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ABSTRACT

Loss‐of‐function and certain missense mutations in the Wnt coreceptor low‐density lipoprotein receptor‐related protein 5 (LRP5)

significantly decrease or increase bone mass, respectively. These human skeletal phenotypes have been recapitulated in mice harboring

Lrp5 knockout and knock‐in mutations. We hypothesized that measuringmRNA expression in diaphyseal bone frommice with Lrp5wild‐

type (Lrp5þ/þ), knockout (Lrp5–/–), and high bone mass (HBM)‐causing (Lrp5p.A214V/þ) knock‐in alleles could identify genes and pathways

that regulate or are regulated by LRP5 activity. We performed RNA‐seq on pairs of tibial diaphyseal bones from four 16‐week‐old mice

with each of the aforementioned genotypes. We then evaluated different methods for controlling for contaminating nonskeletal tissue

(ie, blood, bonemarrow, and skeletal muscle) in our data. Thesemethods included predigestion of diaphyseal bonewith collagenase and

separate transcriptional profiling of blood, skeletal muscle, and bone marrow. We found that collagenase digestion reduced

contamination, but also altered gene expression in the remaining cells. In contrast, in silico filtering of the diaphyseal bone RNA‐seq data

for highly expressed blood, skeletal muscle, and bone marrow transcripts significantly increased the correlation between RNA‐seq data

from an animal’s right and left tibias and from animals with the same Lrp5 genotype.We conclude that reliable and reproducible RNA‐seq

data can be obtained from mouse diaphyseal bone and that lack of LRP5 has a more pronounced effect on gene expression than

the HBM‐causing LRP5 missense mutation. We identified 84 differentially expressed protein‐coding transcripts between LRP5

“sufficient” (ie, Lrp5þ/þ and Lrp5p.A214V/þ) and “insufficient” (Lrp5–/–) diaphyseal bone, and far fewer differentially expressed genes

between Lrp5p.A214V/þ and Lrp5þ/þ diaphyseal bone. © 2013 American Society for Bone and Mineral Research.
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Introduction

Low‐density lipoprotein receptor‐related protein 5 (LRP5)

functions as an important coreceptor in the canonical Wnt

signaling pathway. LRP5 loss‐of‐function and certain missense

mutations significantly reduce or increase bone mass, respec-

tively, in humans.(1–3) These skeletal phenotypes have been

recapitulated in mice harboring knockout and knock‐in Lrp5

mutations.(4,5) Studies in these mouse models indicate that LRP5

signaling is involved in the ability of bone to respond to changes

in mechanical load.(6–8)

Two endogenous inhibitors of canonical Wnt signaling,

Sclerostin (SOST) and Dickkopf homolog 1 (DKK1), likely exert

their inhibitory effects by binding to LRP5 and/or LRP6.(9–12)

Missense mutations in LRP5 that cause increased bone mass

appear to do so by impairing the binding between LRP5 and its

inhibitors, without impairing the binding between LRP5 and its

agonists (ie, Wnt ligands).(13–15) The pathways that function

upstream and downstream of LRP5‐mediated signaling are

incompletely understood. We hypothesized that measuring

mRNA expression in cortical bone from mice with Lrp5 wild‐type

(Lrp5þ/þ), knockout (Lrp5–/–), and high bone mass (HBM)‐causing
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(Lrp5p.A214V/þ) alleles could identify genes and pathways that

regulate or are regulated by LRP5 activity.

Massively parallel sequencing (also referred to as next

generation sequencing) of mRNA (RNA‐seq) has quickly become

a powerful alternative to measuring mRNA expression by

microarray and quantitative RT‐PCR.(16,17) The advantages of

RNA‐seq are that it can cover a broad range of transcript

abundance and can identify mRNA transcripts at a single

nucleotide resolution.(18,19) To date, the application of RNA‐seq

in the study of mineralized tissues is limited.(20–22) Therefore,

despite its potential, RNA‐seq has been underutilized to study

skeletal biology in a small animal model, such as the mouse.

Herein, we describe methods for extracting mRNA from mouse

diaphyseal bone, constructing cDNA libraries for use in massively

parallel sequencing, and analyzing resultant sequence data in

order to identify differentially expressed transcripts among

Lrp5þ/þ, Lrp5–/–, and Lrp5p.A214V/þ mice. Additionally, because

it is not possible to completely remove nonskeletal tissue

(e.g., skeletal muscle, bonemarrow, blood) from a freshly excised

long bone, we also provide an analytic strategy for robustly

identifying and removing nonskeletal “contaminating” tran-

scripts from RNA‐seq data. These methods should aid other

investigators who use mouse models to study skeletal biology

and disease.

Subjects and Methods

mRNA library preparation

The Boston Children’s Hospital Institutional Animal Care and Use

Committee approved these studies. The mice used in this study

have been described.(4,5) Male, 16‐week‐old Lrp5þ/þ (n¼ 4),

Lrp5–/– (n¼ 4), and Lrp5p.A214V/þ (n¼ 4) mice were used. One

animal at a time was euthanized by a 1‐minute exposure to CO2.

Cervical dislocation was then performed to assure death.

Within 10 minutes of the animal’s death, the pair of tibias

was prepared for RNA extraction: Muscle, tendon, and ligament

were removed with a scalpel. The distal and proximal epiphyses

were excised and the diaphyseal bone marrow was removed by

centrifugation at >15,000g for 1 minute at room temperature.

