-source addresses to help readers make better choices.

Table 7. Best visual-based SLAM algorithms.

Method Sensor Front-End Back-End Loop Closure Mapping Code Resource

MonoSLAM [77] M P F No Sparse [119]
PTAM [79] M P O No Sparse [120]
ORB-SLAM2 [28] M/S/R P O Yes Sparse [121]
PL-SVO [122] M PL O No Sparse [123]

Visual PL-SLAM [88] M/S PL O Yes Sparse [124]
DTAM [94] M D O No Dense [125]
SVO [95] M H O No Sparse [126]
LSD-SLAM [40] M/S D O Yes Semi-dense [127]
DSO [39] M D O No Sparse [128]

Method Sensor Coupling Back-End Loop Closure Mapping Code Resource

Visual-inertial

MSCKF [117] M + I T F No Sparse [129]
OKVIS [29] S + I T O No Sparse [130]
ROVIO [131] M + I T F No Sparse [132]
VINS-Mono [55] M + I T O Yes Sparse [133]

Sensor: M represents Monocular camera; S represents Stereo camera; R represents RGB-D camera and I represents
IMU. Front-end: P represents Point; PL represents Point-line; D represents Direct; H represents Hybrid. Back-end:
F represents Filtering; O represents Optimization. Coupling: T represents Tightly.

In this chapter, we summarize the traditional vision-based SLAM algorithms, and
summarize some excellent algorithms for your reference, hoping to give readers a more
comprehensive understanding. Next, we will cover VSLAM with semantic information
fusion, aiming to explore the field of SLAM more deeply.

4. Semantic VSLAM

Semantic SLAM refers to a SLAM system that can not only obtain geometric informa-
tion of the unknown environment and robot movement information but also detect and
identify targets in the scene. It can obtain semantic information such as their functional
attributes and relationship with surrounding objects, and even understand the contents
of the whole environment [134]. Traditional VSLAM represents the environment in the
form of point clouds and so on, which to us are a bunch of meaningless points. To perceive
the world from both geometric and content levels and provide better services to humans,
robots need to further abstract the features of these points and understand them [135]. With
deep learning development, researchers have gradually realized its possible help to SLAM
problems [136]. Semantic information can help SLAM to understand the map at a higher
level. Furthermore, it lessens the dependence of the SLAM system on feature points and
improves the robustness of the system [137].

Modern semantic VSLAM systems cannot do without the help of deep learning,
and feature attributes and association relations obtained through learning can be used
in different tasks [138]. As an important branch of machine learning, deep learning has
achieved remarkable results in image recognition [139], semantic understanding [140],
image matching [141], 3D reconstruction [142], and other tasks. The application of deep
learning in computer vision can greatly ease the problems encountered by traditional
methods [143]. Traditional VSLAM systems have achieved commendable results in many
aspects, but there are still many challenging problems to be solved [144]. Ref. [145] has
summarized deep learning-based VSLAM in detail and pointed out the problems existing
in traditional VSLAM. These works [146–149] suggest that deep learning should be used to
replace some modules of traditional SLAM, such as loop closure and pose estimation, to
improve the traditional method.
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Machine learning is a subset of artificial intelligence that uses statistical techniques to
provide the ability to ”learn“ data from a computer without complex programming. Unlike
task-specific algorithms, deep learning is a subset of machine learning based on learning
data. It is inspired by the function and structure of what are known as artificial neural
networks. Deep learning gains great flexibility and power by learning to display the world
as simpler concepts and hierarchies, and to calculate more abstract representations based
on less abstract concepts. The most important difference between traditional machine
learning and deep learning is the performance of data scaling. Deep learning algorithms
do not work well when the data is very small, because they need big data to perfectly
identify and understand it. The performance of machine learning algorithms depends
on the accuracy of features identified and extracted. Deep learning algorithms, on the
other hand, identify these high-level features from the data, thus reducing the effort to
develop an entirely new feature extractor for each problem. Deep learning is a subset of
machine learning, which has proven to be a more powerful and promising branch of the
industry compared to traditional machine learning algorithms. It realizes many functions
that traditional machine learning cannot achieve with its layered characteristics. SLAM
systems need to collect a large amount of information in the environment, so there is a
huge amount of data to calculate, and the deep learning model is just suitable for solving
this problem.

This paper believes that semantic VSLAM is an evolving process. In the early stage,
some researchers tried to improve the performance of VSLAM by extracting semantic
information in the environment using neural networks such as CNN. In the modern stage,
target detection, semantic segmentation, and other deep learning methods are powerful
tools to promote the development of semantic VSLAM. Therefore, in this chapter, we will
first describe the application of typical neural networks in VSLAM. We believe that this is
the premise of the development of modern semantic VSLAM. The application of neural
networks in VSLAM provides a model for modern semantic VSLAM. This paper believes
that a neural network is a bridge to introduce semantic information into the modern
semantic VSLAM system and obtain rapid development.

4.1. Neural Networks with VSLAM

Figure 13 shows the typical framework of CNN and RNN. CNN can capture spatial
features from the image, which help us accurately identify the object and its relationship
with other objects in the image [150]. The characteristic of RNN is that it can process an
image or numerical data. Because of the memory capacity of the network itself, it can learn
data types with contextual correlation [151]. In addition, other types of neural networks
such as DNN (Deep Neural Networks) also have some tentative work, but it is in the initial
stage. This paper notes that CNN has the advantages of extracting features of things with
a certain model, and then classifying, identifying, predicting, or deciding based on the
features. It can be helpful to different modules of VSLAM. In addition, this paper believes
that RNN has great advantages in helping to establish consistency between nearby frames.
Furthermore, the high-level features have better differentiation, which can help robots to
better complete data association.
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Figure 13. Structure block diagram of CNN and RNN. CNN is suitable for extracting unmarked
features from hierarchical or spatial data. RNN is suitable for temporal data and other types of
sequential data.

4.1.1. CNN with VSLAM

Traditional inter-frame estimation methods adopt feature-based methods or direct
methods to identify camera pose through multi-view geometry [152]. Features-based
methods need complex feature extraction and matching. Direct methods rely on pixel
intensity values, which makes it difficult for traditional methods to obtain wished results
in environments such as intense illumination or sparse texture [153]. In contrast, methods
based on deep learning are more intuitive and concise. That is because they do not need to
extract environmental features, feature matching, and complex geometric operations [154].
As the feature detection layer of CNN learns through training data, it avoids feature
extraction in display and learns implicitly from training data during use. Refs. [155,156]
and other works have made a detailed summary.

