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Abstract. Recently, actor-critic methods have drawn much interests
in the area of reinforcement learning, and several algorithms have been
studied along the line of the actor-critic strategy. This paper studies
an actor-critic type algorithm utilizing the RLS(recursive least-squares)
method, which is one of the most efficient techniques for adaptive signal
processing, together with natural policy gradient. In the actor part of
the studied algorithm, we follow the strategy of performing parameter
update via the natural gradient method, while in its update for the critic
part, the recursive least-squares method is employed in order to make
the parameter estimation for the value functions more efficient. The stud-
ied algorithm was applied to locomotion of a two-linked robot arm, and
showed better performance compared to the conventional stochastic gra-
dient ascent algorithm.

1 Introduction

Recently, actor-critic methods have drawn much interests in the areas of rein-
forcement learning, and several algorithms have been studied along the line of
the actor-critic strategy. In the actor-critic methods, a separate memory struc-
ture is used to explicitly represent the policy independent of the value functions,
and the policy structure is known as the actor, because it is used to select
actions, while the part handling estimated value functions is called the critic,
because it criticizes the actions made by the actor [1]. Among the various imple-
mentations of the actor-critic algorithms, particularly pertinent to this paper is
the results on the natural actor-critic algorithm [2], which show that the actor-
critic algorithm using the natural policy gradient is significantly better than
other algorithms belonging to greedy methods or vanilla policy gradient meth-
ods, and can be a promising route to develop a reinforcement learning method
for truly high-dimensional state-action systems. In this paper, we address the
problem of modifying the natural actor-critic algorithm of [2] toward the use
of the RLS(recursive least-squares) method, which is one of the most efficient
techniques for adaptive signal processing, to estimate the critic parameters recur-
sively, and also apply the resulting algorithm, which will be called the RLS-based
natural actor-critic algorithm in this paper, to locomotion of a two-linked robot
arm. A previous work on the use of the RLS method for reinforcement learning is
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the so-called RLS-TD(λ) [3], which shows how to convert existing reinforcement
learning algorithms to recursively updated versions utilizing the RLS method.

The remaining parts of this paper are organized as follows: In Section 2, after
briefly describing about the actor part of the natural actor-critic algorithm,
we report on how the recursive least-squares method can be employed for the
estimation of the critic parameters. Section 3 shows the applicability of the RLS-
based natural actor-critic algorithm via an example dealing with locomotion of
a two-linked robot arm. Finally, in Section 4, concluding remarks are given.

2 RLS-Based Natural Actor-Critic Method

In this paper, we consider a discounted reward reinforcement learning problem [1]
with states s ∈ S, actions a ∈ A, rewards r ∈ �, and time steps t ∈ {0, 1, 2, · · ·},
in which a learning agent interacts with an MDP(Markov decision process). As
usual, the environment’s dynamics are characterized by state transition proba-
bilities p(s′|s, a)

�
= Pr{st+1 = s′|st = s, at = a}, and expected rewards r(s, a)

�
=

E{rt|st = s, at = a}. The objective of the learning agent is to pursue a policy

that can maximize the discounted sum of rewards J(π)
�
= E{

∑∞
k=0 γkrk|s0, π},

where γ ∈ (0, 1) is the discount rate, rk is the immediate reward observed after
the state transition from state sk to sk+1, s0 is a designated start state, and
π denotes the policy from which actions are chosen. In general, the policy is
described as a conditional probability π(a|s) �

= Pr{at = a|st = s}. Note that by

introducing the state value function V π(s)
�
= E{

∑∞
k=0 γkrt+k|st = s, π}, the ac-

tion value function Qπ(s, a)
�
= E{

∑∞
k=0 γkrt+k|st = s, at = a, π}, together with

the so-called discounted state distribution [4] dπ(s)
�
=

∑∞
k=0 γkPr{sk = s|s0, π},

we can rewrite the objective function in the following form1:

J(π) = V π(s0) =
∑

a

π(a|s0)Qπ(s0, a) =
∑

s

dπ(s)
∑

a

π(a|s)r(s, a).

The real essence of the actor-critic methods is in using separate parametrized
families for the policy distribution π(a|s) and approximators for the value func-
tions. In the following, we describe the actor part updated via the natural gra-
dient method [2], and then address on how the recursive least-squares method
can be employed for the estimation of its critic part parameters. The resultant
algorithm will be applied to the locomotion of a two-linked robot arm later in
this paper.