The resultant hollow bone shafts were individually flash frozen in

liquid nitrogen and stored at –80°C until further use.

RNA was recovered from each tibia sample by pulverizing the

bone inside 2‐mL RNase‐free microtubes with metal beads and

1mL TRIzol (Life Technologies, Grand Island, NY, USA) using a

benchtop tissue homogenizer (FastPrep24; MP Biomedicals,

Solon, OH, USA). Each tibia was subjected to four cycles of

30‐second pulverization in the tissue homogenizer. Total RNA

was then separated from bone mineral, DNA, and protein by

phenol‐chloroform extraction. The RNA containing fraction

(400mL per sample) was then purified (Purelink RNA Mini Kit;

Life Technologies, Grand Island, NY, USA) and treated with

DNase I (RNase‐Free DNase Set; Qiagen, Valencia, CA, USA) for

15 minutes. The amount of recovered total RNA (eluted in 50mL

RNase‐free water) was measured with a spectrophotometer

(Nanodrop 1000; Thermo Scientific, Wilmington, DE, USA) and

the quality of the total RNA was assessed with a Bioanalyzer

(Model 2100; Agilent Technologies, Santa Clara, CA, USA). Each

fresh frozen bone RNA sample had an RNA integrity number

(RIN)> 6, indicating they were of sufficient quality to prepare

sequencing libraries.(23)

An mRNA library for each individual tibia was prepared using

the TruSeq RNA Sample Preparation Kit, v2 (Illumina, San Diego,

CA, USA). Briefly, mRNAwas enriched from the total RNA (starting

material >250 ng) by performing polyAþ purification twice with

magnetic beads. The recovered mRNA was then chemically

fragmented to yield segments from 120 to 200 bp in length,

reverse transcribed using random hexamers, and ligated to bar‐

coded adapters following the manufacturer’s recommendations.

The resultant cDNA fragments were amplified for 15 PCR cycles.

Finally, the cDNA libraries were washedwith AMPure XP beads to

remove primer‐dimers (Agencourt AMPure XP; Beckman Coulter,

Brea, CA, USA) and 1‐mL aliquots were run on a 4–20% TBE gel

(Life Technologies, Grand Island, NY) for verification. Equal

amounts of DNA (�15 ng per sample) from eight to 10 separately

bar‐coded cDNA libraries (each generated from a single tibia

sample) were pooled and then sent for 50‐bp paired‐end

sequencing on one lane of an Illumina HiSeq 2000 to generate a

minimum of 10million reads/library. For the quantities such as

buffer volumes or time and temperature settings not specified

here, the exact recommendations of the manufacturers were

followed at every step of the protocol.

Raw read processing

Paired reads from each library were mapped to the mouse

genome (mm9) using RNA‐Seq unified mapper (RUM).(24) The

expression level of each gene was quantified by counting the

number of reads that uniquely aligned to the respective set of

exonic sequences. Datawere then normalizedwith respect to the

total number of mapped reads in each library and the dispersion

in distribution of the reads to the genome.(25)

Assessing the reproducibility and reliability of

RNA‐seq data

We measured the reproducibility of the cDNA sequencing and

data analysis platforms by splitting a cDNA library in half,

sequencing each half, and determining Pearson’s correlation

coefficient (R2) in a comparison of the number of mapped reads

to each gene. We measured the reproducibility in preparing

bone samples, extracting mRNA, and generating cDNA sequenc-

ing libraries by making a separate library for each animal’s right

and left tibia and determining R2 for the resultant RNA‐seq data.

Due to the logarithmic distribution of reads in all libraries, a small

fluctuation in a genewith a very high level of expression (e.g., left

tibia versus right tibia fold change <1.5) could be much more

influential than large fluctuations in a moderately expressed

gene (e.g., left tibia versus right tibia fold change >5) on R2. In

order to remove this dispersion bias, we recalculated R2 using a

trimmedmeanmethod; ie, the top and bottom 1%of genes were

excluded in the assessment of all correlation values.

We also calculated reads per kilobase of exon model per

million mapped reads (RPKM)(18) values for each gene in order to

determine a detectability threshold: The number of reads

mapped to the coding region of each gene was normalized by

the total number reads mapped within the respective library and
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the length of the associated coding region. The elimination of

potential biases due to gene length allowed us to compare the

expression levels of different genes to each other, and rank the

transcript abundances within a single library. Subsequently,

we used RPKM¼ 5 as a minimum limit for detectability.(18) This

meant that for a library containing 10 million mapped 50‐bp

paired‐end reads we limited our analyses to genes averaging five

or more reads/base of cDNA. However, we did not use RPKM

values in our statistical comparisons (ie, when calculating fold‐

change and p values) between different sample groups (see the

last two paragraphs in the Methods section for our differential

expression analysis protocol).

Identification and filtering of transcripts representing

RNA contamination from nonmineralized tissue

We used three strategies to identify transcripts that likely

represented RNA contamination from sources other than bone.

