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NC 27695, USA unprecedented numbers of genetic markers and data-mining approaches to variable
Full list of author information is selection are increasingly being utilized to uncover associations, including potential
avallable at the end of the article gene-gene and gene-environment interactions. One of the most commonly used
data-mining methods for case-control data is Multifactor Dimensionality Reduction
(MDR), which has displayed success in both simulations and real data applications.
Additional software applications in alternative programming languages can improve
the availability and usefulness of the method for a broader range of users.

Results: We introduce a package for the R statistical language to implement the
Multifactor Dimensionality Reduction (MDR) method for nonparametric variable
selection of interactions. This package is designed to provide an alternative
implementation for R users, with great flexibility and utility for both data analysis and
research. The ‘"MDR’ package is freely available online at http//www.r-project.org/. We
also provide data examples to illustrate the use and functionality of the package.

Conclusions: MDR is a frequently-used data-mining method to identify potential
gene-gene interactions, and alternative implementations will further increase this
usage. We introduce a flexible software package for R users.

Background

With advances in genotyping technologies, a breadth of high-dimensional data is now
available with unprecedented numbers of genetic markers to perform association map-
ping in human genetics. Identifying variants associated with complex human traits is a
common problem and data-mining approaches to variable selection are frequent meth-
ods of analysis. There is growing evidence that epistasis may play a role in disease risk,
and many variable selection approaches have been developed to consider potential
gene-gene and gene-environment interactions. One of the most commonly used tech-
niques for case-control data is Multifactor Dimensionality Reduction (MDR), a non-
parametric exhaustive search method that considers all combinations of potentially
interacting loci and classifies individuals to disease status based on their genetic infor-
mation [1]. MDR has been highly successful in human genetics, with a large number
of associations identified in real data applications; additionally, the performance of the
method has been extensively studied in a range of simulation experiments and has

undergone numerous developments and extensions to improve performance [2,3].
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Currently software is available which implements the MDR method, including a GUI
implementation available at http://www.epistasis.org[4]; however, additional implemen-
tations in alternative programming languages are welcome in order to improve the
widespread usability of the method for a broader range of users. The free and open-
source R statistical software is one of the most widely-used statistical software environ-
ments. We introduce a new package for the R statistical language, ‘MDR’. The package
is designed to provide an alternative implementation for R users, and has great flexibil-
ity and utility for both data analysis and research. Currently, an R package exists to
implement a parametric extension, model-based MDR (‘'mbmdr’) [5], however, not in
the original nonparametric form that is most commonly used and without extensive
flexibility and analysis options. The package ‘MDR’ implements MDR for variable
selection of interactions as first outlined in [1] and described in more detail in [4], pro-
viding options for internal validation and functions to summarize the fit and perform
post-hoc inference, and is available at http://www.r-project.org/.

In its traditional implementation, MDR is considered both statistically and genetically
non-parametric because it does not estimate any statistical model parameters or
assume a particular genetic inheritance mode [1]. MDR reduces the dimensionality of
the data by viewing combinations of loci (that may interact) as a series of multi-factor-
ial genotypes, rather than as separate variables. MDR creates a classification rule based
on these combinations using a Naive Bayes classifier, assigning genotype combinations
with a large ratio of cases to controls as high-risk and low-risk otherwise [6]. Using
this high-risk/low-risk parameterization, a measure of the accuracy of the classification
rule is evaluated, which is typically some measure of classification accuracy, the pro-
portion of correctly classified individuals. A final model is chosen to maximize this
accuracy, or to misclassify the fewest number of individuals. The final model will also
perform well in terms of prediction, and internal validation measures such as cross-
validation measure prediction accuracy [7]. It is this traditional implementation that
we employ in the R package ‘MDR'’.

Implementation
This package utilizes balanced accuracy (BA) as the evaluation measure for comparing
different combinations of variables, defined as

1 TP TN
BA = +
2 \TP+FN TN +FP

where (TP, TN, FP, FN) represent the number of true positives, true negatives, false
positives, and false negatives classified by a particular combination of loci, respectively.
Balanced accuracy, the arithmetic mean of sensitivity and specificity, has been shown
to outperform the traditional measure of classification accuracy when datasets are
unbalanced [8]. Other evaluation measures are possible, including additional contin-
gency table measures [9], but are not currently included in this package.

