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AN SDP-BASED DIVIDE-AND-CONQUER ALGORITHM FOR

LARGE-SCALE NOISY ANCHOR-FREE GRAPH REALIZATION∗

NGAI-HANG Z. LEUNG† AND KIM-CHUAN TOH†‡

Abstract. We propose the DISCO algorithm for graph realization in R
d, given sparse and noisy

short-range intervertex distances as inputs. Our divide-and-conquer algorithm works as follows.
When a group has a sufficiently small number of vertices, the basis step is to form a graph realization
by solving a semidefinite program. The recursive step is to break a large group of vertices into
two smaller groups with overlapping vertices. These two groups are solved recursively, and the
subconfigurations are stitched together, using the overlapping atoms, to form a configuration for the
larger group. At intermediate stages, the configurations are improved by gradient descent refinement.
The algorithm is applied to the problem of determining protein moleculer structure. Tests are
performed on molecules taken from the Protein Data Bank database. For each molecule, given 20–
30% of the inter-atom distances less than 6Å that are corrupted by a high level of noise, DISCO is
able to reliably and efficiently reconstruct the conformation of large molecules. In particular, given
30% of distances with 20% multiplicative noise, a 13000-atom conformation problem is solved within
an hour with a root mean square deviation of 1.6Å.
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1. Introduction. A graph realization problem is to assign coordinates to ver-
tices in a graph, with the restriction that distances between certain pairs of vertices
are specified to lie in given intervals. Two practical instances of the graph realization
problem are the molecular conformation and sensor network localization problems.

The molecular conformation problem is to determine the structure of a protein
molecule based on pairwise distances between atoms. Determining protein confor-
mations is central to research in biology, because knowledge of the protein structure
aids in the understanding of protein functions, which could lead to further medical
applications. In this problem, the distance constraints are obtained from knowledge of
the sequence of constituent amino acids, from minimum separation distances (MSDs)
derived from van der Waals interactions, and from nuclear magnetic resonance (NMR)
spectroscopy experiments. We take note of two important characteristics of molecular
conformation problems: the number of atoms may go up to tens of thousands, and
the distance data may be very sparse and highly noisy.

The sensor network localization problem is to determine the location of wireless
sensors in a network. In this problem, there are two classes of objects: anchors (whose
locations are known a priori) and sensors (whose locations are unknown and to be
determined). In practical situations, the anchors and sensors are able to communicate
with one another, if they are not too far apart (say within radio range), in order to
estimate the distance between them.
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While the two problems are very similar, the key difference between molecular
conformation and sensor network localization is that the former is anchor-free, whereas
in the latter the positions of the anchor nodes are known a priori.

Recently, semidefinite programming (SDP) relaxation techniques have been ap-
plied to the sensor network localization problem [2]. While this approach was suc-
cessful for moderate-size problems with sensors on the order of a few hundred, it
was unable to solve problems with large numbers of sensors, due to limitations in
SDP algorithms, software, and hardware. A distributed SDP-based algorithm for
sensor network localization was proposed in [4], with the objective of localizing larger
networks. One critical assumption required for the algorithm to work well is that
there exist anchor nodes distributed uniformly throughout the physical space. The
algorithm relies on the anchor nodes to divide the sensors into clusters, and solves
each cluster separately using an SDP relaxation. In general, a divide-and-conquer
algorithm must address the issue of combining the solutions of smaller subproblems
into a solution for the larger subproblem. This is not an issue in the sensor network
localization problem, because the solutions to the clusters automatically form a global
configuration, as the anchors endow the sensors with global coordinates.

The distributed method proposed in [4] is not suitable for molecular conformations,
since the assumption of uniformly distributed anchor nodes does not hold in the case of
molecules. The authors of [4] proposed a distributed SDP-based algorithm (the DAFGL
algorithm) for the molecular conformation problem [3]. The performance of the DAFGL
algorithm is satisfactory when given 50% of pairwise distances less than 6Å that are cor-
rupted by 5%multiplicative noise. Themain objective of this paper is to design a robust
and efficient distributed algorithm that can handle the challenging situation [26] when
30% of short-range pairwise distances are given and are corrupted with 10–20% multi-
plicative noise.

