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Abstract

Breast cancer is a common gynecological disease that poses a great threat to women health

due to its high malignant rate. Breast cancer screening tests are used to find any warning

signs or symptoms for early detection and currently, Ultrasound screening is the preferred

method for breast cancer diagnosis. The localization and segmentation of the lesions in

breast ultrasound (BUS) images are helpful for clinical diagnosis of the disease. In this

paper, an RDAU-NET (Residual-Dilated-Attention-Gate-UNet) model is proposed and

employed to segment the tumors in BUS images. The model is based on the conventional

U-Net, but the plain neural units are replaced with residual units to enhance the edge

information and overcome the network performance degradation problem associated with

deep networks. To increase the receptive field and acquire more characteristic information,

dilated convolutions were used to process the feature maps obtained from the encoder

stages. The traditional cropping and copying between the encoder-decoder pipelines were

replaced by the Attention Gate modules which enhanced the learning capabilities through

suppression of background information. The model, when tested with BUS images with

benign and malignant tumor presented excellent segmentation results as compared to other

Deep Networks. A variety of quantitative indicators including Accuracy, Dice coefficient,

AUC(Area-Under-Curve), Precision, Sensitivity, Specificity, Recall, F1score and M-IOU

(Mean-Intersection-Over-Union) provided performances above 80%. The experimental

results illustrate that the proposed RDAU-NET model can accurately segment breast

lesions when compared to other deep learning models and thus has a good prospect for clin-

ical diagnosis.

Introduction

Breast cancer, next to skin cancer is a disease which seriously endangers women health [1, 2].

With the development of modern medicine, if breast cancer is diagnosed early, the survival

rate of patients is greatly improved. The diagnosis of a breast tumor can be divided into
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invasive diagnosis and non-invasive diagnosis. Invasive diagnosis, which mainly refers to biop-

sies, causes physical damage to the tissues, whereas non-invasive diagnosis refers to the exami-

nation of the breast lesion area, using either X-ray, MRI(Magnetic Resonance Imaging) or

Ultrasound (US) imaging examination. Among various examinations, using US images, due to

its low radiation, low cost and real-time output capabilities have become a preferred choice for

breast tumor diagnosis.

Image segmentation in BUS images refers to extracting the region of interest (lesion) from

the normal tissue region. Fig 1 presents few BUS images with both benign and malignant

tumors and it is understood that morphology of the tumor varies significantly from the sur-

rounding tissues. This attribute forms the basis for localization and segmentation of tumors

using various Machine Learning and Deep Learning techniques. The quality of the segmenta-

tion directly affects the accuracy and reliability of the diagnosis results. Due to the nature of

the acquisition process, US images are affected by noise and other image artifacts’ that greatly

increase the difficulty of the segmentation process. Horsch et al. [3] proposed an algorithm for

BUS lesion segmentation, where the images were initially pre-processed for noise removal

using a median filter. Later the processed images were intensity inverted, multiplied with

Gaussian constraint function and thresholded to provide potential lesion boundaries by sup-

pressing distant pixels. Finally, Average radial derivative function aids as a utility function to

maximize the actual lesion margins. Although the threshold method is fast, parameters such as

the center, height, and width were required to be provided manually for better segmentation

results. Xu and Nishimura [4] proposed an algorithm for BUS segmentation using Fuzzy

C-Mean (FCM) clustering which required prior initialization of a number of clusters and the

noise tolerance level. These initializations were not generalized and depended on the experi-

ence, thereby affecting the overall segmentation result. Gomez et al. [5] proposed a method

similar to [3] for breast ultrasound lesions segmentation. Here CLAHE and Anisotropic diffu-

sion filter were successively used to enhance the contrast and reduce the speckle noise associ-

ated with BUS images. Then, the watershed transformation algorithm was used for finding

potential lesion boundaries which were further refined by the Average radial derivative func-

tion to determine the final contour of the lesion. An overlap ratio of about 86% was reported

by the authors. Daoud et al. [6] introduced a semi-automatic active contour model, which

required users to provide an initialization (circular contour) within the tumor. Later, statistical

parameters calculated based on the envelope signal-to-noise ratio was iteratively used to move

the coordinates of the initial contour towards the tumor boundary. However, the segmentation

outputs of the model largely depend on the initial contour. When the initial contour is not well

positioned, the ideal segmentation outputs were not achieved. virmani et al. [7] studied the

application of despeckling filtering algorithm in BUS image segmentation. The study included

(a) finding the optimum number of despeckle filters from an ensemble of 42 filters and (b)

evaluation of the segmentation outputs of the benign and malignant tumor. The first set of

experiments provided 6 optimum filters that retained the edges and features of the image.