This package assumes binary case-control data with categorical predictor variables.
The binary response variable is coded as 0 or 1, and the categorical predictors (typi-
cally SNP genotypes) are coded numerically (0, 1, 2, etc.). The user can specify the par-
ticular genotype encoding. Additionally, the threshold for assigning high-risk/low-risk

status to variable combinations can also be controlled by the user.
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Internal Validation

This package provides a base function ‘mdr’ to fit a list of MDR models, ranked with
balanced accuracy. However, in all data-mining methods, over-fitting a model to a par-
ticular data set is a concern and it is suggested that MDR be implemented in conjunc-
tion with an internal validation technique. This package provides two such procedures:
k-fold cross-validation and three-way split internal validation.

In k-fold cross-validation, the data are randomly split into k equal intervals, where k-
1 intervals are used for training and one interval is used for testing [7]. The best MDR
model is determined from the training set for each size of interaction and an estimate
of the model’s prediction accuracy is calculated from the testing set. This procedure is
repeated for all k possible splits of the data and a final model is chosen to maximize
both prediction accuracy and cross-validation consistency across each split. The func-
tion ‘mdr.cv’ implements cross-validation and allows the user to specify the highest
level of interaction to consider, as well as the number of intervals &; typically a value of
k =5 or 10 yields high performance [7].

In three-way split internal validation, the data are randomly split into three sets for
training, testing, and validation [10]. MDR is first implemented in the training set for
all possible combinations of loci and the x models with the highest balanced accuracy
are retained for evaluation in the testing set. MDR is next performed on all x models
in the testing set and the best model for each level of interaction is preserved for eva-
luation of predictive ability in the validation set. A final model is chosen to maximize
balanced accuracy in the validation set. The function ‘mdr.3WS’ implements three-way
split internal validation and allows the user to specify the ratio of the three data splits
(training:testing:validation), and also the number of potential models x from the train-
ing set to be evaluated in the testing set.

Both internal validation methods create objects of class ‘mdr’, a list of the final
selected model loci and its prediction accuracy, the top models and their prediction
accuracies, and the high-risk/low-risk characterization of the final model.

Methods

Three methods exist for objects of class ‘mdr”: ‘summary’, ‘plot’, and ‘predict’. The
‘summary’ method provides a table summarizing the model fit at each stage of interac-
tion. The ‘plot’ method provides a contingency table of bar graphs for the final model,
portraying the numbers of cases and controls in each genotype combination, similar to
the GUI implementation at http://www.epistasis.org. The ‘predict’ method allows the
user to predict case-control status on a new, independent set of data with a model
obtained from a previously fit ‘mdr’ object.

Post-hoc Functions for Inference

After an MDR model has been fit, a number of functions exist for inference on that fit.
Permutation testing is available to test the significance of the reported measure of pre-
diction accuracy; case-control status is randomly permuted a number of times (speci-
fied by the user), and the resulting prediction accuracies from each MDR fit of the
permuted data sets are compared to a specified accuracy [11]. In addition to the tradi-
tional permutation test of the full MDR model, we also incorporate a permutation test
of interaction based on the likelihood ratio test, as described in Edwards et al [12].
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Additionally, estimates of prediction accuracy are obtained from retrospective case-
control data, and therefore may not reflect the true accuracy of prospective predictions.
Using a previously estimated population prevalence rate provided by the user, these
prediction accuracy estimates can be adjusted using one of two available post-hoc pro-
cedures implemented in ‘boot.error’ and ‘mdr.ca.adj’ [13].