In this paper, we describe a new distributed approach, the DISCO (for DIS-
tributed COnformation) algorithm, for the anchorless graph realization problem. By
applying the algorithm to molecular conformation problems, we demonstrate its relia-
bility and efficiency. In particular, for a 13000-atom protein molecule, we were able to
estimate the positions to an RMSD (root mean square deviation) of 1.6Å given only
30% of the pairwise distances (corrupted by 20% multiplicative noise) less than 6Å.

Distributed algorithms (based on successive decomposition) similar to those in
[3] have been proposed for fast manifold learning in [28, 29]. In addition, those
papers considered recursive decomposition. The manifold learning problem is to seek
a low-dimensional embedding of a manifold in a high-dimensional Euclidean space
by modeling it as a graph-realization problem. The resulting problem has similar
characteristics as the anchor-free graph-realization problem that we are considering
in this paper, but there are some important differences which we should highlight. For
the manifold learning problem, exact pairwise distances between any pairs of vertices
are available, but for the problem considered in this paper, only a very sparse subset of
pairwise distances are assumed to be given and are known only within given ranges.
Such a difference implies that, for the former problem, any local patch will have
a “unique” embedding (up to rigid body motion and certain approximation errors)
computable via an eigenvalue decomposition, and the strategy to decompose the graph
into subgraphs is fairly straightforward. In contrast, for the latter problem, given the
sparsity of the graph and the noise in the distances data, the embedding problem itself
requires a new method, not to mention that sophisticated decomposition strategies
also need to be devised.
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The remainder of the paper is organized as follows: section 2 describes existing
molecular conformation algorithms, section 3 details the mathematical models for
molecular conformation, section 4 explains the design of DISCO, section 5 contains
the experiment setup and numerical results, and section 6 gives the conclusion.

The DISCO webpage [14] contains additional material, including the DISCO code,
and a video of how DISCO solves the 1534-atom molecule 1F39.

In this paper, we adopt the following notational conventions. Lowercase letters,
such as n, are used to represent scalars. Lowercase letters in bold font, such as s,
are used to represent vectors. Uppercase letters, such as X , are used to represent
matrices. Uppercase letters in calligraphic font, such as D, are used to represent sets.
Cell arrays will be prefixed by a letter “c” and be in the math italic font, such as
cAest. Cell arrays will be indexed by curly braces {}.

2. Related work. In this section, we give a brief tour of selected existing works.
Since the focus of this work is on developing a molecular conformation algorithm that
uses only pairwise interatom distances, our literature review will likewise be restricted
to distance-based algorithms. Therefore, we do not discuss recent approaches that are
heavily dependent on exploiting existing biological information using techniques such
as integrating fragment libraries, scoring potentials that favor conformations with
hydrophobic cores, or paired beta strands, among others.

Besides presenting the techniques used by various algorithms, we note that each
algorithm was tested on different types of input data. For instance, some inputs were
exact distances, while others were distances corrupted by low levels of noise, and yet
others were distances corrupted with high levels of noise; some inputs consist of all
the pairwise distances less than a certain cut-off distance, while others give only a
proportion of the pairwise distances less than a certain cut-off distance. It is also the
case that not all the authors used the same error measure. Although the accuracy
of a molecular conformation is most commonly measured by the RMSD, some of the
authors did not provide the RMSD error but only the maximum violation of lower or
upper bounds for pairwise interatom distances. (We present more details about the
RMSD measure in section 5.) Finally, because we aim to design an algorithm which
is able to scale to large molecules, we make a note of the largest molecule which each
algorithm was able to solve in the tests done by the authors. We summarize this
information in Table 2.1.

2.1. Methods using the inner product matrix. It is known from the theory
of distance geometry that there is a natural correspondence between inner product
matrices and distance matrices [19]. Thus, one approach to the molecular conforma-
tion problem is to use a distance matrix to generate an inner product matrix, which
can then be factorized to recover the atom coordinates. The methods we present in
section 2.1 differ in how they construct the inner product matrix, but use the same
procedure to compute the atom coordinates; we describe this procedure next. If we
denote the atom coordinates by columns xi, and let X = [x1, . . . ,xn], then the inner
product matrix Y is given by Y = XTX . We can recover approximate coordinates
X̃ from a noisy Ỹ by taking the best rank-3 approximation Ỹ ≈ X̃T X̃, based on the
eigenvalue decomposition of Ỹ .

