
 

An OWL ontology library representing 
judicial interpretations 

Editors: Pompeu Casanovas, Universitat Autònoma de Barcelona, Spain, and Victoria University, Australia; Monica Palmirani, University of 
Bologna - CIRSFID, Italy; Silvio Peroni, University of Bologna, Italy, and National Research Council, Italy; Tom van Engers, University of 
Amsterdam, The Netherlands; Fabio Vitali, University of Bologna, Italy 
Solicited reviews: Andrew Koster, Federal University of Rio Grande Do Sul, Brazil; Thomas Bruce, Cornell University, USA; Nick 
Bassiliades, Aristotle University of Thessaloniki, Greece 

 

 
Marcello Cecia* and Aldo Gangemib,c 
a
 GRCTC, University College Cork, College road, Cork, Ireland 

b
 ISTC-CNR, Via S. Martino della Battaglia  44, 00185 Rome, Italy 

c
 LIPN, Université Paris 13, Sorbonne-Cité-CNRS, Paris, France 

Abstract. The article introduces JudO, an OWL2 ontology library of legal knowledge that relies on the metadata contained in 
judicial documents. JudO represents the interpretations performed by a judge while conducting legal reasoning towards the 
adjudication of a case. To the aim of this application, judicial interpretation is intended in the restricted sense of the acts of 
judicial subsumption performed by the judge when he considers a material instance (token in Searle’s terminology), and 
assigns it to an abstract category (type). The ontology library is based on a theoretical model and on some specific patterns that 
exploit some new features introduced by OWL2. JudO provides meaningful legal semantics, while retaining a strong 
connection to source documents (fragments of legal texts). The application task is to enable detection and modeling of 
jurisprudence-related information directly from the text, and to perform shallow reasoning on the resulting knowledge base. 
The ontology library is also supposed to support a defeasible rule set for legal argumentation on the groundings of judicial 
decisions. 

Keywords: legal knowledge modeling, ontology design patterns, case-based legal reasoning, judicial interpretation, OWL2

* Corresponding author. E-mail: marcello.ceci@gmail.com 

 

                                                           



«I see, these books are probably law books, and it is 

an essential part of the justice dispensed here that 

you should be condemned not only in innocence but 

also in ignorance».  

- Franz Kafka, The Trial. 

1. Representing the Judicial Framework 

Precedents (or case law) are core elements of 
legal knowledge worldwide: by settling conflicts 
and sanctioning illegal behaviors, judicial activity 
enforces law provisions within national borders, 
supporting the validity of laws as well as the 
sovereignty of the government that issued them. 
Moreover, precedents are a fundamental source for 
legal interpretation, to the point that the exercise of 
jurisdiction can influence the scope of the same 
norms it has to apply, both in common law and civil 
law systems – although to different extents.  

Capturing the semantics of human-created texts 
to be processed by machines is not a linear process. 
In order to provide a comprehensive representation 
of the contents of a document it is necessary to 
adopt multiple perspectives, and to account for 
different aspects and granularity of representation. 
Legal documents require special attention when 
representing their semantics, as they do not typically 
express factual knowledge, rather codifying an order 
of an authority that can be translated by means of 
logical operators, but whose syntax is not fixed. 
Unlike a generic text, where the intended meaning 
of the combination of signs is either common 
knowledge or is explained by the author, 
interpretation of legal documents is a different 
matter. The language used is important by itself, its 
conventional meaning being codified by the legal 

system. However, it is also commonly accepted that 
assigning a meaning to legal dispositions is not 
straightforward: there are gray areas in the 
interpretation of legal, open-textured concepts, and 
the effects of legal acts are susceptible to change in 
time, either depending on a change of the legal text 
itself, or on external influences (i.e. other norms or 
judgments). The AI & Law research community has 
gathered significant results on this topic since the 
1980s, with different approaches: legal case-based 
reasoning [2,11], ontology-based systems [34], and 
formal argumentation [24,26,44]. 

This papers covers part of a research (see [13]) 
whose aim is to define a Semantic Web framework 
for precedent modeling, by using knowledge 
extracted from text, metadata, and rules [5], while 
maintaining a strong text-to-knowledge morphism, 
in order to fill the gap between legal document and 
its semantics [38]. The input to the framework 
includes metadata associated with judicial concepts 
and an ontology library representing the structure of 
case law.  

The research relies on previous efforts of the 
community in the field of legal knowledge 
representation [35] and rule interchange for 
applications in the legal domain [27]. The issue of 
implementing logics to represent judicial 
interpretation has already been faced e.g. in [9,22], 
albeit only in sample cases. The aim of the research 
is to apply legal theories to a set of real legal 
documents, defining OWL axioms in a Judicial 
Ontology Library (JudO) that provides a 
semantically expressive representation and a solid 
ground for a (future) legal argumentation system 
based on a defeasible subset of predicate logics. The 
JudO ontology library thus constitutes the 
cornerstone for semantic tools to enrich and reason 
on the XML mark-up of precedents (i.e. the 
metadata of case-law), supporting legal reasoning in 
the large. 

Some new features in the recent version of OWL 
(OWL2, see [53]) unlock useful reasoning features 
for legal knowledge, especially if combined with 
defeasible rules. The main task is thus to formalize 
legal concepts and argumentation patterns contained 
in a judgement, with the following requirement: to 

check, validate and reuse the discourse of a judge - 

and the argumentation he produces - as expressed 

by judicial text. In order to achieve this, four 
different models that make use of standard 
languages from the Semantic Web layer cake 
(Figure 1) have been used: Fig. 1. Tim Berners Lee's Semantic Web layer cake, adapted 

to the legal domain in [47]. 



a. A document metadata structure, modeling 
the main parts of a judgement, and creating a 
bridge between a text and its semantic 
annotations of legal concepts; 

b. A legal core ontology, modeling abstract legal 
concepts and institutions contained in a rule of 
law [16]; 

c. A legal domain ontology, modeling the legal 
concepts involved in a specific domain of case-
law; 

d. An argumentation system [15], modeling the 
structure of argumentation (arguments, 
counterarguments, premises, conclusions, 
rebuttals, proof standards, argument schemes, 
etc.). 

This work deals with issues related to the core 
and domain ontologies – (b.) and (c.) – which 
organize the metadata annotating the text of judicial 
decisions and infer relevant knowledge about 
precedents. The metadata structure is obtained from 
the Akoma Ntoso standard (see 3.1.), while multiple 
solutions are being tested for building 
argumentation out of the ontology library: an 
application of the ontology library to the Carneades 
Argumentation System is described in [15], while 
future research will focus on applications on Drools  
(see [42]) and SPINdle (see [43]). 

The paper is structured as follows: section 2 
presents the requirements and the design methods 
for the ontology library; section 3 describes the 
ontology library design, and how it is used to 
represent knowledge related to judicial 
interpretation. The method is exemplified in section 
4 with reference to a sample of Italian case law. 
Section 5 presents an evaluation of the ontology, 
discussing related work in both legal ontology and 
legal reasoning fields, and some remaining issues 
with the proposed solution. 

2. Tasks and applications 

This research applies state-of-the-art techniques 
in ontology design and DL reasoning for the 
representation of  knowledge extracted from legal 
documents, stressing OWL2 axiomatization 
capabilities in order to provide an expressive 
representation of judicial documents, and a solid 
ground for an argumentation system that uses a 
defeasible subset of predicate logics. 

Modeling judicial knowledge involves the 
representation of situations where strict deductive 

logic is not sufficient to reproduce the legal 
reasoning as performed by a judge. In particular, 
defeasible logics [28] seem necessary to represent 
the legal rules underlying judicial reasoning. For 
example, many norms concerning contracts are not 
mandatory: they could be overruled by a different 
legal discipline through specific agreements 
between the parties. The problem of representing 
defeasible rules is a core problem in legal 
knowledge representation.  

Moreover, argumentation theories (including the 
dialogue model of adjudication by [44], and 
argumentation schemes by [26]) introduce tools that 
are fundamental to perform effective reasoning on 
legal issues. This perspective adopts a procedural 
view on argumentation, which is necessary in order 
to properly represent those processes in an argument 
graph.  

However, not all reasoning on judicial knowledge 
needs defeasible rules and argumentation, therefore 
we can safely apply classical deductive reasoning to 
a substantial subset. For example, the fact that most 
legal concepts do not admit both necessary and 
sufficient conditions is sometimes regarded as a 
limitation for a classical representation of legal 
concepts. However, it is common practice in domain 
ontologies to introduce mostly necessary conditions, 
which have a major role in reasoning, although 
enabling a smaller amount of inferences. In addition, 
some relevant domain concepts in law can be 
designed by class axioms instead of rules, so 
providing an explicit account of domain-level 
classical reasoning. The JudO class 

Relevant_Ex<rulename>, under which all 
instances relevant to a specific law are automatically 
classified (see 3.3.1.), is an example of such design 
choice. 

The ontologies introduced in this paper address 
the classical subset of legal knowledge, in order to 
enrich the metadata annotating a legal document by 
performing deductive reasoning, and thus preparing 
a knowledge base for additional reasoning 
performed by tools based on deontic defeasible 
logics and argumentation schemes.  

Following the requirement schema for legal 
ontologies that has been proposed in [19], the JudO 
ontology library is supposed to satisfy the following 
functional, domain, and application requirements. 
Functional requirements include: 

- Text-to-knowledge morphism: the aim is to 
design the knowledge that can be extracted 
from a (textual) judicial decision, or a fragment 

 



of it, as a module in an ontology library, so that 
each module constitutes a particular morphism 
of the legal meaning expressed by that text [39]. 
This means that the ontology should be easily 
extended with entities extracted from the legal 
text, and it should contain only as many 
constraints as needed by judicial reasoning, 
without over-constraining it with unneeded 
axioms (i.e. uncertain sufficient conditions, 
unsure disjointness, etc.); 

- Distinction between document layers: the 
ontologies must clearly distinguish between the 
legal text (the medium and expression layer), 
its meaning (the legal concepts and rules 
contained in the text), and the entities referred 
by the text. In principle, different (and even 
inconsistent) legal meanings can be expressed 
by the same legal text. Achieving distinction 
between document layers involves the 
identification of frames from different layers 
(see [20,22] for examples of layered, frame-
oriented ontology design in law): 
* Social frames, concerning the effects of the 

legal text in the social world (extra-legal 
perspective); 

* Procedural frames, concerning the effects 
of the legal text in the identification of 
different steps in a legal proceeding; 

* Substantial frames, concerning the effects 
of the legal text in the application of the 
norms it expresses. 

