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An S-band Ultrawideband Time Reversal-based RADAR
for Imaging in Cluttered Media

L. Bellomo, S. Pioch, M. Saillard and E. Spano

LSEET, UMR CNRS 6017, Université du Sud Toulon-Var, France, {bellomo,pioch,saillard,spano}@lseet.univ-tln.fr

Abstract—This work presents a new RADAR prototype built

for the purpose of imaging targets located in a cluttered envi-

ronment. The system is capable of performing Phase Conju-

gation experiments in the ultrawideband [2-4] GHz. In addi-

tion, applying the D.O.R.T. method to the inter-element ma-

trix allows us to selectively focus onto targets, hence reducing

the clutter contribution. The system has been validated by ph-

syically backpropagating the focusing wave into the medium

all over the frequency band and observing the expected fo-

cusing properties.

1. INTRODUCTION

The concept of Time Reversal Mirror [1] has generated nu-

merous studies in both Acoustics and Electromagnetism in

the last decade. Many are the potential applications in non-

destructive control, medical imaging, sub-marine acoustics,

telecommunications and RADAR. The capacity of these mir-

rors to focus onto an object is very useful for imaging in ran-

dom media as it permits to improve the signal-to-clutter ra-

tio and to increase the robustness of the imaging algorithms.

In [2] such properties have been demonstrated with synthetic

data by including the response to the focusing wave in the so-

lution of the non-linear inverse scattering problem. Our aim

here is to build a prototype that allows us to get the data re-

quired by this inversion algorithm and to evaluate its perfor-

mances.

In Electromagnetism, only a few experiments of Time Re-

versal (TR) have been performed. A first set [3] has been

achieved directly in the time domain with a Digital Oscil-

loscope and an Arbitrary Waveform Generator (AWG). In a

second kind of experiment [4, 5], the system works in the

frequency domain with a Vector Network Analyzer (VNA).

In the first approach the experimental backpropagation of the

focusing wave is more easily performed thanks to the AWG,

whereas in the second one the re-transmission is only done

numerically and one ought to rather talk about Phase Conju-

gation over a given bandwidth and pulse synthesis. Yet the

available bandwidths are smaller in the former case despite

the recent progress of commercial AWG’s.

Our prototype merges the advantages of both described solu-

tions. It is made of a linear 8-antenna array, working in the

frequency domain and capable of experimentally re-transmit

the complex conjugate of the received signal within a band-

width of 2 GHz at S-band. It also allows us to apply the

D.O.R.T. (french acronym for Décomposition de l’Opérateur

de Retournement Temporel) method [6], which is of particu-

lar interest to focus selectively onto a target. In case of mul-

tiple targets, it is in fact more powerful than Time Reversal,

which has to be iterated and which restricts focusing to the

brightest target.

We present here the prototype and the first experimental re-

sults conducted to validate it. They consist of an UWB Phase

Conjugation experiment, equivalent after IFFT to Time Re-

versal, where an additional antenna is the source onto which

we want to focalize the time-reversedwave, and of a D.O.R.T.

experiment where a passive target is detected and illuminated.

These results encourage us to explore the possiblity of using

these methods for quantitave imaging of targets in cluttered

configurations.
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Figure 1 - Prototype architecture.

2. RADAR DESCRIPTION

The architecture of our RADAR (Fig. 1) is built around a 2-

port VNA serving both as signal source and receiver. The

RF front-end is made of a linear array of 8 UWB antennas

(A1-A8) plus one more spare antenna (A9), working in a

multistatic configuration. Antennas are antipodal symmet-

ric Exponentially Tapered Slot Antennas (ETSA) [7]; they



(a)

(b)

Figure 2 - UWB Phase Conjugation experiment. (a) Phase of

the ideal (dashed blue) and measured (magenta) backpropa-

gated signal versus frequency and (b) largest amplitude value

of the synthesized backpropagated pulse as a function of the

position of A9 with respect to the initial location.

show a very good input impedancematching (SWR<2) in the

[2-18] GHz frequency band and radiate a vertically-polarized

(direction perpendicular to the plane of Fig. 1) electric field.

Each array channel is controlled both in amplitude and phase

via wideband attenuator/phase shifter (A/Φ) couples driven

numerically. We also dispose of an eight-switch bank con-

nected to the antennas and of a an additional multiposition

switch. Finally, a power splitter allows to recombine/split

the eight channels. Antennas and phase shifters respectively

impose the low and high boundaries of the exploitable [2-

4] GHz frequency band.

The RF section is controlled through a PIC microcontroller

connected via USB to the PC. All measurements are carried

out in a 1.5 m× 0.6 m chambermade of flat absorbing panels.

3. VALIDATING EXPERIMENTS AND

RESULTS

UWB Phase Conjugation experiment

The setup of the experiment is the following. A9 is the source

antenna and is placed in front of the array antenna A1, 35 cm

away. The field radiated by A9 is initially recorded by each

antenna of the array. Since our system works in the frequency

Figure 3 - UWB Phase Conjugation experiment. Time-

domain field chart at the instant when the re-emitted wave

focuses on A9.

domain, Time Reversal is equivalent by Fourier Transform

properties to a Phase Conjugation of the received wave [1].

Hence this recorded vector is conjugated at each frequency

and backpropagated by coding the amplitude and phase law

into the A/Φ couples. Finally, A9measures the field re-transmitted

by the array. Because of the reciprocity of the system and the

“peculiar” array phase law, the phase of the signal measured

by A9 must be equal to zero at each frequency. Confirmating

this, in Fig. 2(a) we have recorded a mean phase of 0.5 deg

with standard deviation of 1.5 deg over the whole bandwidth.