The EMBED algorithm [11] was developed by Havel, Kuntz, and Crippen in 1983.
Given lower and upper bounds on some pairwise distances as input, it attempts to
find a feasible conformation as follows. It begins by using the triangle and tetrangle
inequalities to compute distance bounds for all pairs of points. Then it chooses random
numbers within the bounds to form an estimated distance matrix D̃, and checks
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Table 2.1

A summary of protein conformation algorithms.

Algorithms
(year)

No. of
atoms

Inputs Output

EMBED (83),
DISGEO (84),
DG-II (91),
APA (99)

454 All distance and chirality constraints needed to fix
the covalent structure are given exactly. Some or
all of the distances between hydrogen atoms less
than 4Å apart and in different amino acid residues
given as bounds.

RMSD
2.08Å

DGSOL (99) 200 All distances between atoms in the same and suc-
cessive residues given as lying in [0.84dij , 1.16dij ].

RMSD
0.7Å

GNOMAD (01) 1870 All distances between atoms that are covalently
bonded given exactly; all distances between atoms
that share covalent bonds with the same atom
given exactly; additional distances given exactly,
so that 30% of the distances less than 6Å are given;
physically inviolable minimum separation distance
constraints given as lower bounds.

RMSD
2–3Å

MDS (02) 700 All distances less than 7Å were given as lying in
[dij − 0.01Å, dij + 0.01Å].

violations
< 0.01Å

StrainMin (06) 5147 All distances less than 6Å are given exactly; a rep-
resentative lower bound of 2.5Å is given for other
pairs of atoms.

violations
< 0.1Å

ABBIE (95) 1849 All distances between atoms in the same amino
acid given exactly. All distances corresponding to
pairs of hydrogen atoms less than 3.5Å apart from
each other given exactly.

Exact

Geometric build-
up (07)

4200 All distances between atoms less than 5Å apart
from each other given exactly.

Exact

DAFGL (07) 5681 70% of the distances less than 6Å were given
as lying in [dij , dij ], where dij = max(0, (1 −

0.05|Zij |)dij), dij = (1 + 0.05|Zij |)dij , and Zij ,

Zij are standard normal random variables with
zero mean and unit variance.

RMSD
3.16Å

whether D̃ is close to a valid rank-3 Euclidean distance matrix. This step is repeated
until a nearly valid distance matrix is found. As a postprocessing step, the coordinates
are improved by applying local optimization methods.

The DISGEO package [12] was developed by Havel and Wüthrich in 1984, to
solve larger conformation problems than what EMBED can handle. DISGEO works
around the problem size limitation by using two passes of EMBED. In the first pass,
coordinates are computed for a subset of atoms, subject to constraints inherited from
the whole structure. This step forms a “skeleton” for the structure. The second
pass of EMBED computes coordinates for the remaining atoms, building upon the
skeleton computed in the first pass. They tested DISGEO on the BPTI protein [1],
which has 454 atoms, using realistic input data consisting of distance (3290) and
chirality (450) constraints needed to fix the covalent structure, and bounds (508) for
distances between hydrogen atoms in different amino acid residues that are less than
4Å apart to simulate the distance constraints available from a nuclear Overhauser
effect spectroscopy (NOESY) experiment. Havel’s DG-II package [10], published in
1991, improves upon DISGEO by producing from the same input as DISGEO five
structures having an average RMSD of 1.76Å from the crystal structure.

The alternating projections algorithm (APA) for molecular conformation was de-
veloped in 1990 [6, 18]. As in EMBED, APA begins by using the triangle inequality
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to compute distance bounds for all pairs of points. The lower and upper bounds form
a rectangular parallelepiped, which the authors refer to as a data box. Next, a random
dissimilarity matrix ∆ in the data box is chosen. (The dissimilarity matrix serves the
same function as the estimated distance matrix in EMBED.) The dissimilarity matrix
is adjusted so that it adheres to the triangle inequality. Next, ∆ is projected onto
the cone of matrices that are negative semidefinite on the orthogonal complement
of e = (1, 1, . . . , 1)T , then back onto the data box. The alternating projections are
repeated five times. The postprocessing step involves performing stress minimization
on the resultant structure. In [18], APA was applied to the BPTI protein to compare
the algorithm’s performance to that of DISGEO and DG-II. Under the exact same
inputs as DISGEO and DG-II, the five best structures out of thirty produced by APA
had an average RMSD of 2.39Å compared with the crystal structure.

