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Isotopic analyses of 75 samples from the Samail ophiolite indicate that pervasive subsolidus hydro- 
thermal exchange with seawater occurred throughout the upper 75% of this 8-km-thick oceanic crustal 
section; locally, the H20 even penetrated down into the tectonized peridotite. Pillow lavas (8280 -- 10.7 to 
12.7) and sheeted dikes (4.9 to 11.3) are typically enriched in 280, and the gabbros (3.7 to 5.9) are de- 
pleted in 280. In the latter rocks, water/rock _< 0.3, and •!8Ocp x •.• 2.9 + 0.44 •!8Of½ld , indicating pro- 
nounced isotopic disequilibrium. The mineral 8280 values approximately follow an exchange (mixing) 
trajectory which requires that p!agioclase must exchange with H20 about 3 to 5 times faster than clinopy- 
roxene. The minimum 828Of½2d value (3.6) occurs about 2.5 km below the diabase-gabbro contact. Al- 
though the gabbro plagioclase appears to be generally petrographically unaltered, its oxygen has been 
thoroughly exchanged; the absence of hydrous alteration minerals, except for minor talc and/or amphi- 
bole, suggests that this exchange occurred at T > 400ø-500øC. Plagioclase 8280 values increase up sec- 
tion from their minimum values, becoming coincident with primary magmatic values near the gabbro- 
sheeted*diabase contact and reaching 11.8 in the diabase dikes. These 280 enrichments in greenschist 
facies diabases are in part due to exchange with strongly 280-shifted fluids, in addition to retrograde ex- 
change at much lower temperatures. The 8280 data and the geometry of the mid-ocean ridge (MOR) 
magma chamber require that two decoupled hydrothermal systems must be present during much of the 
early spreading history of the oceanic crust (approximately the first 106 years); one system is centered 
over the ridge axis and probably involves several convective cells that circulate downward to the roof of 
the magma chamber, while the other system operates underneath the wings of the chamber, in the lay- 
ered gabbros. Upward discharge of 280-shifted water into the altered dikes from the lower system, just 
beyond the distal edge of the magma chamber, combined with the effects of continued low-T hydro- 
thermal activity, produces the 280 enrichments in the dike complex. Integrating 8280 as a function of 
depth for the entire ophiolite establishes (within geologic and analytical error) that the average 8280 (5.7 
+ 0.2) of the oceanic crust did not change as a result of all these hydrothermal interactions with seawater. 
Therefore the net change in 8280 of seawater was also zero, indicating that seawater is buffered by MOR 
hydrothermal circulation. Under steady state conditions the overall bulk 280 fractionation (A) between 
the oceans and primary mid-ocean ridge basalt magmas is calculated to be +6.1 + 0.3, implying that sea- 
water has had a constant 8280 = -0.4 (in the absence of transient effects such as continental glaciation). 
Utilizing these new data on the depth of interaction of seawater with the oceanic crust, numerical mod- 
eling of the hydrothermal exchange shows that as long as worldwide spreading rates are greater than 1 
km2/yr, 180 buffering of seawater will occur. These conclusions can be extended as far back in,time as 
the Archean (> 2.6 eons) with the proviso that A may have been slightly smaller (about 5?) because of the 
overall higher temperatures that could have prevailed then. Thus ocean water has probably had a con- 
stant 8280 value of about -1.0 to +1.0 during almost all of earth's history. 

INTRODUCTION 

The purpose of this study is to determine the oxygen iso- 

tope relationships in minerals and rocks throughout a com- 

plete section of oceanic crust. Such a characterization is im- 
poRant because of the profound effects that hydrothermal 

circulation at mid-ocean ridges (MOR) must have upon (1) 

the isotopic and chemical composition of ocean water through 

geologic time and (2) the isotopic and chemical composition 
of the oceanic crust that is recycled into the mantle at sub- 

duction zones. Oxygen isotope studies of ancient oceanic lith- 

osphere preserved in ophiolite complexes [Coleman, 1977] can 

provide a framework for studying the time-averaged effects of 
seawater circulation in 'fossil' hydrothermal systems associ- 

ated with marine spreading centers. Such studies also make it 

easier to interpret geochemical information gained from 

dredge samples and from seafloor hot spring studies [Mueh- 

lenbachs and Clayton, 1972a; Corliss et al., 1979]. 

Copyright ̧ 1981 by the American Geophysical Union. 

Abundant evidence of hydrothermal alteration has now 

been observed in samples dredged from the seafloor and col- 

lected from ophiolite complexes [Coleman, 1977; Wenner and 

Taylor, !978; Melson and Van Andel, 1966, Heaton and $hep- 

pard, 1977; Muehlenbachs and Clayton, 1972b]. Heat flow 

anomalies at mid-ocean ridges also require the existence of 

such hydrothermal systems, and direct evidence of discharge 
of thermal waters has now been observed with the Alvin sub- 

mersible [Corliss et al., 1979; Edmond et al., 1979]. 

Previous 280/260 studies of suboceanic and ophiolitic ter- 
ranes indicate the existence of samples that exhibit both 280 
enrichments (e.g., pillow lavas) and 280 depletions (e.g., gab- 
bros) relative to the primary magmatic 8280 values [Heaton 
and $heppard, 1977; Magaritz and Taylor, 1976a; $pooner et 

al., 1974; Muehlenbachs and Clayton, 1971]. These 8280 

changes have in general all been attributed to subsolidus hy- 

drothermal alteration, at relatively low temperatures or high 

temperatures, respectively. 

Muehlenbachs and Clayton [1976] have proposed that the 
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180 fluxes into seawater from continental weathering and 

from dehydration water cycled through subduction zones and 

outgassed in magmatic arcs are (1) opposite in sign, (2) 

roughly equal in magnitude, and (3) a factor of 10 smaller 

than the potential 180 flux due to marine-hydrothermal inter- 

actions at ridges. If these concepts are valid, it is clear that the 

latter will ultimately determine the/t180 value of the oceans. 
Muehlenbachs and Clayton [1976] pointed out that if the 180 
fluxes resulting from high-temperature alteration processes 

(which produce an 180 enrichment of seawater) exactly cancel 
out the 180 fluxes due to low-temperature interaction (which 
result in an 180 depletion of seawater), then the average 
steady state isotopic fractionation between seawater and oce- 

anic crust would hold seawater at its present-day/t180 value. 
Ocean water would be 'buffered' at this value as long as exten- 

sive hydrothermal circulation at the mid-ocean ridges contin- 

ued. Perry et al. [1978], however, have proposed that the/t'80 

of seawater has changed with time and was controlled by 

weathering and low-temperature hydrothermal alteration on 

the seafloor, during most of the earth's history. 

Ophiolite complexes are now generally recognized to repre- 

sent fragments of ancient oceanic crust and mantle [Coleman, 

1977]; 180/160 studies of such complexes thus can provide a 
test of the Muehlenbachs and Clayton [1976] hypothesis. How- 

ever, stable isotope studies of ophiolites have up to now been 

mainly concerned with the uppermost sections of diabase 

dikes and pillow lavas and with the serpentinized peridotites 

[Wenner and Taylor, 1978; Heaton and Sheppard, 1977; Spoo- 
ner et al., 1974; Magaritz and Taylor, 1974]. They have gener- 

ally not addressed the problem of the depth of penetration of 
marine-hydrothermal 180 effects into the cumulate gabbro 
sections that are presumably equivalent to oceanic layer 3. In 

order to define the overall average/t180 value of the oceanic 

crust it is crucial to determine the volume of 1SO-depleted 

cumulates produced during deep hydrothermal circulation 

within a typical slice of oceanic crust. 

Low-180 basalts and gabbros produced by interaction with 
1OW-180 meteoric groundwaters have been reported at many 
continental localities [Taylor, 1968; Taylor and Forester, 1971; 

Taylor, 1971; Forester and Taylor, 1977]. These 1OW-180 intru- 
sive rocks commonly occur as epizonal intrusions emplaced 

into highly fractured and permeable volcanic country rocks. 

The intrusions act as gigantic heat engines which drive hydro- 

thermal circulation of meteoric water through the rocks. Oph- 

iolite gabbro complexes are geologically analogous to some of 

these 1sO-depleted, continental igneous complexes. Examples 

are subvolcanic, epizonal layered gabbro bodies intruded into 

contemporaneous volcanic piles associated with sheeted dike 

swarms: the Jabal at Tiff complex in the Red Sea rift zone 

[Taylor and Coleman, 1977]; the Skaergaard intrusion-East 
Greenland dike swarm [Taylor and Forester, 1979] and the 

Scottish Hebrides intrusive ring plutons, both emplaced into 

plateau basalt lavas and both associated with the initial open- 

ing of the North Atlantic Ocean [Taylor and Forester, 1971; 

Forester and Taylor, 1977]; and the present-day, postglacial 

of the hydrothermal fluid. (2) On the seafloor the spreading 

rates and rate of production of new crust are typically much 

more rapid. The difference between hydrothermal fluids de- 

rived from seawater or from meteoric water is important, be- 

cause the contrast in/t180 between seawater and primary ba- 
saltic magma is only about 6%o, much less than the contrast 

between meteoric waters and igneous rocks. The isotopic ef- 

fects of marine-hydrothermal alteration are therefore much 

more difficult to detect and interpret, because the 'signal-to- 

noise' ratio is so much smaller. The much more dynamic 

MOR spreading processes also produce an oceanic crustal 180 
profile that represents superposition of various time, space, 

and temperature regimes. As it moves away from the spread- 

ing center into a cooler environment, the oceanic crust experi- 

ences an aging process which has no direct counterpart in the 

continental systems that have been investigated to date. The 

more active spreading regimes also probably lead to more in- 

tense fracturing and collapse features, resulting in higher per- 

meabilities and thus leading to deeper and more vigorous con- 

vective circulation of the hydrothermal fluids. 

GEOLOGICAL RELATIONSHIPS AND SAMPLING 

General Features 

The Samail ophiolite, Sultanate of Oman, was selected for 

this study because it is probably the largest and best exposed 

ophiolite complex in the world. It crops out in an area of ma- 

jor topographic relief throughout a desert region comparable 

in size to the Sierra Nevada batholith (Figure 1). Not only is 
the Samail ophiolite large and well exposed, but in places the 

thrust slices of oceanic crust are essentially internally unde- 

formed [Coleman, 1977]. Individual members of the ophiolite 

stratigraphic succession have thicknesses comparable to their 
typical oceanic counterparts. 

The Samail ophiolite formed in the Hawasina ocean basin, 
which probably existed as an entity from latest Permian to 

latest Cretaceous time [Glennie et al., 1974]. The Hawasina 
Ocean was a portion of the great Tethys seaway, and the Sa- 

maft ophiolite apparently formed at a Tethyan mid-ocean 

ridge during Cretaceous spreading [Reinhardt, 1969; McCul- 

loch et al., 1980; Tilton et al., 1981]. The ophiolite is the high- 

est tectonic member of a series of nappes which were trans- 

ported southward during Late Cretaceous time across the 

Arabian continental margin [Glennie et al., 1974]. A Maest- 

richtian-Tertiary shallow water marine limestone uncon- 

formably overlies the ophiolite and provides evidence for a 

minimum emplacement age [Glennie et al., 1974]. Zircon ages 

of 95 + 2 m.y. [Tilton et al., 1981], together with a 90-m.y. K- 

Ar age from an amphibolite aureole beneath the Samail 

thrust, bracket the initial detachment age within the interval 

95-90 m.y. [Lanphere et al., 1981]. Maestrichtian shales from 

the underlying melange require that last movement of the Sa- 

maft nappe is probably no older than 65-71 m.y. [Hopson et 
al., 1981]. 