Strategy 1

Using the same methods for RNA extraction and cDNA library

preparation, we generated separate bar‐coded libraries from

blood (n¼ 6), skeletal muscle (n¼ 6), bone marrow (n¼ 6), and

tibial cortical bone (n¼ 6) from three 12‐week oldmalemice. The

source material for all libraries were extracted from the right and

left hind limbs of eachmouse, except for blood, whichwas drawn

from the heart and split in two. Following RNA‐seq we calculated

differential expression in order to identify the transcripts with at

least twofold greater abundance in blood, muscle, or bone

marrow compared to cortical bone (p< 0.05).

Strategy 2

We removed the femoral bones from these same mice, excised

the ends, and centrifuged the marrow from the diaphyseal bone.

We then cut the diaphyseal bones into smaller pieces and

digested the fragments in a collagenase solution (Collagenase

I&II; Worthington Biochemical Corp, Lakewood, NJ, USA) for

45 tminutes (3� 15 minutes at 37°C) in order to enrich for native

bone cells.(26,27)We then prepared a separate RNA‐seq library for

each bone. To control for gene expression changes that could

result from collagenase digestion and/or from ex vivo tissue

culture, we also prepared individual RNA‐seq libraries from six

diaphyseal femur samples (extracted from 16‐week‐old Lrp5þ/þ

male mice) that had been immediately frozen rather than

collagenase‐digested. Following RNA‐seq, we identified the

transcripts whose abundances were twofold lower in the

collagenase‐digested samples compared to the fresh‐frozen

samples (p< 0.05).

Strategy 3

We compared RNA‐seq data from a single animal’s right and left

tibia and calculated R2 values. We then employed an algorithm

that would calculate the individual effect of removing each

individual species of RNA transcript on the R2, and identified the

transcripts whose removal had the greatest effect.

In comparing these three strategies, we noted that most

identified transcripts with the largest effect on R2 using strategy

3 were also identified using strategies 1 and 2. Furthermore,

transcripts identified as representing the intersection of strate-

gies 1 and 2 accounted for most of the reduction in R2 between

paired bones from the same animal. Therefore, we filtered the

diaphyseal bone RNA‐seq data for transcripts representing the

intersection of strategies 1 and 2 beforewe compared expression

across mice with the different Lrp5 genotypes.

Identification of differentially expressed genes

Comparisons of RNA‐seq data from different sample groups,

including filtered bone libraries with different Lrp5 genotypes,

were made with a Fisher’s exact test, and the resultant p values

were corrected for multiple hypothesis testing (false discovery

rate< 0.05).(28) All calculations were made in R, using the

Rsamtools,(29) GenomicFeatures,(30) and edgeR(25) subroutine

packages.

After correcting for multiple hypothesis testing, we performed

a series of leave‐one‐out cross‐validation tests: In each compari-

son between RNA‐seq data representing two genotypes

(e.g., Lrp5þ/þ mice n¼ 8 versus Lrp5–/– mice n¼ 8), one RNA‐

seq sample was removed and the test was repeated (n¼ 7 versus

n¼ 8) in order to ensure that the excluded library was not solely

responsible for the significance of the outcome. This procedure

was repeated until the effect of every sample was elucidated.

Then, the same protocol was repeated by removing paired tibia

libraries from the same mouse at once (n¼ 6 versus n¼ 8),

in order to prevent any bias due to a single animal. All genes

that lost their significance at any point (p> 0.05) were removed

from the list of differentially expressed genes.

Results

Reproducibility of RNA‐seq data generation

Our overall strategy for generating RNA‐seq libraries is depicted

in Fig. 1. On average we obtained 19million reads/library, with

18% of reads representing PCR duplicates, and 98% of reads

successfully mapping (84% uniquely) to the annotated genome

(Fig. 2A). The distribution of reads within individual genes was

similar across libraries (Fig. 2B). When we split an individual

RNA‐seq library in half and sequenced each half separately

we obtained R2 values >0.99. When we prepared duplicate

separately bar‐coded RNA‐seq libraries from paired sources

within the same animal we obtained R2 values >0.97 for bone

marrow and R2 values ranging between 0.83 and 0.99 for

unfiltered paired cortical bone samples (Fig. 2C, D). We assumed

that differences in the extent of residual skeletal muscle, blood,

and bone marrow within paired bone samples accounted for

their reduced R2 values. Therefore, we tested this hypothesis by

(1) identifying transcripts that are more highly expressed in

skeletal muscle, blood, and bone marrow compared to cortical

bone; (2) identifying transcripts that are lower in collagenase‐

digested bone compared to fresh‐frozen bone; and (3) identify-

ing transcripts whose in silico removal has a substantial effect

on R2 values when the right and left tibias from the animal with

the lowest correlation (R2¼ 0.83) are compared (Fig. 2E).
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RNA‐seq data obtained from blood, skeletal muscle, bone

marrow, and diaphyseal bone

We observed large differences in the transcriptomes between

tissues. Using an RPKM value of 5 as the lower boundary for

reliable detection of gene expression, �5000 genes exceeded

this threshold for blood and skeletal muscle cDNA libraries,

whereas�9000 genes exceeded this threshold for bone marrow

and diaphyseal bone cDNA libraries (Supplementary Table 1)

Fig. 1. Strategy for generating tibia diaphyseal bone cDNA libraries for RNA‐seq. Both tibias were prepared within 10 minutes of euthanasia. Skeletal

muscle and the metaphyseal/epiphyseal regions were removed with a scalpel and the marrow was removed by centrifugation. Bone shafts were flash

frozen in liquid nitrogen and subjected to pulverization in TRIzol for RNA extraction. mRNA was enriched using oligo‐dT coated magnetic beads and then

chemically fragmented into 120‐ to 200‐nucleotide‐long segments prior to randomhexamer primed reverse transcription. Bar‐coded sequencing adapters

were ligated to the cDNA fragments and the indexed cDNA was subjected to 15 cycles of PCR amplification. Each library was analyzed by gel

electrophoresis to confirm that the correct fragment size range had been achieved (note the >200‐bp fragments include the sequencing adaptors).

