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Abstract
Motivation: Recently, we described a Maximum Weighted
Matching (MWM) method for RNA structure prediction. The
MWM method is capable of detecting pseudoknots and other
tertiary base-pairing interactions in a computationally
efficient manner (Cary and Stormo, Proceedings of the Third
International Conference on Intelligent Systems for Molecu-
lar Biology, pp. 75–80, 1995). Here we report on the results
of our efforts to improve the MWM method’s predictive
accuracy, and show how the method can be extended to
detect base interactions formerly inaccessible to automated
RNA modeling techniques.
Results: Improved performance in MWM structure predic-
tion was achieved in two ways. First, new ways of calculating
base pair likelihoods have been developed. These allow
experimental data and combined statistical and thermody-
namic information to be used by the program. Second,
accuracy was improved by developing techniques for
filtering out spurious base pairs predicted by the MWM
program. We also demonstrate here a means by which the
MWM folding method may be used to detect the presence of
base triples in RNAs.
Availability: http://www.cshl.org/mzhanglab/tabaska/jax-
page.html
Contact: tabaska@cshl.org

Introduction

RNA molecules play important roles in cellular nucleic acid
processing and gene expression, so gaining a deeper under-
standing of these processes can be aided by determining the
tertiary structures of their RNA mediators. Unfortunately,
the most popular computer methods for RNA structure pre-
diction (Nussinov and Jacobson, 1980; Zuker, 1989) are li-
mited to secondary structure prediction only. There have re-
cently been described algorithms capable of predicting pseu-
doknots, but these often rely on heuristics that are not

guaranteed to find the molecule’s optimal structure (Gulty-
aev, 1991; Chen et al., 1992; van Batenburg et al., 1995), and
may require the use of massively parallel computers that are
not commonly available (Nakaya et al., 1995; Shapiro and
Wu, 1997). In addition, while the list of RNAs of known
crystal or NMR structure is growing (for a review, see Uhlen-
beck et al., 1997), the acquisition of such structural data is
still difficult, and cannot hope to keep pace with the rapid rate
of new sequence discovery.

In a previous paper (Cary and Stormo, 1995), we described
a new approach to RNA structure prediction, which is based
on the Maximum Weighted Matching (MWM) algorithm of
Gabow (1973). The results presented there demonstrated that
given a set of base pairing likelihood scores, Gabow’s algo-
rithm can find an optimal set of base-pairing interactions,
including pseudoknots and other tertiary pairs, in polynomial
time and memory. However, structures predicted by MWM
folding were generally only partially correct, and the pro-
cedure as a whole was very sensitive to noisy data.

This paper describes improvements that we have made to
the MWM folding technique. New methods for scoring po-
tential base pairs and the addition of noise filtration to the
folding process allow the MWM algorithm to produce struc-
tures comparable with manually predicted structures. We
have also implemented algorithmic enhancements that allow
automatic detection of base triples. We believe that these
changes will make MWM folding a valuable tool for RNA
research.

Algorithms

Maximum Weighted Matching

RNA secondary structure prediction may be thought of as a
matching problem: each base in a sequence is to be matched
with the base it is paired with in the folded RNA, or left un-
matched if the base is unpaired. To solve this problem, re-
searchers collect various kinds of evidence—phylogenetic,
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Fig. 1. The MWM RNA folding procedure. Starting with an RNA sequence, a folding graph is formed in which bases are represented by vertices
and potential pairing interactions by edges. Edge weights, depicted here by line thickness, quantify the likelihood of a base pair’s existence. From
the folding graph, a maximum weighted matching is determined. This matching represents the best (i.e. most likely) structure for the RNA.

thermodynamic, NMR, chemical protection, etc.—which
help them decide which base pairs are most likely to exist.
The best structure is then the one consisting of base pairs for
which the most corroborating evidence and least conflicting
evidence exist.

Thus stated, RNA structure prediction may be cast directly
into a well-known problem in the field of graph theory. We
start by constructing a graph in which each vertex corre-
sponds to a base in an RNA sequence, and potential base-
pairing interactions are represented by edges that connect the
vertices (bases) (Figure 1). We assign to each edge a weight
which quantifies the strength of the evidence for that base
pair’s existence in the folded molecule. This graph is referred
to as the folding graph. Every possible structure for the RNA
is present in this graph in the form of a matching, i.e. a sub-
graph in which no vertex is connected to more than one other
vertex. To find the best structure for the RNA in question, we
then need to find the matching which has the highest total
edge weight.