Measures such as Beta metrics and Image Quality score were used to assess the performance of

the filters. Next, the speckle-removed BUS images were segmented by the edge-based active

contour model proposed by Chan and Vese [8]. The performance of the segmentation algo-

rithm was quantitatively evaluated using Jaccard index and qualitatively by the radiologists. It

was stated that the DPAD(detail preserve anisotropy diffusion) filter was able to obtain clini-

cally acceptable images. The proposed method was tested on 104 ultrasound tumor images (43

benign and 61 malignant) and an average Jaccard index of 79.52% was reported. Daoud et al.

[9] proposed a method based on super-pixels to segment the lesions in BUS images. To begin

with, the BUS image was decomposed into coarse hyper-pixels to obtain the initial contour of

the tumor and later the coarse pixels were refined to super-pixels to improve the final contour
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of the segmented tumor. The two-stage pipeline provided segmentation results which were

comparable to the ground truth. Panigrahi et al. [10] proposed a novel hybrid clustering tech-

nique comprising of Multi-scale Gaussian kernel induced Fuzzy C-means (MsGKFCM) and

Multi-scale Vector Field Convolution (MsVFC) to segment the region of interest within the

BUS images. Initially, the BUS images were preprocessed using speckle reducing anisotropic

diffusion technique [11] and then clustered as probable lesion segments using MsGKFCM.

Later cluster centers were presented as inputs to MsVFC to obtain the accurate lesion bound-

ary. The technique was tested on 127 US images and various performance measures were used

to evaluate the technique. Accordingly, the average values of Jaccard index and dice similarity

scores were 93.1% and 93.3% respectively. Zhuang et al. [12] proposed a fractal based tech-

nique to segment US images. Here the images of the carotid artery were enhanced using fuzzy

technique and later segmented using fractal length. It was reported that fractal length based

segmentation presented more accurate segmentation results than the fractal dimensions. The

technique presented high qualitative values of DSC, Precision, Recall and F1 score (0.9617,

0.9629, 0.9653 and 0.9641 respectively), together with a low value of APD (1.9316).

In recent years, with the continuous development of the convolutional neural networks

(CNN), semantic segmentation algorithms employing deep learning architectures have

become popular. These models combine both shallow and high-level features and thus provide

accurate results when compared to traditional algorithms which mainly depend on shallow

features. However, the application of deep learning in medical images is still in its infancy. Xu

et al. [15] proposed a method for BUS image segmentation using CNN. Volumetric (3D)

mammary US images were presented to CNN to segment the US images into four major tis-

sues: skin, fibrous gland, mass, and adipose. The idea was to treat the segmentation as a classi-

fication problem where every pixel is associated with a class label. Therefore, a large number of

BUS data samples are collected and the annotated images were trained on an 8 layered CNN

Fig 1. Benign and malignant tumors. (a) and (b) were obtained from Breast Ultrasound Lesions Dataset(Dataset B)
[13]. (c) and (d) were acquired from Gelderse Vallei Hospital in Ede, the Netherlands [14]. (e) and (f) were obtained
from the Imaging Department of the First Affiliated Hospital of Shantou University. It can be seen from these six
figures that there are obvious differences between the tumor morphology and the surrounding tissues.

https://doi.org/10.1371/journal.pone.0221535.g001
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model comprising of convolution, pooling, fully connected and the softmax layers. To provide

the classification, the softmax layer was modified to output a probability distribution array

with 4 elements, whose maximum value represented one of the four class labels. An F1 score of

above 80% was reported. Lian et al. [16] proposed the Attention guided U-Net model based on

U-Net architecture which incorporated attention masks for accurate iris segmentation. The

use of attention masks enabled the Atten-UNet to localize on the iris region instead of the

whole eye. The contracting path (encoder pipeline) of Atten-UNet presented the probable iris

bounding box coordinates which were then used as a mask to focus more on the iris region

thereby avoiding false segmentation outputs due to the background. The model was tested on

UBIRIS.v2 and CASIA-IrisV4- Distance dataset. The mean error rates achieved were 0.76%

and 0.38%, respectively. Xia and Kulis [17] proposed a fully unsupervised deep learning net-

work referred to as W-Net model. The model concatenates two U-Nets for dense prediction

and reconstruction of the segmentation outputs. Also, post-processing schemes, such as fully

connected Conditional Random Field and Hierarchical segmentation were successively

employed to provide accurate segmentation edges and merging of over-segmented regions

respectively. The model was evaluated on the Berkeley Segmentation Database (BSDS300 and

BSDS500). An overlap of 60% and 59% with respect to ground truth was reported for the two

datasets. Tong et al. [18] proposed a U-Net model to segment the pulmonary nodules in CT

images. Initially, the pulmonary parenchyma was obtained through binary segmentation fol-

lowed by the use of morphological operators. Later the segmented lung parenchyma is divided

into 64x64 cubes and introduced to a modified U-Net model comprising of residual modules

instead of plain neural units. The new model provided an improvement in the training speed

and also prevented over-fitting. The model presented better segmentation outputs when com-

pared to other segmentation algorithms such as Level set [19] and Graph-cut [20] techniques.