2.1 Actor

The main role of the actor is to generate actions via a parametrized family.
At each state s ∈ S, an action a ∈ A is drawn in accordance with the condi-
tional distribution πθ(a|s), where θ is the parameter vector characterizing the
1 Dealing with continuous states and actions requires the corresponding summations

changed into integral representation. Throughout this paper, the summation repre-
sentation is used for notational simplicity.
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distribution. Thus, the objective we seek to maximize can be written as follows:
J(π) = J(θ) =

∑
s dπθ (s)

∑
a πθ(a|s)r(s, a). One of the convenient strategies for

seeking the best distribution parameter θ is to utilize the direction of ∇θJ(θ),
which is often called the policy gradient. Utilizing the famous policy gradient
theorem [4], [5] along with the equality

∑
a ∇θπ(s, a) = 0 for ∀s ∈ S, the policy

gradient can be written as follows:

∇θJ(θ) =
∑

s dπθ (s)
∑

a ∇θπθ(a|s)Qπθ (s, a)
=

∑
s dπθ (s)

∑
a ∇θπθ(a|s)(Qπθ (s, a) − V πθ (s))

=
∑

s dπθ (s)
∑

a πθ(a|s)∇θ log πθ(a|s)Aπθ (s, a),
(1)

where Aπθ (s, a)
�
= Qπθ (s, a)−V πθ (s) is the advantage value function which gives

the advantage of action a over the average value in a state s. According to a
remarkable observation introduced in [4] and [5], the advantage value function
Aπθ (s, a) can be replaced by the so-called compatible approximator2

Ãw(s, a)
�
= ∇θ log πθ(a|s)T w (2)

without affecting the unbiasedness of the gradient estimate. Note that the com-
patible approximator Ãw(s, a) is linear with respect to the parameter vector w.
Based on equations (1) and (2), we see that a desirable function form for an
estimate of the policy gradient can be given as follows:

∇θJ(θ) =
∑

s dπθ (s)
∑

a πθ(a|s)∇θ log πθ(a|s)Aπθ (s, a)
≈

∑
s dπθ (s)

∑
a πθ(a|s)∇θ log πθ(a|s)Ãw(s, a) = F (θ)w,

where F (θ)
�
=

∑
s dπθ (s)

∑
a πθ(a|s)∇θ log πθ(a|s)∇θ log πθ(a|s)T . Among a va-

riety of powerful gradient based algorithms, one of the most efficient tools for up-
dating the parameter vector θ of πθ(a|s) would be the natural gradient method
[6]. When an objective function is of the form L(θ) =

∑
s p(s)l(s, θ), where

p(s) is a probability mass function, and its gradient ∇θL(θ) is given, the nat-
ural gradient of L, which is denoted by ∇̃L(θ), equals the steepest ascent in

a Riemannian space with respect to the Fisher information metric G(θ)
�
=∑

s p(s)∇θ log p(s)∇θ log p(s)T , i.e., ∇̃θL(θ) = G−1(θ)∇θL(θ). In a recent re-
markable paper of Peters et al. [2], it was shown that for the reinforcement
learning problem, matrix F (θ) is exactly the same with the Fisher information
matrix, thus the natural gradient of J(θ) can be estimated using the following:
∇̃θJ(θ) = G−1(θ)∇Jθ(θ) ≈ G−1(θ)F (θ)w = w. This result enables us to update
the actor parameter θ via the following simple rule:

θ ← θ + α∇̃θJ(θ) ≈ θ + αw, (3)

where α > 0 is the learning rate. Note that the actor part described above
is that of the natural actor-critic algorithm in [2]. Also, note that in practical
applications of the update rule (3), the use of upper bound for the magnitude of
each actor parameter may be often desirable.
2 In this paper, we assume that the policy distribution πθ is such that the gradient

∇θ log πθ(a|s)T is well-defined.
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2.2 Critic

As mentioned before, the essence of the actor-critic methods is in using sepa-
rate parametrized families for the actor part which is represented by the policy
distribution πθ(a|s), and the critic part which is represented by value func-
tions. For the parametrized families for the critic part, this paper employs the
linear functions Ãw(s, a)

�
= ∇θ log πθ(a|s)T w and Ṽv(s)

�
= φT (s)v, which ap-

proximate the advantage value function Aπθ (s, a) and the state value function
V πθ(s) for action-generating policy πθ, respectively. From the Bellman equation
[1] Qπθ(s, a) = r(s, a) + γ

