
Multiple regression is a widely used technique for data 
analysis in social and behavioral research (Fox, 1991; Hu-
berty, 1989). It is a method for determining the amount of 
variance of two or more predictor variables on a criterion 
variable. These predictor variables are often correlated, in-
creasing the complexity of interpreting results (Pedhazur, 
1997; Zientek & Thompson, 2006).

Stepwise regression is often used in educational and 
psychological research to evaluate the order of impor-
tance of variables and to select useful subsets of vari-
ables (Huberty, 1989; Thompson, 1995). Pedhazur (1997) 
suggested that stepwise regression methods provide re-
searchers with a methodology with which to determine a 
predictor’s individual meaningfulness as it is introduced 
into the regression model. However, stepwise regression 
can lead to serious Type I errors (Thompson, 1995), and 
the selection/entry order into the model can “drastically” 
misrepresent a variable’s usefulness (Kerlinger, 1986, 
p. 543).

Commonality analysis provides an effective alternative 
for determining the variance accounted for by respec-

tive predictor variables (Onwuegbuzie & Daniel, 2003; 
Rowell, 1996). Also called element analysis, common-
ality analysis was developed in the 1960s as a method 
of partitioning variance (R2) into unique and nonunique 
parts (Mayeske et al., 1969; Mood, 1969, 1971; Newton & 
Spurrell, 1967). This has important implications, because 
theory advancement and research findings’ usefulness

depend not only on establishing that a relationship 
exists among predictors and the criterion, but also 
upon determining the extent to which those indepen-
dent variables, singly and in all combinations, share 
variance with the dependent variable. Only then can 
we fully know the relative importance of indepen-
dent variables with regard to the dependent vari-
able in question [italics added]. (Seibold & McPhee, 
1979, p. 355)

However, commonality analysis can be a laborious pro-
cess. The present article provides an overview of com-
monality analysis and introduces an R program for easily 
calculating commonality coefficients.1
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or six independent variables, the number increases to 31 
and 63, respectively.

Some researchers have suggested factor or cluster 
analysis as a method of collapsing myriad variables into 
fewer, more manageable groups (Mood, 1969; Seibold & 
McPhee, 1979; Wisler, 1972, as cited by Rowell, 1991). 
However, Rowell (1991) also notes that this action defeats 
the purpose of commonality analysis, in that the ability to 
identify the most useful individual variable is lost.

Tables 1 and 2 list the equations required for three and 
four predictor variable commonality analyses.

These computations for commonality analysis are not 
included in any of the commonly available statistical soft-
ware packages (Onwuegbuzie & Daniel, 2003).2 As was 
illustrated above, the computation of unique and non-
unique variance is cumbersome, requiring that these series 
of formulas be written and applied to output from mul-
tiple computer-assisted statistical analyses through either 
(1) manual calculations or (2) assistance of a spreadsheet 
program (still requiring that the formulas and statistical 
analyses output be manually entered into the spreadsheet 
program). To simplify this process and make commonal-
ity analysis accessible to more researchers, a program was 
developed to automate the calculation of unique and com-
mon elements in commonality analysis.

Program Description
In order to facilitate data analysis and accessibility, the 

statistical package R was used. R is a free statistical pro-
gramming language and environment for the Unix, Win-
dows, and Mac families of operating systems (Hornik, 
2007). R is gaining popularity in the behavioral, educa-
tional, and social sciences, as evidenced in part by the re-
cent introduction of the Methods for Behavioral, Educa-
tional, and Social Sciences (MBESS) R package (Kelley, 
2006). Instructions for downloading and installing R, as 
well as other R documentation and resources, are available 
on the R-Project Internet homepage (R Development Core 
Team, 2007).