Classical multidimensional scaling (MDS) is a collection of techniques for con-
structing configurations of points from pairwise distances. Trosset has applied MDS
to the molecular conformation problem [22, 23, 24] since 1998. Again, the first step
is to use the triangle inequality to compute distance bounds for all pairs of points.
Trosset’s approach is to solve the problem of finding the squared dissimilarity matrix
that minimizes the distances to the cone of symmetric positive semidefinite matrices of
rank less than d, while satisfying the squared lower and upper bounds. In [24], MDS is
applied to five molecules with less than 700 atoms. For points with pairwise distances
dij less than 7Å, lower and upper bounds of the form (dij − 0.01Å, dij + 0.01Å) are
given; for pairwise distances greater than 7Å, a lower bound of 7Å is specified. The
method was able to produce estimated configurations that had a maximum bound
violation of less than 0.1Å. The author did not report the RMSD of the computed
configurations.

More recently, in 2006, Grooms, Lewis, and Trosset proposed a dissimilarity pa-
rameterized approach called StrainMin [8] instead of a coordinate-based approach.
Although the latter has fewer independent variables, the former seems to converge to
“better” local minimizers. They propose to minimize an objective function which is
the sum of the fit of the dissimilarity matrix ∆ to the data and the distance of ∆
to the space of rank-d positive semidefinite matrices. The approach was tested on
input data that consists of exact distances between atoms less than 6Å apart, and a
2.5Å lower bound as a representative van der Waal radius for atoms whose distance is
unknown. They were able to satisfy the distance bounds with a maximum violation
of 0.2Å, for an ensemble of six protein molecules. However, the RMSD errors were
not reported.

The DAFGL algorithm of Biswas, Toh, and Ye in 2008 [3] is a direct ancestor
of this work. DAFGL differs from the previous methods in that it applies SDP re-
laxation methods to obtain the inner product matrix. Due to limitations in SDP
algorithms, software, and hardware, the largest SDP problems that can be solved are
on the order of a few hundred atoms. In order to solve larger problems, DAFGL
employs a distributed approach. It applies the symmetric reverse Cuthill–Mckee ma-
trix permutation to divide the atoms into smaller groups with overlapping atoms
(see Figure 4.2). Each group is solved using SDP, and the overlapping groups are
used to align the local solutions to form a global solution. Tests were performed on
14 molecules with numbers of atoms ranging from 400–5600. The input data con-
sists of 70% of the distances dij below 6Å, given as lying in intervals [dij , dij ], where

dij = max(0, (1−0.05|Zij |)dij), dij = (1+0.05|Zij |)dij , and Zij , Zij are standard nor-
mal random variables with zero mean and unit variance. Given such input, DAFGL
is able to produce a conformation for most molecules with an RMSD of 2–3Å.
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2.2. Buildup methods. The ABBIE program [13] was developed by Hendrick-
son in 1995 to solve molecular conformation problems given exact distance data. AB-
BIE aims to divide the problem into smaller pieces by identifying uniquely realizable

subgraphs—subgraphs that permit a unique realization. Hendrickson tested ABBIE
on the protein molecule 7RSA [1], which has 1849 atoms after discarding end chains.
The input data included the exact distances between all pairs of atoms in the same
amino acid (13879), and 1167 additional distances between hydrogen atoms less than
3.5 Å apart. Although it was not explicitly mentioned in the paper, we presume that
the algorithm was able to compute an exact solution up to roundoff error.

Dong and Wu [5] (see also [27]) presented their geometric buildup algorithm in
2003, which also relies on having exact distances. The essential idea of this algorithm
is that if four atoms form a four-clique—four atoms with distances between all pairs
known—then their positions are fixed relative to one another. The algorithm starts
by finding a four-clique and fixing the coordinates of the four atoms. The other
atom positions are determined atom-by-atom; when the distance of an atom to four
atoms with determined coordinates is known, that atom’s position can be uniquely
determined. When given all the distances less than 8Å, the algorithm was able to
accurately estimate all ten molecules tested; when given all the distances less than
5Å, it was able to accurately estimate nine of the ten molecules.