CNN’s advantages in image processing have been fully verified. For example, visual
depth estimation improves the problem that monocular cameras cannot obtain reliable
depth information [157]. In 2017, Tateno et al. [158] proposed a real-time SLAM system
“CNN-SLAM “based on CNN in the framework of LSD-SLAM. As shown in Figure 14,
the algorithm obtained a reliable depth map by training the depth estimation network
model. CNN is used for depth prediction, which is input into subsequent modules such
as traditional pose estimation to improve positioning and mapping accuracy. In addition,
CNN semantic segmentation module is added to the framework, which provides help for
advanced information perception of the VSLAM system. Similar work using the network
to estimate depth information includes Code-SLAM [42] and DVSO [159] Based on a stereo
camera. In the same year, Godard et al. [160] proposed an unsupervised image depth
estimation scheme. Unsupervised learning is improved by using stereo data set, and then a
single frame is used for pose estimation, which has a great improvement compared with
other schemes.

CNN not only solves the problem that traditional methods cannot obtain reliable depth
data by using a monocular camera but also improves the defects of traditional methods
in camera pose estimation. In 2020, Yang et al. [48] proposed D3VO. In this method, deep
learning is used from three aspects, including depth estimation, pose estimation, and un-
certainty estimation. The prediction depth, pose and uncertainty are closely combined into
a direct visual odometer to simultaneously improve the performance of front-end tracking
and back-end nonlinear optimization. However, self-supervised methods are difficult to
adapt to all environments. In addition, Qin et al. [161] proposed a semantic feature-based
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localization method in 2020, which effectively solves the problem that traditional visual
SLAM methods are prone to tracking loss. Its principle is to use CNN to detect semantic
features in the narrow and crowded environment of an underground parking lot, lack of
GPS signal, dim light, and sparse texture. Then use U-Net [162] to perform semantic seg-
mentation to separate parking lines, speed bumps, and other indicators on the ground, and
then use odometer information. The semantic features are mapped to the global coordinate
system to build the parking lot map. Then the semantic features are matched with the
previously constructed map to locate the vehicle. Finally, EKF is used to integrate visual
positioning results and odometer information to ensure the system can obtain continuous
and stable positioning results in the underground parking environment. Zhu et al. [163]
learned rotation and translation by using CNN to focus on different quadrants of optical
flow input. However, the end-to-end method to replace the visual odometer is simple and
crude but without theoretical support and generalization ability.

 Input RGB Image
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Prediction

CNN Semantic Segmentation

Camera Pose 

Estimation

Key-frame 

Initialization

Pose Graph 

Optimization

Frame-wise Depth 

Refinement

Every Key-Frame

Every frame

Global Map and 

Semantic Label Fusion

Figure 14. The structure of CNN-SLAM.

Loop closure detection can eliminate cumulative trajectory errors and map errors, and
determines the accuracy of the whole system, which is essentially a scene identification
problem [164]. Traditional methods are matched by artificially designed sparse features or
pixel-level dense features. Deep learning can learn high-level features in images through
neural networks. Furthermore, its recognition rate can reach a higher level by using the
powerful recognition ability of deep learning to extract higher-level robust features of
images. In this way, the system can have stronger adaptability to image changes such as
perspective and illumination and improve the loop closure image recognition ability [165].
Therefore, scene identification based on deep learning can improve the accuracy of loop clo-
sure detection, and CNN has also obtained many reliable effects for loop closure detection.
Memon et al. [166] proposed a dictionary-based deep learning method, which is different
from the traditional Bow dictionary and uses higher-level and more abstract deep learning
features. This method does not need to create vocabulary, has higher memory efficiency,
and has a faster running speed than similar methods. However, this paper is only based on
the likeness score detection cycle, so it is not widely representative. Li et al. [167] proposed a
learning feature-based visual SLAM system named DXSLAM, which solved the limitations
of the above methods. Local and global features are extracted from each frame using CNN,
and these features are then fed into modern SLAM pipelines for posture tracking, local
mapping, and repositioning. Compared with traditional BOW-based methods, it achieves
higher efficiency and lower computational cost. In addition, Qin et al. [168] used CNN to
extract environmental semantic information and modeled the visual scene as a semantic
subgraph. It can effectively improve the efficiency of loopback detection by using semantic
information. Refs. [169,170] and others describe in detail the achievements of deep learning
in many aspects. However, with the introduction of more complex and better models,
how to ensure the real-time performance of model calculation? How to better set in the
loop closure detection model in resource-constrained platforms, and the lightweight of the
model is also a major problem [171].
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CNN has achieved good results in replacing some modules of the traditional VSLAM
algorithm, such as depth estimation and loop closure detection. Its stability is still not
as good as the traditional VSLAM algorithm [172]. In contrast, the semantic information
extraction of the CNN system has brought better effects. The process of traditional VSLAM
is optimized by using CNN to extract the semantic information of the environment with
higher-level features, making the traditional VSLAM achieve better results. Using a neural
network to extract semantic information and combining it with VSLAM will be an area
of great interest. With the help of semantic information, the data association is upgraded
from the traditional pixel level to the object level. The perceptual geometric environment
information is assigned with semantic labels to obtain a high-level semantic map. It can help
the robot to understand the autonomous environment and human–computer interaction.
Table 8 shows some main application links of the CNN network in VSLAM. Some are
involved in many aspects, only the main contributions are listed here.

Table 8. CNN used for VSLAM.

Part Method Contribution

Image Depth
Estimation

CNN-SLAM [158] The depth estimation is performed only on the keyframe, which improves the computing
efficiency.

UnDeepVo [173] Real-scale monocular vision odometer is realized in an unsupervised way.

Code-SLAM [44] A real-time monocular SLAM system is implemented that allows simultaneous optimiza-
tion of camera motion and maps.

DVSO [159] Design a novel deep network that refines predicted depth from a single image in a
two-stage process.

Pose estimation DeTone et al. [174] It uses only the location of points, not the descriptor of local points.

VINet [175] The ability to combine the information in a specific area naturally and cleverly can
significantly reduce drift.

D3VO [48] The proposed monocular visual odometer framework utilizes deep learning networks at
three levels.

Zhu et al. [163]
Present a novel four-branch network to learn the rotation and translation by leveraging
Convolutional Neural Networks (CNNs) to focus on different quadrants of optical flow
input.

Loop closure Memon et al. [166] Two deep neural networks are used together to speed up the loop closure detection and
to ignore the effect of mobile objects on loop closure detection.

Li et al. [167]
Train a visual vocabulary of local features with a Bag of Words (BoW) method. Based on
the local features, global features, and vocabulary, a highly reliable loop closure detection
method is built.

Qin et al. [168] Models the visual scene as a semantic sub-graph by only preserving the semantic and
geometric information from object detection.

Semantic
information

CNN-SLAM [158] By integrating Geometry and semantic information, a map with semantic information is
generated.

Naseer et al. [176] To achieve real-time semantic segmentation and maintain a good efficiency of differentiation.

SemanticFusion [46] The semantic prediction of CNN’s multiple views can be probabilistically integrated into
the map.

Qin et al. [161] A novel semantic feature used in the visual SLAM framework is proposed.
Bowman et al. [177] An optimization problem for sensor state and semantic landmark location is proposed.