∑
s′ p(s′|s, a)V πθ(s′), we see that through a sam-

pled trajectory, Qπθk (sk, ak) can be approximated by rk + γV πθk (sk+1); thus
rk + γṼv(sk+1) is a valid estimate for the Qπθk (sk, ak). Also from Qπθ (s, a) =
Aπθ (s, a) + V πθ(s) and the usual strategy using the eligibility trace [1], we see
that in order for the approximators Ãw(s, a) and Ṽv(s) to be useful in the t-th
time step, it is desirable to minimize the following:

Ψt(v, w)
�
= ‖

∑t
k=0 zk[(Ṽv(sk) + Ãw(sk, ak)) − (rk + γṼv(sk+1)]‖2 =

‖
∑t

k=0 zk[φT (sk) − γφT (sk+1), ∇θ log π(ak|sk)T ]
[
v
w

]

−
∑t

k=0 zkrk‖2,
(4)

where zk is the eligibility trace vector defined via

zk = γλzk−1 + [φT (sk), ∇θ log π(ak|sk)T ]T for k ≥ 1,
z0 = [φT (s0), ∇θ log π(a0|s0)T ]T ,

and λ ∈ [0, 1] is the trace-decay parameter. Note that minimizing (4) is simply a
least-squares problem utilizing the entire history of agent-environment interac-
tions up to the t-th time step. When there is a need to put more emphasis on re-
cent observations, the use of the so-called forgetting factor β ∈ (0, 1) is desirable.

In this case, the following needs to be used instead of (4): Ψ̃t(v, w)
�
= ‖Mt

[
v
w

]

−

bt‖2, where Mt
�
=

∑t
k=0 βt−kzk[φT (sk) − γφT (sk+1), ∇θ log π(ak|sk)T ], and bt

�
=

∑t
k=0 βt−kzkrk. Note that for t ≥ 1, the above Mt and bt can be written in the

following recursive form: Mt = βMt−1 +zt[φT (st)−γφT (st+1), ∇θ log π(at|st)T ],
bt = βbt−1 + ztrt. Also, note that when Mt is invertible, the optimal solution to

the problem of minimizing Ψ̃t(v, w) is obviously
[
vt

wt

]

= M−1
t bt. However, Mt is

usually not invertible until a sufficient number of samples have been included in
its summation. A common strategy used in the recursive least-squares method
for ensuring the invertibility of Mt is to use δI for its initialization [3]. Employing
the strategy, we use M0 = δI +z0[φT (s0)−γφT (s1), ∇θ log π(a0|s0)T ], where δ is
a positive number, instead of M0 = z0[φT (s0)−γφT (s1), ∇θ log π(a0|s0)T ]. Now,
by applying the matrix inversion formula [7] (A + XY )−1 = A−1 − A−1X(I +
Y A−1X)−1Y A−1 to the equation for Mt, we can obtain a recursive update rule
for Mt, and also the following procedure for an approximate solution to mini-
mizing Ψ̃t(v, w): Let
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z0
�
= [φT (s0), ∇θ log π(a0|s0)T ]T ,

M0
�
= δI + z0[φT (s0) − γφT (s1), ∇θ log π(a0|s0)T ],

Mt
�
= βMt−1 + zt[φT (st) − γφT (st+1), ∇θ log π(at|st)T ] for t ≥ 1,

Pt
�
= M−1

t for t ≥ 0, and Kt
�
= Ptzt for t ≥ 0.

Then with the update rules

zt = γλzt−1 + [φT (st), ∇θ log π(at|st)T ]T ,

Pt = 1
β

(

Pt−1 − Pt−1zt[φT (st)−γφT (st+1), ∇θ log π(at|st)T ]Pt−1

β+[φT (st)−γφT (st+1), ∇θ log π(at|st)T ]Pt−1zt

)

,

Kt = Pt−1zt

β+[φT (st)−γφT (st+1), ∇θ log π(at|st)T ]Pt−1zt
,

(5)

the solution for the critic parameters at time t can be obtained by the following
recursive equation:

[
vt

wt

]

=
[
vt−1
wt−1

]

+ Kt(rt −
[
φT (st) − γφT (st+1), ∇θ log π(at|st)T

]
[
vt−1
wt−1

]

).
(6)

Note that the resultant recursive least-squares solution wt will be used in the
update process for the actor part via (3).