The present-day relief of the Oman Mountains is due to a 

Pliocene folding event contemporaneous with folding in the 

basaltic and rhyolitic volcanism in the Eastern Rift Zone of Zagros belt of Iran. Note that the Samail ophiolite was not em- 
Iceland [Muehlenbachs et aL, 1974]. These all represent classic 

areas of low-180 igneous rocks produced by interaction with 
circulating hydrothermal fluids [Taylor, 1980]. 

The major differences (ignoring scale) between these conti- 
nental environments and the marine ophiolite complexes are 

the following: l, 1) In the latter, ocean water with a 8180 = 0 in- 
stead of meteoric water with a 8180 = -5 to -15 is the source 

placed into its present position by subduction followed by 
buoyant uplift along reverse faults at the front of an andesitic 

arc [Coleman, 1981]. Basal contact relations prove the exis- 

tence of an episode of early movement while the lower portion 

of the Samail nappe was hot enough to produce extensive con- 

tact metamorphism, followed by a later movement under 

much lower temperature conditions. Emplacement was thus a 
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Fig. 1. Generalized geologic map of the Samail ophiolite, Oman, showing an inset of the Ibra area (modified after 
Glennie et al. [1974]). 

two-stage process that apparently culminated in gravity slid- 

ing of the ophiolite mass onto the Arabian continental margin 
[Coleman, 1981; Boudier and Coleman, 1981]. 

Except for the basal amphibolite, none of the metamorphic 

assemblages observed in the oceanic crustal section are due to 

metamorphism associated with obduction. There is no evi- 

dence of any posternplacement Tertiary igneous activity in the 

Oman Mountains or along the eastern Arabian continental 

margin. Rare diabase and gabbro dikes with chilled margins 

crosscut the Samail peridotitc and the high-temperature con- 
tact aureole but do not crosscut the allochthonous Hawasina 

melange or the autochthonous Hajar group, suggesting a sea- 

floor, pre-Maestrichtian origin. Therefore excluding the very 

low-temperature, late stage serpentinization of the peridotitc, 

which was apparently caused by meteoric waters [Barnes et 

al., 1978], all of the hydrothermal metamorphism of the Oman 
ophiolite oceanic crustal section is attributed to seafloor proc- 
esses. 

Geology and Petrology of the Ibra Section 

The samples analyzed in this study come from the Ibra 

area, southeastern Oman Mountains (Figure 2). The geology 

of this area is discussed in detail by Hopson et aL [1981], so 

only those geological relationships necessary for this dis- 
cussion will be reviewed here. 

Samples were collected from two Wadis (Saq and Kadir) 

which drain the north limb of a syncline (Figure 2). The pe- 
ridotite-gabbro contact (the fossil 'Moho') crops out at the 

heads of the drainages near the crest of the range. Both wadis 

empty onto a pediment dotted with low hills of sheeted diab- 

ase dikes. The pillow lavas form relatively poor outcrops to 

the south, near the axis of the syncline. 

The Wadi Saq gabbro section is truncated at its base by a 

late, low-angle fault which results in an atypically thin (3.5 

km) gabbro section here [Hopson et al., 1981]. However, this 

section was picked for study because of the abundant sheeted 

diabase dikes which form well-exposed outcrops along this 

traverse. The Wadi Kadir traverse has a complete gabbro sec- 

tion (=5 km thick) but has limited exposures of sheeted diab- 

ase dikes. The combination of the two sections gives a virtu- 

ally complete cross section through the oceanic crust. 
Samples of gabbro dikes which crosscut the peridotite but 

are not chilled against it were collected from a traverse 

through the peridotite roughly collinear with the east fork of 

Wadi Kadir, just north of the area shown in Figure 2, in col- 
laboration with R. G. Coleman and F. Boudier. The latter 

workers are making a detailed structural and petrologic study 

along this section through the peridotite [Boudier and Cole- 

man, 1981]. 

From bottom to top, a generalized stratigraphic section 

through the ophiolite in the Ibra area consists of tectonized 

harzburgite peridotire; a thin basal zone of olivine-clinopyrox- 

erie cumulates (wehrlites); followed by 3-5 km of olivine- 
clinopyroxene-plagioclase cumulates (layered gabbros); grad- 
ing into less than I km of plagioclase-hornblende +_ clinopy- 

foxerie +_ olivine + magnetite, noncumulate, high-level gab- 

bro. Over an abrupt transition interval (<10 m thick) a zone 
of high-level gabbro with 10% diabase dikes gives way to a 
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Fig. 2. Geologic map of the Ibra area [after Hopson et al., 1981], showing the location of the Wadi Saq and Wadi Ka- 
dir sections and other samples analyzed in this study and in the study of McCulloch et al. [ 1981]. P (wavy pattern), perido- 
tite (tectonized harzburgite and dunite); G, layered cumulate gabbro; HG, high-level, noncumulate gabbro; SD, sheeted 
diabase dike complex--in the Wadi Saq area the lined pattern is approximately parallel to the strike of the sheeted dikes; 
V, pillow basalts; Kh, Hawasina pelagic sediments; and Hmel, Hawasina melange. Heavy black lines are faults; dotted 
contact indicates concealed SD-V contact, which defines the position of the Ibra syncline. 

100% sheeted diabase dike complex that is 1 to 2 km thick. 

Above the diabase dike complex is a relatively thin section of 

pillow lavas (<700 m thick), and above the pillow lavas, and 
in some cases intercalated with the pillow lavas are rare ex- 

posures of red chert. 
Alteration minerals are abundant in the pillow basalt sec- 

tion (now altered to zeolite facies), in the diabase section 

(lower greenschist to lower amphibolite facies), and i• the 
high-level gabbro (amphibolite facies). Igneous textures are 

generafly extremely well preserved, indicative of essentially 
static, hydrothermal metamorphism. The lower cumulates 

commonly exhibit alteration minerals that are visible only un- 

der the microscope, such as very minor talc-.magnetite altera- 

tion of olivine. The cumulate rocks generally appear to be pet- 

rographically unaltered (but they are, in fact, highly altered; 

see below). The alteration mineral assemblages present in the 

diabases and pillow lavas are similar to those described in 

most other ophioli:e complexes throughout the world [Cole- 

man, 1977]. 

EXPERIMENTAL RESULTS 

Oxygen was liberated from silicates using the fluorine tech- 

nique described by Taylor and Epstein [1962]. The results are 

reported in & notation in parts per mil (%0), where 

• 18Osampl e •.• 
180/16Osample 
180/16Ostandard 

-1 1000 

Precision is better than 0.2%0, and raw &180 values are cor- 

rected to the SMOW scale using Caltech rose quartz •180 = 
8.45. NBS-28 has •180 - +9.60 on this scale. Hydrogen was 

liberated from silicates by the technique described by Godfrey 

[1962], and results are also reported relative to SMOW in per- 
mil. 

The •180 and •D data are presented in Table 1. Plagioclase 

samples were analyzed in larger numbers than other minerals 

because feldspar is more sensitive to subsolidus hydrothermal 

180 exchange than any other silicate [Taylor, 1968; Taylor and 
Forester, 1971]. Therefore plagioclase was separated from all 

medium-to-coarse grained intrusive samples either magneti- 

cally or by hand picking. Pyroxene and amphibole mineral 

separates were obtained from magnetic concentrates that were 
further purified by hand picking. Quartz from plagiogranites 

was separated by hand picking and HF treatment. 

The •180 values of whole-rock samples were either ana- 

lyzed directly from representative splits made from interior 
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TABLE 1. Oxygen Isotope Analyses, Mineralogy, and Calculated Values of •iSOH20 and Water/Rock Ratio for Minerals and Rocks of the 
Samail Ophiolite Complex, Oman 

/•80 of H20 

Sample* Mineralogy•' •iSof •iSOpx •i SOothe r •i SOro•k Equations w/r [I 

OMG 54 (I) 
OMG 12-1 (J) 
L 2.2 125 (J) 
L.2.2 144 (J) 

OMG 6 (S) 
OMG 10 (S) 
OMG 8 (S) 
OMG 7a (S) 
OMG 7b (S) 
OMG 5-3 (S)õ 
OMG 5-1 (S) 
K 1 (K) 

OMG 71-1 (S)õ 
OMG 70 (S) 
OMG 64 (S) 
OMG 224-2 (K) 

OMG 66 (S) 
OMG 65 (S) 
OMG 63 (S) 
OMG 62 (S) 
OMG 68 (S) 
OMG 58 (S) 
OMG 67 (S) 
OMG 58a (S) 
OMG 58b(S) 
OMG 57 (S) 
K 13 (K) 
K 13a (K) 
K 9 (K) 
K16 (K) 
OM 251 (F) 
om 28 (R) 
K 18(K) 
OMG 282 (D)õ 

OMG 71-2 (S) 
OMG 66-3 (S) 
OMG 66-1 (S) 
OMG 66-4 (S) 
OMG 64-3 (S) 
OMG 65-3 (S) 
OMG 224-3 (K) 

Pillow Basalt (100ø-200øC) 

f, pg, op, z, [ca, sa] 12.7 -0.6-5.8 4.2 
f, op, e, z, px 12.5 -0.8-5.6 3.2 
f, q, op, c[sp] 10.7 -2.6-3.8 1.2 
f, q, op, c, [e, sp] 10.7 -2.6-3.8 1.2 

Sheeted Diabase (250ø-400øC) 
f, c, q, e, op, [ca, l] 9.3 4.3-7.6 n.d. 
f, a, c, q, e, op, [sp, ca] 11.8 8.5 3.5-6.8 n.d. 
f, op, c, e, q 8.2 3.2-6.5 n.d. 
f, op, c, e, q 7.9 2.9-6.2 n.d. 
f, op, c, e, q 8.3 3.3-6.6 n.d. 
f, a, c, op, q, [ca, e] 5.6 . 4.9 -0.1-3.2 1.2 
f, a, e, c, q, op 11.3 6.3-9.6 n.d. 
f, a, op, c, q, e 6.8 1.8-5.1 n.d. 

High-Level Gabbro (400 ø-600 øC 
f, h, a, [px, op, e] 6.8 5.0 (a + h) 5.9** 4.9-7.1 n.d. 
f, px, ol [h, op, a, c, t] 6.5 4.9-7.0 n.d. 
f, px, h, ol. [op, a, c, t] 4.3 2.4-4.6 0.5 
f, h, op, a, c, [p] 4.5 2.6 (a + h) 3.7 2.2-4.5 0.4 

Cumulate Gabbro (400ø-600øC) 
f, px, ol, [h, op, a, t, s] 5.8 4.2-6.3 0.04 
f, px, ol, [op, t, h] 4.2 2.5-4.9 0.6 
f, px, ol, [op, t, h] 4.1 4.3 4.2** 2.7-4.7 0.6 
f, px, ol, [op, t] 4.4 4.5 2.8-4.9 0.5 
f, px, ol, [h, t, c, op, s] 3.6 4.1 3.7** 2.0-4.2 0.9 
f, px, ol, [c, s] 5.3 4.9 5.1'* 3.7-5.8 0.2 
f, px, ol, [t, op, s, c] 6.0 5.7 6.0** 4.4-6.5 n.d. 
f, px, ol, [op, s] 4.7 4.5 3.1-5.1 0.4 
f, px, ol, [op, s] 6.0 4.3-6.4 n.d. 
f, px, ol, [s, p, hg] 6.6 5.7 6.4 5.1-7.2 n.d. 
f, px, [e, c] 5.5 4.1-6.1 0.1 
f, px, ol, [c, op, s] 4.4 4.1-6.1 0.1 
f, px, ol [h] 6.0 5.3 5.7, 5.8** 4.3-6.4 n.d. 
f, px, ol, [c, t, op, s] 5.3 5.1 5.2** 3.6-5.7 0.2 
f, px, ol, [hg, c, t, s] 6.4 5.8 6.1, 6.2** 4.7-6.8 n.d. 
f, px, ol, a, [e, t, c, s] 4.7 5.2 3.0-5.1 0.4 
f, px, ol, [a, c, s, t, e] 4.1 4.7 4.3** 2.4-4.5 0.6 
h 5.4h 

Plagiogranite (250 ø-400 øC) 
f, q, h, a, op, [c, e, p] 4.8q 6.3 3.9-6.4 n.d. 
f, [e, sp, op, q] 13.6 10.8-13.3 n.d. 
f, h, [op, e, p, c, a] 8.1 5.6 (a + h) 5.8-8.1 n.d. 
f, p, c, e, op 14.0 11.2-13.7 n.d. 
f, q, e 9.7 6.7-9.4 n.d. 
f, [q, op, e] 8.5q 12.4 10.0-12.5 n.d. 
f, h, q, a, c 5.2 2.3-4.8 0.5 

Gabbro Dikes Cutting Peridotite (400ø-600øC) 
KK 21a (K) f, px, ol, [p, s, hg, op] 7.1 5.9 5.5-7.6 n.d. 
K 21 b (K) f, px, ol, [p, s, hg, op] 8.2 6.0 6.6-8.7 n.d. 
OMG 53 (I) f, px, ol, [s, hg, op] 9.2 6.4 7.6-9.7 n.d. 
C 93 (I) f, px, ol, [s, hg, p] 8.1 6.3 6.5-8.6 n.d. 
C 204c (I) f, px, ol, [s, hg, p] 7.3 5.9 5.7-7.8 n.d. 
G 141 (I) f, px, ol, [p, hg, s] 7.8 6.3 6.2-8.3 n.d. 