4.1.2. RNN with VSLAM

The research of RNN (recurrent neural network) began in the 1980s and 1990s and
developed into one of the classical deep learning algorithms in the early 21st century.
Long short-term Memory Networks (LSTM) are one of the most common recurrent neural
networks [178]. LSTM is a variant of RNN, which remembers a controllable amount of
previous training data or forgets it more properly [179]. As shown in Figure 15, the structure
of LSTM and the equations of state of its different modules are given. LSTM with special
implicit units can preserve input for a long time. LSTM inherits most characteristics of the
RNN model and solves the Vanishing Gradient problem caused by the gradual reduction of
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the Gradient back transmission process. As another variant of RNN, GRU (Gated Recurrent
Unit) is easier to train and can improve training efficiency [180]. RNN has some advantages
in learning nonlinear features of sequences because of its memorization and parameter
sharing. RNN constructed by introducing a convolutional neural network CNN can deal
with computer vision problems involving sequence input [181].
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Figure 15. The basic framework of LSTAM.

In pose estimation, the end-to-end deep learning method is introduced to solve pose
parameters between frames of visual images without feature matching and complex ge-
ometric operations. It can quickly obtain the relative pose parameters between frames
by directly inputting nearby frames [182]. Xue et al. [183] use deep learning to learn the
process of feature selection and realize pose estimation based on RNN. In pose estimation,
rotation and displacement are trained separately, which has better adaptability compared
with traditional methods. In 2021, Teed et al. [184] introduced DROID-SLAM, whose core
is a learnable update operator. As shown in Figure 16, the update operator is a 3 × 3
convolutional GRU with a hidden state of H. The iterative application of the update op-
erator creates a series of attitudes and depths that converge to a fixed point that reflects a
real reconstruction. The algorithm is an end-to-end neural network architecture for visual
SLAM, which has great advantages over previous work in challenging environments.

Most existing methods adopt to combine CNN with RNN to improve the overall
performance of VSLAM. CNN and RNN can be combined using a separate layer, with
the output of CNN as the input of RNN. On the one hand, it can automatically learn the
effective feature representation of the VO problem through CNN. On the other hand, it
can implicitly model the timing model (motion model) and data association model (image
sequence) through RNN [185]. In 2017, Yu et al. [60] combined RNN with KinectFusion to
carry out semantic annotation on RGB-D collected images to reconstruct a 3D semantic map.
They introduced a new loop closure unit into RNN to solve the problem of GPU computing
resource consumption. This method makes full use of the advantages of RNN to realize the
annotation of semantic information. High-level features have better discrimination and help
the robot to better complete the data association. Due to the use of RGB-D cameras, they
can only be operated in indoor environments. DeepSeqSLAM [186] solved this problem
well. In this scheme, a trainable CNN+RNN architecture is used to jointly learn visual
and location representations from a single monocular image sequence. An RNN is used
to integrate temporal information on short image sequences. At the same time, using the
dynamic information processing functions of these networks, end-to-end position and
sequence position learning are realized for the first time. Furthermore, the ability to learn
meaningful temporal relationships from single image sequences of large driving datasets.
In running time, accuracy, and calculation needs, sequence-based methods are significantly
superior to traditional methods and can operate stably in outdoor environments.
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Figure 16. The core framework of DROID-SLAM.

CNN can be combined with many links of VLSAM, such as feature extraction and
matching, depth estimation, and pose estimation, and has achieved good results in these
aspects. RNN, by contrast, has a smaller scope of application, but it has a great advantage
in helping to establish consistency between nearby frames. RNN is a common method
for data-driven timing modeling in deep learning. Inertial data such as high frame rate
angular velocity and acceleration output by IMU have strict dependence on timing, which
is especially suitable for RNN models. Based on this, Clark et al. [175] proposed to use
a conventional small LSTM network to process the original data of IMU and obtain the
motion characteristics under IMU data. Finally, they combined visual motion features with
IMU motion features, and sent it into a core LSTM network for feature fusion and pose
estimation. Its principle of it is shown in Figure 17.

Compared with pose estimation, we believe that RNN is more attractive for its contri-
bution to visual-inertial data fusion. This method can effectively fuse visual-inertial data
and is more convenient than traditional methods. Similar work, such as [187,188], proves
the effectiveness of the fusion strategy, which provides better performance compared with
direct fusion. This paper gives the contribution of RNN to partial VSLAM in Table 9.

This paper introduces the combination of deep learning and traditional VSLAM from
the classical neural networks CNN and RNN in this section. Table 10 shows some excellent
algorithms combining neural networks with VSLAM.
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Figure 17. Clark et al. proposed a framework for visual inertia fusion using LSTM.

Table 9. RNN used for VSLAM.

Part Method Contribution

Xue et al. [183] Proposing a dual-branch recurrent network to learn the rotation and translation separately by
leveraging current CNN for feature representation and RNN for image sequence reasoning.

VO Teed et al. [184] It consists of recurrent iterative updates of camera pose and pixel-wise depth through a Dense Bundle
Adjustment layer.

DA-RNN [60] A novel framework for joint 3D scene mapping and semantic labeling.

DeepSeqSLAM [186] A trainable CNN+RNN architecture for jointly learning visual and positional representations from a
single monocular image sequence of a route.

Clark et al. [175] It is the first end-to-end trainable method for visual-inertial odometry which performs a fusion of the
data at an intermediate feature-representation level.

DeepVIO [187] It reduces the impacts of inaccurate Camera-IMU calibrations and unsynchronized and missing data.
VIO Chen et al. [188] It proposes a novel end-to-end selective sensor fusion framework for monocular VIO.

Yasin et al. [189] Using adversarial training and self-adaptive visual-inertial sensor fusion.

Wong et al. [190] The fusion method of visual inertia + depth data set is proposed for the first time to further enhance
the complementary advantages of visual and inertial sensors.

Table 10. An excellent algorithm combining neural networks with VSLAM.

Method Year Sensor Neural Network Supervision

CNN-SLAM [158] 2017 Monocular CNN Supervised
DeepVo [191] 2017 Monocular R-CNN Supervised
Code-SLAM [44] 2018 Monocular U-Net Supervised
DVSO [159] 2018 Stereo DispNet Semi-supervised
UnDeepVo [173] 2018 Monocular VGG encoder-decoder Unsupervised
CNN-SVO [192] 2019 Monocular CNN Hybrid

VO GANVO [193] 2019 Monocular GAN Unsupervised
Li et al. [194] 2019 Monocular CNN Supervised
D3VO [48] 2020 Monocular CNN Hybrid
DeepSeqSLAM [186] 2020 Monocular CNN+RNN Supervised
DeepSLAM [145] 2021 Monocular R-CNN Unsupervised
LIFT-SLAM [195] 2021 Monocular DNN Supervised
Zhang et al. [196] 2021 Stereo U-Net encoder-decoder Unsupervised

VINet [175] 2017 Monocular + IMU CNN + LSTM Supervised
VIOLearner [197] 2020 Monocular + IMU CNN Unsupervised