- Shallow reasoning on judicial knowledge: the 
ontologies must enable reasoning on material 
circumstances, legal concepts and judicial 
interpretations contained in precedents. In order 
to achieve this, JudO has to: 
* Identify the acts which have legal force, 

distinguishing them on the basis of their 
strength (this has been achieved, for 
example, by distinguishing between “weak 
links” created by contracts and “strong 
links” created by judicial interpretation, 
which can overrule previous ones); 

* Create a conceptual frame bound together 
by the acts with legal force. JudO is based 
on the notion of qualifying legal expression 
(see section 3.2.1), whose function is to 
create links between legal concepts under a 
same hat. The framing works by modeling 
those links as a relation between the 
qualification (the legal act) and the 

qualified elements
1. In practice, these links 

do not contribute to uniquely characterizing 
a legal object (because several – and 
possibly inconsistent – qualifications may 
involve the same object), but rather 
constitute a net of relations that provide the 
bread and butter of judicial interpretation. 
In the legal domain, relations seem to be 
more important than categories2. 

- Querying: being able to perform complex 
querying, e.g. by using SPARQL-DL [51], on 
qualified parts of a judgement text. For 
example, performing queries that encode a 
question such as: “retrieve all the judgements 

in the last year, with a dissenting opinion, in 

the e-commerce field, and where the main 

argument of the decision is the application of 

Consumer Law, art. 122”; 
- Supporting text summarization: detecting 

relevant parts of a judicial text by reasoning on 
semantic annotations jointly with judicial 
ontologies; 

- Modularity: JudO should define modules that 
axiomatize concepts common to as many 
domain ontologies as possible, which in turn 
should be automatically imported depending on 
the domain and task at hand; 

- Supporting case-based reasoning: performing 
legal case-based reasoning by using the 
ontology reasoner in combination with a set of 
rules and a rule engine (see [15]). Frame-based 
judicial qualification is particularly appropriate 
to this requirement. 

Judicial ontologies are intended to create an 
environment where knowledge extracted from the 
decision text can be processed and managed, and 
reasoning on the judicial interpretation that grounds 
the decision is enabled. Reasoning intends to satisfy 
the following domain requirements3 (also known as 
competency questions, see [29]): 

- Finding relevant precedents that are not 
explicitly cited in the decision. In order to 

1  This is in line with the Descriptions and Situations 
framework, as used in e.g. [20,22]. 

2 For example, signing a contract clause at the end of the page 
it is contained in could be considered as a specific signing of the 
clause in a judgement A, while not so in a judgement B. With 
JudO, we do not intend to determine which interpretation is more 
accurate, but rather to annotate both of them, together with the 
contextual information about the different judgements. 

3 See [13] for an implementation of the ontology library into 
the Carneades Argumentation System. 

                                                           



achieve that, JudO should model entities such 
as: 
* laws cited; 
* legal figures evoked; 
* factors present in the material 

circumstances; 
- Validating adjudications of a judge about the 

claims brought forward by the parties in a real 
legal case on the basis of applicable rules, 
accepted evidence, and interpretation. To 
perform that, the ontology needs to:  
* reproduce the semantics of legal 

consequences brought forward by legal 
rules; 

* be able to automatically infer its 
application.  

Such inference can then be compared to the 
outcome of the real legal case (classified in the 

ontology as an instance of the Adjudication 
class). 

- Suggesting legal rules, precedents, or 

circumstances that might lead to a different 
adjudication of the claim. In order to achieve 
this: 
* the legal concepts c1…n applied by a 

judgement j (acj
1) must contain information 

(coming from other precedents) about their 
other known applications a

cj
2…m. In this 

way, once a legal concept c i is evoked, we 
can compare each application a

cj
i to other 

judgements, which could be inconsistent 
with acj

1; 
* the galaxy of connections between the 

pieces of knowledge in the ontology can be 
based on either crisp or fuzzy categories, 
since a main requirement is to emphasize 
indirect connections between concepts. 
Certainly, in order to take the most 
advantages from this assumption, we may 
need to add fuzzy reasoning to JudO OWL 
axioms (cf. [7,8]). 

The structure of the ontology library also aims at 
integrating the representation of legal concepts at 
different layers of legal interpretation, as when 
considering concepts in laws together with concepts 
in legal principles.  

Practical applications of the ontology library 
include: 

- Compliance checking of contract drafts, using 
a word processor plugin that employs NLP 
techniques to recognize sentences and clauses 

that could be relevant under consumer law and 
then representing and reasoning with it; 

- Juridical analysis tools for legal professionals, 
enriching case-law collections by semantically 
relating and grouping precedents for lawyers to 
browse, making the precedent extraction 
process for legal cases easier and more 
effective; 

- Judgement management tools for courts and 
tribunals, useful to evaluate and optimize 
judgements (integrated into a word processor 
to assist judges while writing judgements, 
highlighting missing elements in the decision's 
groundings, which could then constitute 
grounds for appeals); 

- Impact analysis tools for legislators, 
providing a list of (common or uncommon) 
judicial interpretations for a given law, in order 
to take them into account when modifying that 
law; 

- Tools representing formalized legal doctrine 
and case law, where legal experts could rely on 
a social platform to share their views and 
interpretations on a law or a precedent, by 
using a graphical interface and a formal 
argumentation structure instead of plain text. 

3. Ontology Design 

The intended application of JudO is based on a 
multi-layer paradigm, where a legal resource is 
managed in separate, mutually connected, levels, 
which are organized in order to allow multiple 
annotation, interpretation, and classification, with 
representation redundancy. The annotation layer 
consists of the following elements: 

- Text annotation in XML: the Akoma Ntoso 
standard [4,52] grants proper mark-up of the 
structure of judgements and citations; 

- Metadata annotation: the Akoma Ntoso 
metadata block captures not only the metadata 
concerning the lifecycle of the document (e.g. 
workflow of the trial, formal steps, jurisdiction, 
level of judgements), but also legal 
qualification about relevant parts of the 
decision, such as a minority report or a 
dissenting opinion; 

- Ontology annotation: external OWL 
definitions linked to the XML document are 
used; 

 



- Rules: unfortunately OWL, even with the 
functionalities of version 2, is unable to 
represent complex and defeasible legal 
arguments. It is therefore necessary to extend 
the model with rule modeling for 
argumentation representation. 

The JudO ontology is designed into two main 
modules (see also [16]): 

- a Core Ontology describing the constituents of 
a precedent in terms of general concepts, 
designed as specification the Description and 
Situations framework as implemented in 
DOLCE-Ultralite+D&S 4 , and aligned to the 
LKIF-Core legal ontology;5 

- a Domain Ontology representing the concepts 
and rules expressed by the Italian Codice del 

Consumo (Consumer Code), by artt. (articles) 
1241 and 1242 of the Italian Civil Code, as 
well as all relevant knowledge extracted from a 
set of Italian judgements containing 
interpretation of private agreements in the light 
of those laws. 

Our design method is based on a middle-out 
methodology that incrementally integrates a bottom-
up approach for capturing and modeling legal 
domain ontologies, and a top-down one for 
modeling core ontology classes and argumentation 
theory components. The middle-out methodology is 
implemented here by using pattern-based design 
[6,19], where ontology design patterns are extracted 
from judicial text, and, whenever possible, they are 
defined complying with the core ontology according 
to requirements. 

The notion of judicial interpretation is the central 
one. It involves: 

- acts of interpretation, which take into 
account facts, and apply legal rules (legal 
statuses) to it; 

- interpretations of a legal text, since a same 
phrasing may give rise to alternative 
interpretation acts, depending on the meaning 
given to the words. 

4 http://www.ontologydesignpatterns.org/ont/dul/DUL.owl 

5  LKIF Core base URI is http://www.estrellaproject.org/lkif-

core/lkif-core.owl, but it is not resolvable at the moment of 

finalizing this paper. You might use instead: 

https://github.com/RinkeHoekstra/lkif-core as a page for its 

source code. 

The Description and Situations (D&S) ontology 
design pattern [22] 6  provides the relations to 
distinguish between facts, interpretive actions that 
construct descriptions to interpret those facts, and  
the possible resulting interpretations (situations). 
D&S (as axiomatized in [22]) also supports the link 
between interpretive actions, and the information 
objects (expressions) that are actual parts of the 
facts in the legal world that are taken into account 
by JudO. 

The qualification pattern (see 3.2.1.) is aimed at 
capturing some aspects of legal interpretation, while 
keeping an open approach in order to maximize the 
results of the reasoning, since in the legal field even 
remote, apparently counterintuitive inferences may 
be important. 

Evaluation has been performed on a sample set of 
Italian case law including 27 decisions of different 
grades  (Tribunal, Court of Appeal, Cassation Court) 
concerning the legal field of oppressive clauses in 
Consumer Contracts. The matter is specifically 
disciplined in the Italian “Codice del Consumo” 
(Consumer Code), as well as in many non-Italian 
legal systems, so that an extension of this research 
to foreign decisions (and laws) can be envisaged.  

Contract law is an interesting field because the 
(either automatic or manual) markup of contract 
parts allows highlighting single clauses and their 
comparison to general rules, as well as the case law 
concerning the matter. Contract markup can be used 
to perform semi-automatic compliance checking of 
a contract draft. The domain considered is also 
interesting for knowledge representation, because it 
involves situations where strictly deductive logic is 
not sufficient to represent the legal reasoning as 

6 See also [23] for a previous version tailored to norm dynamics. 

Fig. 2. Judgement structure in Akoma Ntoso. 

                                                           

                                                           

https://github.com/RinkeHoekstra/lkif-core


performed by a judge. In particular, defeasible 
logics [28] seems needed to represent the legal rules 
underlying judicial reasoning. For example, many 
norms concerning contracts are not mandatory: they 
could be overruled by a different legal discipline 
through specific agreements between the parties. 
The problem of representing defeasible rules, in fact, 
is a core problem in legal knowledge representation. 
Exploring how OWL2 could set the background for 
the application of defeasible logic is therefore one of 
the goals of the present research. See sections 4 and 
5 for a presentation of the results achieved by the 
judicial framework. 

3.1. Judgement Structure  

Judgement in Akoma Ntoso [4] is a type of XML 
document modeled to detect the relevant parts of a 
text describing a precedent (Figure 2): a header for 
capturing the main information such as parties, court, 
neutral citation, document identification number; a 
body for representing the main part of the judgement, 
including the decision; a conclusion for including  
the signatures.  

The body part is divided into four main blocks: 
introduction, where usually (especially in common 
law decisions) the story of a trial is introduced; 
background, dedicated to the description of the 
facts; motivation, where the judge introduces the 
arguments supporting his decision; decision, where 
the final outcome is given by the judge. 

This partitioning allows the highlighting of facts 
and factors pertaining to the judgement: in the 
motivation part, arguments and counterarguments 
are detectable, while in the decision part lies the 
conclusion of the legal argumentation process. 
Those “qualified” fragments of text are annotated by 
legal experts with the help of a special editor (e.g. 
Norma-Editor, presented in [37]) that is handy to 
create links between text, metadata and ontology 
classes. 

3.2. Core Ontology 

The judicial core ontology4 (Figure 3), or JudO, 
implements the qualification ontology design 

pattern. JudO defines OWL entities for the main 
concepts and relations in the judicial legal domain, 

4 
http://codexml.cirsfid.unibo.it/ontologies/judging_contracts_core. 

owl. 

dealing with judicial decisions. Core ontologies are 
typically domain-generic; however, being the legal 
domain too large and heterogeneous, several core 
ontologies can be designed. The ontology presented 
here is conceived to represent interactions in Civil 
Law, especially where contracts, laws and judicial 
decisions are concerned. For other domains, e.g. 
public contracts, administrative law, tort law, etc. 
adaptations are needed. 