*General geographic location of samples (see Figure 1): I, Ibra; S, Wadi Saq; K, Wadi Kadir; J, Wadi Jizi; F, Wadi Fizh; R, Rustaq; D, 
Dasir. 

•'Abbreviationsi h, l•ornblende (brown or green); a, actinolite; c, chlorite; ca, calcite; px, clinopyroxene; e, epidote; f, plagioclase; hg, hydro- 
garnet; 1, leucoxene; ol, olivine; op, opaques; p, prehnite; pg, palagonite; q, quartz; s, serpentine; sa, saponite; sp, sphene; t, talc; z, zeolite; sym- 
bols in italics are alteration or secondary minerals; brackets enclose minor minerals (--<2% of rock). 

•:Range of calculated/•80•2o in equilibrium with the rocks using the feldspar geothermometer [O'Neil and Taylor, 1967] and assuming a 
reasonable range of temperatures, based on the hydrothermal mineral assemblages (given in parentheses for each rock type). 

II Water/rock ratios (in oxygen units) calculated from the isotopic data, using the lower-temperature limit for each rock type, and the open 
system equation W/ropcn -- In (w/raosca + 1) for the sheeted diabase and pillow lavas. The closed system equation (see text) was used for the 
gabbros and plagiogranites. Cretaceous seawater (/•80 = -0.5) was used for the initial H20. The abbreviation n.d. means that l•80H:o i---- --0.5 
does not yield a valid result using either the closed system or open system calculation. 

õ /•D values; OMG 5-3 (whole-rock = -53); OMG 71-1 (amphibole -- -56); OMG 282f (hornblende = -47). 
**Calculated/•aO of whole-rock samples (from mineral •aO data). 
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Fig. 3. Oxygen isotope data for the combined Wadi Saq and Wadi Kadir sections. Data below 2 km are from Wadi 

Kadir. Above 2 km the data are from Wadi Saq, except where noted by sample number. OMG 10, OMG 54, K 1, K 9, and 
OMG 224 are samples from the Ibra area analyzed by McCulloch et al. [1981]. Sample L 2.2-125 is from Wadi Jizi. Shaded 
area represents OMG 65 and OMG 66 outcrops, which are located at the same structural horizon in Wadi Saq. Dotted line 
connects analyses of plagioclase separates. Horizontal solid lines connects coexisting minerals from the same hand speci- 
man. Horizontal dashed lines connect data points from the same outcrop but different hand specimens. Pg is plagiogranite. 

+14 

pieces or calculated by material balance from the 8180 values 
of the individual mineral phases in the assemblage. We 

checked our calculated whole-rock 8180 values against mea- 

sured values for samples K9 and OM251, and agreement was 

well within our experimental precision, <0.1%o. 

DISCUSSION OF THE ISOTOPE DATA 

General Statement 

The main features of the 8180 data and 8D data are pre- 

sented graphically in Figures 3 and 4. The most striking re- 

sults of this isotopic study are as follows: 

1. Hydrothermal 180 exchange was observed well down 
into the deeper levels of the cumulate gabbros and locally was 

found to penetrate along fractures into the upper mantle pe- 
ridotites. 

2. Only a few D?H results from the Oman ophiolite are 

reported in this study, but these are similar to the D?H data 

from the Troodos ophiolite [Heaton and Sheppard, 1977; Ma- 

garitz and Taylor, 1974], and they are compatible with a 

model of seawater-hydrothermal exchange (Figure 4). 

3. A relatively systematic 180/160 distribution was ob- 

served within the pervasively altered section, which includes 

all the rocks down to about 2 km above the fossil Moho (Fig- 
ure 3). 

4. Relative to an initial 8180 • +5.7, high-T (>350øC) 
seawater-hydrothermal alteration produced 1sO-depleted 
rocks (down to 8180 = +3.5) throughout the upper cumulate 
gabbros, as well as locally in the lowest levels of the oceanic 
crustal section. 

5. The 1SO-enriched rocks were produced in the higher 
levels of the oceanic crust, particularly above the contact be- 

tween high-level gabbro and the sheeted diabase complex. 

6. High-temperature 180 exchange with hydrothermal 
fluids occurred at levels well below the stratigraphic horizon 

at which secondary hydrothermal OH-bearing minerals dis- 
appear in the cumulate gabbros. 

Plagiøclase-Clinøpyrøxene Pairs 

In addition to the D/H data, evidence for deep circulation 

of seawater-derived hydrothermal fluids comes mainly from 
data on coexisting plagioclase and pyroxene. Several such 

mineral pairs were examined from the cumulate gabbros and 

gabbro dikes and veins which crosscut the peridotite. This 

mineral pair is particularly valuable because pyroxene is so 

much more resistant to hydrothermal 180 exchange than is 
plagioclase [ Taylor, 1968; Taylor and Forester, 1971; Forester 

and Taylor, 1977; Taylor and Forester, 1979]. Throughout the 

gabbro section this mineral pair exhibits oxygen isotopic dis- 

equilibrium; based on analogous results from other localities 

[Forester and Taylor, 1977; Taylor and Forester, 1979], it is 

clear that this feature is a result of subsolidus exchange. 

Plagioclase-pyroxene pairs analyzed from rapidly quenched 
gabbroic magmas, such as terrestrial basalts and lunar micro- 

gabbros, all have A180 plagioclase-pyroxene ---- 8180 plagio- 
clase -- 8180 pyroxene • 0.5, close to the equilibrium frac- 
tionation [Taylor, 1968; Anderson et al., 1971; Taylor and 

Epstein, 1970; Onuma et al., 1970]. Therefore in normal mid- 
ocean ridge tholeiites that have whole-rock 8180 - 5.7, the 
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Fig. 4. Plot of &D versus &•80 for rocks analyzed from the Oman 
ophiolite, showing calculated isotopic compositions of 1SO-shifted 
Cretaceous ocean water and of waters that would be in equilibrium 

with the Oman samples at T = 300øC and 500øC (for details of cal- 
culation, see Heaton and Sheœœard [1977]). Also shown for comparison 
are data from another Cretaceous Tethyan ophiolite, the Troodos 
complex, Cyprus, by Heaton and Sheppard [1977] and Magaritz and 
Taylor [ 1974]. 

will be within the triangle. This two-component analysis 
works for the cumulates because the modal abundance of 

clinopyroxene + plagioclase is much greater than the abun- 

dance' of olivine, the only other oxygen-bearing cumulus min- 
eral. 

In open systems the equilibrium plagioclase-pyroxene pairs 

are required to lie upon the new 'final' temperature line but 

not necessarily within the closed system 'triangle.' However, 

there are no conditions of open or closed system equilibrium 

cooling in which the data points can move below the primary 

magmatic (A = 0.5) line on the plagioclase-pyroxene plot. 

Many of the cumulate plagioclase-pyroxene pairs from the 

Samail ophiolite plot in the field forbidden under equilibrium 

conditions. In addition, the plagioclase-pyroxene pairs do not 

plot on an equilibrium trend with slope unity but instead plot 

in the vicinity of a least squares line given by the equation 
&•80 plagioclase = 2.3 &•80 clinopyroxene - 6.6 (Figure 5). 
The A•80 values associated with the line of slope 2.3 include 
some samples that have normal igneous fractionations, and in 

fact, this line passes through the primary magmatic spot. As 

plagioclase •80 values decrease, the A•80 values decrease to 

zero and then become reversed. Since all equilibrium plagio- 

clase-pyroxene A I80 values are known to be positive in the 
temperature range that is geologically reasonable (T < 

1300øC), the trend of data points in Figure 5 constitutes clear- 
cut evidence for open system (hydrothermal) subsolidus ex- 
change. The plagioclase-pyroxene graph is a very sensitive in- 

dicator of subsolidus disequilibrium exchange, as well as 

testing for open or closed system conditions. Figure 5 shows 

that virtually all of the plagioclase-pyroxene pairs in the Sa- 

maft gabbro have exchanged under open system conditions. 

Trend lines similar to the one illustrated in Figure 5 have 

been reported for the Skaergaard intrusion and the Cuillin 

corresponding primary magmatic &'so plagioclase should be 
+6.0 and the {•180 pyroxene about +5.5. On a graph of {•180 
plagioclase versus &•80 pyroxene (Figure 5), all primary mag- 
matic plagioclase-pyroxene pairs from normal tholeiite ba- 

salts should therefore cluster around a spot having the coor- 
dinates (5.5, 6.0). If the bulk •80 value of the basaltic liquid 
differs from +5.7, the plagioclase-pyroxene pairs will map out 
a straight line of slope 1, the A -- 0.5 line on Figure 5. If the 
temperature of final equilibration is higher or lower than the 

solidus temperature of the basaltic magma, the A values will 

be smaller or larger than 0.5, respectively. All lines represent- 

ing constant temperatures of equilibration of pyroxene and 

plagioclase on Figure 5 will have a slope of I and a •180 

plagioclase intercept equal to ALSO. 
During cooling of the system plagioclase-pyroxene, AlSO 

will increase. Slowly cooled plutonic gabbros in fact typically 

exhibit plagioclase-pyroxene A values of 0.8 to 1.3 [Taylor, 

1968]. From the original primary magmatic 'spot' on Figure 5, 

rocks undergoing closed system cooling will map out a series 

of points that form a fight triangle whose sides are the north 

and west vectors emanating from the spot and whose hypote- 

nuse is the line segment with slope -- 1 that corresponds to the 

new temperature of final equilibration (e.g., the A - 1.5 line 

segment on Figure 5). The north vector applies to cumulate 

layers where modal clinopyroxene >> plagioclase, and the 

west vector applies to cumulate layers where modal plagio- 

clase >> clinopyroxene. All other intermediate compositions 
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Fig. 5. Plot of &180 plagioclase versus •180 clinopyroxene for 
samples from the cumulate gabbro and from gabbro dikes in the pe- 
ridotite. These data plot on trends forbidden during closed system 
equilibrium cooling (see text). 
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Fig. 6. Comparison of/•180 data on clinopyroxene-plagioclase 
pairs from Oman (solid circles) with analogous data from the 
Skaergaard (hatched pattern; UBG is Upper Border Group; LS is 
Layered Series; UZc is Upper Zone C of the Layered Series) and 
Cuillin gabbros (dashed envelopes); the latter were altered by mete- 
oric-hydrothermal fluids [Taylor and Forester, 1979; Forester and Tay- 
lor, 1977]. The Oman data form a more systematic, narrower band 

which possibly indicates less closed system, subsolidus cooling prior 
to interaction with hydrothermal fluids. This may reflect the more tec- 
tonically active spreading regime for the ophiolite rocks. The A = 0.5 
line (45 ø) represents the accepted 180 fractionation between pyroxene 
and plagioclase at magmatic temperatures [Anderson et al., 1971]. 

gabbro of the Isle of Skye [Forester and Taylor, 1977; Taylor 

and Forester, 1979]. As shown in Figure 6, the slopes of these 

meteoric-hydrothermal alteration trajectories vary from ap- 

proximately two to four. These differences in slope are sugges- 

tive of differing exchange rates between the various clinopy- 

roxenes and aqueous solutions. Some of the obvious factors 

that will influence the slope of the alteration trend are grain 

size, degree of exsolution, fluid-phase composition, 8180 of the 
fluid, and perhaps equilibration time. The cumulate plagio- 

clase-pyroxene pairs in Oman display a slope that is less steep 

than that shown by most of the Skaergaard samples, although 

they do trend parallel to the UBG, UZc, and Sandwich Hori- 

zon pairs from the Skaergaard intrusion, where the effective 

grain size of the clinopyroxene has been significantly reduced 

by subsolidus recrystallization and inversion from a • wollas- 

tonite precursor [Taylor and Forester, 1979]. Inasmuch as the 

Oman clinopyroxenes exhibit exsolution features and grain 

sizes comparable to the rest of the Skaergaard Layered Series, 

where the alteration slope is approximately four, this raises 

the question as to which of the other parameters listed above 

is controlling the slopes. 