VIO DeepVIO [187] 2019 Stereo + IMU CNN + LSTM Supervised
Chen et al. [188] 2019 Monocular + IMU FlowNet + LSTM Supervised
Kim et al. [198] 2021 Monocular + IMU CNN + LSTM Unsupervised
Gurturk et al. [199] 2021 Monocular + IMU CNN + LSTM Supervised
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4.2. Modern Semantic VSLAM

Deep learning has made many achievements in pose estimation, depth estimation, and
loop closure detection. However, in VSLAM, deep learning is currently unable to shake the
dominance of traditional methods. However, applying deep learning to semantic VSLAM
research can obtain more valuable discoveries, which can quickly promote to development
of semantic VSLAM. Refs. [60,158,168] used CNN or RNN to extract semantic information
in the environment to improve the performance of different modules in traditional VSLAM.
The semantic information was used for pose estimation and loopback detection. It signif-
icantly improved the performance of traditional methods and proved the effectiveness
of semantic information for the VSLAM system. This paper believes that this provides
technical support for the development of modern semantic VSLAM and is the beginning
of modern semantic VSLAM. Using deep learning methods such as target detection and
semantic segmentation to create a semantic map, which is an important representative
period of semantic SLAM development. Refs. [135,200] points out that semantic SLAM
can be divided into two types according to different target detection methods. One is to
detect targets using traditional methods. Real-time monocular object SLAM is the most
common one, using a large number of binary words and a database of object models to
provide real-time detection. However, it’s very limited because there are many types of
3D object entities for semantic classes such as ”cars.“ Another approach to SLAM is object
recognition using deep learning methods, such as those proposed in [46].

Semantics and SLAM may seem to be separate modules, but they are not. In many
applications, the two go hand in hand. On the one hand, semantic information can
help SLAM to improve the accuracy of mapping and localization, especially for complex
dynamic scenes [201]. The mapping and localization of traditional SLAM are mostly based
on pixel-level geometric matching. With semantic information, we can upgrade the data
association from the traditional pixel level to the object level, improving the accuracy
of complex scenes [202]. On the other hand, by using SLAM technology to calculate
the position constraints between objects, the consistency constraints can be applied to
the recognition results of the same object at different angles and at different times, thus
improving the accuracy of semantic understanding. The integration of semantic and SLAM
not only contributes greatly to the improvement of the accuracy of both but also promotes
the application of SLAM in robotics, such as robot path planning and navigation, carrying
objects according to human instructions, doing housework, and accompanying human
movement, etc.

For example, We want a robot to walk from the bedroom to the kitchen to get an apple.
How does that work? Relying on traditional SLAM, the robot calculates its location (auto-
matically) and Apple’s location (manually) and then does path planning and navigation. If
the apple is in the refrigerator, you also need to manually set the relationship between the
refrigerator and the apple. However, now with our semantic SLAM technology, it’s much
more natural for a human to send a robot, “Please go to the kitchen and get me an apple”,
and the robot will do the rest automatically. If there is a contaminated ground in front of
the robot during an operation, traditional path planning algorithms need to manually mark
the contaminated area so the robot can bypass it [203].

Semantic information can help robots better understand their surroundings. Inte-
grating semantic information into VSLAM is a growing field that has received more and
more attention in recent years. This paper will elaborate on our understanding of semantic
VSLAM from two aspects of localization, mapping, and dynamic object removal in this
section. We believe the biggest contribution of deep learning for VSLAM is the introduction
of semantic information. It can improve the performance of different modules of traditional
methods to varying degrees. Especially in the construction of the semantic map, which
promotes the innovation of the whole intelligent robot field.
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4.2.1. Image Information Extraction

The core difference between modern semantic VSLAM and traditional VSLAM lies in
the integration of the object detection module. It can obtain the attributes and semantic
information of objects in the environment [204]. The first step of semantic VSLAM is
to extract semantic information from the images gained by the camera. Furthermore,
semantic information based on image information can be achieved through classifying
image information [205]. Traditional target detection relies on interpretable machine
learning classifiers, such as decision trees and SVM, to classify and realize target features.
However the detection process is slow, the accuracy is low and the generalization ability
is weak [206]. Image classification based on deep learning can be divided into Object
detection, Semantic segmentation, and Instance segmentation, as shown in Figure 18.

Figure 18. From left to right are the test renderers of YOLOv5, Deeplabv3, and Mask R-CNN.

How to better extract semantic information from images is a hot research issue in
computer vision, whose essence is to extract object character information from scenes [207].
We believe that although neural networks such as CNN also contribute to semantic infor-
mation extraction, modern semantic VSLAM relies more on semantic extraction modules
such as target detection. Object detection and image semantic segmentation are both meth-
ods of extracting semantic information from images. Semantic segmentation of images
is to understand images at the pixel level to obtain deep-level information in the image,
including space, category, and edge. Semantic segmentation technology based on a deep
neural network breaks through the bottleneck of traditional semantic segmentation [208].
Compared with semantic segmentation, target detection only obtains the object information
and spatial information of the image. Furthermore, it identifies the category of each object
by drawing the candidate box of the object, so target detection is faster than semantic
segmentation [209]. Compared with object detection, semantic segmentation technology
has higher accuracy, but its speed is much lower [210].

Target detection is divided into one-stage and two-stage structures [211]. Early target
detection algorithms use two-stage architecture. After creating a series of candidate boxes
as samples, sample classification is carried out through a convolutional neural network.
Common algorithms include R-CNN [212], Fast R-CNN [213], Faster R-CNN [214], and so
on. Later, YOLO [215] creatively proposed the one-stage structure. It directly carried out
the Two steps of the two-stage in One step, completed the classification and positioning
of objects in one step, and directly output the candidate box and its category obtained
by regression. One-stage reduces the steps of the target detection algorithm and directly
converts the problem of target frame positioning into regression problem theory without
the need to create candidate boxes, which are superior in speed. Common algorithms
include YOLO and SSD [216].

In 2014, the appearance of R-CNN subverted the traditional object detection scheme,
improved the detection accuracy, and promoted the rapid development of object detection
technology. Its core is to extract candidate regions, then obtain feature vectors through
Alexnet, and finally use SVM classification and frame correction. However, the speed
of feature extraction is limited due to the serial feature extraction method used by R-
CNN. Ross proposed Fast R-CNN in 2015 to solve this problem well. Region of Interest
Pooling (ROI Pooling) operation is used in Fast R-CNN to improve the efficiency of feature
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extraction, and Region generation network (RPN) is used for coordinate correction. Many
candidate frames (anchor) are set in RPN. Then the dependency relation of the anchor to the
background is judged, to work out the coverage area of the anchor and determine whether
the target is covered. In addition, YOLO improves the accuracy of prediction, speeds up
the processing speed and increases the types of identified objects, and proposes a joint
training method for target classification and detection. YOLO is one of the most widely
used target detection algorithms, offering real-time detection and a series of improved
versions since then.