3.2.1. Qualifying Legal Expressions  

 

                                                           



The backbone of the JudO Core Ontology is 

constituted by three classes: Qualifying_ 

Legal_Expression, Qualification, and 

Qualified.  
In order to understand those classes and their 

main relations (Figure 4), we need to get an intuition 
(here described in non-strictly legal terms) of a 
“judicial decision” as the result of actions aiming at 
using a certain subset of legal language 
(“expressions” resulting from linguistic 
constructions realized by syntactic, lexical, and 
textual forms) in order to assign (“considering”, 
“qualifying”) legally-relevant entities (“qualified” 
entities or tokens), with appropriate types (“judged 
as” such). 

For example, a legal rule may express the 
situation, by which a legal consequence is “applied” 
for “judging” a certain legal status “considered” by 
that legal rule.  

Now, using the D&S framework [20], we can 
conceptualize judicial decisions in the given 
example as follows: a legal consequence is a 
description of a situation involving a legal status, 
whereas the legal rule is a description of the reasons 
(another situation) why the “typing” is applied in 
order to judge the considered fact. 

This layering of descriptions and situations is a 
typical feature of D&S that allows to overcome the 
ambiguity of extensional “typing”, as in the case of 
a class “Person” used to type a person, versus 
intensional “typing” as in the case when we want to 
take a different perspective on a fact or entity, i.e. 
what the legal consequence case is about. 

From the logical viewpoint, this is non-trivial 
because we need at the same time to refer to a class, 
as well as to talk about that class [21]. 

Fig. 3. JudO Core Ontology (right) alignment to LKIF-Core (left). 



Remarkably, the classes we (re)define here are 
actually reused from the LKIF-Core ontology, in 
order to align our pattern to it. In fact, LKIF-Core 
does not attempt to axiomatize the intuition we have 
just described, and limits itself to distinguishing two 

“mental objects”: lkif:Legal_Expression and 

lkif:Qualification, and a role-like class: 

lkif:Qualified. Our alignment is compliant to 
LKIF-Core, but adds a relational pattern to make 
sense of judicial decisions, and possibly other legal 
notions that can be conceptualized in the D&S 

framework (cf. [22]). 

Qualifying_Legal_Expression is a kind of 

lkif:Legal_Expression, and includes legal 
expressions that ascribe a legal status to a person or 
an object. For example:  
 

- x is a citizen 

- x is an intellectual work 

- x is a technical invention 
 

The lkif:Qualification class includes legal 
acts (e.g. contractual agreements, judgements) that 
produce qualifying legal expressions. In the 
examples above, the acts producing the sentences “x 
is a citizen”, “x is an intellectual work”, and “x is a 
technical invention” are qualifications.  

Legal acts are typically speech acts (cf. [3]) 
influencing the behavior of people and institutions 
by means of the performative or normative value of 
the meaning they express (semiotics.owl 7  is an 
ontology design pattern formalizing speech acts in 
OWL, see also [19] for an application to legal 
ontologies).  

The modeling of qualifying legal expressions also 
takes into account Searle’s theory of constitutive 
acts, and the distinction between fact-tokens and 
fact-types (see [49]), which is modeled following 

D&S as situations vs. descriptions. The 
generalization over the entities that can be qualified 

is provided by lkif:Qualified, a class including 
anything that is object of a qualification.  

7 http://www.ontologydesignpatterns.org/cp/owl/semiotics.owl 

considers 

applied_by 
considered_by 

applies 

judged_as 

Fig. 4. Qualifications produce expressions about how some legal entity (token qualified entity) is qualified by a type. A type can also 
be qualified on its turm, as conceptualized in the qualification pattern. For each class, some subclasses are provided as examples. The 

judged_as property is defined through a property chain of the main properties considered_by and applies. 

Qualified Tokens 

 

Material_Circumstance 
Legal_Status  
Judicial_Claim 

 

Qualified Types 

 
Legal_Status  

Legal_Consequenc

e 
Judicial_Outcome 

Qualifying Legal 

Expressions 

 

Contractual_Agreement 
Judicial_Interpretation 

Legal_Rule 
Adjudication 

 

 

                                                           



In the examples, both “x” (e.g. a material 

circumstance or legal fact), and its types (e.g. citizen, 
intellectual work, technical invention) are qualified 
elements, because a qualification tells us something 
about x, but at the same time it provides an example 
of citizen, intellectual work, or technical invention. 
In formal ontology, this means that qualifications 
provide both instantiation and exemplification [32]. 
In cognitive science, this means that qualifications 
introduce both a categorization, and a prototype 

[46]. 
Since the main object to be represented in JudO is 

the normative/judicial qualification brought forward 
by performative utterances (contractual agreements, 
legal rules and – most important – judicial 
interpretations), the classes presented above 
constitute the nucleus of the judicial core ontology. 
As we anticipated, the three classes constitute an 
ontology design pattern [19] specializing a part of 
the D&S framework [18,20]: qualifications are 
speech acts that produce descriptions (expressed by 
qualified legal expressions) that characterize 
qualified elements (either at the instance or type 
level), and can describe relevant legal situations 
when legal performatives and norms are applied to 
the social world.   

From the design viewpoint, the qualification 

design pattern (Figure 4) defines two further object 
properties: considers and applies (with their inverse 
properties considered_by and applied_by). The first 
one, considers, represents the relations between 
qualifications and instance-level qualified elements 
(e.g. a judicial interpretation considers a material 
circumstance). The second property (applies) 
represents relations between qualifications and type-
level qualified elements (e.g. a judicial 

interpretation applies a legal consequence to 
categorize and exemplify a material circumstance). 

Considering that qualifications are also expressed 
by qualifying legal expressions, they are designed as 
a reification of a ternary relation that in first-order 
logic would be represented e.g. as qualifies(exp, obj, 
type), with QualifiedLegalExpression(exp), Quali-

fiedInstance(obj), and QualifiedType(type). The 
Descriptions and Situations framework provides a 
vocabulary to the well-known n-ary reification 
pattern, enabling to model both entities and concepts 
in the same first-order model. The availability of 
“punning” in OWL2 helps managing this meta-level 
flavor (see [21] for a detailed analysis of design 
alternatives with n-ary relation reification and the 
Descriptions and Situations patterns). 

The qualification pattern can be used for different 
scenarios: 

- A Contractual_Agreement considers a 

Material_Circumstance and applies a 
Legal_Status;  

- A Judicial_Interpretation considers a 

Material_Circumstance and applies a 

Legal_Status;  

- A Legal_Rule considers a Legal_Status and 

applies a Legal_Consequence; 

- An Adjudication considers a Judicial_ 

Claim and applies a Judicial_Outcome. 

3.2.2. Construction of the Qualifying 

Expression class in LKIF-Core 

LKIF-Core [30] is an established generic legal 
ontology, and as we have mentioned, JudO is 
compatible to it. In this section we explain some of 
the measures taken to obtain this compatibility.  

Fig. 5. Taxonomical relations for the Legal_Expression class. 



The Qualifying_Legal_ Expression class 
(Figure 5) is aligned to 

lkif:Qualificatory_Expression, but is 
characterized in JudO as the intersection of 

lkif:Legal_Expression (Figure 6) and 

lkif:Qualification (Figure 7). This choice is 
due to the desire of being robust against the 
pervasive ambiguity between expressions and the 
descriptions they express. It is in fact quite difficult 
to find evidence of entities that are purely an 
expression or a description. 

JudO also specializes the lkif:qualifies 

property into considers (modeled as a superclass 
of the LKIF-Core properties evaluates, allows, 

disallows) and applies.  

The Qualifying_Legal_Expression class 
represents dispositions, which in the sample case are 
the three legal expressions used in contract law-
related judicial decisions: 

Contractual_Agreement, Legal_Rule and 

Judgement. 

Since Qualifying_Legal_ Expression is a 

subclass of lkif:Legal_Expression (Figure 6), 
its instances contain information related to their 
original speech act: their semantics binds with 

externalization, the legal power and agents in order 
to ensure the representation of all aspects that may 
come into play when facing a legal issue (e.g. 
legitimacy of the legislative body/court/legal party, 
characteristics of the corresponding legal document, 
identity/characteristics of people/bodies involved, 

etc.). Their main properties are medium and 

attitude (see below for a specification of the 

LKIF-Core Medium, Attitude and Agent classes).  

As Qualifying_Legal_ Expression is also a 

subclass of lkif:Qualification (Figure 7),  its 
instances contain the information related to the 
effects they have in the legal world: the legal 
categories/obligations/effects they create, modify or 
repeal.  

The lkif:Qualification and lkif:Qua-

lified classes are originally linked only by a 

single property lkif:qualifies (inverse 

lkif:qualified_by), but in order to represent 
this conceptualization, the object property 

lkif:qualifies has been aligned as a super 

property of two JudO properties: considers and 

applies, representing the object  (instance-level) 
and the destination (type-level) of the qualification 
respectively.  

Fig. 6. Taxonomical relations for the Qualifying Legal Expression class. 

Fig. 7. Taxonomical relations for the Qualification class. 

 



3.2.3. Qualified Expressions 

The considers and applies properties range 

on the lkif:Qualified class (Figure 8), whose 

subclasses include now lkif:Normatively_ 

Qualified, and JudO:Judicially_Quali-

fied. 

The Normatively_Qualified class include as 

subclasses Material_Circumstance, 

Legal_Status and Legal_Consequence. They 
represent the expressions that can be directly bound 

to a Norm: while Material_Circumstance 

represents any fact or act that is taken into 

consideration by a Norm, Legal_Status represents 
an institutional fact (e.g. fulfillment of contract, 

oppressive clause, contract breach) that is normally 

considered_by a Legal_Rule and applied_by 

a Contractual_Agreement or a Judgement. 
Please note that the link between a 

Contractual_Agreement, and the 

Legal_Status it applies, is a “weak” link until 

a Judicial_Interpretation has confirmed it. 

Finally, Legal_Consequence represents the 
sanction provided by the law in the presence of 

some Legal_Status or 

Material_Circumstance. It covers all cases 

when the Legal_Rule considers some 

Normatively_Qualified expression, but does 

not simply allows, disallows or evaluates it.  

Fig. 8. Taxonomical relations for the Qualified class. 

Fig. 9. Visualization of the adjudication class and of its semantic connections. 



Judicially_Qualified expressions include 

Judicial_Claim, Judicial_Outcome and all 
elements taken into consideration during a legal 

proceeding (e.g. Contractual_Agreeement, but 

also Legal_Rule, especially in Cassation Court 
and Costitutional Court sentences). 