2.3. Global optimization methods. For an introduction to optimization-
based methods for molecular conformation, see [15]. Here we briefly describe two
such methods.

The DGSOL code [16, 17] by Moré and Wu in 1999 treats the molecular confor-
mation problem as a large nonlinear least squares problem with Gaussian smooth-
ing applied to the objective function to increase the likelihood of finding the global
minima. They applied DGSOL to two protein fragments consisting of 100 and 200
atoms, respectively. Distances were specified for atoms in the same or neighboring
residues, and given as lower bounds dij = 0.84dij and upper bounds dij = 1.16dij,
where dij denotes the true distance between atoms i and j. DGSOL was able to
compute structures with an average RMSD of 1.0Å and 2.9Å for 100 and 200 atoms,
respectively.

The GNOMAD algorithm [26] by Williams, Dugan, and Altman in 2001 attempts
to satisfy the input distance constraints as well as MSD constraints. Their algorithm
applies to the situation when we are given sparse but exact distances. Since it is
difficult to optimize all the atom positions simultaneously, GNOMAD updates the
positions one at a time. The authors tested GNOMAD on the protein molecule 1TIM
[1], which has 1870 atoms. Given all the covalent distances and distances between
atoms that share covalent bonds to the same atom, as well as 30% of short-range
distances less than 6Å, they were able to compute estimated positions with an RMSD
of 2–3Å.1

We end this section by noting that while the GNOMAD algorithm would in-
creasing get stuck in an unsatisfactory local minimum with more stringent MSD con-
straints, the addition of such lower bound constraints is highly beneficial for the
DISCO algorithm proposed in this paper.

3. Mathematics of molecular conformation. We begin this section with
the SDP models for molecular conformation, in section 3.1. Then we introduce the

1The RMSD of 1.07Å reported in Figure 11 in [26] is inconsistent with that appearing in Figure
8. It seems that the correct RMSD should be about 2–3 Å.
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gradient descent method for improving sensor positions, in section 3.2. Finally, we
present the alignment problem in section 3.3.

3.1. SDP models for molecular conformation. The setting of the molecular
conformation problem is as follows. We wish to determine the coordinates of n atoms,
si ∈ R

d, i = 1, . . . , n, given measured distances or distance bounds for some of the
pairwise distances ‖si − sj‖ for (i, j) ∈ N . Note that in the case of the sensor
network localization problem, we are also given a set of na anchor nodes with known
coordinates ai ∈ R

d, i = 1, . . . , na, and some pairwise distances ‖ai − sj‖ for (i, j) ∈
N a. For brevity, we will only briefly describe the anchorless case in this paper, but
refer the reader to [2] for details on the sensor network problem.

In the “measured distances” model, we have measured distances for certain pairs
of nodes,

d̃ij ≈ ‖si − sj‖, (i, j) ∈ N .(3.1)

In this model, the unknown positions {si}ni=1 are the best fit to the measured dis-
tances, obtained by solving the following nonconvex minimization problem:

min

⎧

⎨

⎩

∑

(i,j)∈N

|‖si − sj‖2 − d̃2ij | : si, i = 1, . . . , n

⎫

⎬

⎭

.(3.2)

In the “distance bounds” model, we have lower and upper bounds on the distances
between certain pairs of nodes,

dij ≤ ‖si − sj‖ ≤ dij , (i, j) ∈ N .(3.3)

In this model, the unknown positions {si}ni=1 are the best fit to the measured distance
bounds, obtained by solving the following nonconvex minimization problem:

min

⎧

⎨

⎩

∑

(i,j)∈N

(

‖si − sj‖2 − d2ij
)

−
+
(

‖si − sj‖2 − d
2

ij

)

+
: si, i = 1, . . . , n

⎫

⎬

⎭

,(3.4)

where α+ = max{0, α}, α− = max{0,−α}.
In order to proceed to the SDP relaxation of the problem, we need to consider

the matrix

Y = XTX, where X = [s1, . . . , sn].(3.5)