Different from object detection, semantic segmentation not only predicts the position
and category of objects in the image but also accurately describes the boundary between
different kinds of objects. However, in semantic segmentation technology, an ordinary
convolutional neural network cannot obtain enough information. To solve this problem,
Long et al. proposed a fully convolutional neural network FCN [217]. Compared with CNN,
FCN does not have a fully connected layer. The new FCN obtains the spatial position of the
feature map and fuses the output of different depth layers with the hierarchical structure.
This method combines local information with global information and improves the accuracy
of semantic segmentation. In Segnet network proposed by Badriarayansn et al. [218], the
encoder-decoder structure was proposed, which combined two independent networks to
improve the accuracy of segmentation. However, the combination of two independent
networks severely reduced the detection speed. Zhao et al. proposed PSPNet [219] and
a pyramid module, which fuses the features of each level, such as a pyramid, and finally
fuses the output to further improve the segmentation effect.

In recent years, the continuous improvement of computer performance promotes the
rapid development of instance segmentation in vision. Instance segmentation not only
has the classification on the pixel level (semantic segmentation) but also has the location
information of different objects (target detection), even the same object can be detected.
In 2017, He et al. proposed the Mask R-CNN [220]. This algorithm is the pioneering work
of instance segmentation. As shown in Figure 19, its main idea is to add a branch for
semantic segmentation based on Faster R-CNN.
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Figure 19. The framework of MASK-RCNN.

Although the target detection and segmentation technology based on a neural network
have been perfect, it needs to rely on powerful computing capacity to achieve real-time
processing. VSLAM has a high requirement for real-time operation, so how efficiently
separating the needed object and its semantic information from the environment will be
a long-term and hard task. As the basis of semantic VSLAM, after processing semantic
segmentation, we will pay attention to the influence of semantic information on different
aspects of VSLAM. We will elaborate on three aspects of localization, mapping, and dy-
namic object removal. Object detection and semantic segmentation are both a means of
extracting semantic information from images. Table 11 shows the contribution of some
algorithms. Object detection is faster than semantic segmentation. However, semantic
segmentation is better in precision. Instance segmentation integrates object detection and
semantic segmentation, and has outstanding performance in precision, but can not guar-
antee the running speed. For some schemes that cannot provide the original paper, we
provide the open-source code, such as YOLOV5.
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Table 11. Part of the classical image detection algorithm.

Field Model Year Contribution

Object detection R-CNN [212] 2014 The first algorithm that successfully applied deep learning to target detection.
Fast R-CNN [213] 2015 Image feature extraction is performed only once.

Faster R-CNN [214] 2017 Integrated into a network, the comprehensive performance has been greatly
improved.

SSD [216] 2016 SSD was an early incarnation of the single-phase model.

YOLO [215] 2016 Think of detection as a regression problem, using a network to output posi-
tions and categories.

YOLOv5 [221] 2020 The environment is easy to configure and model training is very fast.

Semantic
segmentation

FCN [217] 2015 It opens the first application of a convolutional neural network in semantic
segmentation.

SegNet [218] 2017 A completely symmetrical structure is adopted.
DeepLabv1 [222] 2014 Atrous convolution.
DeepLabv3+ [223] 2018 Greatly reduce the number of parameters.

PSPnet [219] 2017 A Pyramid Pooling Module can aggregate contextual information from
different regions.

Instance
segmentation

Mask R-CNN [220] 2017 It can not only detect the target in the image but also give a high-quality
segmentation result for each target.

YOLACT [224] 2019 Based on the one-stage target detection algorithm, the overall architecture
design is very lightweight and achieves good results in speed and effect.

4.2.2. Semantic with Location

Location accuracy is one of the most basic assessment standards in the SLAM system
and is a precondition for mobile robots to perform many tasks [225]. Introducing environ-
mental semantic information can effectively improve the scale uncertainty and cumulative
drift in visual SLAM localization, thus improving the localization accuracy to varying
degrees [226].

Bowman et al. [177] proposed a sensor state estimation and semantic landmark
location optimization problem, which integrates metric information, semantic information,
and data association. After obtaining semantic information from target detection, they
introduced the Expectation-Maximization (EM) and calculated the probability of data
association according to the result of semantic classification. They successfully converted
semantic SLAM into a probability problem and improved the localization accuracy of the
SLAM system. However, there are many strong assumptions in this paper. Such as the
projection of the three-dimensional center of the object should be close to the center of the
detection network, which is not easy to meet in practice.

In 2020, Zhao et al. [227] of Xi ’an Jiaotong University proposed a landmark visual
semantic SLAM system for a large-scale outdoor environment. Its core is to combine a 3D
point cloud in ORB-SLAM with semantic segmentation information in the convolutional
neural network model PSPNET-101. It can build a 3D semantic map of a large-scale
environment. They proposed a method to associate real landmarks with a point cloud
map. It associates architectural landmarks with the semantic point cloud and associates
landmarks obtained from Google Maps with a semantic 3D map for urban area navigation.
With the help of a semantic point cloud, the system realizes landmark-based relocation in
a wide range of outdoor environments without GPS information. Its process is shown in
Figure 20. In 2018, ETH Zurich proposed VSO [228] based on semantic information for
autonomous driving scenarios. This scheme solves the problem of visual SLAM localization
in the environment of outdoor lighting changes. It establishes constraints between semantic
information with images and takes advantage of the advantage that semantic information
is not affected by Angle of view, scale, and illumination. Similarly, Stenborg et al. [229] also
proposed solutions to such problems.

In the aspect of trajectory estimation, geometric features can only provide short-
term constraints for camera pose, which will produce large deviations in a wide range
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of environments. In contrast, objects, as higher-level features, can keep their semantic
information unchanged when light intensity, observation distance, and Angle change. For
example, a table is still a table under any light and Angle, and its more stable performance
can provide long-term constraints for the camera posture. In addition, semantic SLAM
can effectively solve the problems that traditional visual SLAM is sensitive to illumination
changes and interferes with the robustness of system positioning. We believe that VSLAM
localization is essentially camera pose estimation. Semantic information can improve
the positioning accuracy of traditional VSLAM systems under strong illumination and
high camera rotation. However, in practice, the introduction of semantic information will
inevitably slow down the operation of the whole system, which is an urgent problem to be
solved in VSLAM. We believe that in most cases, traditional VSLAM still performs well in
localization accuracy. However, semantic help for VSLAM systems to improve localization
accuracy is also worthy of research. Table 12 compares the differences between traditional
methods and semantic methods for VSLAM localization.
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Figure 20. Zhao et al. proposed a large-scale outdoor positioning process using semantic information.

Table 12. Comparison between traditional methods and semantic methods for VSLAM localization.

Method Characteristic

Traditional Epipolar Geometry, Perspective-
n-Point, Iterative Closest Point,
Optical Flow ···

Geometric features can only provide
short-term constraints for camera pose
and may fail in environments with
strong light and fast motion.

Semantic semantic label, data association The semantic information can remain
constant when the light intensity, obser-
vation distance, and angle change.