Libraries constructed from 10 different mouse tibias are depicted here. Eight to 10 separately bar‐coded libraries were pooled and loaded onto a single

lane of an Illumina HiSeq2000 machine and 50‐bp paired‐end sequencing was performed.
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(Note: Supplementary Tables 1 to 8 are available online for this

article; a spreadsheet editor, e.g., Microsoft Excel, would be the

ideal tool for visualization and review of these files). The

distribution of expressed transcripts within the libraries was least

diverse in blood, where 52% of sequence reads corresponded to

the four hemoglobin genes (Hba‐a1, Hba‐a2, Hbb‐b1, and Hbb‐

b2). These four genes represented only �0.2% of the RNA‐seq

reads from diaphyseal bone. Similarly, highly expressed skeletal

muscle transcripts Acta1, Tnnc2, and Mylpf together accounted

for �5% of mapped sequence reads in the skeletal muscle

libraries, and only �0.3% of reads in the diaphyseal bone

libraries; these data suggest that less than 10% of RNA‐seq data

Fig. 2. RNA‐seqmetrics and reproducibility. (A) Table containing average values for tibia diaphyseal bone RNA‐seq data frommicewith the three different

Lrp5 genotypes (n¼ 8 libraries/genotype). Columns indicate themouse genotype fromwhich the RNA‐seq data were obtained, the number of paired‐end

reads/library, the percentage of reads that mapped to the mouse genome, the percentage of reads that mapped to unique regions within the mouse

genome, and the percentage of reads that likely represent PCR duplicates created during library preparation. (B) Graphs depicting the distribution of RNA‐

seq data across two representative genes (Mepe and Dmp1). The read depth relative to the maximum read depth is graphed in alignment to each gene’s

genomic DNA sequence. Thick bars below the plots indicate the positions of the exons, and the thin lines indicate the positions of the introns. Peaks

overlap the exon‐containing regions of each gene, consistent with this being RNA‐seq data. Note the high degree of similarity with respect to RNA‐seq

coverage across the genes independent of the animals’ Lrp5 genotypes. (C) Scatter‐plot comparing the total number of uniquely mapped reads for RNA‐

seq data obtained from the right and left tibias of a mouse. Each dot represents an individual gene. Higher‐abundance transcripts are closer to the upper

right and lower‐abundance transcripts are closer to the lower left of this plot. Examples of bone‐expressed genes are identified by unique symbols and

arrows. The Pearson correlation coefficient (R2) between the right and left tibia RNA‐seq data is 0.99 for this sample pair. (D) Scatter‐plot comparing total

number of uniquelymapped reads for RNA‐seq data obtained from the right and left tibias of anothermouse. Note that the Pearson correlation coefficient

(R2) between the right and left tibia RNA‐seq data is 0.83 for this sample pair, although the bone‐expressed genes appear to follow the y¼ x line. (E) Graph

depicting the effect of sequentially filtering transcripts whose removal cause the greatest increases in correlation between the right and left tibia. The inset

indicates the top 10 genes whose removal from the RNA‐seq data depicted in D had the greatest positive effect on R2. Note that these genes are highly

expressed in muscle and blood, suggesting the reduced correlation in the tibia pair depicted in D resulted from non‐bone tissue contamination.
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in diaphyseal bone represent tissue contamination. Conversely,

transcripts that are highly expressed by osteoblasts and

osteocytes, such as Col1a1, Col1a2, and Spp1, represented

�1.4%,�2.7%, and�0.9% of the diaphyseal bone RNA‐seq data,

respectively. When we compared transcript abundance between

the libraries, we identified �6000 genes that were expressed at

least twice as abundantly in blood, skeletal muscle, and/or bone

marrow compared to diaphyseal bone (Supplementary Table 1).

Of these �6000 genes, 2381 genes were only in the skeletal

muscle libraries and 609 genes were in both the blood and bone

marrow libraries (Fig. 3A,B). Because we estimated that less then

10% of diaphyseal bone RNA‐seq data likely results from tissue

contamination, we assumed that filtering all transcripts with

twofold higher expression in the contaminating tissues com-

pared to bone would be too stringent. This is the case, because

removing all reads representing these�6000 genes reduced the

diaphyseal bone RNA‐seq data by 43%.