Here we propose an RDAU-NET (Residual Dilated Attention Gate) architecture to segment

the lesions in BUS images. Our contributions are as follows: (a) propose a model similar to

[21] where residual units replace the plain neural units in the encoder-decoder structure of the

U-Net structure to extract more features from the BUS image, (b) addition of dilated convolu-

tion model to the end of encoder pipeline to obtain semantic information from a large recep-

tive field and (c) inclusion of Attention Gate(AG) system, in the skip connection part of the

encoder-decoder section to suppress the irrelevant information and to effectively improve the

sensitivity and prediction accuracy of the model. Figs 2 and 3 illustrates a few of the test images

along with the segmentation results realized by the proposed model. The rest of the paper is

organized as follows. Section 2 describes the RDAU-NET network structure, Section 3 explains

the dataset and the augmentation technique adopted for training the RDAU-NET, Section 4

presents the experimental results followed by discussion and conclusion.

Methods

RDAU-NET network model structure

Our model is based on the U-Net architecture proposed by [22]. It has 6 residual units along

the encoder pipeline which extracts the relevant features from the BUS images. Each residual

unit includes a pooling operation and therefore presents a downsampled feature map at the

end of the encoder pipeline. The smaller feature maps tend to reduce the accuracy of the

semantic segmentation, and hence the outputs of the encoder pipeline are fed to a series of

dilated convolution module with 3x3 convolution kernels and dilation ratios of 1, 2, 4, 8, 16,

32 respectively. The module outputs feature maps computed from the large receptive field

which aid in improving the overall segmentation accuracy. Later, the features maps of dilated

convolution module are summed and fed into a decoder pipeline consisting of 5 residual
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units. The decoders assist in upsampling the feature maps by concatenating the detailed feature

outputs of the decoder with the corresponding high-level semantic information of the encoder.

Normally traditional U-Net [22] use copying and cropping technique to facilitate the learning

process, but we replace them with Attention Gate (AG) module which concentrates on learn-

ing the lesions rather than the unnecessary background. Further, the decoder pipeline restores

the segmentation outputs to input image resolution and the final 1x1 convolution module

presents the classification label of each pixel. Fig 4 illustrates the proposed RDAU-NET model

and the following sections explain each module in detail.

Residual network

With the increase in the number of layers, the network will have better learning ability as it

progresses. However, during training, as the network starts to converge, the accuracy gets satu-

rated and network performance degrades rapidly due to the problem referred to as the “van-

ishing gradients”. Therefore, we introduce residual units into the U-Net to avoid performance

degradation during the training process. He et al. [23] proposed a residual learning correction

Fig 2. Ultrasound breast tumor segmentation based on the RDAU-NETmodel.Here (a1)—(c1) were obtained
from Dataset B [13]. (a2), (b2), (c2) are gold standard and (a3), (b3), (c3) are the results of the RDAU-NET model
segmentation.

https://doi.org/10.1371/journal.pone.0221535.g002
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scheme to avoid performance degradation which is expressed in Eq (1)

y ¼ Fðx; fWigÞ þ x ð1Þ

Here x and y are the input and output vectors of the residual block andWi is the weight of

the corresponding layer. The function F(x, {Wi}) is the residual function which when added to

x proved easier to train and learn the features than learning directly from the input x. Also, Eq

(1) solved the “vanishing gradient” problem associated with deep networks. By taking the par-

tial derivative of y with respect to x(Eq (2)), we can understand that the partial derivative is

always greater than 1, and thus the gradient does not disappear with the increase of the num-

ber of layers.