4.2.3. Semantic with Mapping

Another key juncture of VSLAM and deep learning is the semantic map construction
of SLAM, and most semantic VSLAM systems are based on this idea [230]. For a robot
to understand the environment as well as a human and perform different tasks from one
place to another requires a different skill than a geometric map can provide [231]. Robots
should have the ability to have a human-centered understanding of their environment. It
needs to distinguish between a room and a hallway, or the different functions of a kitchen
and a living room in the future [232]. Therefore, semantic attributes involving human
concepts (such as room types, objects, and their spatial layout), which is considered a
necessary attribute of future robots [233]. In recent years, with the rapid development of
deep learning, a semantic map containing semantic information has gradually come into
people’s view [234]. The semantic map in the semantic SLAM system enables robots to
obtain geometric information such as feature points of the environment. Furthermore, it
also identifies objects in the environment and obtains semantic information such as location,
attribute, and category. Compared with the map constructed by traditional VSLAM, the
robot can be equipped with perceptual ability. It is significant for the robot to deal with
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a complex environment and complete human–computer interaction [235]. Semantic map
construction is one of the hot topics in SLAM research [236]. In 2005, Galindo et al. [237]
proposed the concept of a semantic map. As shown in Figure 21, it is represented by
two parallel layers: spatial representation and semantic representation. It provides robots
with an inference ability similar to humans to the environment (for example, a bedroom
is a room containing a bed). Later, Vasudevan et al. [238] further strengthened people’s
understanding of semantic maps.
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Figure 21. The semantic map concept mentioned in Galindo’s article.

In recent years, deep learning technology has developed rapidly. More and more
researchers combine deep learning with SLAM technology. They use target detection,
semantic segmentation, and other algorithms to obtain semantic information about the
environment. Furthermore, integrate it into the environment map to construct the en-
vironment semantic map [239]. As shown in Figure 22, the research on semantic map
construction is mainly divided into two directions: scene-oriented semantic map construc-
tion and object-oriented semantic map construction.

For Sence For Object

The scene-oriented semantic map focuses on the robot's perception of the 

environment, while the object-oriented semantic map focuses on the robot's 

interaction with entities.

Figure 22. Different types of semantic maps.

Most scenario-oriented semantic maps are based on deep learning methods, which
map 2D semantic information to 3D point clouds. Scenario-oriented semantic maps can
help robots better understand their environment [240]. In 2020, MIT proposed Kimera [241].
This is a mature scenario-oriented semantic SLAM algorithm. Ref. [242] proposed an
algorithm of semantic map construction oriented to the scene. Based on RTABMAP [243],
YOLO is used for target detection. After roughly estimating the position of the object, they
used the Canny operator to detect the edge of the target object in the depth image. Then
they achieved accurate segmentation of the object by processing edge based on the region
growth algorithm. Through the non-deep learning semantic segmentation algorithm, they
solved the problem of large computing resources in traditional semantic map construction,
ad constructed the scene-oriented semantic map in real-time. The scene-oriented semantic
map will help the robot better understand the environment, and build a more expressive
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environment map. However, this method cannot provide more help for a robot to know
the environment, preventing the robot and the environment of the individual to interact,
to a certain extent restricting the intellectualized degree of the robot [244]. In addition,
such algorithms need to carry out pixel-level semantic segmentation of objects in the scene,
which leads to much system calculation and low real-time performance. Therefore, some
scholars turn to object-oriented semantic map construction algorithms [245].

An object-oriented semantic map refers to a map that contains only partial instance
semantic information, and the semantic information exists independently in the method
of clustering [246]. This type of map allows robots to operate and maintain the semantic
information of each entity on the map. So it is more conducive for robots to understand
the environment and interact with entities in the environment, improving the practicality
of the map [247]. Reference [45] proposed a voxel-based semantic visual SLAM system
based on mask-RCNN and KinectFusion algorithm. After object detection by the Mask-
RCNN algorithm, object detection results are fused with the TSDF model based on voxel
foreground theory to construct an object-oriented semantic map. Although the accuracy of
detection is guaranteed, it still cannot solve the problem of the poor real-time performance
of the algorithm. Ref. [248] proposed a lightweight object-oriented SLAM system, which
effectively solves the problems of data association and attitude estimation, and solves the
problem of the poor real-time performance of the above methods. The core framework is
developed based on ORB-SLAM2 and uses YOLOv3 as an object detector to fuse semantic
thread. In the tracer thread, boundary box, semantic label, and point cloud information
are fused, and the object-oriented semi-dense semantic map is constructed. Experimental
results show that compared with ORB-SLAM2, the scheme can deal with multiple classes
of objects with different scales and directions in a complex environment, and can better
express the environment. However, for some large objects, accurate pose estimation is not
possible. Similarly, University College London proposed DSP-SLAM [249].

At present, most semantic map construction methods need to deal with both instance
segmentation and semantic segmentation at the same time, which leads to poor real-time
performance of the system [250]. Table 13 lists some semantic map construction work. In
addition, when dealing with dynamic objects, most algorithms realize system robustness
by eliminating dynamic objects, which will make the system lose much useful information.
Therefore, SLAM oriented to dynamic scenes is an urgent problem to be solved [251].

Table 13. Part of the excellent semantic mapping algorithms.

Reference Year Sensor Semantic labeling Map Contribution

Vineet et al. [252] 2015 S Random Forest Voxel The first system can perform dense, large-scale, out-
door semantic reconstruction of a scene in real-time.

Zhao et al. [253] 2016 D SVM Voxel
Use temporal information and higher-order cliques
to enforce the labeling consistency for each image
labeling result.

Li et al. [254] 2016 D Deeplabv2 Voxel There is no need to obtain a semantic segmentation
for each frame in a sequence.

SemanticFusion
[46]

2016 D CNN with CRF Surfel
Allows the CNN’s semantic predictions from multi-
ple viewpoints to be probabilistically fused into a
dense semantically annotated map.

Yang et al. [255] 2017 S CNN with CRF Grid Further, optimize 3D grid labels through a novel
CRF model.

Panopticfusion
[256]

2020 D PSPNET with CRF Mask
R-CNN with CRF

Voxel A novel online volumetric semantic mapping sys-
tem at the level of stuff and things.

Kimera [241] 2020 S + I Pixel-wise Mesh It is modular and allows replacing each module or
executing them in isolation.

AVP-SLAM [161] 2020 M + I + E U-Net Voxel Autonomous parking.

RoadMap [257] 2021 R + M + I + E CNN Voxel A framework of on-vehicle mapping, on-cloud
maintenance, and user-end localization.

Sensor: S represents Stereo camera; M represents Monocular camera; I represents IMU; E represents encoder; R
represents RTK-GPS and D represents RGB-D camera.



Remote Sens. 2022, 14, 3010 33 of 47

4.2.4. Elimination of Dynamic Objects

Traditional VSLAM algorithms assume that objects in the environment are static or
low-motion, which affects the applicability of the VSLAM system in actual scenes [258].
When dynamic objects exist in the environment(such as people, vehicles and pets), they
will bring wrong observation data to the system and reduce the accuracy and robustness of
the system [259]. Traditional methods solve the influence of some outliers on the system
through the RANSAC algorithm. However, if dynamic objects occupy most of the image
area or moving objects are fast, reliable observation data still cannot be obtained [260]. As
shown in Figure 23, the camera cannot accurately capture data due to dynamic objects. So
how to solve the impact of dynamic objects on the SLAM system has become the goal of
many researchers.