Enzymatic removal of contaminating tissue from

diaphyseal bone

There is a tradeoff with regard to processing bone specimens

quickly in order to preserve RNA integrity and dissecting the

specimens thoroughly in order to remove contaminating tissues,

such as muscle, blood, and bone marrow. One approach for

removing contaminating tissues relies on ex vivo tissue culture in

medium containing collagenase.(26,27) We compared RNA‐seq

Fig. 3. Identification of contaminating transcripts in diaphyseal bone RNA‐seq data. (A) Venn diagrams indicating the intersection of genes that have

twofold or greater expression (p< 0.05) in skeletal muscle, bone marrow, or blood compared to tibia diaphyseal bone and that have demonstrated a

significant reduction in transcript abundance in collagenase‐digested diaphyseal bone. The percentages of tissue‐specific RNA‐seq data accounted for by

these genes are also indicated. Color‐coding represents in heat‐map format (see scales on right) the average number ofmapped reads/gene in each sector.

This is determined by dividing the total number of reads that mapped to genes in this sector by the number of genes in this sector. For example, 2914

(2139þ 775) genes are expressed at least twice as abundantly in muscle compared to bone and 1000 (775þ 225) genes had significant reductions in

transcript abundance following collagenase digestion. The intersection of these two data sets comprises 775 genes. These 775 genes account for 53%of all

mapped reads in the skeletal muscle RNA‐seq data. The average gene in this group of 775 has �17,000 reads (�13,000,000/775) mapping to it in the

muscle RNA‐seq libraries. (B) Venn diagram indicating the distribution of �6000 genes that were twice as abundantly expressed in skeletal muscle, bone

marrow, and/or blood compared to tibia diaphyseal bone. (C) Scatter‐plot in log10 scale indicating the fold changes in transcript abundancewhen RNA‐seq

data from collagenase‐digested bone is compared to RNA‐seq data from fresh‐frozen bone. Circles represent individual genes and genes having

statistically significant changes in abundance (p< 0.05) are colored blue. Note genes that are highly expressed in skeletal muscle (red symbols) decrease

significantly (p< 0.001), whereas genes that are highly expressed in bone (green symbols) have less pronounced increases. The large increases in

transcript abundance for other genes (orange symbols) likely represent collagenase‐induced changes in gene expression. (D) Box‐plots indicating the

ranges of trimmed‐mean‐normalized Pearson’s correlation coefficients (R2) between paired tibias from individual animals (contralateral pairs), and

between all pairs of tibias representing mice with the same Lrp5 genotype. Correlations before and after in silico transcript filtering of �900 genes are

shown; note that filtering increases R2 for all data comparisons (p< 0.01).
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data obtained from fresh‐frozen diaphyseal bone samples to

RNA‐seq data obtained from samples that had been treated with

collagenase. We found that the transcript abundance of �1000

genes was at least twofold lower in collagenase‐digested bone

compared to fresh‐frozen bone (Fig. 3C; Supplementary Table 2).

Most of these genes (�900) were more highly expressed in the

skeletal muscle, blood, and/or bone marrow libraries compared

to the diaphyseal bone libraries (Supplementary Table 1). As

would be expected when contaminating tissues are enzymati-

cally removed, the relative abundance of bone cell (e.g.,

osteoblast, osteocyte, and osteoclast) transcripts increased

(Fig. 3C; Supplementary Table 3). However, more than 700

genes exhibited differences in abundance, ranging from twofold

to 80,000‐fold, when collagenase‐digested bone and fresh‐

frozen bone were compared. The increased abundance of these

transcripts far exceeds the increase expected from simply

removing contaminating tissue. For example, transcripts for

osteoinductive factors, such as Egr1,(31,32) Il‐6,(33) and Cxcl2(34)

were 522‐fold, 6277‐fold, and 11,799‐fold more abundant,

respectively, and components of the transcription factor Ap‐1

complex,(35,36) such as Fos, Fosb, Jun, and Atf3, were 82,070‐fold,

4394‐fold, 96‐fold, and 1775‐fold more abundant, respectively,

in collagenase‐digested bone compared to fresh‐frozen bone

(Fig. 3C; Supplementary Table 3). These data suggest that short‐

term ex vivo culture and/or collagenase digestion in addition to

removing contaminating tissues also alters gene expression in

the remaining cells.

Improved in silico filtering of contaminating transcripts

from diaphyseal bone RNA‐seq data

All the transcripts whose abundance was lower in collagenase‐

digested bone are expressed in skeletal muscle, blood, and bone

marrow. Therefore, we used these genes to generate one set of

transcripts that could be considered “contaminating” and filtered

in silico from fresh‐frozen diaphyseal bone RNA‐seq data. We

then intersected this set with another set of transcripts that

represent genes whose abundances are at least twofold higher

in skeletal muscle, blood, and bone marrow, compared to

diaphyseal bone. This intersecting set accounted (Supplementa-

ry Tables 1 and 4) for �53% of the entire set of mapped reads in

the skeletal muscle libraries, �2% of the mapped reads in blood

libraries,�4% of themapped reads in bonemarrow libraries, and

�9% of mapped reads in diaphyseal bone libraries, leading us to

conclude that this set is highly enriched for contaminating

transcripts in the diaphyseal bone libraries. Further support for

this conclusion derives from the significant increases in R2

between paired tibias from individual mice, and from randomly

paired tibias from mice with the same Lrp5 genotype, when the

RNA‐seq reads representing this set of genes were removed from

the analyses (Fig. 3D). Therefore, this intersecting set of genes

(Supplementary Table 4) was computationally filtered from the

diaphyseal bone RNA‐seq data before data were compared

between mice with different Lrp5 genotypes.