The commonality coefficient program is an R pack-
age based on Mood’s (1969) procedure for computing 
commonality analysis formulas for any number (k) of 

Calculation of Commonality Coefficients
The unique contribution (U) of a predictor variable is the 

proportion of variance of the dependent variable that is at-
tributed to it when it is entered last in a regression analysis. 
In other words, the unique contribution is the squared semi-
partial correlation between the predictor variable of interest 
and the dependent variable, after partialling out all the other 
predictor variables (Pedhazur, 1997). For example, in the 
regression case with two predictor variables, i and j,

  U(i)  R2
y.ij  R2

y.j  , (1)

  U( j)  R2
y.ij  R2

y.i  , (2)
and 
     C(ij)  R2

y.ij  U(i)  U( j) (3)

allow for the computation of the unique contribution of 
variable i[U(i)], the unique contribution of variable j[U( j)], 
and the commonality of variables i and j[C(ij)]. Substitut-
ing the right side of the first two equations for U(i) and 
U( j) in the right side of the third equation results in

 C(ij)  R2
y.ij  (R2

y.ij  R2
y.j)  (R2

y.ij  R2
y.i)

   R2
y.j  R2

y.i  R2
y.ij . (4)

The number of equations required for a commonality 
analysis is 2k  1 components, where k is the number of 
predictor variables in the regression analysis. Therefore, 
the complexity of commonality analysis increases expo-
nentially with the number of variables entered into the 
model. For example, in conducting a commonality analy-
sis with four independent variables, 15 unique and combi-
nations of variance accounted for are generated. With five 

Table 1 
Unique and Commonality Formulas 

for Three Predictor Variables

U(i) R2
y.ijk R2

y.jk

U( j) R2
y.ijk R2

y.ik

U(k) R2
y.ijk R2

y.ij

C(ij) R2
y.ik R2

y.jk R2
y.k R2

y.ijk

C(ik) R2
y.ij R2

y.jk R2
y.j R2

y.ijk

C( jk) R2
y.ij R2

y.ik R2
y.i R2

y.ijk

 C(ijk)  R2
y.i R2

y.j R2
y.k R2

y.ij R2
y.ik R2

y.jk R2
y.ijk 

Table 2 
Unique and Commonality Formulas for Four Predictor Variables

U(i) R2
y.ijkl  R2

y.jkl

U( j) R2
y.ijkl  R2

y.ikl

U(k) R2
y.ijkl  R2

y.ijl

U(l) R2
y.ijkl  R2

y.ijk

C(ij) R2
y.kl  R2
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y.ijkl

C(ik) R2
y.jl R2

y.ijl  R2
y.jkl  R2

y.ijkl

C(il) R2
y.jk  R2

y.ijk  R2
y.jkl  R2

y.ijkl

C( jk) R2
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The resultant lists are then processed to calculate the 
commonality coefficients. For each item on the list, the R2 
value is retrieved from the commonality matrix. All of the 
retrieved values are summed to produce the commonality 
coefficient. Each R2 value retrieved is added to the sum if 
the list entry is positive, or it is subtracted from the sum if 
the list entry item is negative.

The function outputs a list of two tables. The first table 
contains the list of commonality coefficients, as well as 
the percentage of variance associated with each effect. 
The second table provides a total of the unique and com-
mon effects for each independent variable.

Conducting a Commonality Analysis: 
A Practical Example

For illustrative purposes, data from the Holzinger and 
Swineford (1939) study are used to contextualize the dis-
cussion. The Holzinger and Swineford study consisted of 
26 tests administered to 301 students from Paster School 
and Grant-White School. These tests measured the stu-
dents’ spatial, verbal, mental speed, memory, and math-
ematical ability. These data were selected because of their 
logical utility for demonstrating the techniques discussed 
in this article and because the reader would also have the 
opportunity to generate the analysis.

Data from four tests in the Holzinger and Swineford 
(1939) study were utilized for the present analysis; these 
four tests and the rest of the complete data set are readily 
available in the MBESS R package. The simplest way to 
get MBESS is to use the “install package(s)” facility. Once 
the package is installed, the commands listed in Table 3 
will load the data set into the data editor and will attach 
the data set into the R search path so that variables can be 
directly accessed by simply giving their names.

Replicating Oxford and Daniel’s (2001) initial regres-
sion analysis, data from a paragraph comprehension test 
 (paragrap) was regressed on four verbal tests: (1) gen-
eral information (general), (2) sentence comprehen-
sion (sentence), (3) word classification (wordc), and 
(4) word meaning (wordm) to determine the extent to which 
verbal ability predicts paragraph comprehension (Table 4 
lists commands to accomplish this regression). Perfor-
mance on the four selected verbal tests explains 61.14% of 
the performance on the paragraph comprehension test.