@y

@x
¼ 1þ

@Fðx; fWigÞ

@x
ð2Þ

Fig 3. Ultrasound breast tumor segmentation based on the RDAU-NETmodel.Here(d1)was obtained from Dataset
B [13] and (e1) and (f1) were acquired from the Imaging Department of the First Affiliated Hospital of Shantou
University. Also(d2), (e2) and (f2) are gold standard and (d3), (e3), (f3) are the results of the RDAU-NET model
segmentation.

https://doi.org/10.1371/journal.pone.0221535.g003
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Normally F(x, {Wi}) and x have different dimensions and hence a correction termWs is

added to the input to match the dimension as shown in Eq (3).

y ¼ Fðx; fWigÞ þWsx ð3Þ

In the proposed RDAU-NET model, the inputs to the residual unit of encoder pipeline are

effectively convolved with a standard 3x3 kernel and the skip connection with the 1x1 kernel

Fig 4. RDAU-NETmodel structure. The numbers above the boxes (green) indicate that the size of the input along
with the number of channels. For example, 128x128 1 indicate the input resolution and the number of channels
respectively. The blue box represents the outputs from Attention Gate module.

https://doi.org/10.1371/journal.pone.0221535.g004
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(Ws) was used to match the dimensions of the residual function. A detailed structure of the

Residual unit employed in the encoder pipeline is shown in Fig 5(a). Here w x h corresponds

to the width and height of the input and b represents the number of channels. Further BN,

Relu, and S represent the batch normalization, activation function and the stride length (pool-

ing operation) respectively. Also, n denotes the number of filtering operations performed per

layer. In our model n takes values such as 64,128,256,512 and 512 corresponding to layers 2 to

6 of the encoder pipeline. It should be noted that the S is fixed to 2 for all the layers except for

the first residual unit where it is set to 1. The decoder pipeline consists of 5 residual units

which emulate the residual units of encoder section with S = ‘1’ to allow the input and output

to have the same resolution. Fig 5(b) illustrates the residual unit of the decoder pipeline. The

proposed RDAU-NET model avoids performance degradation issues and greatly reduces the

difficulty involved in training a deep network. Further, it effectively improves the feature learn-

ing ability and is beneficial for the extraction of complex feature patterns of BUS images, thus

improving the segmentation results significantly.

Dilation convolution

In CNN architectures, due to convolution and pooling operations, the network present feature

maps with less spatial information that affects the overall segmentation accuracy. Since the

encoder pipeline of the U-Net represents an FC-CNN (Fully Connected CNN), dilated

Fig 5. Residual units of encoder and decoder pipeline. (a) Residual units of encoder pipeline. Here w, h, and b
represent the width, height, and channels of the input feature map, respectively. BN is batch normalization. Relu is an
activation function and n is the number of filters. In the encoding process, the values of n are 64,128,256,512 and 512
for layers 2,3,4,5,6 respectively. (b)Residual units of decoder pipeline. Here values of n are 512, 256, 128, 64 and 32 for
layers 5,4,3,2,1 respectively.

https://doi.org/10.1371/journal.pone.0221535.g005
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convolution modules are often employed in U-Nets [24, 25] to improve the receptive field.

Eq (4) illustrates the dilated convolution operation between the input image f(x,y) and kernel

g(i,j).

zðx; yÞ ¼ sf
X

i;j

f ðxþ i� r; yþ j� rÞ � gði; jÞ þ bg ð4Þ

Here σ is Relu function, β is a biased unit, and r represents the dilation parameter that con-

trols the size of receptive fields. In general, the size of the receptive field can be expressed as:

N ¼ fðKsize þ 1Þ � ðr � 1Þ þ Ksizeg
2

ð5Þ

Where Ksize is the size of the convolution kernel, r is the dilation parameter, and N is the size of

the receptive field, which is illustrated in Fig 6.

In the RDAU-NET model the feature maps of size 4x4 obtained at the end of the encoder

pipeline are fed into a series of dilated convolution modules with r = 1,2,4,8,16,32 and N = 3x3,

7x7, 15x15, 31x31, 63x63 and 127x127 respectively and the outputs of the six convolutions are

added, upsampled (by a factor of 2) and then fed into the decoder pipeline as shown in Fig 4. It

should be noted that in the dilation convolution module, output feature maps have the same

size as that of inputs but contain information from a wide range of receptive fields which

greatly improves the feature learning ability of the network as illustrated in Fig 7.

Attention Gate (AG) module

Although dilated convolutions improve the feature learning ability of the network, still there

are difficulties in reducing the false predictions of small objects that have large shape variations

[26]. This is mainly due to the loss of spatial information in the features maps obtained at the

end of the encoder pipeline. In order to improve the accuracy, the existing segmentation

framework schemes [27–29] rely on the addition of object positioning models to simplify the

task obtaining the spatial attributes. Oktay et al. [26] proposed the attention U-Net network,

which integrated the AG module into the U-Net model to realize spatial localization and

Fig 6. Illustration of receptive fields for r = 1 and r = 2. (a) and (b) illustrate the visual field of a 3x3 convolution
kernel with r = 1 and r = 2 respectively. When r = 2, though the kernel parameters remain the same, the receptive field
has increased to 7x7 (shown as the orange and blue parts in(b)) when compared to traditional convolution (r = 1, as
shown in the blue part of (a)). Therefore the dilation process increases the size of the receptive field and compensates
for the subsampling.

https://doi.org/10.1371/journal.pone.0221535.g006
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subsequent segmentation. The AGmodule eliminated the need for training multiple models

which required a large number of additional training parameters. In addition, compared to the

positioning model used in multi-level U-Net network, the AGmodule gradually suppresses

the feature response in the irrelevant background regions and strengthens the learning ability

of foreground [30].