Judicial_Claim is the claim of the legal 

proceeding. It is considered_by an 

Adjudication: the answer of the judge to the 

claim (subclass of lkif:Qualification). The 
content of an answer (rebuttal/acceptation of the 
claim or any other possible outcome foreseen by the 
law) is represented by an instance of the 

Judicial_Outcome class, applied_by an 

Adjudication. Therefore, the representation is the 

following: a Judicial_Claim is considered_by 

an Adjudication that applies a 

Judicial_Outcome.  

Judicially_Qualified expressions include 

Judicial_Claim, Judicial_Outcome and all 
elements taken into consideration during a legal 

proceeding (i.e. Contractual_Agreeement, but 

also Legal_Rule, especially in Cassation Court 
and Costitutional Court sentences). A 

Judicial_Claim is the claim of a legal proceeding. 

It is considered_by an Adjudication, the 
answer of the judge to the claim (subclass of 

judo:Judgement < lkif:Qualification).  

The content of the answer (rebuttal/acceptation of 
the claim or any other possible outcome foreseen by 

the law) is represented by the Judicial_Outcome 

class, applied_by the Adjudication. The 

resulting representation is that a Judicial_Claim 

is considered_by an Adjudication that 

applies a  Judicial_Outcome (Figure 9). 

3.2.4. The judged_as Property Chain  

The aspects taken into consideration during a 

legal proceeding are included in the Judicially_ 

Qualified class as long as they are actually 

considered_by some Judicial_Interpreta-

tion. For example, a Contractual_Agreement 

can be considered_by a Judicial_ 

Interpretation that applies some Legal_ 

Status to it (e.g. the agreement can be oppressive, 
inefficacious, can represent an arbitration clause, 
can be specifically signed by both parties, …). In 
such cases, an OWL2 property chain directly links a 

Contractual_Agreement to the Legal_ Status 
judicially applied to it. This property, called 

judged_as, enriches the judicial qualification 
ontology design pattern presented above. 

  

Medium 

 

 

Qualifying Legal  

Expression 

 

Judicially 

 

Normatively 

Attitude

 

Act 

Precedent 
Material 

Circumstance 

Judicial Claim 

Code 

Sanctioned 

Agreement 

Jurisdiction 

Law Declaration 

Legal Act  

Judgement 

 

 

 

 

 

Legal Rule 

Interpretation 

Adjudication 

Judicial Outcome 

Legal Act 

Legal 

Consequence 

Legal Status 

author 

holds 

bears 

attitude 

considers 

applies 

Fig. 10. The Core Ontology graph: boxes represent classes; continuous arrows represent either the bears, attitude or 
considers properties; dashed arrows represent the applies property. 

Medium 

 



3.2.5. Media, Propositional Attitudes and 

Agents 

Some LKIF-Core properties and classes support 

the representation of the context of an Expression.  

The Medium class identifies the support, through 
which a proposition is expressed. In JudO, the   

medium property has not been used to represent the 

material support of an Expression, but rather its 

genus (its textual source: Contract, Precedent, 

Code).  

The lkif:Propositional_Attitude class 

has been used as a superclass of Jurisdiction, 

Law_Declaration and Agreement, in order to 

represent the enabling powers behind a Judgement: 

a Legal_Rule or a Contractual_Agreement 
respectively.  

In order to represent the authors of a qualifying 

legal expression, a generic lkif:Agent (or any 
other agentive class in common ontologies like 
DOLCE) is sufficient. The knowledge about agents 
and attitudes is important in some judicial cases, e.g. 
if a claim is based on the lack of contractual power 
by one of the parties, or on the 

identity/characteristics of a party, or on the lack of 
force by some law or other regulation – which can 
in turn depend on the lack of legitimacy of one of its 
authors.  

The modeling of roles (already present in LKIF, 
DOLCE, and other ontologies) is needed to 
represent critical factors of particular precedents.  

3.2.6. Modularity of the Core Ontology  

JudO is currently oriented to the representation of 
elements involved in civil-law cases regarding 
contract law. Nevertheless, JudO provides general – 
and relatively open – categories for judicial activity 

in general, and can be considered as a core to be 
extended with categorization from other branches of 
law, since the basic concepts introduced here may 
come into play also in judgements concerning 
different subjects.  

Figure 10 represents the classes and properties of 
the core ontology. Figure 11 shows the same 
information, but provides a simpler intuition of the 
links between the classes of the ontology. 

3.3. Domain Ontology 

Following JudO, the metadata taken from judicial 
documents are represented in the Domain Ontology6. 
The modeling was carried out manually by a legal 

6 https://code.google.com/p/judo/#! 

Fig. 13. Visualization of the Contractual_Agreement class, including the subclasses introduced by the legal rules. 

Fig. 12. Stated property assertion 

of a Legal Rule instance. 

Fig. 11. Semantic relations between represented knowledge. 

Grey arrows represent the bears property, continuous arrows 

represent the considers property, dashed arrows represent the 

applies property. The connection from legal statuses to legal 

rules is ensured through a qualified class (see 3.3.1.). 

Material 

Circumstance Legal 

Consequence 

Judicial 

Interpretation 

Legal Status 

Code 

Act 

Legal Act 

Precedent 

Legal Rule 

                                                           



Fig. 15. Description and property assertions of the contract 

clause's content. 

expert, which actually represents the only viable 
choice in the legal domain, albeit giving rise to 
bottleneck issues (see below 5.3.1.). Also, building a 
legal domain ontology is similar to writing a piece 
of legal doctrine, thus it should be manually 
achieved in such a way as to maintain a reference to 
the author of the model, following an open approach 
(i.e. allowing different models of the same concept 
by different authors). 

3.3.1. Modelling of laws  

The laws involved in the considered domain are 
represented into the ontology in a quite complex 
fashion, in order to allow full expressivity of their 
deontic powers. First of all, they are represented as 

instances of the Legal_Rule class, whose only 
stated property is to apply the 

Legal_Consequence indicated in the head of the 
legal rule (Figure 12). A reasoner can infer 
knowledge about the legal rule, linking it (through 

the considers property) to the material 
circumstances that fall under the scope of that norm.  
Material circumstances under the scope of legal 
rules are also represented, through subclasses of the 

Normatively_Qualified class, according to the 

template Relevant_Ex<rulename> (Figure 13, 
ex is the Latin preposition for indicating a source). 
An axiom stating the requirements for a material 
circumstance to be relevant under a legal rule is 
included in the description of the class, as well as an 
axiom linking each of its instances to the legal rule 

through the property considered_by (Figure 14). 
Please notice that in the example (which concerns 

consumer contracts) these Relevant_Ex 

<rulename> classes are classified under 

Contractual_Agreement, because the effect of 

the legal rule in this context is to enrich the 

definition of Contractual_ Agreement, adding 
subdivisions that depend on the legal framework 
created by the legal rules of the domain.  

3.3.2. Modeling of contracts 

A contract is a composition of one or more 

Contractual_Agreements (a Contract for the 

whole, and multiple Contract_Clauses for its 
parts, an example being provided in Figure 15), each 
of which represents an obligation arising from the 
contract. All components of the contract share the 

same Attitude (the “meeting of minds” between 

the Agents) and Medium (the kind of support in 
which the expression is contained). A 

Contractual_Agreement normally considers 

some Material_Circumstance and applies 

some Legal_Status to it.  
In the actual model, the material circumstances 

considered by the contractual agreement were not 
included, because the legal effects of the clause have 
no relevance when capturing the sheer interpretation 
instances these agreement undergo: it would rather 
become useful when delving deeper into semantic 
representation of interpretations. 

3.3.3. Modeling of judicial decisions 

The instances of the Judgement class include an 
identifier of the case as a whole (the precedent) and 
several other identifiers for its parts: at least an 

Adjudication, and one or more 

Judicial_Interpretations (Figure 16). They 

share a common Attitude (a Jurisdiction 

power), a Precedent medium and some agents 

Fig. 14. Axiom for the classification of 

Contractual Agreements under the legal 

rule Art. 1341 comma 2. 

Fig. 16. Description and property assertions of the judicial 

interpretation. 

 



(claimant, defendant, and court). An 

Adjudication contains the Judicial_ Outcome 

of the Judicial_Claim (it considers the claim 

and applies the outcome), while a 

Judicial_Interpretation considers a 

Material_Circumstance and applies one or 

more Legal_Statuses (and zero or more 

Precedents) to it. The precedents cited by a judge 
in a decision are added directly to an interpretation 
instance: the reasoner would be able to distinguish 
between legal statuses and precedents. Rules 
expressed by precedents can be modeled similarly as 
legal rules. 

3.3.4. Reasoning on the knowledge base  

The consistency of the Knowledge Base was 
checked with the Hermit 1.3.6 8  reasoner. In 
particular, we have used it in order to check if the 
ontology gives a unique and correct answer to 
formalized questions (e.g. asking about the validity 
of some proof, or about the qualification of factual 
events under legal principles). When a 

Contractual_Agreement (the expression brought 

by a Contract_Clause) is considered_by some 

Judicial_ Interpretation, the ontology 
gathers all relevant information about the documents 
involved: contract parties, judicial actors, legal 
statuses applied to the agreement (eventually in 
comparison to the one suggested by the 
contract/judicial parties), rules of law relevant to the 
legal status, final adjudication of the claim, part 
played in it by the interpreted agreement, etc.  

An immediate application of this semantically 
enriched knowledge base consists in performing 
advanced querying on precedents, but more can be 
achieved by combining different 

Judicial_Interpretations with knowledge 
coming from a contract and the related applicable 
law. The ontology reasoner is in fact capable of 
predicting – to the extent allowed by the details 
included in the ontology – the outcome of the judge 
(that a clause will be judged as valid/invalid), and to 
run inferences about the agreement (as interpreted, 
the clause in the example of Figure 17 is relevant for 
the legal rule contained in article 1342 comma 2 of 
Italian Civil Code, and inefficacious in the light of 
the same norm). 

8 http://hermit-reasoner.com/ 

This inferred knowledge is important for two 
reasons:  
a. by predicting the judge’s final statement on the 

clause (even if not the one on the claim), this 
knowledge represents a deontic check on the 
legal consequences the judge takes from its 
interpretation;  

b. it gives a fundamental element for an 
argumentation system to support the explanation 
of the adjudication of the claim. The 
argumentation system, in fact, will be able to use 
the (stated and inferred) elements of the 
decision’s groundings to support and explain the 

Adjudication contained in the last part of the 
judgement. 

3.4. Some observations on OWL2 patterns 

OWL2 [53] is a milestone standard for the 
Semantic Web, introducing new useful modeling 
patterns, and is relevant to any project willing to 
contribute to the “Web of Data”). In the case of 
legal reasoning, it is important to assess to what 
extent we can use those new patterns. 

Also, we want to assess how OWL2 could help 
designing the background for the application of 
defeasible logic: OWL is not designed for managing 
defeasibility directly, being only able to capture the 
monotonic knowledge to be reused in the rule layer; 
nevertheless, the gap between ontology and rules is 

often underestimated, and the benefits coming from 
OWL2 have not yet been considered in detail. The 

Fig. 17. Inferred knowledge on the Contractual 

Agreement instance. 
                                                           



assumption here is that the more we can use 
classical inferences, the better. 