Next, the commonality coefficient package was uti-
lized to perform a commonality analysis in order to an-
swer the following questions. (1) What percentage of 
the explained variance in paragraph comprehension is 
associated with unique effects (i.e., general information, 
sentence comprehension, word classification, and word 
meaning)? (2) What percentage of explained variance in 
paragraph comprehension is associated with first-order 

predictor variables. In Mood’s (1969) procedure, (1  x) 
was used to represent variables in the common variance 
subset, and (x) was used to represent variables not in the 
common variance subset. By negating the product of the 
variables in the subset and the variables not in the sub-
set, deleting the 1 resulting from the expansion of the 
product, and replacing x with R2, Mood (1969) noted that 
the formula for computing any commonality coefficient 
can be derived. For example, Formula 5 represents the 
variance common to the subset of Variables 1 and 3 out 
of four independent variables:

(1 x1)(1 x3)x2x4 

R2
1234  R2

124  R2
234  R2

24 .  (5)

The commonality coefficient program begins by creat-
ing a bit matrix containing a column for each commonality 
coefficient and a row for each independent variable. The 
number of independent variables determines the number 
of commonality coefficients (2k  1). Each column con-
tains the binary representation of the coefficient ID (1 to 
2k  1). The commonality coefficient ID also represents 
the associated common variance subset independent vari-
able IDs. For example, the variance common to the subset 
of Variables 1 and 3 out of four independent variables is 
associated with commonality coefficient 5.

Each column in the bit matrix is analyzed to conduct 
all possible regressions (2k  1) for the number of inde-
pendent variables. A one indicates that the independent 
variable is to be included in the regression formula. A zero 
indicates that the independent variable is to be excluded 
from the regression formula. Thus, if a column contains 
a one in Rows 1 and 2, along with zeros in all the other 
rows, the dependent variable would be regressed by Inde-
pendent Variables 1 and 2, yielding R2

y.x1x2
. The resulting 

R2 values are stored in a commonality matrix, indexable 
by the associated commonality coefficient ID.

To determine the R2 values to be used in computing a 
commonality coefficient Cn, the algorithm accesses the bit 
matrix at Column n (i.e., for C1, access Column 1). Each 
entry in the column represents the contribution for an inde-
pendent variable, where Row m represents the independent 
variable ID. A one indicates that the independent variable is 
in the common variance subset and is processed as (1  xm). 
A zero indicates that the independent variable is not in the 
common variance subset and is processed as (xm).

For each Cn, the index of R2 values is seeded with either 
(0, m) or (m) on the basis of whether the first indepen-
dent variable is or is not in the common variance subset. 
The list is then manipulated on the basis of the status of 
the remaining independent variables. Independent vari-
ables not in the common variance subset cause the list to 
be processed by a sequential arithmetic or of the absolute 
values of the entries on the list with the entry (m) and an 
exclusive or of their signs. Independent variables in the 
common variance subset cause the list to be concatenated 
with the results of sequential arithmetic or of the absolute 
values of the entries on the list with the entry ( m) and an 
exclusive or of their signs.

Table 3 
Commands to Load Data Set

Command 1: library(MBESS)

Command 2: data(HS.data)

Command 3: attach(HS.data)
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common effects. Notable exceptions were the sentence 
and wordm variables.

The second part of the table in the sample output (see 
Table 6) provides another view of the commonality ef-
fects. The unique effect for each predictor is tabularized, 
as well as the total of all common effects for which the 
predictor is involved. The last column is a sum of the 
unique and common totals. These totals can be compared 
alongside the B (unstandardized) weights resulting from 
the multiple regression to add another layer of consider-
ation when determining which variables are important to a 
regression equation (see Table 7). In this example, the re-
gression coefficients for the general and wordc vari-
ables are statistically insignificant. Although their unique 
contributions to the regression effect (.0039 and .0029) 
are consistent with these findings, combining these con-
tributions with their total involvement in common effects 
presents a different picture. In total, the general and 
wordc variables were involved with 70.85% and 55.41% 
of the explained variance (R2) in passage comprehension. 
Therefore, although these variables provided little unique 
contribution to the regression effect, they did share a sig-
nificant amount of variance with the regression effect.