This is known as the MWM problem in graph theory, and
it is provably solvable in O(N3) time and O(N2) memory
(Gabow, 1973; also see below). This is perhaps somewhat
surprising, in light of the fact that the foregoing statement of
the RNA folding/MWM problem places no restrictions on
the planarity (in the structural biological sense) of the base
pairs comprising either the folding graph or the final RNA
structure. In other words, a computationally efficient algo-
rithm for solving the MWM problem can be used to predict
an optimal RNA structure, including pseudoknots and other
tertiary base-pairing interactions.

Such algorithms have existed for some time (e.g. Ed-
monds, 1965), and one of the authors (H.N.G.) has devel-
oped what is demonstrably the most efficient algorithm for
solving the MWM problem on dense graphs (Gabow, 1973).
While a detailed description of Gabow’s algorithm is beyond
the scope of this paper, a brief overview of the algorithm’s
operation will facilitate some of the discussion that follows.
The MWM is constructed iteratively, by first finding the

maximum weight matching consisting of exactly one edge,
then finding the maximum weight matching of two edges,
and so on, until the algorithm reaches a point beyond which
further expansion of the matching cannot increase its total
edge weight. Consequently, only those edges with weights
greater than zero are included in the MWM (although it is
possible to force the algorithm to include zero- or negatively
weighted edges; the following section explains why one
might want to do this).

Expansion of the intermediate matchings is accomplished
through a process called augmentation. An augmentation re-
places some number of edges, k, in the matching with k + 1
edges of higher total weight. If k = 0, the augmentation sim-
ply adds an edge to the previous matching. More generally,
though, an augmentation makes two previously unmatched
vertices into matched vertices, and changes the pairing
partners of some other previously matched vertices; these
latter vertices are said to have been rematched. Note that an
augmentation never unmatches a previously matched vertex.
Therefore, once a vertex becomes matched during the MWM
construction, it stays in a matched state, although it may be
rematched one or more times.

Prediction of RNA base triples. An RNA structure that con-
tains base triples may be represented by a construct known
as a 2-matching: a graph in which no vertex is connected to
more than two other vertices (Figure 2a). This is simply a
generalization of the above definition of a matching. Re-
markably, Gabow’s algorithm may be used to find maximum
weighted 2-matchings on a graph without severe perform-
ance degradation, enabling us to predict structures that con-
tain base triples.

Base triple prediction is accomplished by means of a
special graph that is derived from the folding graph (Figure
2b and c). This graph is constructed as follows: First, each
vertex, v, of the original folding graph is split into dv ‘inter-
nal’ vertices, where dv is the number of edges incident to v.
The edges emanating from the original vertex are distributed
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Fig. 2. (a) An RNA structure containing a base triple (thick line) and
its representation as a 2-matching. Note that the base triple can be
recognized in the 2-matching by the mutual pairing of vertices 3, 7
and 11 (cf. Gautheret et al., 1995). (b) A folding graph and the
corresponding derived graph for maximum weighted 2-matching.
(c) Detail of vertex splitting. The degree of the vertex shown is 7, so
it is split into seven internal (filled) vertices and two external (open)
vertices. Internal edges are distributed among the internal vertices,
and external edges connect the external vertices to each internal
vertex. (d) Starting point for 2-matching construction, consisting of
all of the derived graph’s internal edges.

among the internal vertices. The weights of these internal
edges are multiplied by –2 (In principle, any negative
number will work. We use –2 so that integrality of the given
weights is preserved during the execution of the MWM algo-
rithm). Then a pair of ‘external’ vertices is created for each
set of internal vertices. A set of external edges connects each

external vertex to its corresponding internal vertices. All of
the external edges are assigned a weight of zero.

To find the desired 2-matching on the original folding
graph, Gabow’s algorithm is used to find the MWM of the
derived graph, with the added constraint that each of the in-
ternal vertices must be paired with some other vertex in the
final matching. This constraint is enforced by providing the
algorithm with a starting point for matching construction
(Figure 2d) which consists of all of the internal edges of the
derived graph. Recalling that the MWM algorithm never un-
matches a vertex, all of the internal vertices must be paired
in the end, even if this means incorporating zero- or negative-
ly weighted edges in the final matching. Use of this initial
matching also speeds up the construction of the matching
since it already contains most of the edges that will constitute
the derived graph’s MWM.