OWL2 introduces several features enriching the 
original Ontology Web Language, enabling a richer 
or simpler representation of knowledge, especially 
when dealing with meta-level assertions, properties 
and datatypes.  

Some of the new features have been tested in 
JudO and the contract ontology, with varying results 
from the design perspective. For example, 
disjointness between properties can be used to 
reason about legal statuses, but it is necessary to 
create as many properties as possible statuses, which 
would negatively affect the readability of the 
ontology.  

Other new constructs resulted to enhance 
expressivity without negatively affecting design and 
usability of the ontologies. We describe them by 
using OWL functional syntax. 

3.4.1. Property chains 

The OWL2 construct ObjectPropertyChain, 

used within a SubObjectPropertyOf axiom, 
allows a property to be inferred from the 
composition of several properties. JudO relies on 
one particular property chain useful in the judicial 
domain. The property chain:   

 
considered_by o applies 

SubObjectPropertyOf judged_as 

 

is exemplified in Figure 18 with respect to judicial 
interpretations, but is defined on all cases of chains 

thorugh the considered_by and applies 
properties, e.g. in rule applications in order to create 
a direct interpretational link between a material 
circumstance and a legal status. In practice, in the 

first case, a Judicial_Interpretation 

considers a Material_Circumstance and 

applies a Legal_Status, the judged_as 

property chain in inferred, and creates a direct link 
between the circumstance and its status.  

In the second case, a legal rule axiom works 
through an “anonymous qualified class” (see 3.3.1.), 
which links all relevant expressions to the legal rule 

instance through the considered_by property, and 

the legal rule applies a legal consequence. The 

judged_as property chain unifies the two 
properties (from a qualified expression to a law, and 
from a law to a legal consequence), and brings their 
semantics to the surface by creating a direct 
property linking the contract clause to its status 

(judged_as Inefficacy). OWL2 property chains 
could actually lead to an even more direct and 
complete solution, by removing the need for the 
anonymous subclass in order to identify the clause 

instances considered_by the relevant law. In the 

current version of the ontology, judged_as 
connects a material instance (i.e. a contract clause) 
to a legal status or legal consequence (i.e. 

oppressive, inefficacious) through a judicial 
interpretation. With the open world approach of 

OWL, this creates a sprawling of judged_as chains 
being applied to the metadata. Such inferences are 
correct; nevertheless, they substantially increase the 
number of triples in the ontology. When reasoning 
on large data, it is therefore necessary to prune 
chain-based inferences in order to retain only those 
that are interesting for the task at hand. Since 
pruning would eliminate semantic content actually 
existing in legal documents, it has to be performed 
depending on the task of the rules application.  

3.4.2.  Negative object property assertions  

A negative object property assertion such as: 
 

NegativeObjectPropertyAssertion(OP a b)  

 

judged_as 
considered_by 

Fact 

Judicial   

Interpretation 
Legal Status 

applies 

Fig. 18. The property chain judged_as. 

 



states that the individual a is not linked to b by the 

object property OP. E.g. given an ontology including 
the following axiom: 
 
NegativeObjectPropertyAssertion(hasSon 

Bob Meg) 

 

the ontology becomes inconsistent if it is extended 
with the following assertion: 
 
ObjectPropertyAssertion(hasSon Bob Meg) 

 

Negative object property assertions are useful to 
avoid complicated workarounds for negating 
assertions. For example, the legal status 

NotSpecificallySigned is needed in OWL in 
order to state that a certain status is not 

SpecificallySigned, e.g.: 
 

EquivalentClasses 

(SpecificallySigned ObjectOneOf 

(NotSpecificallySigned 

SpecificallySigned)) 

 

DifferentIndividuals 

(SpecificallySigned 

NotSpecificallySigned) 

 

ObjectPropertyAssertion 

(applies ContractA 

NotSpecificallySigned) 

 

while in OWL2 the following construct is sufficient:  
 
NegativeObjectPropertyAssertion 

(applies ContractA 

SpecificallySigned) 

3.4.3. Keys 

A HasKey axiom states that each named instance 
of a class is uniquely identified by the set of data or 
object properties assertions specified in the axiom - 
that is, if two named instances of the class coincide 
on values for each of key properties, then those two 
individuals are the same. This feature is useful to 
control that the elements in a judicial claim, e.g. the 
parties, the contract, the norm, and the decision 
itself, are actually unique for that claim. 

3.4.4. Annotation properties 

Originally OWL allowed extra-logical 
annotations to be added to ontology entities, but did 
not allow annotation of axioms. OWL2 allows 

annotations on ontologies, entities, anonymous 
individuals, axioms, and annotations themselves.  

This feature is used in the judicial ontology 
library to provide a full-fledged information 
structure about the author of each piece of the model 
(i.e., who modeled a certain axiom, which legal text 
it refers to, and who/when/how was the original 
legal text created). Moreover, it is possible to give 
domains (AnnotationPropertyDomain) and ranges 
(AnnotationPropertyRange) to annotation properties, 
as well as organize them in hierarchies 
(SubAnnotationPropertyOf). These special axioms 
have no formal meaning in OWL2 direct semantics, 
but carry the standard RDF semantics in RDF-based 
semantics, via the mapping to RDF vocabulary, 
therefore annotation axioms can still be used in 
queries and in shallow reasoning when needed. 

3.4.5. N-ary datatypes 

In OWL it was not possible to represent 
relationships between values for one object, e.g., to 
represent that a square is a rectangle whose length 
equals its width. N-ary datatype support was not 
added to OWL2 because it was “unclear” what 
support should be added. However, OWL2 includes 
all syntactic constructs needed for implementing n-
ary datatypes. The Data Range Extension: Linear 
Equations W3C Note

9  proposes an extension to 
OWL2 for defining data ranges in terms of linear 
(in)equations with rational coefficients. This kind of 
equations is important in the process of identifying 
individuals to classify under a legal ontology 
framework, based on the comparison between 
quantitative values corresponding to several factors 
for a same individual, even if the path-free 
limitation imposed by the W3C Note (i.e. we cannot 
compare the same kind of value for two different 
individuals) is actually a problem for some legal 
cases, as when comparing the age of a person, and 
the legal age limit stated by a norm.10 

3.4.6. Qualified cardinality restrictions 

While originally OWL allows for restrictions on 
the number of instances of a property (i.e. for 
defining the class of persons that have at least three 

9 http://www.w3.org/TR/owl2-dr-linear/ 

10 This modeling issue can be solved by a SPARQL query on 

RDF data, which is a suboptimal solution with respect to 

complete reasoning. 

                                                           



children), it does not provide means to constrain 
object or data cardinality (qualified cardinality 
restrictions), i.e. for specifying the class of persons 
that have at least three children, who are girls). In 
OWL2 both qualified and unqualified cardinality 
restrictions are possible through the constructs: 

ObjectMinCardinality, 

ObjectMaxCardinality,ObjectExactCardina

lity (respectively DataMinCardinality, 

DataMaxCardinality,DataExactCardinality). 
These restrictions are important to enrich the 
ontology with elements ensuring automatic 
classifications of qualified properties (e.g. the 
minimum income needed for a claim to be classified 
under a certain category). 

4. An Example of judgement modeling 

JudO domain application is explained here 
through a simple example of data insertion and 
knowledge management. The following is a 
description of the case to be modeled:  

In the decision given by the 1
st
 section of the 

Court of Piacenza on July 9
th

, 2009,
11

 concerning 

contractual obligations between two small 

enterprises (“New Edge sas” and “Fotovillage srl”, 

from now on α and β), the judge had to decide 
whether clause 12 of α/β contract, concerning the 

competent judge (Milan instead of Piacenza) could 

be applied. The judge cites art. 1341 comma 2 of 

Italian Civil Code that says: “a general and 

unilateral clause concerning competence derogation 

is invalid unless specifically signed”. In the contract 

signed by the parties there is a distinct box for a 

“specific signing” where all the clauses of the 

contract are recalled by their number. The judge, 

with the support of precedents (he cites 9 Cassation 

Court sentences) interprets the “specific signing” as 

not being fulfilled through a generic recall of all the 

clauses, and therefore declares clause 12 of α/β 
contract invalid and inefficacious. The claim of 

inefficacy of clause 12, brought forward by α, is 
thus accepted, undercutting the claim of a lack of 

competence by the judge of Piacenza, brought 

forward by β, which is rejected. 
 

11 Sent. N. 507 del 9 Luglio 2009, Tribunale di Piacenza, giudice 

dott. Morlini. 

In order to represent the knowledge contained in 
the judgement text, three documents have to be 
modelled: Art. 1341 comma 2 of Italian Civil Code, 
the contract between the two enterprises α and β, 
and the decision by the Court of Piacenza. 

 

4.1. Modelling of the law  

The following is the law disposition involved in 
the judicial decision: 

Article 1341 subsection (comma) 2 of Italian 

Civil Code: Clauses concerning arbitration, 

competence derogation, unilateral contract 

withdrawal, and limitations to: exceptions, liability, 

responsibility, and towards third parties, are 

inefficacious unless they are specifically signed by 

writing.  

The disposition is represented as a Qualifying 

Legal Expression (Legal_Rule) called 

“art1341 Co2” (with a Code medium, a 

Law_Declaration attitude, and a Parliament 

agent), and the Qualified subclass 

Relevant_ExArt1341co2. As seen in 3.3.1, a 

Legal_Rule considers a (combination of) 

Legal_Status(es) and applies a 

Legal_Consequence, possibly with a deontic 
operator. Therefore, any individual that has the 
characteristics required by the law is 

considered_by the Legal_Rule, which in turn 

allows/disallows/evaluates or applies some 

Legal_Consequence to it. In the example of 

figure 15, each Contractual_Agreement which 
applies “General”, “Unilateral”, 
“NotSpecificallySigned” and an 

Oppressive_Status (Figure 19) will be 

considered_by “art1341Co2”, which in turn 

applies the Legal_Consequence of  

Fig. 19. The list of legal statuses 

classified as oppressive. 

 

                                                           



“invalidityExArt1341co2”. The individuals 
“competentJudge” and “notSpecificallySigned” are 

thus created as Legal_Statuses that can be 

considered_by a Legal_Rule and applied_by 

a Contractual_ Agreement, and the individual 
“invalidityExArt1341co2” is created as a 

Legal_Consequence applied_by the 

Legal_Rule “art1341Co2”. 

4.2. Modelling of the contract clause 

The Contract_Clause “α/βClause12” (Figure 
20) is created and linked to a Contractual_ 

Agreement which applies the Legal_Statuses 
of “General”, “Unilateral” and “Competence 
Derogation”. This is done because there is no argue 
between the parties about whether clause 12 
concerns a competence derogation. However, as 
explained before, this kind of link is a weak one, 
considering that contractual parties have no power 
to force a legal status into a contract, and that 
assigning a contractual agreement to the legal figure 
it evokes is the main activity brought forward by 
judicial interpretation in the contracts field. For this 

reason, the property applies related to a 

Legal_Status is weak when its domain is a 

Contractual_Agreement, and prone to be 
overridden by a contrasting application performed 

by a Judicial_Interpretation.  