Note that the percentage of variance explained by each 
variable generated from the commonality analysis can 
also be computed as a squared structure coefficient from 
a regression analysis, with identical results. A structure 
coefficient is the bivariate correlation between predic-
tor scores and the predicted values ( ŷ) resulting from 
a regression equation (Courville & Thompson, 2001; 
Thompson, 2006). A squared structure coefficient, there-
fore, represents the amount of variance that a predictor 
shares with the regression effect. For a given predictor 
(x), the squared structure coefficient can be computed 
using the formula

 
r

r

R
s

x y2
2
.

2
 

(6)

where r2
x.y  equals the square of the bivariate correlation 

between x and y, which can also be derived by summing 
x’s unique and common effects. The benefit of employ-
ing commonality analysis in conjunction with the analy-
sis of squared structure coefficients is that the researcher 

common effects (i.e., general information and sentence 
comprehension, general information and word classifi-
cation, sentence comprehension and word classification, 
general information and word meaning, sentence com-
prehension and word meaning, and word classification 
and word meaning)? (3) What percentage of explained 
variance in paragraph comprehension is associated with 
second-order common effects (i.e., general information, 
sentence comprehension, and word classification; general 
information, sentence comprehension, and word meaning; 
general information, word classification, and word mean-
ing; and sentence comprehension, word classification, 
and word meaning)? (4) What percentage of explained 
variance in paragraph comprehension is associated with 
the third-order common effect (i.e., general information, 
sentence comprehension, word classification, and word 
meaning)?

To perform the commonality analysis, functions in the 
commonality coefficient package were run with the com-
mands listed in Table 5. The resulting output is presented 
in Table 6. The first part of the table of the output presents 
the partitioning of the regression effect. Note that the total 
of the commonality coefficients is equal to the R2 from 
the regression analysis (i.e., .6114). The individual entries 
in the table can be used to determine how much variance 
is explained by unique effects, first-order common ef-
fects, second-order common effects, and so forth, as well 
as which coefficients contribute most to the regression 
effect. In this example, the third-order effect (.2637) con-
tributed 43.14% of the explained variance in paragraph 
comprehension (.6114). The second-order effect, involv-
ing the general, sentence, and wordm variables, 
provided 16.28% of the regression effect. The first-order 
effect, involving the sentence and wordm variables, 
provided 7.69% of the explained variance in paragraph 
comprehension. Finally, the sentence and wordm vari-
ables uniquely provided 8.79% and 5.54%, respectively, 
of the explained variance in paragraph comprehension. 
In total, these five effects account for over 81.44% of the 
explained variance in paragraph comprehension (note 
that this is 81.44% of the effect, not of the total variance 
in the dependent variable). These results indicate that a 
large amount of the regression effect was explained by 

Table 4 
Commands to Run Regression Analysis

Command 1:
 regr <- lm(paragrap ~ general + sentence + wordc + wordm)

Command 2:
 summary(regr)

Table 5 
Commands to Run commonalityCoefficients

Command 1:
 CCData=commonalityCoefficients(HS.data, “paragrap”, 
 list(“general”, “sentence”, “wordc”, “wordm”), “F”)

Command 2:
 print (CCData)
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monality coefficients in the multiple regression context. 
The R functions that make up the commonality coefficient 
package appear in the Appendix and can be obtained at 
no cost by contacting the corresponding author. It is the 
intention of the authors to continue development on this 
package. Further improvements could include updating 
the package to accommodate other multivariate analysis 
(e.g., canonical correlation) and converting the package 
so that it can be utilized with the Statistical Package for 
the Social Sciences (SPSS).
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APPENDIX 
Commonality Coefficient Package for R

#########################################################################
commonalityCoefficients <-function (dataMatrix, dv, ivlist, diag=F){
#########################################################################

##DESCRIPTION
##Returns a list of two tables.
##The first table (CC) contains the list of commonality coefficents and % of variance for each effect.
##The second table (CCTotalByVar) totals the unique and common effects for each independent variable.