Results and Discussion

To illustrate the usage of the package, we provide a computational example using a
simulated dataset of 250 individuals who were genotyped at 25 SNPs. We first fit an
MDR model using cross-validation with cv = 5 cross-validation intervals. We consider
all combinations of SNPs up to size K = 3 and the default settings for the other
options and then summarize the fit:

> library (MDR)

> data (mdrl)

> fit.cv<-mdr.cv(data =mdrl, K=3, cv =5, ratio = NULL,

equal = “HR”, genotype =c (0, 1, 2))

> summary (fit.cv)

From Table 1 below we see that the MDR fit identified the two-way model of SNPs
4 and 9 as the best model predictive of disease status. This model minimized balanced
accuracy in 5 out of 5 cross-validation intervals and estimates a prediction accuracy of
64.12%.

We can also fit an MDR model using three-way split internal validation, also allow-
ing for combinations of SNPs up to size K = 3 and the default settings for the other
options, and then summarize the fit:

> fit.3WS<-mdr.3WS (data = mdrl, K= 3, x = NULL, proportion =
NULL, ratio = NULL, equal = “HR”, genotype =c (0, 1, 2))

> summary (£it.3WS)

Unlike the cross-validation fit, the MDR fit using three-way split validation identified
a larger three-way model of SNPs 4, 9, and 24 as the best model predictive of disease
status, which maximizes balanced accuracy in the validation set (Table 2). This model
estimates predictive ability with a validation accuracy of 73.03%. Notice, however, that
the results for the best two-way model, SNPs 4 and 9, are similar to the results of the
cross-validation fit.

After each MDR fit, we can visually display the results for the MDR final model,
including the particular pattern of interaction, using the method ‘plot’ (Figures 1 and
2). We can see which genotype combinations are high-risk for the cross-validation
(Figure 1) and three-way split (Figure 2) examples discussed here. Additionally, we can
perform other measures of post-hoc inference. For instance, suppose we are interested
in making disease predictions from the model fit with cross-validation. We can predict

Table 1 Summary table for MDR fit with 5-fold cross-validation

Level Best Classification Prediction Cross-Validation
Models Accuracy Accuracy Consistency
1 9 61.77 60.95 4
* 2 49 67.24 64.12 5
3 46 72.89 61.80 2
9

'*’ indicates overall best model
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Table 2 Summary table for MDR fit with three-way split validation

Level Best Training Accuracy Testing Accuracy Validation Accuracy
Models
1 4 56 67.95 53.78
2 4 9 67 71.79 65.86
* 3 4 9 24 74 78.61 73.03

'*’ indicates overall best model

disease status on a new, independent set of genotype data using the method ‘predict’,
and evaluate the quality of these predictions with our prediction error/accuracy esti-
mate. However, the dataset ‘mdrl’ was balanced with 125 cases and 125 controls,
reflecting a retrospective association study. Likely, disease prevalence is much less than
0.50 and we can use this knowledge to adjust our estimates of prediction error. Sup-
pose the simulated dataset is from a common, complex disease with a prevalence rate
of 0.10. We can update our prediction error estimate from the cross-validation fit
using bootstrap resampling (with b = 100 samples) or an algebraic adjustment as
follows:

> boot .error (mdrl,prev = 0.10, model = fit.cv$’final model’, hr
= fit.cv$’high-risk/low-risk’, b = 100)

High-Risk
Low-Risk
SNP9: 2 SNP9: 2 SNP9: 2
SNP4: 0 SNP4 - 1 SNP4 - 2
40 -
30 A -
20 H B
10 4 o
. [ -
SNPY - 1 SNPI - 1 SNPY - 1
SNP4: 0 SNP4 - 1 SNP4 : 2
. - 40
1= — 30
>
=
O - - 20
-1 - 10
SNPS: 0 SNP9: 0 SNP9: 0
SNP4 - 0 SHP4 - 1 SNP4 - 2
40 -
30 H =
20 -
10 -
[ — || [ |
Case Cantrol Case Control Case Caontrol
Figure 1 The result of a sample call to ‘plot’ after an MDR fit with 5-fold cross-validation on a
simulated dataset with 250 individuals genotyped at 25 SNPs.
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Figure 2 The result of a sample call to ‘plot’ after an MDR fit with three-way split on a simulated
dataset with 250 individuals genotyped at 25 SNPs.