By denoting the ith unit vector in R
ns by ei and letting eij = ei − ej , we have

‖si − sj‖2 = eTijY eij . We can therefore conveniently express the constraints (3.1)

as d̃2ij ≈ eTijY eij , (i, j) ∈ N . Similar expressions hold also for (3.3). In the SDP

relaxation, we relax the constraint Y = XTX in (3.5) to Y � XTX , and the relaxed
model for (3.2) is given by

min

⎧

⎨

⎩

∑

(i,j)∈N

∣

∣

∣
eTijY eij − d̃2ij

∣

∣

∣
: Y � 0

⎫

⎬

⎭

.(3.6)

The problem (3.4) can be relaxed in terms of Y similarly. Once we have obtained a
matrix Y by solving (3.6), we recover the estimated sensor positions X = [s1, . . . , sns

]
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from Y by taking X = D
1/2
1 V T

1 , where the eigenpair (V1, D1) corresponds to the best
rank-d approximation of Y .

It is clear that the atom positions derived from (3.2) or (3.4) would have transla-
tional, rotational, and reflective freedom. This can cause numerical difficulties when
solving the SDP relaxed problem. The difficulties can be ameliorated when we remove
the translational freedom by introducing a constraint that corresponds to setting the
center of mass at the origin, i.e., 〈Y,E〉 = 0, where E is the matrix of all ones.

For the sensor network localization problem, So and Ye [20] have shown that if the
distance data is uniquely localizable, then the SDP relaxation (3.6) is able to produce
the exact sensor coordinates up to rounding errors. We refer the reader to [20] for
the definition of “unique localizability.” Intuitively, it means that there is only one
configuration in R

d (perhaps up to translation, rotation, reflection) that satisfies all
the distance constraints. The result of So and Ye gives us a degree of confidence that
the SDP relaxation technique is a strong relaxation.

We now discuss what happens when the distance data is sparse and/or noisy, so
that there is no unique realization. In such a situation, it is not possible to compute
the exact coordinates. Furthermore, the matrix X extracted from the solution Y of
the SDP (3.6) will not satisfy Y = XTX , and Y will be of dimension greater than
d. We present an intuitive explanation for this phenomenon. Suppose that we have
points in the plane, and certain pairs of points are constrained so that the distances
between them are fixed. If the distances are perturbed slightly, then some of the
points may be forced out of the plane in order to satisfy the distance constraints.
Therefore, under noise, Y will tend to have a rank higher than d. Another reason
for Y to have a higher rank is that if there are multiple solutions, the interior-point
methods used by many SDP solvers converge to a solution with maximal rank [9].

This situation presents us with potential problems. If Y has a higher rank than
d, then the solution X extracted from Y is unlikely to be accurate. To ameliorate this
situation, we add the regularization term, −γ〈I, Y 〉, to the objective function, where
γ is a positive regularization parameter. This term spreads the atoms further apart
and induces them to exist in a lower-dimensional space. We refer interested readers
to [2] for details on the derivation of the regularization term. Thus the measured
distances model (3.6) and distance bounds model become

min

⎧

⎨

⎩

∑

(i,j)∈N

∣

∣

∣
eTijY eij − d̃2ij

∣

∣

∣
− γ〈I, Y 〉 : 〈E, Y 〉 = 0, Y � 0

⎫

⎬

⎭

,(3.7)

min
{

− 〈I, Y 〉 : d2ij ≤ eTijY eij ≤ d
2

ij (i, j) ∈ N , 〈E, Y 〉 = 0, Y � 0
}

.(3.8)

3.2. Coordinate refinement via gradient descent. If we are given measured
pairwise distances d̃ij , then the atom positions can be computed as the minimizer of

min f(X) :=
∑

(i,j)∈N

(

‖si − sj‖ − d̃ij
)2
.(3.9)

Note that the above objective function is different from that of (3.2). Similarly, if
we are given bounds for pairwise distances dij and dij , then the configuration can be
computed as the solution of

min f(X) :=
∑

(i,j)∈N

(

‖si − sj‖ − dij
)2

−
+
(

‖si − sj‖ − dij
)2

+
.(3.10)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SDP-BASED DISTRIBUTED METHOD FOR GRAPH REALIZATION 4359

Again, note that the objective function is different from that of (3.4). We can solve
(3.9) or (3.10) by applying local optimization methods. For simplicity, we choose to
use a gradient descent method with backtracking line search. The implementation of
this method is straightforward.