Now, the solutions to the problem of disturbance brought by dynamic objects to the
SLAM system are consistent. That is, before the visual odometer, using target detection
and image segmentation algorithm to filter out the dynamic areas in the image. Then use
static environment points to calculate the nearby positions of the camera and construct a
map containing semantic information [261]. Figure 24 shows a typical structure. Although
the influence of dynamic objects cannot be completely solved, the robustness of the system
is greatly improved.
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Figure 23. Traditional methods use geometric constraints to judge whether an object is moving or not.
For example, in (a), X is a static point in space, so the spatial transformation relation can be obtained
smoothly. In (b), the motion of space point X1 will bring systematic error after it moves to X2.
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In 2018, Bescos et al. [262] proposed the DynaSLAM algorithm for visual SLAM for
dynamic scenarios based on ORB-SlAM2. The system provides interfaces for monocular,
stereo, and RGB-D cameras. For monocular and stereo cameras, MASK-RCNN is used to
segment dynamic objects in each frame to avoid feature extraction of dynamic objects in
the SLAM system. If an RGB-D camera is used, the method of multi-view geometry is used
for more accurate motion segmentation. Dynamic segments are removed from the current
frame and map. However, this method chooses to remove all potentially moving objects,
such as parked cars. This may lead to too few remaining stationary feature points and
affect camera pose estimation. In the same year, the Tsinghua University team proposed a
complete SLAM system DS-SLAM [263] based on ORB-SLAM2. Its core is the ORB-SLAM2
added a semantic network segmentation, and as a separate thread running in real-time.
It can remove objects in the scene dynamic segmentation and create a separate thread to
build a dense semantic octree map to help the robot to achieve a higher level of the task.

Some methods use semantic information to hide objects that are considered to be
dynamic. Although such methods improve the influence of dynamic objects on the system
to a certain extent, the one-size-fits-all approach may cause the system to lose many useful
feature points. For example, a car parked on the roadside may be regarded as a dynamic
object and all feature points carried by it are filtered out [264]. However, a car stationary
on the side of the road can be used as a reliable feature point in the system. However, it
can even be a major source of high-quality feature points. Reference [265] proposed the
integration of semantic information into traditional VSLAM methods. This method does
not need to motion detection. The introduction of confidence, gives each object a different
possible movement probability, to judge whether an object is in motion. Furthermore, the
semantic label distribution is combined with map point observation consistency, to estimate
the reliability of each 3D point measurement. Then use it in the map of pose estimation
and optimization steps. This method can handle objects that are considered dynamic but
are stationary, such as cars parked on the side of the road. Reference [266] is based on the
optical flow method to remove dynamic objects. Its core idea is based on ORB-SLAM2.
In its front end, four CNN neural networks are used to simultaneously predict the depth,
posture, optical flow, and semantic mask of each frame. By calculating the rigid optical
flow synthesized by depth and posture and comparing the estimated optical flow, the
initial motion region is obtained. The algorithm can distinguish the moving object from
the current scene and retain the feature points of the static object. Avoiding the removal of
the moving object based on the category attribute only, which leads to the tracking failure
of the SLAM system. The article [267] has presented a visual SLAM system that is built
on ORB-SLAM2 and performs robustly and accurately in dynamic environments through
discarding the moving feature points with the help of semantic information obtained by
Mask-RCNN and depth information provided by RGB-D camera. This method tries to
exploit more reliable feature points for camera pose estimation by finding out the static
feature points extracted from movable objects, which would benefit a lot when static objects
could not provide enough feature points in the scene.

Semantic information can better help the system to solve the interference brought
by dynamic objects, due to the high consumption of computing resources. However, the
existing schemes are generally not real-time enough to be widely promoted to practical
robots, and the application scenarios are greatly limited [268]. In addition, semantic infor-
mation may not be available at the camera frame rate, or may not always provide accurate
data [269]. Assigning an image region to the wrong semantic class may unnecessarily
exclude it from posture estimation, which can be critical in a sparsely textured environ-
ment [270]. Current solutions to this problem focus on using methods such as optical
flow to detect objects that are moving in the scene [271]. Although the existing algorithms
have achieved good results in data sets, they have not achieved very reliable results in
practical engineering. Table 14 shows the VSLAM algorithms using a deep neural network
to improve the dynamic environment in recent years.
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Table 14. Some excellent VSLAM algorithms for dynamic scenarios in recent years.

Model Year Sensor Scene Dynamic Detection Dataset Code
Resource

Reddy et al. [272] 2016 Stereo Outdoor [273] KITTI 0
DynaSLAM [262] 2018 Monocular/Stereo/

RGB-D
Outdoor/Indoor Mask R-CNN KITTI/TUM RGB-D [274]

DS-SLAM [263] 2018 RGB-D Indoor SegNet TUM RGB-D [275]
Detect-SLAM [276] 2018 RGB-D Indoor SSD TUM RGB-D [277]
Wang et al. [278] 2019 RGB-D Indoor YOLOv3 NYU Depth Dataset V2 0
SLAMANTIC [265] 2019 Monocular/Stereo Outdoor Mask R-CNN TUM RGB-D/ VKITTI [279]
DynSLAM [280] 2018 Stereo Outdoor Cascades [281] KITTI [282]
STDyn-SLAM [283] 2022 Stereo Outdoor SegNet KITTI [284]
PoseFusion [285] 2018 RGB-D Indoor OpenPose Freiburg RGB-D SLAM [286]
RDS-SLAM [287] 2021 RGB-D Indoor SegNet/Mask R-CNN TUM RGB-D [288]
YO-SLAM [289] 2021 RGB-D Indoor Yolact TUM RGB-D 0
Zhang et al. [290] 2021 Panoramic Data Yolact [291] 0
DOE-SLAM [292] 2021 Monocular Indoor self-initiated * TUM RGB-D 0
DRSO-SLAM [293] 2021 RGB-D Indoor Mask R-CNN TUM RGB-D 0
DDL-SLAM [294] 2020 RGB-D Indoor DUNet TUM RGB-D 0
RDMO-SLAM [295] 2021 RGB-D Indoor Mask R-CNN TUM RGB-D 0

Code resourece: 0 represents no code resource. Dynamic detection: [242] represent please refer to this paper;
self-initiated * represent refer to the method proposed in this paper.