Let us assume that at a given T, clinopyroxene exchanges 

with a hydrothermal fluid at a fixed (slower) rate than does 

plagioclase. This is essentially identical to stating that the ef- 
fective water/mineral ratio is lower for pyroxene than for 

plagioclase (i.e., the pyroxene 'sees' less H20 than the adja- 
cent coexisting plagioclase). By setting the water/mineral ra- 

tio for plagioclase (An75 for the cumulates) equal to a constant 

times the water/mineral ratio for clinopyroxene, 8180 trajec- 
tories of the plagioclase-pyroxene pairs from the Oman oph- 

iolite and the Skaergaard intrusion can be simulated (Figure 

7). In this illustration the initial Oman 818OH20 is assumed to 
be -0.5, and the 'initial' Skaergaard 8•8OH20 • --5.0 [Norton 
and Taylor, 1979]. This initial Skaergaard fluid composition is 

an •80-shifted surface water which originally had a 818OH20 •, 
--14.0 based on D/H systematics [Taylor and Forester, 1979]. 

The boundaries of the fields on Figure 7 are defined arbi- 

trarily by assuming a 500øC exchange temperature, and rate 

constants for plagioclase that are a factor of 2-5 times faster 

than for pyroxene. 

The plotted curves bracket the actual data from both the 

Skaergaard and Oman and suggest the plagioclases ex- 

changed between 3 and 5 times more rapidly than the coexist- 

ing pyroxenes (near the 5x curves on Figure 7). The different 
slopes, two and four, respectively, for Oman and the 

Skaergaard are a consequence of the drastically different 8180 

compositions of the hydrothermal fluids. For most mineral- 

water systems the first derivative of the hydrothermal ex- 

change curve will equal the rate constant, if small (open sys- 
tem) water/rock ratios prevail. The larger the difference be- 

tween initial fluid and initial rock, the more closely will the 

measured points reflect the rate constant. A second implica- 

tion of Figure 7 is that the Skaergaard Layered Series and the 

Samall gabbros both achieved approximately the same water/ 

rock ratio = 0.15 (open system mass units). This relatively 

crude estimate of the water/rock ratio is actually very close to 

the value (•0.20 for the layered series) calculated by Norton 

and Taylor [1979] in a much more complete numerical mod- 

eling study of the Skaergaard intrusion. This suggests that 

many of the important parameters, such as permeability, 

porosity, etc., used by Norton and Taylor [1979] in their analy- 

sis of the Skaergaard gabbro also would apply to the Samall 

gabbro and thus to the oceanic crust in general. 

The above discussion indicates that the most important fac- 

tors in fixing the final 8180 values of mineral pairs affected by 

hydrothermal alteration are (1) initial 818OH:o, (2) amount of 
fluid flushed through the system, (3) average temperature of 

exchange, and (4) grain size (especially when intense grain- 
boundary recrystallization or mineral exsolution occurs). Sa- 

linity differences in the aqueous fluids appear to be less im- 

portant, at least at concentrations lower than that exhibited by 
normal seawater. 

Isotopic Changes in the Hydrothermal Fluids 

Meteoric-hydrothermal systems associated with the conti- 

nental intrusions described above (initial 818OH:o • --9 to 
--14) invariably result in 180 depletions of the rocks and min- 

erals, whereas in the Samail ophiolite the hydrothermal inter- 
action has produced both •80 depletions and 180 enrichments. 

This is because the 8180 of Cretaceous seawater (818OH20 • 
--0.1 to --0.7; see below) is only about 6%o lower than that of 

the initial igneous rock instead of 15-20%o lower, as in the 

subaerial examples. Changes in both temperature and water/ 

rock (w/r) ratio (leading to 180 shifts in the hydrothermal 
fluid) can result in the observed lSO shifts in the rock either up 
or down. 

Let us consider the plagioclase-water system, whose AlSO is 

given by 

A18C• 2.91 - 0.76fi 06 "'•plagiocl .... H20 -- T• X 1 -- 3.41 -- 0.14fi 
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Fig. 7. Plot of &•80 plagioclase (An75 cumulates; An90 gabbros in the peridotite) versus &180 clinopyroxene for 

the Oman and Skaergaard mineral-pair trajectories. The curves are calculated in two ways: (1) analytically by setting 
./_xplagioclase (u•/r• clinopyroxene w/r}open system '- K x or (2) by a finite element technique which allows small but •, "/-Iopen system 

different (by a constant factor) increments of water to equilibrate with plagioclase and as the integrated w/r ratio 
builds up with each step. Both methods yield the same curves. These paths represent cooling, accompanied by hydro- 
thermal exchange, starting at the magmatic coordinates (5.5, 6.0; & - 0.5) and proceeding to T • 500øC (& -- 1.67). The 
initial &•sO•o is assumed to be -5.0 at Skaergaard [Norton and Taylor, 1979] and either -0.5 or +8.9 at Oman; the former 
value is Cretaceous seawater, and the latter value represents magmatic water or strongly ]SO-shifted seawater in the deep- 
est parts of the Samail hydrothermal system. Two calculated curves are shown, arbitrarily assuming that plagioclase ex- 
changes with H•_O at a rate either 2 times (2x) or 5 times (5x) faster than clinopyroxene. Water/rock ratios of 0.1, 0.25, 
0.50, 0.75, and 1.0 (in weight units) are represented by tie lines connecting the 2x and 5x curves, assuming the rock con- 
tains 60% plagioclase and 40% clinopyroxene. The intersection of the exchange curves with the & -- 1.67 line corresponds 
to an infinite water/rock ratio. The cumulate gabbro trajectories mimic the behavior of the &•sO values of actual mineral 
assemblages shown in Figure 6, in that the latter do indeed plot on the high-temperature side of the magmatic isotherm (T 
• 1100øC). 

where/• is anorthite content of the plagioclase and T is in øK 

[O'Neil and Taylor, 1967]. If a packet of seawater with &•80 -- 

0 equilibrates with cumulate plagioclase (An80,/•80 -- +6) at 
800øC, the water will approach a/•80 value of +7.5. If this 

strongly •80-shifted H,_O packet then moves up section and 
exchanges with plagioclase in the sheeted diabase complex at 

350øC, then the feldspar &•80 value will increase to + 10 (w?r 

spar would be about +14 (w?r >> 1) or +10 (w?r • 1). In- 
asmuch as the upper level feldspars are typically more Na rich 
than An80, the final &•80 values will actually be even higher 
(for pure albite, +12 to +9 and q-17 to +12, respectively, at 
350øC and 200øC). 

The final &•80 of any small volume of rock in the ophiolite 
will depend strongly upon the previous exchange history or 

>> 1) or +8 (w?r • 1). If we further lower the temperature of path of the water packets with which it interacts. In a zone 
alteration in the diabase, the/•80 of this plagioclase will be- where stream lines of fluid circulation are concentrated, as is 

come even higher. For example, at 200øC the/•80 of the feld- likely in the sheeted dike complex near the distal edge of the 
ß 
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Fig. 8. Cartoon sketch showing probable seawater circulation pat- 
terns in a cross section of the Samail ophiolite at the time of its forma- 
tion. The solid black indicates magma. Note the existence of two es- 
sentially isolated circulation regimes, separated by a thin sheet of 
magma that is essentially impermeable to the fluids in the hydrostatic 
convective system. One system (the upper system) extends outward 
from the ridge axis and is located directly over the magma chamber, 
and the other (the lower system) lies underneath the wings of the 
magma chamber. The two systems interact with one another only at 
the distal edges of the magma chamber. Also shown is the lateral dis- 
tance that would be traversed by this oceanic crustal section in 1 m.y., 
assuming a half spreading rate of 3 cm?yr. The high-level non- 
cumulate gabbro is shown as a blank pattern between the sheeted 
dikes and the layered gabbro. The wavy line pattern in the peridotite 
represents the tectonite fabric, and the short heavy lines schematically 
indicate gabbro dikes filling conjugate fractures that postdate the tec- 
tonite fabric; locally, the hydrothermal circulation penetrated these 
conduits. Note that only one side of the MOR spreading system is il- 
lustrated; a mirror image of the above diagram should exist to the left 
side of the figure. 

magma chamber (see Figure 8), arguments such as those given 
above would predict 'so enrichments in the rocks. In addi- 

tion, plagioclase is likely to continue to exchange down to 

temperatures at least as low as 150ø-200øC as long as it is in 

contact with hydrothermal fluids. The combination of these 

processes probably explains the apparent inconsistency be- 
tween diabase dikes with ,s /• O½•sio•, = 11.8 and mineral as- 
semblages suggesting T-- 300ø-350øC (i.e., sample OMG 10). 

It is clear from this analysis that the hydrothermal fluids in 

the ophiolite all were strongly modified by exchange and that 

none could be considered to be pristine seawater. Assuming 

plausible temperatures of equilibration for the plagioclase and 
whole-rock samples given in Table 1, the calculated equilib- 

rium •'sO.•o values range from-3 to + 10. 
Gabbro dikes which postdate the peridotite tectonite fabric 

probably represent crystallization products of melts moving 

through the peridotite [Boudier and Coleman, 1981]. These 

dikes line conjugate fracture sets in the tectonites or occur as 

local segregations near plagioclase.bearing peridotite. Plagio- 

clase-pyroxene pairs from these gabbros have •'so values 

which plot on the high-'SO extension of the disequilibrium 
least squares trend line mapped out for the gabbros (Figure 

5). For these dike samples it is important to note that the iso- 

topic analyses were performed upon mineral separates puri- 

fied to a high degree with heavy liquids to avoid any high-'SO 
rodingite minerals. Even though petrographically unaltered 

plagioclase and pyroxene were analyzed, the exchange trend 

extends to approximately a 300ø-400øC isotherm, suggesting 

the exchange mechanism was similar to that found in the 'sO- 
depleted gabbros higher in the ophiolite section. 