The rationale behind using this derived graph is as follows.
Since the algorithm is constrained to keep each internal ver-
tex matched, it can maximize the total edge weight of the
final matching only by replacing the most negatively
weighted set of internal edges with zero-weighted external
edges. Since there are two external vertices adjacent to each
set of internal vertices in the derived graph, two of the inter-
nal edges incident to each set of internal vertices may be ex-
changed for external edges. Now, recalling that the weight of
each internal edge in the derived graph is –2 times the weight
of an edge in the original graph, the best set of edges to ex-
clude from the derived graph’s MWM corresponds to the
best set of edges to include in the maximum weighted
2-matching on the original graph. Therefore, by noting
which internal edges are not present in the derived graph’s
MWM, one finds the edges that form the maximum weighted
2-matching on the original graph.

Performance of the MWM algorithm. The MWM algo-
rithm’s memory usage is dominated by arrays containing in-
formation on the edges of the input graph (Gabow, 1973).
Since the number of edges in a dense graph (such as the fold-
ing graph) varies with the square of the number of vertices,
this algorithm can fold an RNA containing N bases using
O(N2) memory.

As stated above, the MWM algorithm builds the matching
incrementally, up to a maximum of N/2 edges. In each iter-
ation, the algorithm essentially makes a pass over the entire
graph (Gabow, 1973). One such pass uses time O(N 2). The
MWM is therefore constructed in O(N3) time.

Note that during construction of the derived graph for
2-matching, each edge in the original graph gives rise to one
internal edge and four external edges in the derived graph.
The total number of edges under consideration is thus multi-
plied by a constant factor of five. The MWM algorithm
therefore remains an O(N 2) memory and O(N3) time process
when performing a 2-matching.
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Base pair scoring

The success of MWM RNA folding naturally depends on
how potential base pairs are scored. Ideally, one would like
to bring together a number of lines of evidence, both theoreti-
cal and experimental, and generate the best structure consist-
ent with all of them. MWM folding is well suited to doing
just that. Since edge weight calculation is separate from
MWM construction, one can simply plug in sets of edge
weights from different sources and obtain predicted struc-
tures for each set. Multiple sets of edge weights may even be
combined into hybrid sets. We discuss here some of the
methods we have tried for evaluating base pairs.

Phylogenetic and thermodynamic scores. Previously, we de-
scribed the use of mutual information (MI) scores to score
base pairs. In some ways, MI is ideal for use in RNA tertiary
structure prediction: MI is sensitive to the presence of non-
canonical base pairs and exotic structural elements such as
base triples, parallel helices, and even base stacking (Gutell
et al., 1992; Gautheret et al., 1995). In theory, then, MWM
folding should be able to predict the entire structure of an
RNA molecule, less backbone interactions, from a good set
of MI scores. In practice, however, we have found that the
use of MI scores alone tends to make the MWM algorithm
miss many intuitively obvious base pairs, especially highly
conserved pairs (for which MI≈0). Readers are referred to
Cary and Stormo (1995) for a more detailed discussion of MI
and its use in MWM folding.

We have also tested MWM folding using sets of thermody-
namic scores similar to the energy dot plots described by Ja-
cobson and Zuker (1993). The scores used were obtained by
extracting from the MFOLD program (Zuker, 1989) the
minimum energy matrix, which tabulates for every possible
base pair the minimum energy of a structure containing that
pair. Since pseudoknots are often represented in this matrix
as alternative foldings of the RNA in question, the MWM
algorithm can find non-planar interactions that are missed by
MFOLD’s dynamic programming algorithm. We have
found, however, that these data can take prohibitively long
to generate and tend to generate structures of lower quality
than other thermodynamics-based scores such as helix plots
(see below). MFOLD scores will therefore not be discussed
further, except to say that they do perform well when used in
combination with MI scores (Tabaska, 1996).

Helix plots. Helix plots are a means of scoring base pairs,
which combines phylogenetic and thermodynamic informa-
tion. Construction of a helix plot starts with an alignment of
RNA sequences. For each sequence in the alignment, a
square scoring matrix, not unlike a dot plot, is formed, but
rather than a binary pair/no pair dot, each cell of the matrix
receives a score based on whether the two bases correspon-
ding to the cell can form a stable base pair. One could estab-
lish elaborate rules for assigning these scores, but we find a

simple three-part scoring scheme works well: a small posi-
tive ‘good pair’ score for Watson–Crick and G-U pairs, a
larger negative ‘bad pair’ score for every other type of base
pair, and an even larger negative ‘paired gap’ score which
penalizes potential single-stranded deletions within helices.