The AG model derives attention coefficients that aid in improving the segmentation accu-

racy. Here the coefficients are computed by combining “rich feature maps with low spatial

information” obtained from the upsampled decoder layers with the high-level semantic out-

puts of the corresponding encoder layer. Once the gating coefficients are computed, they are

element-wise multiplied with the encoder output to retain the significant activation [31]. The

structure of the AG module is shown in Fig 8 and the attention coefficients are computed as

Fig 7. Illustration of the dilated convolution module.Here the dilation parameter r = 2, the stride size S = 1, the
input feature map is 4x4, kernel size is 3x3 and receptive filedN is 7x7. After processing using dilated convolution, the
size of the original feature map remains the same but the receptive fields increases while keeping the parameters of the
model intact.

https://doi.org/10.1371/journal.pone.0221535.g007

Fig 8. Schematic diagram of the Attention Gate (AG).

https://doi.org/10.1371/journal.pone.0221535.g008
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based in Eqs (6) and (7)

a ¼ s
2
fWk½Wintðs1

ðWh � hþWg � g þ bh;gÞÞ þ bint� þ bkg ð6Þ

s
2
ðxÞ ¼

1

1þ expð�xÞ
ð7Þ

Here α 2 [0, 1] denote the computed attention coefficients, g and h represent the feature

maps presented to the inputs of AG module from the decoder and encoder pipelines respec-

tively andWg,Wh,Wint,Wk indicate the convolution kernels. We choose the kernel size as 1x1

to reduce the number of training parameters and the computational complexity. Also σ2 is sig-

moid activation function which limits the range between 0 and 1 and σ1 is the Relu function.

Here sigmoid was chosen over softmax since it provided dense activations at the output [26].

AG module outputs the constructive features through elementwise multiplication of α with

the corresponding encoder layer output as given by Eq (8).

houtput ¼ a� h ð8Þ

The output of the AG module (houtput) filters out the irrelevant context information and

aggravate the useful feature information that effectively improves the sensitivity and prediction

accuracy of the model. Further, when compared to [31], since the h and g are of the same reso-

lution, our AGmodule eliminates the need for the computationally intensive interpolation

operation and thus operate faster with less memory requirement.

Materials

Data collection

This study considered a total of 1062 BUS images obtained from three different sources: (a)

GelderseVallei Hospital in Ede, the Netherlands [14], (b) First Affiliated Hospital of Shantou

University, Guangdong Province, China, and (c) BUS images obtained from Breast Ultra-

sound Lesions Dataset (Dataset B) [13]. The performance evaluation was based on cross-vali-

dation where the training set was used to train the proposed RDAU-NET model and the

validation set was considered for fine-tuning the parameters. The optimized model was tested

for segmentation performance and generalization ability using the samples of the testing set.

For training and validation, we used the BUS images from [14]. The training and validation set

contained 730 and 127 samples respectively. The test set consisted of 205 samples comprised

of 163 BUS images obtained from Dataset B [13]and 42 BUS images provided by the Imaging

Department of the First Affiliated Hospital of Shantou University. The BUS images obtained

from Shantou First Affiliated Hospital were acquired using the GE Voluson E10 Ultrasound

Diagnostic System(L11-5 50mm broadband linear array transducer, 7.5MHz frequency) The

training, validation and the test images contained both malignant and benign BUS lesions.

The RDAU-NET structure proposed in the work uses Keras (2.1.6) framework and calls Ten-

sorflow (1.11.0). The entire model was executed using GPU TITAN XP with operating system

Ubuntu version 14.04, CUDA version 9.0, cuDNN version of 7.1.2 and graphics card’s mem-

ory of 12GB.

Data processing

To accomplish the task of cross-validation on the dataset, the training dataset had to be labeled.

The BUS images from [14] were manually segmented and labeled(ground truth) by the

Lesion Segmentation in BUS images via RDAU-NET

PLOSONE | https://doi.org/10.1371/journal.pone.0221535 August 23, 2019 11 / 23

https://doi.org/10.1371/journal.pone.0221535


specialist with more than 7 years of experience at the First Affiliated Hospital of Shantou Uni-

versity. To achieve a good segmentation under the limited number of training samples, data

augmentation [32] was performed to expand the training data set. Here we first merge the

BUS images and their ground truths together and then perform four affine transformations

(shift along the vertical axis, shift along the horizontal axis, shear transformation and flipping

about the horizontal plane) to obtain a new transformed image. Later the transformed image

and its new ground truth are separated and appended to the training set as additional training

images. Thus 730 images of the training set were expanded to obtain 2919 images. The data

augmentation process is pictorially illustrated in Fig 9.