A plausible explanation for the high/•'sO values of these 
dikes and veins is that because they are the deepest samples, 

the hydrothermal fluids had previously exchanged with very 

large amounts of overlying oceanic crustal and/or upper 

mantle rocks at relatively high temperatures. Thus these small 

amounts of deeply circulating H20 would have become 

strongly enriched in 'so as they moved down into fractures in 
the peridotitc. Inasmuch as these conjugate dikes postdate the 

tectonite fabric, their formation and subsequent alteration 

also must have occurred at a temperature lower than that of 

the high-temperature regime [Nicolas et al., 1980] in which the 

tectonite fabric was formed. As the rocks moved away from 

the ridge axis, the plagioclase-pyroxene pairs in the dikes 

would have continued to exchange at successively lower tem- 

peratures, which may also in part account for the high/•180 
values. The '80 effects are most strongly developed in the 
dikes and veins because at any given stratigraphic horizon the 

water/rock ratios would be expected to be highest along the 

fractures which are acting as hydrothermal conduits. It is, in 

fact, very common in plutonic igneous complexes to find un- 

usually large '80 effects in dikes and along fractures [Forester 
and Taylor, 1977; Taylor and Forester, 1979; Magaritz and 

Taylor, 1976b]. 

In Figure 7 the plagioclase-clinopyroxene trajectories for T 

- 500øC are plotted for a water that had been '80 shifted to 
/•'80 = 8.9, which implies that this water equilibrated with a 
large amount of gabbro or upper mantle olivine and pyrox- 

ene. The trajectories show that exchange with such an '80- 
shifted water at temperatures of the order of 500øC is a plau- 

sible explanation for the high-'80 plagioclase and pyroxene. 
However, 'SO-shifted seawater of +8 composition is essen- 
tially indistinguishable in its/•'80 value from magmatic water, 
so the latter also must be at least considered as a plausible 

candidate. Possibly, 87Sr/86Sr or D/H studies might help dis- 
tinguish between magmatic H20 and 'SO-shifted seawater, but 
no secondary, high-temperature, hydrous minerals are avail- 

able in these samples, and if the oxygen had shifted to +8, 

then the Sr isotopes would also probably be buffered by ex- 

change with the rocks. An additional complication is that any 

late stage, exsolved magmatic water with /•'80 = +8 could 
represent H:O originally driven into the melt by dehydration 

of hydrothermally altered stoped blocks of roof rock [Gregory 

and Taylor, 1979; Taylor, 1980]. However, neither this type of 

magmatic water nor a primary magmatic water is deemed to 

be likely candidates, because the gabbro dikes and veins pre- 

dominantly occur in conjugate sets which postdate the perido- 

titc tectonite fabric. This in turn suggests that the alteration 

probably occurred well out on the flanks of the ridge, where 

'SO-shifted seawater would be the most likely type of hydro- 
thermal fluid (Figure 8). 

I•'80 Variations in the Ophiolite Sequence 

A few cumulate gabbro samples have been found that have 
apparently closely preserved their magmatic/•'sO values (sam- 
ples K 9, OMG 67). As might be expected, these are most 

common in the lower section of cumulates. However, particu- 

larly in the vicinity of fractures and prominent veins contain- 

ing high-T mineral assemblages, low-lSO gabbros have been 
found at very great depths, for example, within 250 m of the 

tectonite peridotite-gabbro contact. Approximately 2 km 
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above the base of the cumulates, plagioclase •180 values de- 
crease to a minimum of 3.6 in the Wadi Saq section (Figure 

3). Coexisting pyroxene in this sample has/•'80 equal to 4.1. 
Mineralogical evidence for alteration is practically nonex- 

istent in all these lower cumulates, even those that are 

markedly depleted in '80. Thin reaction rims of talc + mag- 
netite around olivine grains occur locally in the low-'80 rocks 
but are not universal. Plagioclase generally appears to be 

completely unaltered. Pyroxenes, although generally unal- 
tered, may contain minor (<10%) replacement brown amphi- 
bole along grain cleavages and fractures. These data indicate 
that the hydrothermal alteration of most of the gabbro sam- 
ples occurred at extremely high temperatures and that sub- 
sequently, there was only local influx and exchange with low- 
T waters. 

One of the samples studied by McCulloch et al. [1981] is K 
9, in which/•'80 plagioclase -- 6.0 and/•'80 clinopyroxene = 
5.3; during cooling, this sample suffered very little exchange, 
and also it apparently behaved essentially as a closed system 
in terms of its oxygen. The plagioclase /•'80 value has re- 
mained almost constant, compatible with its large modal 

abundance (75%) in this specimen. The initial 87Sr/a6Sr value 
of the plagioclase also has been almost unaffected, although 
the 87Sr/a6Sr of the clinopyroxene was slightly-increased, com- 

patible with its lower modal abundance and lower Sr content 
[McCulloch et al., 1981]. This clinopyroxene also shows a 
slight overgrowth of brown amphibole, always in optical con- 
tinuity in each grain. The strontium isotope data demonstrate 
that small amounts of heated seawater have affected this 

sample during subsolidus cooling, and together with the '80 
data this suggests that the amphibole in K 9 grew at temper- 
atures just below the solidus in communication with small 
amounts of strongly 'gO-shifted, seawater-derived hydro- 

thermal fluid (/•'8082o = +8.1, 87Sr/a•Sr = 0.7044). 
The various isotopic relationships in K 9 were all estab- 

lished, or 'frozen in,' at high temperatures, and virtually no 

exchange occurred at extremely low temperatures. Similar 
statements can be made about all of the cumulate gabbros, 

most of which were much more strongly hydrothermally al- 

tered at high T than was K 9. The lack of low-temperature ret- 

rograde alteration is evidenced by the 'unaltered' plagioclase, 
the unaltered or only slightly amphibolitized clinopyroxene, 
the absence of serpentine alteration of olivine, and the pres- 
ence of only minor talc + magnetite. In all these samples the 
alteration and oxygen exchange must have occurred at tem- 

peratures exceeding 400øC, with most exchange probably at 
much higher temperatures. As the temperature dropped below 
about 300øC, the water/rock ratio in the main mass of cumu- 

lates must have dropped to a value very near zero, except in 
the immediate vicinity of the vein and fracture systems. The 

process described above is well documented in many conti- 
nental gabbro bodies [Taylor, 1971; Forester and Taylor, 1977; 
Taylor and Forester, 1979; Taylor and Coleman, 1977], which 
also were altered at very high temperatures and which exhibit 

a paucity of OH-bearing hydrothermal minerals. For ex- 
ample, by numerically modeling the Skaergaard hydro- 
thermal system, Norton and Taylor [1979] showed that more 
than half of the H20 that was ultimately 'pumped' through 

this gabbro body went through at T > 480øC, with maximum 
fluid flux at around 600øC. 

Above the minimum '80 stratigraphic horizon in the cumu- 

late gabbros the /•'80 values tend to systematically increase 
upward. These upper cumulates are indistinguishable in hand 

specimen and in thin section from the low-'80 lower cumu- 

lates. In conjunction with this enrichment in '80, as the grada- 
tional 'contact between the cumulate gabbro and high-level 

gabbro is approached, OH-bearing alteration minerals be- 
come more abundant. Brown amphibole is followed by green 

amphibole, then chlorite appears, and finally in some rocks, 
rare epidote occurs in the high-level gabbros. The presence of 

talc + magnetite after olivine (and the lack of serpentine or 

chlorite) in some high-level gabbros again demonstrates that 
most of the hydrothermal fluids were flushed through at tem- 

peratures exceeding 400øC. The/•'80 plagioclase varies from 
4.5 to 6.8, generally increasing upward in the high-level gab- 

bros. Whole-rock/•'80 values of the high-level gabbros vary 
from 3.7 to 6.8 and may coincidentally approximate normal 

igneous values. Although absent from meteoric-hydrothermal 

systems, this 'coincidence' phenomenon is a characteristic fea- 
ture of seawater-hydrothermal systems. Because of the '80 
shifts and the relatively high initial/•'80 value of the ocean 
water, there is a significant range of temperatures over which 

the whole-rock /•'80 value of a gabbro that has been thor- 
oughly hydrothermally altered in the presence of large 

amounts of water will, simply by coincidence, be very close to 

the primary magmatic value o1' +5.7. 
Above the sheeted diabase-gabbro contact, actinolite, chlo- 

rite, saussurite, leucoxene, and epidote all become common in 

the alteration mineral assemblages. Amphibolite facies assem- 

blages give way rapidly up section to greenschist assemblages. 
Feldspar separated from diabase OMG 5c located less than 

200 m above the gabbro contact had a/•'80 = 5.2, while OMG 
10 diabase approximately 300 m below the pillow lava contact 

has a/•'80 plagioclase = 11.8. The whole-rock/•'80 values are 
+4.9 and +8.5, respectively. Pillow lava OMG 54 has/•'80 -- 
12.9 and contains plagioclase (An25), palagonitized glass, 
abundant zeolites, and secondary carbonate. Piecing the two 

stratigraphic columns together, the/•'80 values of whole-rock 
samples decrease from about + 13 in the pillow lavas down to 
values which approximate normal igneous rocks near the gab- 
bro-sheeted diabase contact. Further down section,/•'80 con- 

tinues to decrease to a minimum value approximately 1.5 to 2 

km below the diabase-gabbro contact. After passing through a 
minimum value of about 3.8 the whole-rock/•'80 values again 

tend to increase sporadically down section through to the 

lowermost gabbros, where the exchange effects are localized 

along fractures and veins. 

Neither Wadi Kadir or Wadi Saq represent complete sec- 

tions through the ophiolite, but where they overlap, the agree- 
ment between geology, petrography, alteration mineralogy, 

and the/•'80 profile is very good. The consistency of geology 

and/•'80 profiles in these two sections separated by a lateral 
distance of over 15 km, as well as the basically similar geo- 

logic sections exposed over several hundred kilometers of the 
entire Oman mountain belt, both suggest that we are looking 

at a representative cross section through the Tethyan oceanic 
crust. It also appears that the physical and chemical processes 
involved in formation of this oceanic crust had essentially 

reached steady state conditions, in the 5- to 10-m.y. interval 

after igneous crystallization and before detachment. This 

steady state crustal section contains significant volumes of 

both low-'80 (<+6) plutonic rocks and high-'80 (>+6) hypa- 
byssal and pillowed volcanic rocks. The upper pans of this 
mature piece of oceanic crust at Ibra also appear to be very 

similar to, and representative of, many other ophiolites in 

terms of both alteration history and/•'80 values [Heaton and 
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Sheppard, 1977; Magaritz and Taylor, 1974; 1976a; Williams 

and Malpas, 1976; Gregory, 1980; Stern et al., 1976]. 

Isotopic Aging of the Oceanic Crust 

The range of whole-rock 8•80 values of diabase dikes from 

the Wadi Saq and Wadi Kadir sections is +6.8 to + 10.9 (one 

sample of a late, highly chloritized dike has 8•80 -- +4.9). 
However, the range of whole-rock 8•80 values in diabasic 
xenoliths (now hornfels) associated with plagiogranites from 

the Dasir area (about 70 km NW of Ibra, see Figure 1) is +3.7 

to +6.3 [Gregory and Taylor, 1979]. The Dasir xenoliths repre- 

sent fragments of diabase dikes from the roof of the gabbro 

magma chamber that became incorporated into the magma 

by piecemeal stoping and foundering of the roof. 

The stoped blocks at Dasir record a different, earlier stage 

of hydrothermal alteration than does the Ibra diabase section. 