After this initial scoring matrix for a sequence has been
established, it is scanned for potential helices. During scan-
ning, scores of base pairs comprising helices shorter than
some specified minimum length are changed to the bad pair
score. Conversely, the scores of base pairs forming suffi-
ciently long helices are increased by adding bonus scores that
are proportional to the length of the helix they comprise.
These bonus scores may be considered to be a sort of ‘stack-
ing energy’ derived from the helices. After repeating this
process for each RNA sequence in the alignment of interest,
the individual scoring matrices are summed, yielding a set of
scores for MWM folding.

There are several points worth noting about helix plot
scores. First, base pairs that score well are those that are from
long, highly conserved helices. Second, non-Watson–Crick/
G-U pairs and single-stranded deletions are treated as evi-
dence against the presence of a pairing interaction, as they
receive negative scores. One can adjust how sensitive helix
plot scores are to these types of negative evidence by adjust-
ing the ratio of the good pair score to the bad pair and paired
gap scores. For instance, if the good pair score is set to 1 and
the bad pair score to –9, then a pair of alignment positions
must contain canonical pairs over 90% of the time to be con-
sidered a true pair, paired gap penalties and helix bonuses
notwithstanding. Note that since we use a paired gap penalty
which is larger than the bad pair penalty, insertions or dele-
tions in one strand of a potential helix are treated as the
strongest evidence against the existence of that helix.

Finally, it is obvious that helix plot scores can only be used
to predict structures composed of canonically paired, antipa-
rallel double helices—in general, a molecule’s secondary
structure plus large pseudoknots. Helix plot scores are in-
sensitive to other kinds of tertiary interactions.

Incorporating experimental data. Often, one has a limited
amount of experimental structural data on an RNA—e.g. the
results of a nuclease protection assay or a mutagenesis ex-
periment—and wants to generate an optimal structure that is
consistent with those data. We have developed a simple
scheme for incorporating this information into folding
graphs so that it will be reflected in MWM-predicted struc-
tures.

There are three types of structural information that are rou-
tinely obtained by experiments: a base or bases are known to
be in a single-stranded region; a base or bases are shown to
be paired with known partners; and a base or bases are known
to be paired, but with unknown partners. The first of these,
known unpaired bases, can be enforced in MWM folding by
assigning a weight of zero to every edge incident to a vertex
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that represents an unpaired base. Gabow’s algorithm will
then necessarily leave that vertex unpaired in the final match-
ing.

In the second case, known base pairs, the folding graph is
modified so that the edge representing a verified pair receives
a positive score, and all other edges incident to the two ver-
tices in question receive weights of zero. The final MWM
must then include the experimentally determined pairs.

For the final case, paired bases with unknown partners,
modifications to the folding graph are made as follows. If we
define P as the set of all bases that are paired with unknown
partners, N as the number of vertices in the folding graph, and
let W be a number greater than the largest weight in the orig-
inal folding graph, then the weight of each edge in the folding
graph is increased by NpW, where p is 0, 1 or 2, depending
on whether the edge connects zero, one or two vertices of P.
Weighting the edges in this manner ensures that the total
weight of any matching in which all of the vertices in P are
matched will be greater than the maximum weight of any
matching that leaves any vertex in P unmatched. This forces
the MWM algorithm to produce a structure that conforms to
the experimental data, while still allowing it to choose the
best pairing partner for each base based on the original input
weights.

Output filtration

One shortcoming of MWM folding has been that it usually
generated structures containing many spurious base pairs,
tending to predict pairs for bases that are actually single
stranded. A little reflection reveals why this is so: the MWM
algorithm seeks to maximize the total edge weight of its final
matching, and even base pairs that are very poorly supported
by the available data can add some small amount to this sum.
To obtain useful structures from MWM folding, then, some
form of output filtration must be applied.

In Cary and Stormo (1995), it was suggested that an offset
score could be subtracted from the folding graph weights to
eliminate low-scoring base pairs. While this can be effective,
it is often difficult to select an offset score objectively. A sec-
ond method is to simply discard all base pairs comprising
helices shorter than some minimum length. This is a very
effective and objective technique, especially when applied to
structures predicted using helix plot scores, as it removes all
structural elements which helix plot scores cannot be ex-
pected to reflect reliably. When working with MI scores,
which are sensitive to unusual base interactions, though, it
would be unadvisable simply to discard non-helical pairings
as some of them may represent actual tertiary base pairs.