4.3. Modelling of the judicial interpretation  

Fig. 20. Stated property assertions for 

the sample agreement. 

Fig. 21. Stated property assertions for 

the sample judicial interpretation. 

  
A

g
en

t 

 

Competence is Milan 

Reject 

α/β Clause 12 agreement 

Invalid Clause agr. 

General + Unilateral 

Not Specifically Signed 

Oppressive Status 
 

 Competence Derogation 

Claims on α/β Contract 

 

α/β Contractual agreement 

Judge C Decision 
 
 

 
 
 
 

 

Rule on oppressive clauses 

Judge C interpr. 1 

Judge C Adjudication 1 

α/β Clause 12 

 agreement 

 

 

α/β Contract 

Trib. Piacenza sent. x 

Art 1341 C. C. 

α/β Agreement 

Judge C  

Jurisdiction 

Voting of  march 16, 
1942 

Medium Qualifying Legal 

Expression 

Attitude 

Fig. 22 - The graph showing the model of the sample case. The general classes of Figure 10 have been substituted with the sample 

instances. The properties (arrows) connect the same classes of the core ontology. 

A
u
l
u
s
 

C
a
i
u
s
 

I
t
.
P
a
r
l
i
a
m

 
N
u
m
e
r
i
u
s

 

α/β Contract   

Qualified 



The Judgement instance is created, as well as its 
components (individual interpretation instances, 
adjudication, etc.). Among them, the 

“TribPiacenzaI_Int1”Judicial_Interpretation 

is created (Figure 21): it considers the 

Contractual_Agreement contained in 

“α/βClause12”, and applies the “notSpecifically 

Signed” Legal_Status. The instance contains also 
a reference to the precedent (Cass.1317/1998), 
which represents a semantically-searchable 
information on the interpretation instance. Figure 22 
summarizes all the elements created for the various 
classes, and the relations among them. 

4.4.  Reasoning on the knowledge base 

 In the example, when all the relevant knowledge 
is represented into the ontology, an OWL2 reasoner 
is capable of inferring that “The agreement 
contained in clause 12 of the α/β contract is invalid 
ex article 1341 comma 2” (Figure 23). As already 
explained, this result is reached through a subclass 

of the Contractual_Agreement and Qualified 
classes, defined by an axiom representing the rule of 
law. Clauses that fulfil the axiom are automatically 

classified in that class, and thus considered_by 

the appropriate law. At this point, the judged_as 

property chain links the clause to the legal 
consequence, through the legal rule (the clause is 

considered_by the law that applies a legal 

consequence, then the clause is judged_as the 

legal rule). The judged_as property gives the 
clause its final (efficacy/inefficacy) status under that 

law. Figure 24 explains the whole process as a list of 
axioms verified by the ontology reasoner.  

5. Evaluation of the JudO ontology library 

The ontology library, tested on a sample taken 
from real judicial decisions, meets the following 
requirements: 

- Text-to-knowledge morphism: the ontology 
can correctly classify all instances representing 
fragments of text. The connection to the 
Akoma Ntoso markup language ensures the 
identification and management of those 
fragments, and of the legal concepts they 
contain. 

- Distinction between document layers: The 

Qualifying_Legal_Expression class is 
the hub entity in the core ontology pattern, 
being the reification of a n-ary relation at the 
core of the required reasoning. Its instances 
can refer to the same text fragment, yet they 
represent different (and potentially 
inconsistent) interpretations of that text, as 
expected in the legal domain. Moreover, the 

lkif:Medium class allows to represent 
possible different manifestations of the same 
expression;  

- Shallow reasoning on judgement's 

semantics: the Domain Ontology can perform 
reasoning on the relevance of a material 
circumstance under a certain law. The property 

chain judged_as and the axioms for law 
relevance and legal consequence application 
allow the reasoner to complete the framework,  

Fig. 23. Inferred Description and property assertions for the 

contract clause content. 

 



facilitating the modeling of the knowledge 
contained in judicial decisions, and thus 
supporting tools for semi-automatic legal 
knowledge extraction; 

- Querying: the considers/applies 

properties allow complex querying on the 

knowledge base, and the judged_as shortcut 
provides a simplified path in this perspective. 
Complete formal querying based on temporal 
parameters is not yet possible, but solutions are 
envisaged through emerging standards for 
rules such as LegalRuleML. A basic RDF 
querying via SPARQL can be used though. 

- Modularity: the layered (core/domain) 
structure of the ontology library renders 
domain ontologies independent between each 
other - and yet aligned and integrated, through 
their compliance to the core ontology. 

- Supporting text summarization: the ontology 
library supports the identification of  
dispositions and decision’s groundings inside a 
judicial decision. 

- Supporting case-based reasoning: An 
argumentation system has been built on top of 
a lighter version of the ontology library. The 
axioms concerning law relevancy and law 
application were removed from the ontology 
and moved to the rules layer, in order to have 
them applied not only to the ontology library's 
knowledge base, but also on the new 

knowledge derived from the application of the 
rules. Results of this can be found in [14]. 

Computability was not an issue in the last 
ontology library version (<5 seconds reasoning time 
on a Intel i5@3.30 Ghz), while the Carneades 
reasoner was moderately encumbered by the 
application of the rules to the ontology (8-15 
seconds in the example described in [15]). This 
could be improved by optimizing the reasoner 
and/or with a further refinement of the 
ontology/rules structure. 

5.1.  Comparison to related work 

The framework presented in this paper relies on 
previous efforts of the community in the field of 
legal knowledge representation [10] and rule 
interchange for applications in the legal domain [27]. 
The issue of implementing logics to represent 
judicial interpretation has already been faced in 
[9,22], albeit only for the purposes of a sample case, 
and in [54] on a realistic regulation knowledge base, 
but using a lighter description logic.  

The methods applied for the construction of the 
core legal ontology are similar to those used for [12], 
an online repository of legal knowledge to provide 
answers to issues related to legal procedures. The 
main difference between the two approaches is that 
the latter relies on application of NLP techniques to 
user-generated questions in order to return the 
correct answer. The judicial ontology instead 

Fig. 24. Explanation for the sample agreement being inefficacious. 



extracts information from official legal documents 
(laws, decisions, legal doctrine), whose content 
classification requires the intervention of a legal 
expert. Furthermore, the ontology in [12] focuses on 
legal procedure, while the present ontology concerns 
mainly judicial interpretations carried out by the 
judge in a decision, seen as subsumptions of 
material facts or circumstances under abstract legal 
categories. 

The project presented in [48] focuses on a lower 
layer of the Semantic Web, concerning document 
structure and data interchange between different 
legal documents. For the same purposes, the present 
project relies on Akoma Ntoso (see 3.1.). Besides its 
being foucused on administrative procedures, the 
project in [48] shows a rather interesting view on the 
procedural aspects of legal phenomena, which is 
something this ontology does not achieve, being this 
task demanded to an argumentation layer placed on 
top of the ontology layer. 

[17] presents a semi-automatic construction of an 
ontology concerning the language of a legislative 
text. The project is focused on the linguistic aspects, 
in particular on the use of NLP techniques to 
normalize and formalize the text in a set of concepts 
previously modeled in an ontology. The ontology is 
built around DOLCE-based Core Legal Ontology 
[22] and LRI-Core, which makes it likely to be 
aligned with the ontology presented in this paper. 
The ontology in [17], in fact, ensures a close relation 
with the legal text, even though it does not includes 
axioms that enable shallow reasoning on specific 
legal phenomena. 

The ontology in [50] is very interesting for the 
orientation towards NLP, the solid basis on 
metaphysics, and in that it allows shallow reasoning 
on a set of simple legal sentences. It is built around 
the NM ontology ([50], contains a comparison to 
LRI-Core), and relies on agents to bridge the legal 
text with the syntax. The approach is interesting, yet 
the focus on agents somehow overcomplicates the 
reasoning on complex legal concepts such as that of 
judicial interpretation. Detecting advanced concepts 
in legal documents requires in fact a highly complex 
semantic structure, which prevents reasoning on a 
large document corpus contents (for a general 
account on how to model complex legal concepts 
for automatic detection see [40]). Moreover, as 
already noted, modelling the dynamics of legal 
procedure requires a proper implementation of 
argumentation theory.  

5.2. A bridge towards judicial argumentation 

The argumentation system described in [14,15] 
combines the features of DL-based ontologies with 
non-monotonic logics such as Defeasible Logics. In 
particular, T. F. Gordon’s Carneades [25] is based 
on Walton’s theory [26], and takes into account 
most of Prakken’s considerations on the subject [44], 
including argumentation schemes and burden of 
proof. The Carneades application succeeded in 
performing the tasks of finding relevant precedents, 
validating the adjudications and suggesting legal 
rules, precedents, circumstances that could bring to 
a different adjudication of the claim. 

Many projects tried to represent case-law during 
the nineties, most of which are related to the work of 
Kevin Ashley [2]. Their main focus is similar to that 
assumed in the present research: capturing the 
elements that contribute to the decision of a judge. 
They were meant to support legal argumentation 
teaching in law classes, and the approach was 
therefore based on concepts rather than on legal 
documents. No account for the metadata of the 
original text was given, and there is no ontology 
underlying the argumentation trees that reconstruct 
the judge’s reasoning.  

Rather than representing a single judicial decision, 
the approach presented in this paper allows instead 
to connect knowledge coming from different 
decisions, and to highlight similarities and 
differences between them, not only on the basis of 
factors, dimensions or values, but also on the basis 
of the efficacy of the legal documents involved (e.g. 
under temporal and hierarchical criteria). Of course, 
templatizing legal documents is a very complex task, 
but the intention is not to provide a complete 
extraction tool, but to create an interface, through 
which a legal expert can easily identify the legal 
concepts evoked by the text, and combinations of 
them, in legal documents. 

Deontic defeasible logic systems, such as those 
presented in [28,31,36], constitute indeed a powerful 
tool for reasoning on legal concepts. Most of them 
are explicitly built to import RDF triples, which 
means that they can perform reasoning on 
knowledge bases derived from ontologies such as 
the one presented in this paper. These projects can 
be placed at an upper layer than the one discussed 
here: an ontology, in the perspective of the research 
presented here, focuses on document semantics and 
basic relations, performing open world reasoning 
mostly oriented to data completion. Over such 

 



knowledge base, rule systems based on non.classical 
logic dialects can perform more reasoning (as e.g. 
supported by SPINdle [33]), by importing only the 
set of triples that best suits their needs. This may be 
preferable to approaches that try to extend DL to 
perform defeasible reasoning such as [1]: JudO 
shows that it is possible to perform classical 
reasoning while staying within OWL2, while 
deontic logic, defeasible reasoning and reasoning on 
argumentation schemes [54] come on top of it. 
 The same considerations come from the 

approach in [34], which provides a simple and 
intuitive way to encode default knowledge on top of 
terminological KBs. 