The Dasir xenoliths in part preserved the low 8•80 values that 

they had attained just prior to their being stoped into the un- 

derlying magma near the ridge axis. In contrast, although the 

lower parts of the Ibra diabase section probably also under- 

went a similar high-T, •80 depletion, they did not preserve 
these low 8•80 values when they were later subjected to inter- 
action with more •80-shifted, lower-temperature hydro- 
thermal fluids in the vicinity of the distal portions of the 

magma chamber as the oceanic crust migrated away from the 

ridge axis (see Figure 8). The difference in •80 contents can be 
attributed to the different circulation systems, temperatures, 

and types of fluid that the two suites of diabases experienced. 
The xenolith suite was altered directly above and virtually 

in contact with the magma chamber in a region where the hy- 

drothermal circulation system was dominated by high-tem- 

perature fluids that circulated to depths of only 2-3 km and 

interacted only with basalt and diabase. Because of the high 

water/rock ratios (see below and McCulloch et al. [1981]), this 

fluid would not have suffered any large •80 shifts and thus 

would be isotopically similar to seawater; the fluid path lines 

would not take it through the lower portions of the oceanic 

crust. However, as the crust continues to spread, the diabase 

section moves beyond the distal edge of the magma chamber 

(Figure 8) into a regime where the fluids are dominantly mov- 
ing upward from deep in the cumulate gabbro section. Such 

fluids may still be at relatively high temperatures, but because 

of overall lower water/rock ratios in the less permeable, 

deeper parts of the ocean crust, they will have suffered much 
more dramatic •80 shifts because of interactions with the 

lower cumulates. During continued spreading, the temper- 

atures also continue to decrease, which also leads to •80 en- 

richment of the altered rocks. When the high-•80 and/or low- 
T fluids interact with the sheeted diabase complex, it becomes 

enriched in •80, thus partly masking the earlier low-•80 ex- 
change history. Another factor probably involved in the pres- 
ervation of the low 8180 values of the Dasir xenoliths is the 

fact that they were carried down to deeper levels; they now lie 

approximately 200 m below the diabase-gabbro contact, 

where they are associated with large masses of plagiogranite. 

This type of isotopic aging described above can also be seen 

on the scale of an individual outcrop. Samples from localities 

OMG 65 and OMG 66 (see Figure 3) in Wadi Saq exhibit the 

same general type of time-8•80 trends. Samples from the host 
rock cumulate gabbros have 8•80 plagioclase = 4.2 to 5.8, 
whereas the later hornblende-gabbro segregations have 8•80 
plagioclase -- 8.1, and the still later plagiogranite dikes and 

veins have 8•80 whole rock -- 12.4 to 13.6. The high-•80 pla- 

giogranites occupy a prominent fracture system and have 
sharp nonchilled contacts against the host gabbros. In these 
fracture systems the fluids continued to circulate down to rela- 

tively low temperatures (as recorded by plagioclase turbidity 

and the presence of prehnite, epidote, and thullite). The coar- 
ser grained host gabbros have partially preserved their earlier 

formed lower •80 values, and they also contain only amphi- 
bole as a new alteration phase (they have no epidote). The 
pegmatitic segregations of hornblende gabbro almost cer- 

tainly crystallized in the presence of an aqueous fluid phase, 
but inasmuch as these segregations predate the plagiogranites, 
this was a different, earlier stage hydrothermal fluid than that 

which affected the plagiogranite. Thus in this single OMG 65, 

66 outcrop we can observe practically the entire range of •80 

values in the Samail ophiolite, simply by sampling the host 
rocks as well as the later rock types that occupy the vein and 
fracture systems. 

IMPLICATIONS FOR THE ISOTOPIC HISTORY OF THE 

OCEANS 

Average 8•80 Value of a Section 
Through the Oceanic Crust 

The completeness of the Ibra section, together with the con- 

sistency of the geology and the relative simplicity of the min- 
eralogic and isotopic alteration patterns, makes the Samail 

ophiolite an ideal place to calculate the average 8•80 value of 
mature, altered oceanic crust. For this purpose we have com- 

bined the Wadi Kadir and Wadi Saq sections. Inasmuch as 
the pillow lavas are not very well represented in the Ibra sec- 

tion, we also have added analyses of three samples from Wadi 
Jizi, where pillowed volcanic rocks are abundant. All these 

data are plotted on Figure 9. For a few of the coarser-grained 

gabbro samples the whole-rock 8•80 values plotted on Figure 
9 were calculated by material balance from the modes and the 
mineral 8•80 values. 

The pillow lavas (8•80 = +12.7 at Ibra; +10.7 to +12.5 at 
Wadi Jizi) are the most poorly characterized portion of the 

Ibra section, but this is also volumetrically the smallest unit 
(<10% of the total column) and thus the least critical in the 
overall material balance calculation. Also, it should be noted 

that many pillow lavas have been analyzed from other ophiol- 

ites and they consistently define a range of about + 10 to + 14 

[Heaton and Sheœœard, 1977; Magaritz and Taylor, 1976a; 

Spooner et al., 1974]. 

When a 8•80 integration (material balance calculation) is 
done for the entire Ibra section, it is seen that the contribution 

of 1SO-depleted rocks in the lower sequence does indeed al- 
most exactly cancel out the contribution of the •80-enriched 

rocks in the upper sequence, thus strongly supporting the 

Muehlenbachs-Clayton hypothesis (Figure 9). The net change 

in 180 content of the entire oceanic crust produced by the long 
history of hydrothermal alteration and isotopic aging of the 
Ibra section appears to be essentially zero. Our calculated av- 

erage 8•80 = 5.8 + 0.3 is, within experimental and geologic er- 
ror, identical to the average 8•80 of MOR basalts (+5.7), 
which is accepted to be the primary magmatic 180/160 ratio of 
the oceanic crust, as well as the overall earth-moon system 

[Muehlenbachs and Clayton, 1972a; Taylor, 1968; Taylor and 
Epstein, 1970]. 

If there has been no net change in 8•80 of the oceanic crust, 

there obviously cannot have been any net •80 flux either into 

or out of seawater as a result of interactions at MOR spread- 
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Fig. 9. Material balance calculation for the generalized 8[80 pro- 
file displayed by the Ibra section (solid curve fitted to the data by in- 
spection), based on the combined Wadi Saq and Wadi Kadir tra- 
verses. Data points are all whole-rock values; samples exhibiting 
anomalous 8•80 at a single outcrop such as plagiogranite dikes and 
hornblende pegmatite segregations cutting massive gabbro (OMG 65, 
66) and samples adjacent to veins are volumetrically insignificant and 
thus were not used in this calculation. Samples from Wadi Kadir that 
lie above the 2-km level are labeled and added to the diagram approx- 

imately at their correct stratigraphic positions, assuming that the gab- 
bro sections were initially the same thickness, measuring downward 
from the diabase-gabbro contact. The stippled areas shown on the 
diagram are equal in size, and the average 8180 of this section of al- 
tered oceanic crust is 5.8 _+ 0.3. 

ing centers. If we extrapolate the relationship discovered in 
the Samail ophiolite to all oceanic spreading centers, it is clear 
that seawater must have been in steady state isotopic balance, 

with a 8180 close to zero during the Cretaceous. However, it is 

instructive to inquire in more detail exactly what was the buf- 
fered 8[80 value of Cretaceous seawater? The overall average 

steady state AlSO fractionation between oceanic crust and sea- 
water is defined as A = +5.7 - 818Osw, where 818Osw is the 

buffered value of (Cretaceous) seawater. 
The exact 8180 value of Cretaceous seawater is not known, 

but we can place certain limits upon it. The Cretaceous is 

widely thought to represent a time period when there was 
little or no continental glaciation on earth [Steiner and Grill- 

man, 1973]. We know that rapid melting of all of the present- 

day ice sheets, which have an average 8[80 of about -35, 
would only lower the 8[80 value of seawater by about 0.3 to 
0.9%o [Dansgaard and Tauber, 1969], and certainly by no more 
than 1.5%o. However, because of the cycling of seawater 

through the oceanic crust, it is obvious that we cannot calcu- 
late the 8180 of Cretaceous seawater in this simple fashion, as 

the following discussion will demonstrate. 

Calculation of l80/[60 Mass Balance During Cycling 
of Seawater Through the Oceanic Crust 

Inasmuch as we are only concerned with 180 balance, in the 
following discussion all mass units or amounts are given in 

grams of oxygen: 

W mass of the oceans; 

R spreading rate in km2/yr, roughly equivalent to half 
spreading rates in cm/yr for the present-day mid-ocean 

ridge systems; 

cR mass of oceanic crust created and matured each year 

(eventually almost all of this is subducted); c is a con- 
stant determined by the depth of exchange in the oce- 

anic crust and by the need to convert spreading rates to 

grams of oxygen; 

w total amount of water that circulates through and ex- 

changes with the oceanic crust to achieve maturity, 

equal to $o'm• dt, where • is the average amount of wa- 
ter circulated per unit time and tm is the time taken to 

reach maturity or a steady state profile; 
r total amount of new oceanic crust that exchanged with 

w amount of seawater, equal to So'm? dt, where ? is the 

amount of rock exchanged with w per unit time; if unit 

time is expressed in years, ? = cR; 

• equal to w/r; actual water/rock ratio in oxygen units for 

the ridge system; 

8W 8180 of the oceans (assumed to be well mixed); 
8ro•k n•a• final average 8•80 of the mature oceanic crust as it is 

subducted, equal to 
8rock initial = 8ri = +5.7 = 818OMoRB} 

8water final 8180 value of water that has actually circulated 
through the oceanic crust and discharged back into the 

oceans, neglecting H20 added to the crust by hydration 

reactions, equal to 
A180 .... • ...... •½r = 8r•- 818Osw (steady state) = A. 

Assuming conservation of mass, one may readily derive the 

following expression which relates the change in 180 content 
of the oceans to the amount of water circulated through the 

oceanic spreading centers and to the [80 change in that fluid 
as a result of its exchange with the oceanic crust: 

W d(8 W) = (Swf -- 8 W) dw = --(Srf -- 8ri)• dt (1) 

Using the closed system water-rock equation ,Taylor, 1971], 

we can solve for 8•/: 

8rf -- 8r i 8r / = & + 8w/ w/r = cb -- 8 W - 

8wf = • 8 W-- & + 8ri 8r f --- •8 W + (•& + 8ri 
•+1 •b+l 

By substitution, (1) becomes 

w w) = -- A + S ri - 8 W dw = •(--A + 8 r , -- 8 W) • at 
•+1 •+1 

Rearranging terms, 

d(8 W) dw ok? dt 

8 W + A -- 8ri W((• + l) W((j• + 1) 

(2) 

(3) 

(4) 

Integration of (4) with q5 held constant yields 

SW+A--8 r- --W W(•+ 1) 
(5) 

where 8 Wo equals the initial 8180 value of seawater either be- 
fore any seafloor spreading begins or directly after any instan- 
taneous excursion in the 8[80 of the oceans from its steady 

state (buffered) value. In (5), note that the time t (in years) is 

implicit in w, since w = •r -- •Rct, where R is the spreading 

rate in km2/yr and c is a conversion constant derived from set- 
ting a particular value for the depth of exchange (con- 

servatively taken to be 6 kin); this equation converts km 3 of 
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rock into grams of oxygen. Exponentiating (5) and sub- 

stituting rkRct for w, we obtain 

qb + 1 • + (/•r,- A) (6) 
where /•ri- A is identical to the steady state buffered /•!sO 
value of seawater. If A is exactly +5.7, then the buffered value 

of seawater is its present-day value,/• •SOsw -- 0, and (6) be- 
comes 

qb+l 

A result similar to that given above can be derived in a dif- 

ferent manner by again considering the closed system water/ 

rock equation for very large water/rock ratios (large qb values): 

W /•r•- 5.7 

C-• = /•Wo -/•Wf (7) 

Inasmuch as the mass of the oceans greatly exceeds the mass 

of rock created in a single year, if we set A = 5.7, we have/•f = 
5.7 +/•Wf--• 5.7 +/•Wo. Then the closed system water/rock 
equation becomes 

= - cR/W) (8) 

which describes the change in the initial/• Wo • 0 seawater af- 

ter 1 year of aging. 