Results and discussion

Two separate experiments were performed to illustrate the effectiveness of the proposed

RDAU-NET model: (a) The best input image resolution that can provide a good qualitative

and quantitative segmentation results when used with RDAU-NET model (b) Performance

evaluation of the segmentation outputs of RDAU-NET model over FCN8s, FCN16s [33],

U-Net [22], SegNet [34], Residual U-Net [35], Squeeze U-Net [36], Dilated U-Net [37],

RAU-NET (Residual-Attention-UNet), DAU-NET(Dilated-Attention-UNet), and RDU-NET

(Residual-dilated-UNet), The performance of the segmentation outputs was evaluated using

the 9 evaluation indices: Accuracy(Acc), Precision(Pc), Recall, Dice coefficient(DC), Mean-

Intersection-Over-Union(M-IOU), Area-Under-Curve(AUC), Sensitivity(Sen), Specificity

(Sp) and F1score(F1). These performance indicators were computed as follows:

1. Dice coefficient [38]: It represents the degree of similarity between the segmented output

of the proposed model and the gold standard. The higher the similarity between the tumor

region and the gold standard, the greater is the Dice coefficient and better the segmentation

result. The Dice coefficient is calculated as,

Dice CoefficientðDCÞ ¼
2� ðX \ YÞ

ðX þ YÞ
ð9Þ

Also, the dice coefficient loss (Dice_loss) is the loss and is computed as follows.

Dice Coefficient LossðLossÞ ¼ 1:0�
2� ðX \ YÞ

ðX þ YÞ
ð10Þ

where, X is the gold standard, which is the average result marked by two clinical experts, Y

Fig 9. Data augmentation illustrating horizontal flipping to expand the training dataset.

https://doi.org/10.1371/journal.pone.0221535.g009
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is the tumor area segmented by the model and X \ Y represents the area of overlap between

the gold standard and the segmented output of the model.

2. Mean-Intersection-over-Union(M-IOU) [39]: is defined as the average ratio between the

intersection and union of the gold standard and the segmented output of the model. It

provides a measures coincidence between the gold standard and the segmented output of

proposed the model. Higher the coincidence, greater is the M-IOU and better is the seg-

mentation accuracy M-IOU is expressed as follows. Where N is the number of IOU.

IOU ¼
X \ Y

X [ Y
ð11Þ

M�IOU ¼

PN

i¼1
IOUi

N
ð12Þ

3. Performance indicators that are obtained from the confusion matrix: The Accuracy, Preci-

sion, Sensitivity, Specificity, and F1 score. These are associated with true positive (TP), true

negative (TN), false positive (FP) and false negative (FN) of the confusion matrix. Here we

have explained them in the Table 1. TP, FP, FN and TN are the numbers of pixels corre-

sponding to the four categories and the formula of performance indicators is shown in

Table 2.

4. The area under the curve (AUC): AUC is the area under the receiver operating characteris-

tic (ROC) curve. It represents the degree or the measure of separability and indicates the

capability of the model in distinguishing the classes. Higher the AUC better is the segmen-

tation output and hence the model.

Qualitative and quantitative analysis of the RDAU-NETmodel for
different input image resolutions

As a preliminary experiment, the segmentation task on BUS images was performed with 4 dif-

ferent network input sizes of 64x64, 96x96, 128x128 and 256x256 pixels. During the experi-

ment, the number of training epochs was set to 300 and the batch size for 64x64, 96x96,

Table 1. Definition of the abbreviations.

Category Actual lesion Actual non-lesion

Predicted lesion True Positive(TP) False Positive(FP)

Predicted non-lesion False Negative(FN) True Negative(TN)

https://doi.org/10.1371/journal.pone.0221535.t001

Table 2. The formula of performance measure.