An elegant solution to this problem is the technique of i-
matching. During testing of MWM folding, it was observed
that once a true base pair is added to the emerging structure,
it tends to remain constant through the rest of the folding

process. Spurious pairs, however, tend to arise as the result
of one or more rematching events. A detailed analysis of this
effect has been made elsewhere (Tabaska, 1996), but con-
ceptually it is similar to the P-num scores produced by the
MFOLD programs (Zuker, 1989; Zuker and Jacobson,
1995): the more nearly equivalent interactions that a base
may form, the less likely any one of them can be expected to
exist. Therefore, an objective and very effective method for
output filtering is to monitor the intermediate matchings
(hence the term i-matching) produced as the MWM algo-
rithm generates a structure, and disregard unstable pairings.
Since i-matching makes no prior assumptions about relation-
ships between base pairs, it may be used without fear of sys-
tematically discarding tertiary interactions.

Implementation

MWM RNA folding has been implemented in two pro-
grams: imatch and bmatch. imatch executes the standard
(1-matching) form of Gabow’s algorithm, and includes an
i-matching monitor. bmatch finds maximum weighted
2-matchings (or higher-order matchings, if desired), and in-
cludes an i-matching monitor as well. Both imatch and
bmatch are derived from the wmatch program written by Ed
Rothburg.

We have written several base pair scoring modules for use
in MWM folding:

hlxplot—generates helix plot scores for a set of aligned
RNA sequences.

jmixy—calculates pairwise MI scores for an RNA se-
quence alignment.

exgraf—modifies folding graph files so as to force the
MWM folding to conform to experimental data.

makegraf—combines two or more sets of folding graph
edge weights into a single composite set, optionally applying
scaling factors and an offset score.

All of the above programs are written in ANSI C.
A Perl script for translating the output from imatch into a

set of XRNA input files is also available.

Discussion

Figure 3 illustrates the process of folding a tRNA by MWM.
An alignment of 556 tRNA gene sequences (Steinberg et al.,
1993) was used to generate a combined MI/helix plot weight
set. This set was constructed by generating separate MI and
helix plot weights, scaling the weights so that they covered
approximately the same range of values, and adding corre-
sponding edge weights. The raw output from imatch is
shown in Figure 3a. Application of i-matching to remove all
of the rematched pairs produced the structure shown in Fig-
ure 3b. This structure consists of the secondary base pairs
that form the cloverleaf structure of tRNA, plus two addi-
tional pairings. Both of these latter pairings represent tertiary
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Fig. 3. tRNA folding. (a) Raw output from imatch, containing both true and spurious base pairs. (b) tRNA structure after application of
i-matching output filtration. (c) Base triples found by bmatch.

Fig. 4. Predicted structure of B.subtilis SRP RNA, compared with the accepted structure. The layout of bases reflects the molecule’s structure
as determined by Larsen and Zwieb (1990), and lines show base pairs predicted by imatch after removal of non-helical pairs.

base interactions that are generally observed in tRNAs, al-
though the 8 – 21 interaction does not occur in some tRNAs
(Westhof et al., 1988; Biou, 1994). i-matching did not cause
any true base pairs to be discarded.

Prediction of base triples in tRNA was carried out by run-
ning bmatch on the MI data set alone. After i-matching, two
base triples remained (Figure 3c): 9:12:23 and 13:22:46,
which are observed in tRNA crystal structures (Westhof and
Sundaralingam, 1986). A third base triple, 10:25:45, was not
detected because base 45 is nearly invariant, resulting in low
MI scores for pairings involving this base.

To demonstrate MWM folding on a larger molecule, we
have generated a structure for Bacillus subtilis Signal Rec-
ognition Particle (SRP) RNA (Figure 4). This structure was
constructed using a helix plot weight set based on an align-
ment of 33 eubacterial and archaebacterial SRP RNA se-
quences (Larsen et al., 1998). The structure was filtered by

discarding helices shorter than hlxplot’s default cut-off
length of 3 bp. Comparison with the published structure of
this molecule shows essentially complete agreement be-
tween the structures, including the large pseudoknot near the
5′ end. The most apparent difference between the two struc-
tures is the small helix (14 – 15:59 – 60) which was unde-
tected because it was shorter than hlxplot’s threshold. Three
other base pairs were missed because they would represent
bases paired with gaps in the alignment. Several additional
base pairs were also found which extend helices in the ac-
cepted structure.