After 2 years, 

/•W2 =/•W•(1 - cR/W) =/•Wo(1 - cR/W) 2 (9a) 

For N years the equation becomes 

i• WN -- i• Wo(1 - cR/ W) •v (9b) 

Remembering that R is the spreading rate in years, we can 

perform the calculation as many times (n) per year as we wish: 

/•W/=/•Wo(l - ca/nW) nt (10) 

with t in years. As n --> oo, this becomes 

•tW= •iWo exp l-C-• ] (11) 
which is exactly the same as (6') for large •. This represents the 
fastest rate at which seawater can be brought down to a steady 
state value of zero. 

In Figure 10 we plot (6) for various spreading rates assum- 
ing A -- 5.7, which is the same as assuming a tttSOsw = 0 for 
the steady state value. The hatched area represents the aver- 

age spreading rate for the last 20 m.y. [Berger and Winterer, 

1974] for two different values of the water/rock ratio (• -- 1 or 

20). The • = 20 curve represents a plausible maximum water/ 
rock ratio for the mid-ocean ridge systems, as deduced from 

heat flow arguments and conservation of energy [Wolery and 

Sleep, 1976]. The • = 1 curve is probably close to the slowest 

plausible decay rate, assuming a simple, one-pulse injection of 
basaltic magma analogous to the Skaergaard hydrothermal 

system, where the overall water/rock ratio was about 0.5 to 
i.5 [Norton and Taylor, 1979]. The other trajectories on Figure 
10 represent transient decay for various assumed spreading 

rates, remembering that for today's oceans, km: spreading 
rates are roughly equivalent to half-spreading rates in cm/yr. 

A rate of 12 km:/yr is used as the most plausible upper limit 
on the spreading rate; rates this fast have been proposed on 

some ridge segments during the middle Cretaceous for the pe- 

riod 85-115 m.y.B.P. [Larson and Pitman, 1972]. Such a rate 

is based upon extrapolating rates determined on small seg- 

ments of preserved seafloor to the entire ridge system, as well 

as assuming that the overall ridge length is equivalent to the 

present-day value; thus 12 km2/yr may be too high for any 
reasonable Phanerozoic worldwide rate [Baldwin et al., 1974; 

Berger and Winterer, 1974]. 

In order to understand how increasing the spreading rate 

affects the buffering system, we use a plot of spreading rate 

versus t•/2, the time it takes for seawater to more halfway from 
its initial/•'aO value toward its final steady state/•'aO value. In 
the inset of Figure 10 the qb = 1 and qb = 20 values bracket the 

geologically reasonable water/rock ratios for the overall sys- 

tem. If the spreading ratio drops below about 1 to 1.5 km2/yr, 
then the buffering process would break down, and hydro- 

thermal circulation no longer would buffer seawater. Increas- 

ing the spreading rate beyond 4-5 km2/yr (or keeping the lin- 
ear half spreading rate constant while increasing the number 

of plates) does not appreciably affect the t•/2 value. 

The Steady State (Buffered) i•80 Value of the Oceans 

Using the model described above, we can now make some 

estimates of the true steady state/•80 value of the oceans and 

also estimate the average value of A for the seawater-crust sys- 
tem. The biggest obstacle in exactly determining these values 

is the transient effect that late Cenozoic glaciation has had 

upon the /•80 contents of seawater. The Pleistocene paleo- 
temperature curves of Emiliani [1966] are interpreted as a 

combination of temperature effects and isotopic shifts in sea- 

water due to ice storage on the continents [Dansgaard and 
Tauber, 1969]. From Emiliani's data the present-day inter- 

glacial seawater isotopic composition reflects a minimum 

value of ice storage for the Pleistocene. During this glacial 

minimum, Antarctica remained covered by ice. The magni- 

tude of the •80 shift due to ice storage in Antarctica and the 
duration of the glaciation become the deciding factors "m de- 

termining the value of A at times when the earth lacked any 

continental ice sheets. Estimates of the •80 change in the 
oceans due to instantaneous Antarctic ice sheet formation are 

about +0.53 + 0.26, based on volume estimates of 15 to 30 x 

106 km 3 of ice having an average/•80 of-33 + 4 [Denton et 
al., 1971; Dansgaard and Tauber, 1969]. This large range of es- 

timates of ice volume and/•80 compositions comes about be- 
cause, during the Cenozoic, geologic evidence [Hollister et al., 

1976; Hayes et al., 1975; Denton et al., 1971; Barker et al., 

1976] for glaciation in Antarctica only suggests when ice 

sheets were present but does not record volumes. Deep Sea 

Drilling Project data [Hollister et al., 1976] and other studies 

[Denton et al., 1971] suggest that although minor glaciation 
occurred as early as the Eocene, the Antarctic continental ice 

sheet did not develop until the late Oligocene to middle Mio- 

cene and did not reach its present extent until late Miocene. 

These time constraints, together with the water/rock (•) lim- 

its, fix the exponential factor in (6) at 0.76 + 0.11 for world- 

wide spreading at 3 km2/yr for the last 20 m.y. [Berger and 
Winterer, 1974]. Plugging this value into (6), we have 

18 

t•18('¾øday '-- {• OSMOW '-- 0 = (0.53 + 0.26) ß •, •-- seawater • 

ß (0.76 -_4-_ 0.11) q- (5.7 ñ 0.2) -- • 

Hence A ---- 6.1 + 0.3, and at steady state the • -- • O .... ter • 
-0.40 + 0.3. 

The above values represent our best estimates of these im- 



GREGORY AND TAYLOR: OXYGEN ISOTOPE PROFILE OF OCEANIC CRUST 2751 

+1 

0.2580 

0.50))0 

0.755o 

225 

2OO 

175 

150 

• 125 

ß .,- 100 

75 

50 

25 

INITIAL 8180 VALUE 
OF OCEAN WATER 

I I I I I I I 
2 4 6 8 10 12 

spre0ding r0te(km2/yr) 

i I I I 

8o 0 40 80 120 160 200 240 280 320 
time after onset of spreading (My) 

+5 '• 

+6 o 

+7 

PRIMORDIAL 

SEAWATER(?] 

560 400 +8 

Fig. 10. Seawater isotopic evolution diagram, showing the effect of the length of time after spreading begins (t in years) 
on the 6180 of seawater. These curves also apply equally well to rapid perturbations or excursions in the •1•80 of seawater, 
holding worldwide spreading rates constant. • is the w/r ratio (in oxygen units) for the bulk system, deduced from heat 
flow arguments, and 12 km2/yr is chosen as a plausible upper limit for spreading rates. Although the latter rate has been 
proposed for some portions of Cretaceous ocean floor, extrapolation of such high rates to a worldwide rate is very con- 
troversial [Baldwin et al., 1974]. However, a rate approaching this magnitude conceivably could apply to the Archean. 

portant parameters based on available information. Note, 

however, that the value of A conceivably could have been 

different from 6.1 if at certain time periods plate tectonic 

regimes were markedly different from the Phanerozoic (i.e., 
the Archean?). Considering another case, if the Antarctic 

ice sheets have existed since late Eocene, then A ,.• 6.0 and 
•18(• steady state = --0ø3. Neither this value nor the above value •-- seawater 

of-0.4 is markedly different from the value of-0.53 +_ 0.26 

that would be obtained by simply adding back to the oceans 

all of the present-day ice on earth. The point of the calcu- 

lation is that the present-day &•80 value of zero for mean 

ocean water is clearly not the steady state value. Also, simply 

melting all of the ice sheets and taking into account the •80/ 
•60 effect of transferring that water back into the oceans will 

not necessarily give the true steady state •80 value (depend- 

ing upon the duration of the glaciation). Note that,it makes no 
difference to the buffered •80 value of ocean water whether 

or not the ice sheets are totally absent or even more abundant 

by a factor of 100 than they are today; the only consideration 

is whether they are waxing or waning on a scale of less than a 

few tens of millions of years. Because of the uncertainties in 

duration and particularly the magnitude of the Antarctic con- 

tinental glaciation, the type of analysis outlined above prob- 
ably cannot deduce the true steady state &•80 value of ocean 
water to better than +_0.3. This is unfortunate, since the uncer- 

tainty in seawater composition also limits the ultimate resolu- 

tion of paleotemperature techniques to =3øC for the Meso- 

zoic (ignoring other problems such as preservation of the 

isotopic record during diagenesis). 

The Significance of A and the &'80 

of Precambrian Oceans 

The quantity A represents the average •80 fractionation be- 

tween oceanic crust and seawater. It therefore basically re- 
flects a weighted-average temperature of alteration of the en- 
tire section of oceanic crust and thus is related to the 

difference between the ambient temperature of seawater and 
the liquidus temperatures of the MOR magmas. The final 

8•80 profile in the crust, which fixes the value of A, probably 
depends to a lesser extent on a number of other factors, in- 

cluding the geometry of the MOR magma chambers, kinetic 
effects, and the rates of convective circulation. However, as 

long as Tmagma s and Ts .... tcr are fixed and new crust is created 
by simple seafloor spreading (i.e., a ridge-axis magma cham- 
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ber capped by a roof of sheeted diabase and pillow lavas), 

then A should also remain essentially fixed. 

The existence of ophiolites with similar structure and strati- 

graphy throughout the Phanerozoic [Coleman, 1977] supports 
the idea that oceanic crust was created by practically iden- 

tical processes throughout the last 0.6 eons. Preliminary evi- 

dence from the Canyon Mountain ophiolite (Permian), 4.7 

< •80,,ho• ..... k < 11.0, and the Bay of Islands ophiolite 
(Cambro-Ordovician), 4.5 < •80,,ho • ..... k < 10.9 [Gregory, 
1980], compared to the more extensive data set reported here 

from Oman (3.8 < •i80,,•o• .... • < 12.7), clearly indicates 
that the Paleozoic A value must have been very similar 
to the Cretaceous value and thus that seawater has been 

within +_ 1 of its steady state value at least as far back as the 

Cambrian. Ophiolites and/or ophiolite-like rocks of late Pro- 

terozoic age have been reported from China [Xuchang, 1979] 
and the Red Sea region [Engel et al., 1978], suggesting that 
this statement is also probably valid as far back as 1.0-1.5 
eons. However, in the ancient Precambrian record there are 

no reported ophiolites or preserved slices of modern types of 
oceanic crust. 

Perry et al. [1978] have proposed that MOR hydrothermal 
circulation was not as important in the Precambrian as it is 

today. These conclusions are not reasonable in light of the 
evidence for deep circulation in the present study. During the 

early Precambrian, there was a great deal more heat produc- 
tion from radioactive decay, as well as more volcanism, in- 

dicating that overall heat loss to the world ocean was greater 

than at present, either as a result of faster spreading or be- 

cause there was a much larger number of plates [McKenzie 

and Weiss, 1975]. Given our knowledge of the permeabilities 

of recently erupted volcanic piles [Norton and Taylor, 1979], it 
is certain that convective circulation of surface waters would 

have occurred on a large scale. However, because of possible 

di•?rences in style of spreading, it is less certain exactly what 

the values of A and •8Osw were during the early Pre- 
cambrian. 

Isotopic data from Precambrian cherts [Perry et al., 1978; 

Knauth and Epstein, 1976; Yeh and Epstein, 1978] establish an 

upper lunit for Archean ocean temperatures at less than 75 o_ 
90øC. Atmosphere models for the Precambrian [Sagan and 

Mullen, 1972] independently suggest that surface temperatures 

would not have been drastically higher than present-day tem- 

peratures. Volcanic rocks preserved in the Archean green- 
stone belts range from komatiites to rhyolites, with tholeiitic 

basalt as the predominant rock type [Naldrett and Goodwin, 

1977]. This implies that the temperature difference between 

ocean water and submarine magmas during formation of the 
Archean oceanic crust should have been within +50 ø to 

100øC of the present-day value (which is about 1100øC). If 

true, this would require that both the average temperature and 

the average temperature range (but not the gradient!) within 

the hydrothermally altered oceanic crust be almost identical 

to the present-day value. Irrespective of the thickness of that 

crust the proportions of low-T and high-T alteration assem- 

blages thus ought to be constant, as long as seawater circulates 
downward to within close proximity of the submarine magma 

chambers. However, because of overall higher temperatures 

that might have prevailed during hydrosphere-crust inter- 

action in the Archean, there probably would have been less 

•80 enrichment in the upper portion of the oceanic crust than 

at present (and thus there would also have to have been a con- 
comitant smaller volume of •80-depleted rocks in the deeper 

parts of the oceanic crust). These effects taken together would 

produce a smaller A value. Nevertheless, A would have to be 

either very close to the present-day value or only slightly 

lower (A • 57), implying that ocean water probably had a con- 

stant $•80 value of about -1.0 to + 1.0 during almost all of 
earth's history. 