##REQUIRED ARGUMENTS
##dataMatrix dataset containing the dependent and independent variables
##dv dependent variable named in the dataset
##iv list of independent variables named in the dataset

##OPTIONAL ARGUMENTS
##diag diagnostic flag - default to FALSE

##PSEUDO CODE
## Determine the number of independent variables (n).
## Generate an ID for each independent variable to 2^(n-1).
## For example, the ID of the 1st independent variable is 2^0 =1.
## Determine the number of commonality coefficients (2^n-1).
## Generate a bitmap matrix containing the bit representation of each commonality coefficient.
## Use the bitmap matrix to compute the R2 value for each combination of independent variables.
## Store the R2 value based on an index that is computed by ORing the IDs of the related IV.
## Use the bitmap matrix to generate the list of R2 values needed for each commonality coefficient.
## Use the list of R2 values to compute each commonality coefficient.
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## Calculate the % explained variance for each commonality coefficient.
## Use the bitmap matrix to generate row headings for the first output table.
## Use the bitmap matrix to total the commonality coefficient effects by variable.
## Return the list of two tables.

## Determine the number of independent variables.
ivlist <- unlist(ivlist)
nvar=length(ivlist)

## Generate an ID for each independent variable to 2^(n-1).
ivID <- matrix(nrow=nvar,ncol=1)
for (i in 0: nvar-1){
 ivID[i+1]=2^i
}
if (diag==“T”) print (ivID)
## Determine the number of commonality coefficients.
numcc=2**nvar-1

## Generate a matrix containing the bit representation of each commonality coefficient
effectBitMap<-matrix(0, nvar, numcc)
for (i in 1:numcc){
 effectBitMap<-setBits(i, effectBitMap)
}
if (diag==“T”) print (effectBitMap)

## Use the bitmap matrix to compute the R2 value for each combination of independent variables
## Store the R2 value based on an index that is computing by ORing the IDs of the related IVs.
commonalityMatrix <- matrix(nrow=numcc,ncol=3)
for (i in 1: numcc){
 formula=paste(dv,“~”, sep=“”)
 for (j in 1: nvar){
  bit = effectBitMap[j,i]
  if (bit == 1){
   formula=paste(formula,paste(“+”,ivlist[[j]], sep=“”), sep=“”)
  }
 }
 commonalityMatrix[i,2]<-summary(lm(formula,dataMatrix))$r.squared
}
if (diag==“T”) print (commonalityMatrix)

## Use the bitmap matrix to generate the list of R2 values needed.
commonalityList<-vector(“list”, numcc)
for (i in 1: numcc){
 bit = effectBitMap[1,i]
 if (bit == 1) ilist <-c(0,-ivID[1])
  else ilist<-ivID[1]
 for (j in 2: nvar){
  bit = effectBitMap[j,i]
  if (bit == 1){
   alist<-ilist
   blist<-genList(ilist,-ivID[j])
   ilist<-c(alist,blist)
  }
  else ilist<-genList(ilist,ivID[j])
 }
 ilist<-ilist*-1
  commonalityList[[i]]<-ilist
}
if (diag==“T”) print (commonalityList)

## Use the list of R2 values to compute each commonality coefficient.
for (i in 1: numcc){
 r2list <- unlist(commonalityList[i])
 numlist = length(r2list)
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 ccsum=0
 for (j in 1:numlist){
  indexs = r2list[[j]]
  indexu = abs (indexs)
  if (indexu !=0) {
   ccvalue = commonalityMatrix[indexu,2]
   if (indexs < 0)ccvalue = ccvalue*-1
   ccsum=ccsum+ccvalue
  }
 }
 commonalityMatrix[i,3]=ccsum
}
if (diag==“T”) print (commonalityMatrix)

## Calculate the % explained variance for each commonality coefficient.
orderList<-vector(“list”, numcc)
index=0
for (i in 1:nvar){
 for (j in 1:numcc){
  nbits=sum(effectBitMap[,j])
  if (nbits == i){
   index=index+1
   commonalityMatrix[index,1]<-j
  }
 }
}
if (diag == “T”) print (commonalityMatrix)