Gene expression differences between Lrp5þ/þ, Lrp5–/–,

and Lrp5p.A214V/þ mice

We compared in silico–filtered RNA‐seq data obtained from pairs

of tibia diaphyseal bonemRNA representing Lrp5þ/þ, Lrp5–/–, and

Lrp5p.A214V/þ mice (n¼ 4 pairs of tibias/genotype). We controlled

for differences in gene expression that could result from one

outlier bone sample (ie, leave‐one‐bone out) and one outlier

mouse (ie, leave‐both‐bones‐out). We excluded genes whose

expression levels would be too low to yield meaningful

differences (ie, RPKM values <5 in both genotypes being

compared) and adjusted our significance thresholds to account

for multiple hypothesis testing (false discovery rate< 0.05)

(Fig. 4). Using this strategy we identified 302 differentially

expressed genes between Lrp5–/– and Lrp5þ/þ (Supplementary

Table 5), 166 differentially expressed genes between Lrp5–/– and

Lrp5p.A214V/þ (Supplementary Table 6), and 28 differentially

expressed genes between Lrp5p.A214V/þ and Lrp5þ/þ (Supple-

mentary Table 7) mouse diaphyseal bone.

Interestingly, there was substantial overlap between genes

that were differentially expressed in Lrp5–/– mice compared

to either Lrp5þ/þ or Lrp5p.A214V/þ mice. This overlapping list

contains 84 protein‐coding genes (Table 1; Supplementary

Table 8), which likely represents the consequence of “insuffi-

cient” versus “sufficient” LRP5‐mediated Wnt signaling. Lrp5

serves as an important positive control because it is knocked out

in the Lrp5–/– mice. As expected, Lrp5 was the most significantly

reduced transcript when Lrp5–/– bone was compared to Lrp5þ/þ

or Lrp5p.A214V/þ bone (p< 1� 10�88). Also demonstrating

significantly reduced expression (p< 0.001) in diaphyseal bone

from Lrp5–/– mice were several collagens (Col1a1, Col1a2, and

Col11a2), osteocalcin (Bglap and Bglap2), and the zinc binding

proteins (Mt1 and Mt2). Two genes predicted to increase

canonical Wnt signaling, Wnt10b (a Wnt ligand) and Fzd4

(a Wnt coreceptor), exhibited significantly increased expression

(p< 0.001), whereas an inhibitor of the canonical Wnt pathway

Apcdd1 exhibited significantly decreased expression (p< 0.001).

Interestingly, we detected no significant changes in the

expression levels of other Wnt pathway components, including

Sost, Dkk1, Lrp4, and Lrp6, each of which can significantly affect

bone mass in humans and/or mice.(10,37,38)

Lrp5 also serves as an important positive control for the RNA‐

seq data involving Lrp5p.A214V/þ mice. This mouse strain was

intended to contain a true knock‐in mutation, so the expression

of the mutant allele should be equal to the expression of the

wild‐type allele in heterozygousmice. Because RNA‐seq provides

resolution at the single‐nucleotide level, we were able show that

there was no significant difference in expression between the

Lrp5p.A214V and Lrp5þ allele (83 reads versus 107 reads; p¼ 0.18)

in the RNA‐seq data from Lrp5p.A214V/þ mouse bone. We found

only 28 genes whose expression differed significantly between

Lrp5p.A214V/þ and Lrp5þ/þ mice (Supplementary Table 7) and

would not have predicted any of these genes to have had altered

expression a priori.

Discussion

Massively parallel sequencing of RNA from cells and tissues is

increasingly being used to identify the repertoire of expressed

mRNAs, their various splice‐forms, and their changes in

expression following genetic, pharmacologic, and environ-

mental manipulation. RNA‐seq has several advantages and

disadvantages compared to other expression profiling strategies.
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An advantage of RNA‐seq over array‐based hybridization

technologies, is the former’s ability to (1) detect a larger range

of transcripts and transcript abundances without the need for a

priori target specification, (2) identify alternative transcription

start sites and splice‐forms, and (3) quantify allele‐specific

expression at single‐nucleotide resolution. For example, in our

RNA‐seq data from diaphyseal bone, we detected �9000 mRNA

species, known alternative transcription start sites and splice‐

forms for genes such as Dcn and Bglap (data not shown), and we

were able to show that Lrp5p.A214V/þ mice express the knock‐in

and wild‐type alleles equivalently in their diaphyseal bone cells.

Both RNA‐seq and array‐based hybridization can be limited

in the accuracy with which they quantify changes in gene

expression. One reason for inaccuracy derives from the need to

perform a PCR amplification step during the cDNA sample

preparation process. A transcript’s DNA sequence (e.g., G/C

content) and initial abundance can affect the ability of the PCR

reaction to increase that transcript’s abundance in proportion to

all other transcripts in the sample. For example, high G/C content

transcripts typically amplify inefficiently whereas highly abun-

dant transcripts tend to amplify more efficiently.(39–41) Therefore,

PCR amplification‐induced inconsistency could lead to false‐

positive differences in gene expression. Expression profiling

technologies that do not rely on amplification steps are

available,(42,43) but they cannot yet simultaneously quantify

expression levels for large numbers of transcripts. Therefore,

although imperfect, our RNA‐seq strategy does appear capable

of quantifying mRNA expression levels with a high degree of

Fig. 4. Overview of data filtering and analysis pipeline. A list of contaminating transcripts (n¼�900) was compiled based upon tissue‐specific expression