In addition, when moving A9 away from its original position

the backpropagated wave amplitude must be smaller, since

there is no reason for a constructive interference phenomenon

to happen at a different location. Such spatial focusing prop-

erty is indeed shown in Fig. 2(b), where the decrease in the

largest value of the synthesized backpropagated pulse for dif-

ferent A9 positions is clear.

A final analysis of the experiment consists in a more classical

numerical backpropagation of the conjugated received wave

over the whole frequency range. To do this we simply model

our antennas as infinitesimal dipoles of vertical moment in

free-space. This modeling choice introduces an error in the

Time Reversal process because it adds a mismatch between

the characteristics of the antennas in the experimental data

and in the synthetic backpropagation, invalidating the reci-

procity theorem. Nevertheless, it proves to be rather effec-

tive especially because our antennas have a very stable phase

center over the [24] GHz bandwidth, exactly as infinitesimal

dipoles do. For each frequency we produce a field chart,

showing the map of the amplitude of the electric field inside

our chamber. Finally, by taking the IFFT of the field values

at each pixel, we generate a field chart for every time instant,

which allows us to observe the focusing process in the time-

domain. Such a chart at the instant where the focusing spot

is best concentrated around the position of A9 is presented in

Fig. 3.
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(b)

Figure 4 - UWB D.O.R.T. experiment. (a) Array inter-

element matrix eigenvalues distribution versus frequency and

(b) one frame of the synthetic time-domain field chart movie

associated to the largest eigenvalue.

D.O.R.T. experiment

The second experiment is an application of the D.O.R.T. method.

In the experimental setup A9 is removed and a 4 cm-diameter

metallic cylinder located 40 cm away from the array center is

used as diffracting object. Since the array antennas act both as

sources and receivers, an inter-element 8 × 8 matrix is mea-

sured at each frequency ω; the difference between two such

matrices recorded with and without the scatterer in place is fi-

nally used in order to reduce antenna coupling effects [5]. The

D.O.R.T. method is based on the Singular Value Decomposi-

tion of this matrix, the transfer matrix K(ω), which writes as
U(ω)Λ(ω)VH(ω), where H stands for conjugate-transpose.

The diagonal elements ofΛ(ω) are the singular values, whose
hierarchy provides information about the brightness of the

targets, and the columns of V(ω) are the associated right sin-
gular vectors, whose complex amplitudes are to be fed to the

array to focus selectively onto each target without any itera-

tion.

The behavior of the three largest singular values against fre-

quency is presented in Fig. 4(a); the largest one, λ1(ω), cor-
responds to the target, while the associated singular vector

v1(ω) supplies the amplitude and phase law needed to gener-

ate a wave focusing onto it. As in the previous experiment, we

(a)

(b)

Figure 5 - UWB D.O.R.T. experiment. Anti-symmetric sin-

gular vector (associated to λ2 in Fig. 4) (a) complex law and

(b) real part of the corresponding monochromatic field chart

at 3 GHz.

have coded such vector into the system at each frequency and

we have measured the object response to the focusing wave.

Such response will be used to enhance the performances of

inversion algorithms as shown with synthetic data in [2]. One

can also simulate the backpropagation of this wave and build

a chart of the field distribution over the area of interest. As

in the previous experiment, the antennas are simply modeled

as vertical electric dipoles. The result of this processing in

the time-domain is a movie showing the focusing wave prop-

agating towards the target. The frame at the instant when

it converges onto the cylinder is given in Fig. 4(b), where

one can appreciate the focusing of the wave onto the target.

The cross-range resolution (half of the focusing region along

the direction parallel to the array) is ≈ 8 cm, in accordance

with the theoretical limit λF/D, where F is the distance be-

tween the array and the target (40 cm),D is the array aperture

(35 cm) and λ is here the wavelength at the highest frequency

4 GHz (7.5 cm) [8].

The second largest singular value, λ2(ω) is also related to

the target. In effect, it has been shown in [9] that for a lin-

ear array of antennas the singular values hierarchy is inti-

mately linked to the decomposition of the diffracted field into

a Bessel-Fourier series along the azimuth angle θ. In particu-
lar, λ2(ω) is associated to the first anti-symmetric field com-



ponent, which has zero amplitude around the center of the

array and opposite phases in the two halves. This is shown

in Fig. 5(a), showing the amplitude and phase of the com-

ponents of v2 for ω = 3 GHz. Indeed, the amplitude de-

creases of around 10 dB and the phase has a jump of nearly

180◦ around the middle antennas. The real part of the cor-

responding monochromatic field chart is shown in Fig. 5(b)

confirms this, with a zero at the position of the target and op-

posite phases in the two half-planes corresponding to the two

halves of the array.

The lower singular values in Fig. 4(a) are not exploitable any-

more due to the limited dynamic range of the system; this

can be noticed by the fact that λ3(ω) is noisy with respect to

λ1(ω) and λ2(ω), which run almost parallel along the system

bandwidth.

4. CONCLUSIONS

We have manufactured a Time Reversal RADAR prototype

working in the [2-4] GHz frequency band. The validation of

the system has been achieved through two experiments, the

second of which represents to our best knowledge the first ex-

perimental report of electromagnetic D.O.R.T. singular vec-

tor re-emission over such a wide frequency band. This setup

will allow us to gather experimental data for testing the use of

Time Reversal-based methods in combination with inversion

algorithms.
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