In support of the above conclusion, •80 evidence and alter- 

ation mineral assemblages from the Archean Abitibi green- 

stone belt [Beaty and Taylor, 1979] suggest that the seawater 

that interacted with the Archean pillow lavas had $•80 -- 0 

+2. Studies of granitic rocks that were isotopically exchanged 

with Precambrian meteoric-hydrothermal fluids at 1.4 to 1.5 

eons (St. Francois Mountains [Wenner and Taylor, 1976]) and 

at 2.6 to 3.3 eons (Swaziland and Barberton areas, South Af- 

rica [Taylor and Magaritz, 1975]) suggest that Precambrian 

meteoric waters (and thus by inference the Precambrian 

oceans as well) also had $•80 values similar to those of the 
present day. 

The above interpretation, suggesting relative constancy of 
the $•80 of seawater, is in conflict with the conclusions of 

Chase and Perry [1972] and Perry et al. [1978, Case 1, Figure 

4]. These workers proposed that the •80 content of the 
oceans has steadily increased since •2.5 eons. However, their 

hypothesis is not valid because they dismissed the effects of 

deep high-T, hydrothermal convective circulation at spread- 

ing centers. 

SUMMARY AND CONCLUSIONS 

We have shown above that deep hydrothermal circulation 

of seawater has affected most of the feldspar-bearing rocks of 
the Samail ophiolite, including a large part of the section that 

is equivalent to oceanic layer 3. The deeper portions are de- 

pleted in •80 relative to primary MOR basalts ($•80 = +5.7), 
whereas the shallower parts are enriched in •80. However, the 

final $•80 profile in the ophiolite is the cumulative result of a 

long history of hydrothermal alteration, beginning with high- 

temperature interactions with newly formed crust at the ridge 
axis and continuing for at least several hundred thousand 

years during spreading away from the ridge axis. The earlier 

stages tend to produce •80 depletions, whereas the later stages 
produce •80 enrichments. We have termed the latter process 
'isotopic aging,' and the •80 enrichments are probably a result 
of two separate effects: (1) strongly •80-shifted waters that 
have circulated deep under the flanks of the magma chambers 
and then have risen upward just beyond the distal ends of the 

chamber (Figure 8) and (2) less •80-shifted waters with much 
lower temperatures that have circulated downward into the 

same marginal zone. 

We have had some success in defining the isotopic effects 

produced at various stages of the isotopic aging process by 

looking at veining and dike relationships and by examining 
stoped xenoliths in the gabbros in the Samail complex. How- 

ever, it must be emphasized that the final $•80 profile in the 

ophiolite represents the superposition of a very long, complex, 
and continuously changing series of events in which the wa- 

ter/rock ratios, temperatures, $•80 values of the fluids, rock 

permeabilities, rates of isotopic exchange, and chemical com- 

positions of the fluids are all varying both with respect to time 

and with respect to position relative to the ridge axis. Without 

carrying out a complete numerical analysis of this problem in 
the manner that was done for the Skaergaard intrusion by 
Norton and Taylor [1979], we can only describe the observed 

isotopic effects in semiquantitative terms. 
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In spite of the above complexities it is worthwhile to discuss 

some implications of the/t•80 data regarding the overall time- 
temperature history of hydrothermal circulation in the oce- 
anic crust. The proposed style of H20 circulation is illustrated 

in cartoon fashion in Figure 8. On the basis of field mapping 

[Hoœson et al., 1981; Hoœson and Pallister, 1979], the Samail 

gabbro magma chamber appears to have had a shape similar 
to that indicated in Figure 8. This is the basic shape proposed 

for the Troodos [Greenbaum, 1972] and Pt. Sal ophiolites 

[Hopson and Frano, 1977], and it is similar to the shape of 

many continental layered gabbro complexes formed in rift en- 
vironments (e.g., the Muskox [Irvine and Baragar, 1972] and 

Great Dyke [Worst, 1960]). The floor of the magma chamber 

thus somewhat resembles the bottom of a wide, very long 

ship, with the poorly defined feeder dike system representing 

the keel; in this analogy the roof of the chamber is the deck of 

the ship. This shape probably closely approx'.•mates the geom- 
etry of the magma chamber at a fast spreading ridge. At a 

slow spreading ridge the 'wings' would be much smaller or 
nonexistent. 

The result of this particular geometry is that two decoupled 

regimes of hydrothermal circulation must exist during most of 
the history of alteration. The first occurs directly over the 

magma chamber and is continuous across the ridge axis (this 
is termed the 'upper system'). The upper seawater-hydro- 

thermal circulation system lies exclusively within the pillow 

lavas and the sheeted diabase-dike complex, and the H20 

penetrates downward only as far as the flat roof of the magma 

chamber. The water cannot penetrate any more deeply than 

the joint and fracture system will allow, and thus (in geologi- 
cally reasonable times) the water cannot cross the diabase- 

magma chamber contact [Taylor and Forester, 1979; Norton 

and Taylor, 1979]. In fact, some H•O is undoubtedly added to 
the magma from the upper system, but this must come about 

through dehydration of stoped blocks of hydrothermally al- 
tered roof rocks that should be abundant in such a tectoni- 

cally active, rifting environment [Taylor, 1977; Taylor and 
Forester, 1979; Gregory and Taylor, 1979; Taylor, 1980]. Be- 

cause the stratigraphic thickness of rocks above the roof of the 

magma chamber is very small compared to the width of the 
chamber, the upper hydrothermal system probably involves a 

large number of separate convection cells, perhaps dominated 

by the ridge-axis system [Corliss et al., 1979]. The upper sys- 

tem therefore must involve very large overall water/rock ra- 

tios (> 10, see McCulloch et al. [1981]), and the circulating sea- 
water will be only slightly •80 shifted away from its initial 
value. 

The isotopic and alteration effects produced by the upper 

regime are in part destroyed or masked by later alteration ef- 
fbcts that come about when fluids from the 'lower system' fi- 

nally are able to penetrate upward into the sheeted diabase 

complex at the distal edges of the magma chamber. This will 

happen as soon as the rocks (high-level gabbros and pla- 

giogranites) are consolidated enough to fracture. In the car- 
toon (Figure 8) this is indicated to occur discontinuously as 

small pockets of late-stage magma become isolated from one 

another due to the vagaries of the crystallization process in 

such a spreading environment. The seawater circulation sys- 

tem within the layered gabbro cumulates underneath the 

wings of the magma chamber involves very high temperatures 

(>400øC) and low water/rock ratios (closed system) of the or- 
der of 0.3-1.0 (weight units). 

The fluid involved in the lower system is seawater that has 

moved laterally inward from well beyond the distal ends of 

the magma chamber. Because this water cannot move upward 

in any significant quantities directly through the liquid 

magma, it must either cycle (hence the dosed system charac- 

teristic) or escape upward at the distal edge of the chamber 
when conduits in fractured, solidified rock become available 

at the gabbro-diabase contact (Figure 8). Both processes un- 

doubtedly occur. Therefore large quantities of this heated and 

strongly •80-shifted water (•18OH20 ---- +4 to +8) will be fo- 
cused upward along the sloping base of the magma chamber. 

This H:O will impose a final alteration event upon the sheeted 

dike complex, the magnitude of which will depend on the 

amount of focusing of hydrothermal fluid that occurs at the 

edge of the chamber. Note that if any water does diffuse di- 
rectly into the magma from the country rocks, it must be from 

the lower system. It is plausible that tiny amounts of the very 

low density, high-T H:O in fractures below the 'wings' of the 

magma chamber could diffuse upward into the overlying 

magma, in the manner proposed for the trough bands of the 

Skaergaard intrusion [Taylor and Forester, 1979]. The shape 

of the magma chamber shown in Figure 8 is, in fact, ideal for 

such a process to operate. The strongly •80-shifted water of 
the lower system also locally penetrates down into the perido- 

tite along conjugate fractures which postdate the tectonite 

fabric. These waters, whose •80 composition is buffered by a 

large reservoir of olivine with •O = 5.7, produce the •O en- 
richments of pyroxene-plagioclase pairs in gabbro dikes that 

were intruded along these fractures (Figures 5 and 7). 

Strontium isotope data (which are not subject to temper- 

ature effects) record open system water-rock ratios (weight 

units) of approximately 10-30 in the sheeted dike complex 

[McCulloch et al., 1981]. This represents the integrated effects 

of hydrothermal fluids of the upper system as well as of fluids 

derived from the lower and 'marginal' systems. Depending 

upon the magnitude of the 87Sr/86Sr shift in the lower system 
fluid, the diabase at the distal edge of the chamber may al- 

ready be in approximate strontium isotope equilibrium with 

the fluid discharging upward from the layered gabbros (i.e., 

87Sr/86Sr in diabase = 0.705 [McCulloch et al., 1981]). This 
suggests that the strontium isotopes may not be recording the 
final hydrothermal exchange events in the ophiolite, just as 

the oxygen isotopes do not record (except indirectly) the ear- 

lier exchange events in the upper system at the ridge axis. This 

possibly could be sorted out with more 87Sr/86Sr data on cer- 
tain late-stage features such as veins and plagiogranite dikes. 

Because of these complex effects, the correlations between 

S7Sr/S6Sr and •80/•60 suggested by data from Spooner [1977] 
and McCulloch et al. [1981] are, in some respects, fortuitous. 

The style of hydrothermal circulation and the geometry of 

the magma chamber shown in Figure 8 imply that there 

should be a dramatic shift or abrupt discontinuity in the iso- 

topic record at the gabbro-diabase contact (i.e., at the fossil 
roof of the magma chamber). This is in fact just what is ob- 

served, as both the /t•80 (Figure 3) and the 87Sr/S6Sr values 
[McCulloch et al., 1981] change very rapidly at this boundary, 

which must represent a discontinuity in both the average tem- 

perature of hydrothermal alteration and in the average, in- 

tegrated water/rock ratio (see Table 1 and Figure 3). Part of 
the explanation for higher water/rock ratios in the sheeted 

complex is the long history of hydrothermal exchange that 

these rocks undergo prior to crystallization of the high-level 

gabbro (Figure 8). However, in addition, there is almost cer- 

tainly an abrupt permeability change across the diabase-gab- 
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bro contact as well. The highly jointed dike complex ought to 

be much more permeable than the gabbros (perhaps by a fac- 

tor of 10, see Norton and Taylor [1979]). The combination of 
finer grain size and higher permeability thus also contributes to 

the much higher effective water/rock ratios in the sheeted 

complex relative to the gabbros. The variations in these pa- 

rameters also help to explain the preservation of the high-tem- 

perature alteration assemblages and lack of low-temperature 

•80 exchange in the gabbros. The finer-grained, more per- 
meable diabase dikes and pillow lavas will undergo •80 ex- 
change down to much lower temperatures than the coarser- 

grained, less permeable gabbros. The latter rocks exhibit such 

effects only along fractures and veins. We do not yet know 

how far beyond the distal edge of the magma chamber the •80 
exchange effects in the oceanic crustal section proceed at a 

significant rate. 
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