S’classification error estimate’

[1] 47.792

S’classification accuracy estimate’

[1] 52.208

> mdr.ca.adj (mdrl, model = fit.cv$’final model’, hr = fit.cv
$’high-risk/low-risk’, prev = 0.10)

$’adjusted classification accuracy’

[1] 51.76

$’adjusted classification error’

[1] 48.24

After the prospective adjustment, we now estimate a prediction accuracy of around
52%, a reduction from the original retrospective estimate of 64.12%.

Computation Time
An important aspect of any new software package is computation time. We evaluate
the run time of our MDR software on datasets of three different sizes to provide the
user with benchmarks in terms of computation time. Dataset MDR1 contains a sample
of size n = 250 with p = 25 loci, dataset MDR2 contains a sample of size n = 250 with
p = 50 loci, and dataset MDR3 contains a sample of size n = 500 with p = 50 loci.
MDR with both 5-fold cross-validation and 3WS internal validation were performed
using the described R package. Default settings were used for all parameters and com-
binations of loci up to K = 3 were considered. Results are also compared with the Java
GUI version in Table 3. Results were executed on a PC with a 2.8 GHz dual-core pro-
cessor. Run time increases moderately with sample size and significantly with the num-
ber of loci, and 3WS internal validation is considerably faster than CV. Additionally,
the functions of ‘MDR’ are much slower than the Java GUI implementation.

The R computing environment is known to be much slower than competing lan-
guages such as C++ and Java, so the increased run-time as compared to the Java GUI
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Table 3 Sample run time in seconds for the package ‘MDR’ and for the GUI version

Time (seconds) "MDR’ 'MDR’ GUI
5-fold CV 3Ws

MDR1 (n = 250, p = 25) 22185 41.87 1.253

MDR2 (n = 250, p = 50) 1951.05 345.67 3.902

MDR3 (n = 500, p = 50) 213825 37542 6.329

implementation is not surprising or unreasonable (see http://dan.corlan.net/bench.
html). Increased computation time, particularly for high-dimensional data is a limita-
tion of R as compared to other programming languages. While a traditional R package
cannot compete with Java or C++ in terms of computation time, reducing computation
time is possible. For instance, parts of the R package source code could be written in
C. Furthermore, because many of the calculations of MDR are independent, many of
the looping constructs could be executed in parallel. Great strides have recently been
made in the areas of parallel computing in R, and this package could be extended to
include parallelization using a number of recently developed packages such as ‘foreach’,
‘doMC’, and ‘doSNOW’ (see http://cran.r-project.org/web/views/HighPerformance-
Computing.html). The use of parallel computing could drastically reduce computation
time for MDR, particularly on a cluster machine. Because of the variation in R usage
on single workstations, multiple workstations, and multi-node clusters, parallelization
is not currently implemented in this package. Additionally, there are memory limita-
tions to R in terms of high-dimensional datasets, which are typically experienced with
genetic data. Advances have been made in terms of increased memory, and the ‘big-
memory package allows the user to store and analyze large datasets. The open source
nature of the R environment and this package allow this flexibility for these types of
extensions.

Due to these limitations in the current implementation, without the aforementioned
extensions, the usefulness of this package is primarily reserved for smaller candidate
gene analysis and/or searches for low order models in larger scale candidate gene
searches in real data as well as methodological research. In real data analysis, the pack-
age is most suitable for a moderate number of loci to evaluate candidate interactions
rather than a genome-wide variable selection. Moreover, the R implementation allows
the user to integrate this data-mining analysis into more traditional statistical analyses.
In addition, because it’s written in such a flexible environment, the package allows for
easy extension of the MDR methodology for further research.

Conclusions

We introduce new software to implement the MDR method for variable selection of
epistatic interactions using the R statistical language. The package ‘MDR’ is designed
to provide an alternative implementation for R users, with great flexibility and utility
for both data analysis and research.

Availability and Requirements

Project name: R package, MDR
Project home page: http://cran.r-project.org/web/packages/MDR/index.html
Operating systems: Linux, Mac OS, Windows
Programming language: R
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Other requirements: R package, lattice
License: GNU GPL-2
Any restrictions to use by non-academics:
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