Performance Measure Formula Description

Accuracy(Acc) TPþTN
TPþFPþFNþTN

A ratio of the number of correctly predicated pixels to the total number of pixels in the image

Precision(Pc) TP
TPþFP

A ratio of the number of correctly predicated lesion pixels to the total number of predicted lesion pixels

Recall/sensitivity(Sen) TP
TPþFN

A ratio of the number of correctly predicated lesion pixels to the total number of actual lesion pixels

F1score(F1) 2� Precision�Sensitivity

PrecisionþSensitivity
A measure for the accuracy

Specificity(Sp) TN
TNþFP

A ratio of the number of correctly predicated non-lesion pixels to the total number of actual non-lesion pixels

https://doi.org/10.1371/journal.pone.0221535.t002
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128x128 was selected as 32 while the batch size of 256x256 was 16. The batch sizes were mainly

chosen to reduce the computational overhead and satisfy the memory requirements. The seg-

mentation results of the experiment are shown in Fig 10 and Table 3 illustrates the perfor-

mance metrics computed using Eqs (9) to (12) and Table 2. From Fig 10(a) to Fig 10(f), it can

be seen intuitively that the best automatic segmentation results were obtained for the input

image size of 128x128 pixels (Fig 10(e)). Also, the performance metrics (Table 3) emphasize

that the maximum values are obtained for the input size of 128x128 pixels. In terms of compu-

tation time, though the inputs of size 64x64 pixels presented the least time, their segmentation

results were not accurate. Therefore, the experiments were on focused on using 128x128 as the

input image resolution for further evaluations and comparisons.

Performance evaluation of the segmentation outputs of the RDAU-NET
with other models

Qualitative comparison with other models. For the qualitative performance comparison,

the segmentation results of FCN8s, FCN16s, SegNet, U-Net, Residual U-Net, Squeeze U-Net,

Dilated U-Net, RAU-NET, DAU-NET, RDU-NET, and RDAU-NET models are presented in

Figs 11–13. In all these cases the input images that were tested were of size 128x128 and seg-

mented outputs are of the same size.

Fig 10. Sample image fromDataset B [13]. (a) image of malignant invasive ductal carcinoma. (b) Gold standard. (c-f)
are the results of segmentation for input sizes are 64x64, 96x96, 128x128, and 256x256 respectively.

https://doi.org/10.1371/journal.pone.0221535.g010

Table 3. Quantitative evaluation of BUS images of different input sizes.

Input Size Loss Acc DC Sen Sp F1 Pc M-IOU AUC Train(min)

64 × 64 0.2033 0.9758 0.7966 0.7921 0.9914 0.7968 0.8471 0.7863 0.9094 75

96 × 96 0.1713 0.9775 0.8286 0.8232 0.9920 0.8291 0.8669 0.8019 0.9186 105

128 × 128 0.1530 0.9791 0.8469 0.8319 0.9934 0.8478 0.8858 0.8067 0.9227 140

256 × 256 0.1664 0.9668 0.8335 0.8208 0.9935 0.8403 0.8807 0.7992 0.9147 435

https://doi.org/10.1371/journal.pone.0221535.t003
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Fig 11. Segmentation outputs for the BUS images from the test dataset. The test dataset was obtained from Dataset B. Fig 11(a
—d) illustrate the results for test images obtained from Dataset B. (a1), (b1), (c1), (d1) are the gold standard. (a2)—(a12), (b2)—
(b12), (c2)—(c12), (d2)—(d12) are the segmentation results from RDAU-NET, FCN8s, FCN16s, SegNet, U-Net, Residual U-Net,
Squeeze U-Net, Dilated U-Net, RAU-NET, DAU-NET, RDU-NET respectively.

https://doi.org/10.1371/journal.pone.0221535.g011
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Fig 12. Segmentation outputs for the BUS images from the test dataset. The test dataset was obtained from Dataset B. Fig 12(e
—h) illustrate the results for test images obtained from Dataset B. (e1), (f1), (g1), (h1) are the gold standard. (e2)—(e12), (f2)—
(f12), (g2)—(g12), (h2)—(h12) are the segmentation results from RDAU-NET, FCN8s, FCN16s, SegNet, U-Net, Residual U-Net,
Squeeze U-Net, Dilated U-Net, RAU-NET, DAU-NET, RDU-NET respectively.

https://doi.org/10.1371/journal.pone.0221535.g012
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Fig 13. Segmentation outputs for the BUS images from the test dataset. The test dataset was obtained from the Imaging
Department of the First Affiliated Hospital of Shantou University. Fig 13(i—L) represents the outputs for the test images
acquired from Imaging Department of the First Affiliated Hospital of Shantou University. (i1), (j1), (k1) and (L1) are the gold
standard. (i2)—(i12), (j2)—(j12), (k2)—(k12) and (L2)—(L12) are the segmentation results from RDAU-NET, FCN8s, FCN16s,
SegNet, U-Net, Residual U-Net, Squeeze U-Net, Dilated U-Net, RAU-NET, DAU-NET, RDU-NET respectively.

https://doi.org/10.1371/journal.pone.0221535.g013
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The qualitative comparison presents the following conclusions:

1. The segmentation results of FCN8s and FCN16s are rough, with details being neglected,

especially at the edges which show jagged contours leading to poor segmentation outputs.