profiling and transcript abundances in collagenase‐digested versus fresh‐frozen bone samples. Transcripts representing the genes on this list were in

silico–filtered from the diaphyseal bone RNA‐seq data prior to downstream analyses. In each statistical comparison, p values were computed with Fisher’s

exact test (with significance set at p< 0.05) and corrected for multiple hypothesis testing (false discovery rate< 0.05), grouped samples were subjected to

leave‐one‐out cross validation, and genes expressed below the detectability threshold (RPKM< 5) were eliminated. The numbers of differentially

expressed (DE) genes remaining after each step are noted. Last, predicted genes, noncoding RNAs, and microRNAs that overlapped with the introns of

highly expressed protein coding genes were eliminated in order to ensure that the reads mapped to these regions due to incomplete transcription

events were not registered in differential expression calculations. A comparison between RNA‐seq data from the tibia diaphyseal bones of LRP5 sufficient

(Lrp5p.A214V/þ and Lrp5þ/þ) and insufficient (Lrp5–/–) mice yielded 84 differentially expressed protein‐coding genes.
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accuracy. For example, whenwemade two independent libraries

from paired bones from the same animal, they exhibited

high correlations in their rank order of gene expression

(range, 0.96–0.97).

Additional challenges exist when RNA‐seq is applied to organs

and tissues in contrast to its application on homogeneous

populations of cells in culture. In diaphyseal bone, osteocytes

have a low cell/matrix ratio because they are surrounded by

abundant extracellular matrix. Therefore, small amounts of

contamination by tissues whose cell/matrix ratios are high, such

as muscle and bone marrow, can significantly affect the RNA‐seq

data. For example, when RNA‐seq data are compared between

paired bones from the same animal, the transcripts whose

expression levels were most discrepant between the specimens

predominantly represented genes that are abundantly ex-

pressed in muscle (e.g., Atp2a1 and Myh4) and blood and

bone marrow (e.g., Hbb‐b1). Preparing diaphyseal bone samples

more carefully would lessen the problem of contamination, but

could itself induce changes in gene expression due to the extra

time the specimen is kept ex vivo. One proposed strategy for

reducing sample contamination by muscle, blood, and bone

marrow, involves a short‐term (�1 hour) ex vivo digestion of

bone specimens with collagenase.(26,27) We confirmed that this

approach reduces the abundance of many muscle, blood, and

bone marrow–derived transcripts in diaphyseal bone RNA‐seq

libraries, presumably by enzymatically removing the contami-

nating tissues. However, we also found that this approach

increased the expression of many transcripts, some by as much

as 80,000‐fold. Consequently, whereas collagenase digestion

may remove contaminating tissues it can also alter gene

expression in the remaining cells. As an alternative to

collagenase treatment, we developed a numerical filtering

strategy for eliminating transcripts that likely originate from

contaminating tissue. We identified genes (Supplementary

Table 4) whose expression is (1) higher in skeletal muscle, blood,

and bone marrow, compared to bone; and (2) whose transcript

abundance dropped significantly following collagenase diges-

tion. By in silico–filtering diaphyseal bone RNA‐seq data for these

genes, we significantly improved correlation between paired

samples from the same animal (Fig. 3). This method of

Table 1. The Top 30 Genes (Based on p Value) That Exhibited Significant Changes in Gene Expression Between LRP5‐Insufficient (ie,

Lrp5–/–) and LRP5‐Sufficient (ie, Lrp5p.A214V/þ and Lrp5þ/þ) Diaphyseal Bone

Gene symbol Fold change p WT RPKM WT rank References

Lrp5 0.02 1.24E–89 26.5 1921 (1–4)

Mt2 0.13 4.67E–29 35.9 1340 (46,47)

Zfp445 6.71 7.57E–26 2.8 11878 (48)

Cpz 0.16 1.08E–24 11.6 4755 (49,50)

Slc13a5 0.17 9.76E–24 64.1 634 (51)

Cyp2f2 0.19 3.25E–21 22.3 2334 (52)

Col1a1 0.23 1.48E–17 1245.3 18 (53)

Prss35 0.24 1.16E–15 34.6 1403 (54)

Col11a2 0.25 2.14E–15 94.4 402 (55–57)

Dapk2 3.91 1.83E–14 11.9 4611 (58)

Cfhr2 3.87 4.23E–14 2.6 12272 (59)

1810055G02Rik 3.80 1.47E–13 15.1 3623

Gm14434 3.76 1.92E–13 4.1 10141

Mt1 0.28 8.59E–13 23.2 2234 (46,47)

Cfd 0.31 8.85E–12 103.1 353 (60)

Bglap2 0.31 3.94E–11 339.0 89 (61)

Cd5l 0.29 4.33E–11 9.7 5599 (62)

Mdm4 3.31 8.07E–11 5.7 8429 (63,64)

Phf20l1 3.21 1.83E–10 4.1 10084 (65)

Il34 0.32 6.31E–10 11.4 4807 (66,67)

Epor 0.34 2.54E–09 17.1 3148 (68)

Col1a2 0.35 3.18E–09 981.3 25 (53)

Cyr61 0.34 3.51E–09 72.1 538 (69,70)

Angptl4 0.34 4.33E–09 10.2 5323 (71)

Npy 0.36 1.63E–08 127.1 283 (72,73)

Plin1 0.36 1.88E–08 14.5 3774 (74)

Eya4 2.83 3.51E–08 2.4 12598 (75)

Ighg3 0.37 6.30E–08 51.6 836 (76)

Bglap 0.38 8.22E–08 261.7 123 (61)

Bcr 0.38 1.02E–07 8.7 6154 (77)

Each gene’s RPKM value and abundance relative to other genes in the Lrp5þ/þ diaphyseal bone transcriptome are also indicated.