## Prepare first output table.
outputCommonalityMatrix <- matrix(nrow=numcc+1,ncol=2)
totalRSquare <- sum(commonalityMatrix[,3])
for (i in 1:numcc){
 outputCommonalityMatrix[i,1]<-round(commonalityMatrix[commonalityMatrix[i,1],3], digit=4)
 outputCommonalityMatrix[i,2]<-
round((commonalityMatrix[commonalityMatrix[i,1],3]/totalRSquare)*100, digit=2)
}
outputCommonalityMatrix[numcc+1,1]<-round(totalRSquare,digit=4)
outputCommonalityMatrix[numcc+1,2]<-round(100,digit=4)

## Use the bitmap matrix to generate row headings for the first output table.
rowNames=NULL
for (i in 1: numcc){
 ii=commonalityMatrix[i,1]
 nbits=sum(effectBitMap[,ii])
 cbits=0
 if (nbits==1) rowName=“Unique to “
  else rowName = “Common to “
 for (j in 1:nvar){
  if (effectBitMap[j,ii]==1){
   if (nbits==1)rowName=paste(rowName,ivlist[[j]],sep= “”)
   else {
    cbits=cbits+1
    if (cbits==nbits){
     rowName=paste(rowName,”and ”, sep=“”)
     rowName=paste(rowName,ivlist[[j]],sep=“”)
    }
    else{
     rowName=paste(rowName,ivlist[[j]],sep= “”)
     rowName=paste(rowName,”,”, sep=“”)
    }
   }
  }
 }
 rowNames=c(rowNames,rowName)
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}
rowNames=c(rowNames,”Total”)
rowNames<-format.default(rowNames,justify=“left”)
colNames<-format.default(c (“Coefficient”, “ % Total”), justify=“right”)
dimnames(outputCommonalityMatrix)<-list(rowNames,colNames)
if (diag ==“T”) print (outputCommonalityMatrix)

## Use the bitmap matrix to total the commonality coefficient effects by variable.
outputCCbyVar<-matrix(nrow=nvar,ncol=3)
for (i in 1:nvar){
 outputCCbyVar[i,1]=outputCommonalityMatrix[i,1]
 outputCCbyVar[i,3]=round(sum(effectBitMap[i,]*commonalityMatrix[,3]), digit=4)
 outputCCbyVar[i,2]=outputCCbyVar[i,3]-outputCCbyVar[i,1]
}
dimnames(outputCCbyVar)<-list(ivlist,c(“Unique”, “Common”, “Total”))

## Return the list of two output tables.
outputList<-list(CC=outputCommonalityMatrix, CCTotalbyVar=outputCCbyVar)
return (outputList)
}

#########################################################################
setBits<-function(col, effectBitMap) {
#########################################################################

##DESCRIPTION
##Creates the binary representation of n and stores it in the nth column of the matrix

##REQUIRED ARGUMENTS
##col   Column of matrix to represent in binary image
##effectBitMap Matrix of mean combinations in binary form

##Initialize variables
row<-1
val<-col
##Create the binary representation of col and store it in its associated column
##One is stored in col 1; Two is stored in col 2; etc.
##While (val >= 1)
## If the LSB of val is 1; increment the appropriate entry in combo matrix
## Shift the LSB of val to the right
 while (val!=0){
 if (odd(val)) {
  effectBitMap[row,col]=1
 }
 val<-as.integer(val/2)
 row<-row+1
}

##Return matrix
return(effectBitMap)
}

#########################################################################
odd<-function(val) {
#########################################################################
##DESCRIPTION
##Returns true if value is odd; false if true

##REQUIRED ARGUMENTS
##val      Value to check

##Returns true if val is odd
 if (((as.integer(val/2))*2)!=val) return(TRUE)
 return (FALSE)
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}

#########################################################################
genList<-function(ivlist, value){
#########################################################################

numlist = length(ivlist)
newlist<-ivlist
newlist=0
for (i in 1:numlist){
 newlist[i]=abs(ivlist[i])+abs(value)
 if(((ivlist[i]<0) && (value >= 0))|| ((ivlist[i]>=0) && (value <0)))newlist[i]=newlist[i]*-1
}
return(newlist)
}
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