2. Squeeze U-Net, RAU-NET, DAU-NET, RDU-NET present segmentation outputs better

than SegNet and U-Net models.

3. The RDAU-NET model presents visually better segmentation results than other models

and the final segmentation outputs are close to the gold standards. Also, the segmentation

outputs of RDAU-NET model are superior when compared to Residual U-Net and Dilated

U-Net.

Further, Figs 14–16 presents the performance curves obtained during the simulation the

RDAU-NET during training, validation and testing process.

Quantitative comparison with other models. For the quantitative evaluation, a compari-

son was performed based on Eqs (9) to (12) between the segmented results of the proposed

model and those obtained for the FCN8s, FCN16s, SegNet, U-Net, Residual U-Net, Squeeze

U-Net, Dilated U-Net, RAU-NET, DAU-NET, RDU-NET, and RDAU-NET. The evaluation

results are tabulated in Table 4.

Fig 14. RDAU-NET performance indicators for training, validation.Here the plots (a—d) represent the performance metrics during training
and validation.

https://doi.org/10.1371/journal.pone.0221535.g014
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The quantitative comparison presents the following conclusions from Table 4:

1. The segmentation performance of traditional U-Net is better than FCN8s, FCN16s, SegNet.

2. The segmentation results are comparatively better for Residual U-Net, Squeeze U-Net, and

Dilated U-Net when compared with traditional U-Net. The improvement can be attributed

to additional modules that are integrated into U-Net architecture.

3. In most of the evaluation parameters, the proposed RDAU-NET outperforms other models,

and thus combing the three modules (Residual unit, Dilation unit, and Attention Gate) has

provided accurate segmentation of lesions in BUS images.

Conclusion

Though U-Net is a widely used model in medical image segmentation, it has not achieved

the expected outcomes in BUS tumor segmentation. This is mainly due to the high noise,

low contrast and weak boundary of ultrasound images. Therefore to achieve accurate seg-

mentation, the model requires more powerful feature extraction and classification abilities.

The new model, RDAU-NET proposed in the paper employed residual units dilated convo-

lution and attention gate system top effectively segment the tumor region in BUS images.

Fig 15. RDAU-NET performance indicators for training, validation.Here the plots (e—h) represent the performance metrics during training
and validation.

https://doi.org/10.1371/journal.pone.0221535.g015
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The experimental results show that the RDAU-NET model can accurately and efficiently

segment the tumor region, and the final test results are superior to the traditional convolu-

tion neural network segmentation models, and hence has a great prospect for clinical

application.

Fig 16. RDAU-NET performance indicators for training, validation, and testing.Here the plots (i) represent the performance metrics during
training and validation and plots (j and k) specify the performance during testing: Fig 16(j) denotes ROC curve and AUC with respect to True
Positive Rate and False Positive Rate and Fig 16(k) illustrate the AUC in relation to Precision and Recall.

https://doi.org/10.1371/journal.pone.0221535.g016

Table 4. Quantitative segmentation results for different models based on the testing dataset.

Experimental Model Loss Acc DC Sen Sp F1 Pc M-IOU AUC

FCN8s 0.3676 0.9530 0.6323 0.7040 0.9729 0.6333 0.6085 0.7013 0.9500

FCN16s [33] 0.4507 0.9348 0.5492 0.7018 0.9528 0.5498 0.4842 0.6642 0.9147

SegNet [34] 0.1829 0.9752 0.8170 0.8395 0.9883 0.8171 0.8141 0.7914 0.9276

U-Net [22] 0.1795 0.9757 0.8204 0.8466 0.9891 0.8211 0.8185 0.7983 0.9269

Residual U-Net [35] 0.1746 0.9778 0.8253 0.8165 0.9930 0.8255 0.8670 0.7933 0.9181

Squeeze U-Net [36] 0.2077 0.9745 0.7922 0.7801 0.9909 0.7924 0.8425 0.7863 0.9301

Dilated U-Net [37] 0.1905 0.9740 0.8094 0.8433 0.9877 0.8098 0.8084 0.7784 0.9487

RAU-NET 0.1925 0.9768 0.8074 0.7847 0.9929 0.8081 0.8680 0.8023 0.9070

DAU-NET 0.1576 0.9781 0.8423 0.8392 0.9925 0.8431 0.8659 0.8035 0.9210

RDU-NET 0.1650 0.9784 0.8349 0.8107 0.9936 0.8356 0.8896 0.8087 0.9148

RDAU-NET 0.1530 0.9791 0.8469 0.8319 0.9934 0.8478 0.8858 0.8067 0.9227

https://doi.org/10.1371/journal.pone.0221535.t004
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