5. Conclusions and Prospect

Simultaneous localization and mapping is a major research problem in the robotics
community, where a great deal of effort has been devoted to developing new methods to
maximize their robustness and reliability. Vision-based SLAM technology has experienced
many years of development, and many excellent algorithms have emerged, which have
been successfully applied in various fields such as robotics and UAV. The rapid devel-
opment of deep learning has promoted the innovation of the computer field, and the
combination of the two has become an active research field. Therefore, the research on VS-
LAM has received more and more attention. In addition, with the advent of the intelligent
era, higher requirements are put forward for the autonomy of mobile robots. In order to
realize advanced environment perception of robots, semantic VSLAM has been proposed
and developed rapidly. Traditional VSLAM only restores the geometric features of the en-
vironment when constructing the environment map, which cannot meet the requirements
of robot navigation, human–computer interaction, autonomous exploration, and other
applications. However, the early semantic map construction method generally adopts the
model library matching method, which requires the construction of an object model library
in advance, which has great limitations and is not conducive to popularization and applica-
tion. With the improvement of computer performance and the rapid development of deep
learning technology, VSLAM technology is combined with deep learning technology to
fill the deficiency of the traditional VSLAM system. In recent years, as the most promising
and advantageous computer vision processing method, deep learning technology has been
widely concerned by SLAM researchers. In the semantic SLAM system, environmental
semantic information can be directly learned from pre-trained image sets and real-time
perceived image sets by deep learning techniques. It can also be used to make better use of
large data sets, giving the system greater generalization capability. When constructing a
semantic map, the semantic SLAM system can use the deep learning method to detect and
classify objects in the environment and construct a map with richer information, which has
better practicality.

In this article, we investigate most of the most advanced visual SLAM solutions that
use features to locate robots and map their surroundings. We classify them according to the
feature types relied on by feature-based visual SLAM methods; Traditional VSLAM and
VSLAM combined with deep learning. The strengths and weaknesses of each category are
thoroughly investigated and, where applicable, the challenges that each solution overcomes
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are highlighted. This work demonstrates the importance of using vision as the only external
perceptual sensor to solve SLAM problems. This is mainly because the camera is an ideal
sensor because it is light, passive, low-power, and capable of capturing rich and unique
information about a scene. However, the use of vision requires reliable algorithms with
good performance and consistency under variable lighting conditions, due to moving
people or objects, phantoms of featureless areas, transitions between day and night, or any
other unforeseen circumstances. Therefore, SLAM systems using vision as the only sensor
remain a challenging and promising research area. Image matching and data association
are still open research fields in computer vision and robot vision, respectively. The choice
of detectors and descriptors directly affects the performance of the system to track salient
features, identify previously seen areas, build a consistent environmental model, and work
in real-time. Data correlation in particular requires long-term navigation, despite a growing
database and a constantly changing and complex environment. Accepting bad associations
will cause serious errors in the entire SLAM system, meaning that location calculations and
map construction will be inconsistent.

In addition, we highlight the development of VSLAM that fuses semantic information.
The VSLAM system combined with semantic information achieves better results in terms of
robustness, precision, and high-level perception. More attention will be paid to the research
of semantic VLSAM. Semantic VSLAM will fundamentally improve the autonomous
interaction ability of robots.

Combined with other studies, we make the following prospects for the future devel-
opment of VSLAM:

(1) Engineering application. After decades of development, VSLAM has been widely
used in many fields such as robotics. However, SLAM is sensitive to environmental
illumination, high-speed motion, motion interference and other problems, so how to
improve the robustness of the system and build large-scale maps for a long time are all
worthy of challenges. The two main scenarios used in SLAM are based on embedded
platforms such as smart phones or drones, and 3D reconstruction, scene understanding
and deep learning. How to balance real-time and accuracy is an important open question.
Solutions for dynamic, unstructured, complex, uncertain and large-scale environments
remain to be explored.

(2) Theoretical support. The information features learned through deep learning
still lack intuitive meaning and clear theoretical guidance. At present, deep learning is
mainly applied to local sub-modules of SLAM, such as depth estimation and closed-loop
detection. However, how to apply deep learning to the entire SLAM system remains a big
challenge. Traditional VSLAM still has advantages in positioning and navigation. Although
some modules of traditional methods are improved by deep learning, the scope of deep
learning is generally not wide, and it may achieve good results in some data sets, but it
may be unstable in another scene. The positioning and mapping process involves a lot of
mathematical formulas, and deep learning has drawbacks in dealing with mathematical
problems while using deep learning has fewer data to carry out relevant training, and this
method is more traditional. The SLAM framework does not present significant advantages
and is not yet available. The main algorithms of SLAM technology. In the future, SLAM
will gradually absorb deep learning methods and improve training numbers data sets are
used to improve the accuracy and robustness of positioning and mapping.

(3) High-level environmental information perception, and human–computer inter-
action. With the further development of deep learning, the research and application of
semantic VSLAM will have a huge space for development. In the future intelligent era,
people’s demand for intelligent autonomous mobile robots will increase rapidly. How to
use semantic VSLAM technology to better improve the autonomous ability of robots will
be a long-term and difficult task. Although there have been some excellent achievements
in recent years, compared with the classical VSLAM algorithm, semantic VSLAM is still in
the development stage. Currently, there are not many open source solutions for semantic
SLAM, and the application of semantic SLAM is still in the initial stage, mainly because
the construction of an accurate semantic map requires a lot of computing resources. This
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severely interferes with the real-time performance of SLAM. With the continuous improve-
ment of hardware level in the future, the problem of the poor real-time performance of
SLAM systems may be greatly improved.

(4) Establish a sound evaluation system. Semantic VSLAM technology has developed
rapidly in recent years. However, compared with traditional VSLAM, there are no perfect
evaluation criteria for the time being. In SLAM system research, ATE or RPE is generally
used to evaluate the system performance. However, both of these evaluation criteria are
based on the pose estimation results of the SLAM system, and there is no universally
recognized reliable evaluation criterion for the effect of map construction. For a semantic
SLAM system, how to evaluate the accuracy of semantic information acquisition and how
to evaluate the effect of semantic map construction are the issues that should be considered
in the evaluation criteria of the semantic SLAM system. Furthermore, it is not a long-term
solution to evaluate only by subjective indicators. In the future, it will be a hot topic how to
establish systematic evaluation indicators for semantic VSLAM.
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Abbreviations
The following abbreviations are used in this manuscript:

SLAM Stimulation Location and Mapping
VSLAM Visual Stimulation Location and Mapping
CNN Convolutional Neural Network
RNN Recurrent Neural Network
IMU Inertial Measurement Unit
EVO Python package for the evaluation of odometry and SLAM
ATE Absolute Trajectory Error
RPE Relative Pose Error
TUM Technical University of Munich
TOF Time-Of-Flight
CPU Central Processing Unit
GPU Graphics Processing Unit
BoW Bags of Binary Words
UKF Unscented Kalman Filter
ICP Iterative Closest Point
TSDF Truncated Signed Distance Function
VO Visual Odometry
VIO Visual-Inertial Odometry
DNN Deep Neural Networks
LSTM Long Short-Term Memory Networks
GRU Gated Recurrent Unit
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3D Three-Demensional
EM Expectation-Maximization
MIT Massachusetts Institute of Technology
UAV Unmanned Aerial Vehicle
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