From this perspective, the idea of deriving a 
closed-world subset of an OWL2 ontology as 
presented in [45] seems a good direction, and will in 
fact be explored, keeping in mind, though, that 
introducing negation-as-failure in OWL2 is not 
sufficient to grant the ontology layer the 
expressivity required for performing argumentation 
tasks. 

5.3. Issues 

5.3.1. The knowledge acquisition bottleneck 

Modelling the sample ontology library and 
extracting knowledge from the sample of case law 
was carried out manually by a graduated jurist. 

Similarly, qualified fragments of text under the 
Akoma Ntoso standard are supposed to be annotated 
by legal experts. Currently, manual data insertion 
seems the only viable choice in the legal domain, 
since automatic information retrieval and machine 
learning techniques do not yet ensure a sufficient 
level of accuracy, even if some progress in the field 
has been made (for example in applying NLP 
techniques to recognize law modifications, as in 
[38]).  

Manual markup of judicial decisions, however, 
doesn't seem to be sustainable in the long time. For 
an efficient management of the knowledge 
acquisition phase, a combination of tools supporting 
an authored translation of text into semantics should 
limit the effects of this still unavoidable bottleneck. 
Special editor tools (e.g. Norma-Editor) could 
enable an easy linking of text, metadata and 
ontology classes, while the more complex ontology 
constructs (e.g. the “considers/applies” chain) could 
be managed by an editor plug-in. Stronger 
constraints could be added to the legal core ontology 
in order to allow these plugins to automatically 
complete a part of the classification work, leaving to 
the user the duty of checking and completing the 
model drafted by the machine.  

A possible new direction is to combine text 
fragment annotation à la Akoma Ntoso with 
semantic web machine reading as performed e.g. by 

Fig. 25. Explanation of a sample contract clause being not inefficacious because of an exception. 



FRED12 [55], which automatically produces a draft 
RDF/OWL ontology from a text, and links it to 
existing semantic web data. The supervision of an 
editor would then be much faster and easier to 
implement. 

5.3.2. Representing exceptions 

A critical issue in representing the decision's 
content is represented by exceptions to legal rules. 
How to model a situation when a material 
circumstance applies all the legal statuses required 
by the legal rule, but nevertheless does not fall 
under that legal rule’s legal consequence because it 
follows some additional rule that defeats the first 
one? This issue has no straightforward solution 
inside the description logic fragment expressible in 
OWL2: once negative conditions are introduced for 

the rule to apply (in the form if (not 

(exception))), the open world assumption would 
prevent any inference on that rule, unless it is 
explicitly stated that no such exception exists. This 
would hinder the reasoning capabilities of classical 
OWL2 reasoners on the ontology library presented 
so far.  

However, a solution to this problem might rely on 
modeling the exceptional case as a subclass of the 
normal case, (see Figure 25). In that way, only the 
instances that are relevant under the law are eligible 
to be an exception to the application of that law.  
This solution has the advantage of enabling 
reasoning on exceptions, without the need to apply 
defeasible rules. The backside is that the 
classification of the circumstance as exceptional is 

12 http://wit.istc.cnr.it/stlab-tools/fred 

added to the classification of inefficacy, and not 
substituted to it (Figures 26 and 27).  

Again, this issue originates from the open world 
assumption, and cannot be easily avoided while 
remaining inside OWL-DL: whenever the reasoner 
is prevented to link a circumstance to a legal 
consequence, asking him to check that no exception 
exists, the reasoner will be incapable of inferring 
anything unless all information concerning the 
exceptions is explicitly provided in the ontology.  

This issue represents the main reason why a 
complete modelling of legal rules is not feasible 
within JudO, requiring instead a rule system (such 
as LKIF-Rules [24], Clojure, or LegalRuleML [41]) 
to be fully implemented.   

6. Conclusions 

We have presented an ontology design pattern, 
JudO, which enables representation and reasoning 
over the content of judicial decisions. The pattern 
uses the conceptualization behind the Descriptions 
and Situation framework, and a semiotic ontology, 
but also reuses (and is aligned to) the LKIF-Core 
legal ontology. JudO is then specialized in a sample 

Fig. 27. Stated / inferred property assertions 

on the exceptional contractual agreement. 

Fig. 26. Explanation for Relevancy being inferred as a subclass of Inefficacious. 

 

                                                           



contract domain ontology, in order to show the 
capability of the pattern, and of some advanced 
features of OWL2 to express a larger part of legal 
knowledge in the OWL2 description logic fragment. 

The ontology library presented in this article is 
the pivot of an innovative approach to case-law 
management, filling the gap between text, metadata, 
ontology representation and rules modeling, with the 
goal of detecting the information available in the 
text to be used to perform legal argumentation. This 
approach allows to directly annotate the text with 
peculiar metadata defined in core, domain and 
argument ontologies. OWL2 is used to get as close 
as possible to the rules, in order to exploit the 
computational advantages of description logics. This 
approach has a weakness in the management of 
exceptions: it is thus necessary to devolve this kind 
of reasoning features to different logics, e.g. 
defeasible logics, such as that presented in [28], 
with added support for argumentation schemes. 
Another limitation is that only text fragments get 
annotated, therefore deep semantic parsing is 
envisaged as a solution to this classical knowledge 
acquisition bottleneck. 

References 

[1]  G. Antoniou, N. Dimaresis and G. Governatori, A Modal 
and Deontic Defeasible Reasoning System for Modelling 
Policies and Multi-Agent Systems, Expert Systems With 
Applications 36, 2, 2009, pp. 4125-4134.  

[2]  K. D. Ashley, Ontological requirements for analogical, 
teleological, and hypothetical legal reasoning, in: 
Proceedings of the 12th International Conference on 
Artificial Intelligence and Law, ACM, New York, 2009, 
pp. 1-10.  

[3]  J. L. Austin, How to do Things with Words, Second 
Edition, Oxford University Press, Oxford, 1975. 

[4]  G. Barabucci, L. Cervone, M. Palmirani, S. Peroni and F. 
Vitali, Multi-layer Markup and Ontological Structures in 
Akoma Ntoso, in: P. Casanovas, U. Pagallo, G. Sartor 
and G. Ajani, eds., AI Approaches to the Complexity of 
Legal Systems: Complex Systems, the Semantic Web, 
Ontologies, Argumentation, and Dialogue, Springer, 
2010, pp. 133-149. 

[5]  T. Bench-Capon and T. F. Gordon, Isomorphism and 
argumentation, in: Proceedings of the 12th International 
Conference on Artificial Intelligence and Law, ACM, 
New York, 2009, pp. 11-20.  

[6]  E. Blomqvist, A. Gangemi and V. Presutti, Experiments 
in Pattern-based Ontology Design, in: Y. Gil, N. Noy, 
eds., Proceedings of the Fifth International Conference 
on Knowledge Capture, ACM, Los Angeles, 2009, pp. 
41-48. 

[7]  F. Bobillo and U. Straccia, An OWL ontology for fuzzy 
OWL 2, in: J. Rauch, Z.W. Ras, P. Berka and T. Elomaa, 
eds., Foundations of intelligent systems, Springer, Berlin 
Heidelberg, 2009, pp. 151-160. 

[8]  F. Bobillo, M. Delgado and J. Gómez-Romero, 
DeLorean: A Reasoner for Fuzzy OWL 2, Expert 
Systems with Applications 39.1, 2012, pp. 258-272. 

[9] G. Boella, G. Governatori, A. Rotolo and L. van der 
Torre, Lex minus dixit quam voluit, lex magis dixit 
quam voluit: A formal study on legal interpretation, in: P. 
Casanovas, U. Pagallo, G. Sartor, G. Ajani, eds., AI 
Approaches to the Complexity of Legal Systems. 
Complex Systems, the Semantic Web, Ontologies, 
Argumentation, and Dialogue, Springer, Berlin, 2010, pp. 
162-183. 

[10]  A. Boer, R. Winkels and F. Vitali, Metalex XML and the 
Legal Knowledge Interchange Format, in: P. Casanovas, 
G. Sartor, N. Casellas and R. Rubino, eds., Computable 
Models of the Law, Springer, Heidelberg, 2008, pp. 21-
41. 

[11]  S. Brüninghaus and K. D. Ashley, Generating legal 
arguments and predictions from case texts, in: G. Sartor, 
ed., Proceedings of the 10th international conference on 
Artificial intelligence and law, ACM, New York, 2005, 
pp. 65-74.  

[12]  P. Casanovas, M. Poblet, N. Casellas, J. Contreras, V. R. 
Benjamins and M. Blasquez, Supporting newly-
appointed judges: A legal knowledge management case 
study, Journal of Knowledge Management, Emerald 
Group Publishing, Bingley, 2005, pp. 7-27.  

[13]  M. Ceci, Interpreting Judgements Using Knowledge 
Representation Methods and Computational Models of 
Argument, Ph. D dissertation, 2013, available at:  
http://amsdottorato.cib.unibo.it/6106/1/Marcello_Ceci_t
esi.pdf. 

[14]  M. Ceci, Representing Judicial Argumentation in the 
Semantic Web, in: Proceedings of the V Workshop on 
Artificial Intelligence and the Complexity of Legal 
Systems (AICOL) within the 26th International 
Conference on Legal Knowledge and Information 
Systems, Springer, under publication. 

[15]  M. Ceci and T. F. Gordon, Browsing case law: An 
application of the Carneades Argumentation System, in: 
H. Aït-Kaci, Y. Hu, G. Nalepa, M. Palmirani, D. Roman, 
eds., Proceedings of the RuleML2012 Challenge, at the 
6th International Symposium on Rules within the 
European Conference of Artificial Intelligence, vol. 874, 
2012, pp. 79-95. 

[16]  M. Ceci and M. Palmirani, Ontology Framework for 
Judgement Modelling, in: M. Palmirani, U. Pagallo, P. 
Casanovas, G. Sartor, eds., AI Approaches to the 
Complexity of Legal Systems: Models and Ethical 
Challenges for Legal Systems, Legal language and Legal 
Ontologies, Argumentation and Software Agents, 
Lecture Notes in Computer Science vol. 7639, Springer, 
Berlin, 2012, pp. 116-130. 

[17]  S. Despres and S. Szulman, Construction of a Legal 
Ontology from a European Community Legislative text, 
in: T. Gordon, ed., Legal Knowledge and Information 
Systems. Jurix 2004: The Seventeenth Annual 
Conference, IOS Press, Amsterdam, 2004, pp. 79-88. 

[18]  A. Gangemi, Ontology Design Patterns for Semantic 
Web Content, in: Y. Gil, E. Motta, V. Benjamins, M. 
Musen, eds., The Semantic Web – 4th International 
Semantic Web Conference, Lecture Notes in Computer 
Science vol. 3729, Springer, Berlin, 2005, pp. 262-276. 

[19]  A. Gangemi, Design Patterns for Legal Ontology 
Construction, in: P. Casanovas, P. Noriega, D. Bourcier, 
F. Galindo, eds., Trends in legal Knowledge. The 
Semantic Web and the Regulation of Electronic Social 



Systems, European Press Academic Publishing, Florence, 
2007, pp. 171-191. 