Aside from the similarity between the MWM generated
structure and the manually built one, two other points about
this demonstration bear mentioning. First, the input align-
ment contained three sequences which do not align well with
the rest of the sequences, and may even differ structurally
from other SRP RNAs (N.Larsen, on-line documentation for
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Fig. 5. Predicted helices in E.coli 16S rRNA. Thick lines represent predicted pairings. Question marks indicate pairings that conflict with
suspected, but as yet unproven, base pairs.

SRP RNA database). Therefore, nearly 10% of the input data
for this test were unreliably aligned and undoubtedly contrib-
uted some noise to the signal. Second, calculation of the helix
plot weights and generation of the MWM required 1.33 s of
CPU time on a Sun Ultra 1 computer, compared with ∼2 min
for MFOLD to fold the B.subtilis SRP RNA on the same
machine. imatch’s predicted structure is also more accurate
than MFOLD’s, particularly near the 5 end, where MFOLD
fails to predict even a planar subset of the base pairs in the
pseudoknot (data not shown).

Figure 5 illustrates how existing structural information
may be incorporated into an MWM folding. Extensive se-
quence analysis has produced a nearly complete structure for
the bacterial 16S rRNA. To see whether any additional struc-
tural elements could be detected, a combined MI/helix plot
weight set was calculated from an alignment of 2849 se-
quences (Maidak et al., 1994). The helix plot component of
this weight set was used primarily to allow the detection of
highly conserved base pairs, so the minimum helix length of
hlxplot was set to 1 bp, and the helix bonus set to zero. exgraf
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was used to modify this data set so as to force imatch to form
all of the base pairs in the accepted structure of 16S rRNA
(Gutell, 1994). Helices predicted by imatch are shown in Fig-
ure 5. In general, all of these pairings appear plausible, as
they involve canonical base pairs, are fairly local interac-
tions, and in two cases extend known helices. The proposed
helices marked with question marks in Figure 5 conflict with
suspected but unproven helices in the 16S structure (Gutell,
1996). These interactions may be considered dubious in that
regard, although there is also a possibility that these represent
base triples or alternate conformations. It is also notable that
where pseudoknots are proposed by the MWM structure,
they are short and have at least one strand immediately adjac-
ent to another helix, as is typical of other rRNA pseudoknots
(Gutell, 1996). Finally, a limited amount of experimental
data exists supporting one of these proposed interactions: the
bases 1339, 1340, 1358 and 1359, which form a short helix
in Figure 5, have been localized to the P site of the bacterial
ribosome (Mueller et al., 1997). These bases therefore share
at least a functional, if not structural, relationship.

Conclusion

Automated RNA structure prediction has long been plagued
by the pseudoknot problem: RNA folding programs had to
sacrifice either optimality or computational efficiency to de-
tect these structures. As illustrated in the examples above,
though, the MWM method is now capable of predicting sec-
ondary and tertiary structural elements in RNAs with accu-
racies approaching those of manually predicted structures.
Furthermore, as we have described elsewhere, MWM fold-
ing can be used in conjunction with our alignment program,
Seq7, to generate structure-based RNA sequence alignments
that include pseudoknots (Tabaska and Stormo, 1997). RNA
pseudoknot prediction can now be done as routinely as sec-
ondary structure prediction.

Exciting possibilities remain for the further development
of MWM folding. In theory, this algorithm should be able to
detect any kind of base–base relationship in an RNA, as long
as the edge weighting scheme used is sensitive to that type
of interaction. For instance, in preparation of the demonstra-
tions discussed above, many of the pairings that were dis-
carded as ‘noise’ actually arose from weak covariances
caused by functional relationships between bases or non-
base-pairing structural features, such as base stacking inter-
actions and bases that form one face of the folded molecule
(Tabaska, 1996). Additional development of base pair scor-
ing methods and output analysis should, therefore, not only
allow researchers to obtain a detailed map of base interac-
tions for an RNA, but also information on functional
moieties, sites of intermolecular interaction, alternate con-
formations, and surface versus buried regions of the mol-
ecule.
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