2.3 Algorithm

The algorithm considered in this paper repeats two tasks: An agent-environment
interaction task in which the agent interacts with its environment with an action
generated by the current policy and observes the consequence of the interaction,
and a task for the estimation and improvement in which the agent optimizes its
policy by updating the actor and critic parameters on the basis of the natural
gradient and the recursive least-squares method. More precisely, the RLS-based
natural actor-critic algorithm can be summarized as follows:

Given:

– Initial state s0
– Parametrized policy πθ(a|s) with its initial parameter vector θ = θ0, and

derivative ∇θ log πθ(a|s)
– Basis functions φ(s)

�
= [φ1(s) · · · φK(s)]T in use for Ṽv(s)

�
= φ(s)T v, which

approximates the state value function
– Learning rate α > 0 for updating the actor parameter θ
– Forgetting factor β ∈ (0, 1)
– Discount rate γ ∈ (0, 1)
– Trace-decay parameter λ ∈ [0, 1]
– Constant δ > 0
– Bound M for limiting the magnitude of each actor parameter
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Goal:

– Parameter vectors θt which tend to that of a locally optimal policy distribu-
tion πθ(a|s)

– Parameter vectors vt and wt which yield good approximation for Ṽvt and
Ãwt

Algorithm:
for t := 0, 1, 2, · · · do

Draw a control action at from the distribution πθt(·|st).
Perform at, and observe the reward rt and the next state st+1.
Use the recursive least-squares rules (5) and (6) to find wt and vt.
Adjust the policy distribution parameters via θt+1 = θt + αwt.
if any entry of θt+1 is of magnitude bigger than M ,

then reduce it to M .
end

end

3 Locomotion of a Two-Linked Robot Arm

In this section, we address the application of the RLS-based natural actor-critic
algorithm to an example of [8], which dealt with locomotion of a robot arm. This
example considers a planar two-linked manipulator in a gravitational environ-
ment. The mission assigned to the robot is to move forward as fast as possible,
without knowing the environment in advance. So, the agent needs to find out
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Fig. 1. The average performance of 10 trials. RLS-based natural actor-critic approach
(solid), and the SGA approach of [8] (dashed).
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an efficient policy based on the observed agent-environment interactions. The
immediate reward for this problem is defined as the distance that the body of
the robot moved forward in the current step. At the t-th time step, the agent
reads the normalized joint angles, x1(t) and x2(t), and outputs a binary action
value (+1 or −1) for each joint, which indicates turning direction of the joint
motor, according to its stochastic policy. Here, the policy is represented by the
logistic distribution function, i.e., πθt(at = 1|st) = 1/(1 + exp(−θT

t st)), where

st is the state vector at the t-th time step defined by st
�
= [x1(t), x2(t), 1]T .

The considered robot has the same specifications with [8], thus it satisfies the
following:

– The upper arm length is 34 [cm].
– The fore arm length is 20 [cm].
– The joint of the body and the arm is located on the height = 18 [cm], the

horizontal distance = 32 [cm] from the body’s bottom left corner.
– The angle from the horizontal of the first joint connected to the upper arm

is constrained such that −4◦ ≤ � (Joint1) ≤ 35◦.
– The angle of the second joint from the axis of the upper arm to the fore arm

is constrained such that −120◦ ≤ � (Joint2) ≤ 10◦.
– The motor of each joint moves the arm to 12◦+ε in the commanded direction,

where ε is a random variable uniformly distributed on the interval [−4◦, +4◦].
– When the arm is touching the ground, the arm does not slip while the body

slips.

The proposed method was applied to the robot for 20, 000 time steps with the
following parameters:

– Initial state s0 = [0 0 1]T

– Initial policy distribution vector θ0 = [0 0 0 0 0 0]T

– Basis functions φ(s)
�
= [x1 x2 1]T

– Learning rate α = 0.0003
– Forgetting factor β = 0.99
– Discount rate γ = 0.99
– Trace-decay parameter λ = 0.5
– Constant δ = 10
– Bound for each actor parameter M = 100

The solid curve of Fig. 1 shows the average velocity of 10 trials resulting from the
RLS-based natural actor-critic algorithm applied to the robot example. For com-
parison, we also performed simulations for the SGA(stochastic gradient ascent)
method of [8]. Shown in the dashed curve of Fig. 1 is the average performance of
10 trials for the SGA method. Comparing these curves in the figure, we see that
the RLS-based natural actor-critic algorithm gave significantly better results.

4 Concluding Remarks

In this paper, we studied on the RLS-based natural actor-critic algorithm, and
applied it to locomotion of a two-linked robot arm. The natural policy gradient
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and the recursive least-squares method are two key ingredients of the considered
algorithm, and they are used in the process of updating the actor and critic
parameters, respectively. Simulation results for the example dealing with loco-
motion of a two-linked robot arm showed that the algorithm considered in this
paper yields better performance compared to the conventional SGA method. Fur-
ther investigations yet to be done include extensive comparative studies which
can reveal the strength and weakness of the considered method.
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