LRP5¼ low‐density lipoprotein receptor‐related protein 5; RPKM¼ reads per kilobase of exon model per million mapped reads; WT¼wild‐type.
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numerically controlling for tissue contamination during the

specimen preparation process also increased the consistency

of correlations between animals with the same genotype.

Therefore, this numerical filtering method should be useful to all

investigators who perform RNA‐seq on freshly processed

diaphyseal bone specimens.

RNA‐seq can detect a large range of transcript abundances.

However, detecting significant differences in transcript abun-

dance depends upon the frequency with which a transcript is

detected in RNA‐seq data; as a consequence, RNA‐seq is less

sensitive at detecting differences in low‐abundance transcripts.

Obtaining larger total numbers of RNA‐seq reads will increase

sensitivity for low‐abundance transcripts and for detecting more

subtle fold‐changes in gene expression among adequately

expressed transcripts. We pooled eight to 10 separately bar‐

coded RNA‐seq libraries in order to obtain >10million uniquely

mapping reads/library/sequencing run. At current pricing, the

material cost of generating this RNA‐seq data was�$400/library.

With this amount of data, we did not expect to reliably detect

differences in gene expression for transcripts whose RPKMvalues

were less than five. Therefore, for genes like Axin2 (RPKM< 1), a

transcriptional target of Wnt signaling whose expression level is

sensitive tomutations in Lrp5,5wewere unable to use RNA‐seq to

independently confirm this result. In addition, 10 million reads/

library is not sensitive enough to accurately detect less than a

1.7‐fold change in gene expression. Increasing the number of

reads/library would improve the sensitivity of RNA‐seq at

detecting low‐abundance transcripts and lower‐fold changes

in gene expression across samples, but this would also

significantly increase cost.

Signaling via LRP5 clearly affects bone mass.(4–7,44) Several

missense mutations, including LRP5p.A214V, cause an HBM

phenotype(1,45) and LRP5 loss‐of‐function mutations cause

very low bone mass.(2) We performed RNA‐seq on diaphyseal

bone samples from mice with three different Lrp5 genotypes

(ie, Lrp5þ/þ, Lrp5p.A214V/þ, and Lrp5–/–) to identify changes in gene

expression that could inform us about pathways that function

upstream and downstream of the LRP5 receptor. Despite the

profound effect the Lrp5p.A214V allele has on mouse bone mass

(ie, a fourfold increase in trabecular bone volume/total volume

and a 1.5‐fold increase in mid‐diaphyseal cortical bone area), we

observed few greater than twofold differences in gene expres-

sion between Lrp5p.A214V/þ and Lrp5þ/þ mice (Supplementary

Table 7) and no changes in expression that appear to represent

“smoking guns.” It is possible that we would have found more

differences in gene expression had we studied younger mice

when they are more actively increasing bonemass. Alternatively,

enhanced LRP5 signaling from the Lrp5p.A214V allele may only

cause changes in gene expression that are below the threshold

of detection in our experiment. For example, we cannot detect a

�1.01‐fold increase or decrease in gene expression. However,

a �1.01‐fold daily increase in bone mass accrual would be

sufficient to explain the fourfold increase in trabecular bone

volume in Lrp5p.A214V/þ mice compared to wild‐type mice by

16 weeks of age.

Interestingly, we observed 84 differentially expressed protein‐

coding genes when RNA‐seq data from either Lrp5p.A214V/þ or

Lrp5þ/þ mice were compared to data from Lrp5–/– mice. Because

the Lrp5p.A214V allele is able to transduce canonical Wnt signaling

as efficiently as the Lrp5þ allele, differences in gene expression

likely result from deficient LRP5‐mediated Wnt signaling. Genes

whose protein products contribute to the synthesis of bone’s

extracellular matrix (e.g., Col1a1, Col1a2, Bglap, Bglap2, Mt1, and

Mt2) had reduced abundance in Lrp5–/– mice, as did the Wnt

pathway inhibitor Apcdd1. Lrp5–/– mice also had increased

expression ofWnt10b, a Wnt ligand that is anabolic in bone, and

the Wnt coreceptor Fzd4, which can transduce Wnt signal via

LRP5 or LRP6. These data suggest that in the absence of LRP5,

bone cells are less able to produce critical matrix components. In

addition, the cells alter their expression of specific Wnt pathway

components in an attempt to increaseWnt signaling. Also, within

the list of genes whose expression levels differ between LRP5‐

sufficient and LRP5‐insufficient mice are genes with unknown

function (e.g., Zfp445). These genesmay nowbe considered to be

targets of LRP5‐mediated signaling and candidates for affecting

bone properties.
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