[20]  A. Gangemi, Norms and plans as unification criteria for 
social collectives, in: Journal of Autonomous Agents and 
Multi-Agent Systems 16(3), 2008, pp. 70-112. 

[21]  A. Gangemi, Super-duper Schema: an OWL2+RIF DnS 
Pattern, in: V. Chaudry, ed., Proceedings of Deep 
Knowledge Representation Challenge Workshop at the 
Sixth International Conference on Knowledge Capture, 
AAAI Press, 2011. 

[22]  A. Gangemi, M. T. Sagri and D. Tiscornia, A 
Constructive Framework for Legal Ontologies, in: R. 
Benjamins, J. Breuker, P. Casanovas and A. Gangemi, 
eds., Law and the Semantic Web, Lecture Notes in 
Artificial Intelligence vol. 3369, Springer, Berlin, 2005, 
pp. 97-124. 

[23]  A. Gangemi, D. M. Pisanelli, G. Steve, A formal 
ontology Framework to Represent Norm Dynamics, in: 
R. Winkels, ed, Proceedings of the Second International 
Workshop on Legal Ontologies, University of 
Amsterdam, 2001. 

[24]  T. F. Gordon, Construting Legal Arguments with Rules 
in the Legal Knowledge Interchange Format, in: G. 
Sartor, N. Casellas, R. Rubino, eds., Computable Models 
of the Law: Languages, Dialogues, Games, Ontologies, 
Springer, Heidelberg, 2008, pp. 162-184. 

[25]  T. F. Gordon and D. Walton, The Carneades 
Argumentation Framework: Using Presumptions and 
Exceptions to Model Critical Questions, in: Proceedings 
of the First International Conference on Computational 
models of Argument, IOS Press, Amsterdam, 2006, pp. 
195-207. 

[26]  T. F. Gordon and D. Walton, Legal Reasoning with 
Argumentation Schemes, in: Proceedings of the Twelfth 
International Conference on Artificial Intelligence and 
Law, New York, ACM Press, Amsterdam, 2009, pp. 
137-146.  

[27]  T. F. Gordon, G. Governatori and A. Rotolo, Rules and 
Norms: Requirements for Rule Interchange Languages 
in the Legal Domain, in: A. Paschke, G. Governatori, J. 
Hall, eds., Rule Interchange and Applications, Berlin, 
Springer, 2009, pp. 282-296. 

[28]  G. Governatori and A. Rotolo, Defeasible Logic: 
Agency, Intention and Obligation, in: A. Lomuscio and 
D. Nute, eds., Deontic Logic in Computer Science, 
Springer, Berlin, 2004, pp. 114-128. 

[29]  M. Gruninger and M. Fox, The Role of Competency 
Questions in Enterprise Engineering, in: A. Rolstadås, 
Benchmarking – Theory and Practice, Chapman & Hall, 
pp. 22-31. 

[30]  R. Hoekstra, J. Breuker, M. Di Bello and A. Boer, LKIF 
Core: Principled Ontology Development for the Legal 
Domain, in: J. Breuker, ed., Law, Ontology and the 
Semantic Web, IOS Press, Amsterdam, 2009, pp. 21-52.  

[31]  E. Kontopoulos, N. Bassiliades, G. Governatori and G. 
Antoniou, A Modal defeasible Reasoner of Deontic 
Logic for the Semantic Web, in: International Journal on 
Semantc Web and Information Systems, 2011, pp. 18-43.  

[32]  W. Kusnierczyk, Nontological Engineering, in: B. 
Bennett and C. Fellbaum, eds., Proceedings of the 2006 
conference on Formal Ontology in Information Systems, 
IOS Press, Amsterdam, 2006, pp. 39-50. 

 [33]  H. P. Lam and G. Governatori, The Making of SPINdle, 
in: G. Governatori, J. Hall, A. Paschke, eds., Rule 
Interchange and Applications, Lecture Notes in 

Computer Science vol. 5858, Springer, 2009, pp. 315-
322. 

[34] D. T. Minh, T. Eiter and T. Krennwallner, Realizing 
Default Logic over Description Logic Knowledge Bases, 
in: C. Sossai and G. Chemello, eds., Symbolic and 
Quantitative Approaches to Reasoning with Uncertainty, 
Springer, Berlin, 2009, pp. 602-613. 

[35]  L. Mommers, Ontologies in the Legal Domain, in: R. 
Poli, J. Seibt, eds., Theory and Applications of 
Ontology: Philosophical Perspectives, Springer, 2010, 
pp. 265-276. 

[36]  D. Nute, Norms, Priorities, and Defeasible Logic, in: P. 
McNamara and H. Prakken, eds., Norms, Logics and 
Information Systems, IOS Press, Amsterdam, 1998, pp. 
201-218. 

[37]  M. Palmirani and F. Benigni, Norma-system: A legal 
information system for managing time, in: C. Biagioli, E. 
Francesconi, G. Sartor, eds., Proceedings of the V 
Legislative XML Workshop, European Press Academic 
Publishing, Florence, 2007, pp. 205-224. 

[38]  M. Palmirani and R. Brighi, Model Regularity of Legal 
Language in Active Modifications,  in: P. Casanovas, U. 
Pagallo, G. Sartor, G. Ajani, eds., AI Approaches to the 
Complexity of Legal Systems, Lecture Notes in 
Computer Science vol. 6237, Springer, Berlin, 2010, pp. 
54-73.  

[39]  M. Palmirani, G. Contissa and R. Rubino, Fill the Gap in 
the legal Knowledge Modelling, in: G. Governatori, J. 
Hall, A. Paschke, eds., Rule Interchange and 
Applications, Lecture Notes in Computer Science vol. 
5858, Berlin, Springer, 2009, pp. 305-314. 

[40]  M. Palmirani, M. Ceci, D. Radicioni and A. Mazzei, 
FrameNet model of the suspension of norms, in: K. 
Ashley, T. van Engers, Proceedings of the 13th 
International Conference on Artificial Intelligence and 
Law, ACM, New York, 2011, pp. 189-193. 

[41]  M. Palmirani, G. Governatori, A. Rotolo, S. Tabet, H. 
Boley and A. Paschke, LegalRuleML: XML-Based 
Rules and Norms, in: F. Olken, M. Palmirani, D. Sottara, 
eds., Rule – Based Modeling and Computing on the 
Semantic Web, Springer, Berlin, 2011, pp. 298-312. 

[42]  M. Palmirani, T. Ognibene and L. Cervone, Legal Rules, 
Text, and Ontologies over Time, in: H. Aït-Kaci, Y. Hu, 
G. Nalepa, M. Palmirani, D. Roman, eds., Proceedings 
of the RuleML2012 Challenge, at the 6th International 
Symposium on Rules within the European Conference of 
Artificial Intelligence, vol. 874, 2012, pp. 131-146. 

[43] M. Palmirani, L. Cervone, O. Bujor and M. Chiappetta, 
RAWE: An Editor for Rule Markup of Legal Texts, in: P. 
Fodor, D. Roman, D. Arnicic, A. Wyner, M. Palmirani, 
D. Sottara, F. Levy, eds., Joint Proceedings of the 7th 
International Rule Challenge, the Special Track on 
Human Language Technology and the 3rd RuleML 
Doctoral Consortium, CEUR Workshop Proceedings, 
2013. 

[44] H. Prakken, Formalizing Ordinary legal Disputes: a Case 
Study, in: Artificial Intelligence and Law, 2008, pp. 333-
359. 

[45] Y. Ren, J. Z. Pan and Y. Zhao, Closed World Reasoning 
for OWL2 with NBox, in: Tsinghua Science & 
Technology, vol. 15, issue 6, 2010, pp. 692-701. 

[46] E. Rosch, Prototype Classification and Logical 
Classification: The Two Systems, in E.K. Scholnick, ed., 
New Trends in Conceptual Representation: Challenges 
to Piaget’s Theory?, Lawrence Erlbaum Associates, 
Hillsdale, 1983, pp. 73–86. 

 



[47] G. Sartor, Legal Concepts as Inferential Nodes and 
Ontological Categories, in: Artificial Intelligence and 
Law, 2009, pp. 217-251. 

[48] I. Savvas and N. Bassiliades, A Process-Oriented 
Ontology-Based Knowledge Management System for 
Facilitating Operational Procedures in Public 
Administration, in: Expert Systems with Applications, 
2009, pp. 4467-4478. 

[49] J. R. Searle, Speech Acts: an Essay in the Philosophy of 
Language, Cambridge University Press, 1969. 

[50] J. Shaheed, A. Yip and J. Cunningham, A Top-Level 
Language-Biased Legal Ontology, in: J. Lehmann, M. A. 
Biasiotti, E. Francesconi, aM. T. Sagri, Workshop 
Proceedings on Legal Ontologies and Artificial 
Intelligence Techniques, Workshop Series No 4, Wolf 
Legal Publishers, Bologna, 2005. 

[51] E. Sirin and B. Parsia, SPARQL-DL: SPARQL Query 
for OWL-DL, in: C. Golbreich, A. Kalyanpur, B. Parsia, 
eds., Proceedings of the OWLED 2007 Workshop on 
OWL: Experiences and Directions, CEUR-WS, 2007. 

[52] F. Vitali, Akoma Ntoso Release Notes, 2011, available 
online at www.akomantoso.org/release-notes. 

[53] W3C Consortium, OWL 2 Web Ontology Language 
Overview, 11 December 2012, available online  
at www.w3.org/TR/2012/REC-owl2-overview-
20121211/. 

[54] D. Walton, C. Reed and F. Macagno, Argumentation 
Schemes, Cambridge University Press, Cambridge, 2008. 

 
 

http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/

	1. Representing the Judicial Framework
	2. Tasks and applications
	3. Ontology Design
	3.1. Judgement Structure
	3.2. Core Ontology
	3.2.1. Qualifying Legal Expressions
	3.2.2. Construction of the Qualifying Expression class in LKIF-Core
	3.2.3. Qualified Expressions
	3.2.4. The judged_as Property Chain
	3.2.5. Media, Propositional Attitudes and Agents
	3.2.6. Modularity of the Core Ontology

	3.3. Domain Ontology
	3.3.1. Modelling of laws
	3.3.2. Modeling of contracts
	3.3.3. Modeling of judicial decisions
	3.3.4. Reasoning on the knowledge base

	3.4. Some observations on OWL2 patterns
	3.4.1. Property chains
	3.4.2.  Negative object property assertions
	3.4.3. Keys
	3.4.4. Annotation properties
	3.4.5. N-ary datatypes
	3.4.6. Qualified cardinality restrictions


	4. An Example of judgement modeling
	4.1. Modelling of the law
	4.2. Modelling of the contract clause
	4.3. Modelling of the judicial interpretation
	4.4.  Reasoning on the knowledge base

	5. Evaluation of the JudO ontology library
	5.1.  Comparison to related work
	5.2. A bridge towards judicial argumentation
	5.3. Issues
	5.3.1. The knowledge acquisition bottleneck
	5.3.2. Representing exceptions


	6. Conclusions
	References