The problems (3.9) and (3.10) are highly nonconvex problems with many local
minimizers. If the initial iterateX0 is not close to a good solution, then it is extremely
unlikely that the local optimum obtained from a local optimization method will be a
good solution. In our case, however, when we set X0 to be the conformation produced
by solving the SDP relaxation, local optimization methods are often able to produce
an X with higher accuracy than the original X0.

3.3. Alignment of configurations. The molecular conformation problem is
anchor-free, and thus the configuration has translational, rotational, and reflective
freedom. Nevertheless, we need to be able to compare two configurations, to determine
how similar they are. In particular, we need to compare a computed configuration to
the true configuration. In order to perform a comparison of two configurations, it is
necessary to align them in a common coordinate system. We can define the “best”
alignment as the affine transformation T that minimizes [7]

min

{

n
∑

i=1

‖T (ai)− bi‖ : T (x) = Qx+ c, Q ∈ R
d×d, Q is orthogonal

}

.(3.11)

The constraint on the form of T restricts it to be a combination of translation, ro-
tation, and reflection. In the special case when A and B are centered at the ori-
gin, (3.11) reduces to an orthogonal procrustes problem min{‖QA − B‖F : Q ∈
R

d×d, Q is orthogonal}. It is well known that the optimal Q can be computed from
the singular value decomposition of ABT .

4. The DISCO algorithm. Here we present the DISCO algorithm (for DIS-
tributed COnformation). In section 4.1, we explain the essential ideas that are incor-
porated into the design of DISCO. We present the procedures for the recursive and
basis cases in sections 4.2 and 4.3, respectively.

4.1. The basic ideas of DISCO. Prior to this work, it was known that the
combination of the SDP relaxation technique and gradient descent is able to accurately
localize moderately sized problems (problems with up to 500 atoms). However, many
protein molecules have more than 10000 atoms. In this work, we develop techniques
to solve large-scale problems.

A natural idea is to employ a divide-and-conquer approach, which will follow the
general framework: If the number of atoms is not too large, then solve the atom
positions via SDP, and utilize gradient descent refinement to compute improved co-
ordinates; Otherwise break the atoms into two subgroups, solve each subgroup re-
cursively, and align and combine them together, again postprocessing the coordinates
by applying gradient descent refinement. This naturally gives rise to two questions.

Question 1: How should we divide an atom group into two subgroups? We would
wish to minimize the number of edges between the two subgroups. This is because
when we attempt to localize the first subgroup of atoms, the edges with atoms in the
second subgroup are lost. Simultaneously, we wish to maximize the number of edges
within a subgroup. The more edges within a subgroup, the more constraints on the
atoms, and the more likely that the subgroup is localizable.

Question 2: How should we join together the two localized subgroups to localize

the atom group? Our strategy is for the two subgroups to have overlapping atoms. If
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the overlapping atoms are accurately localized in the estimated configurations, then
they can be used to align the two subgroup configurations. If the overlapping atoms
are not accurately localized, it would be disastrous to use them in aligning the two
subgroup configurations. Therefore, DISCO incorporates a heuristic criterion (see
section 4.2.2) for determining when the overlapping atoms are accurately localized.

It is important to bear in mind that not all the atoms in a group may be local-
izable, for instance, atoms with fewer than four neighbors in that group. This must
be taken into account when we are aligning two subgroup configurations together.
If a significant number of the overlapping atoms are not localizable in either of the
subgroups, the alignment may be highly erroneous (see Figure 4.4). This problem
can be avoided if we can identify and discard the unlocalizable atoms in a group. A
heuristic algorithm (see section 4.3.2) is used by DISCO to identify atoms which are
likely to be unlocalizable.

The pseudocode of the DISCO algorithm is presented in Algorithm 1. We illus-
trate how the DISCO algorithm solves a small molecule in Figure 4.1.

Algorithm 1. The DISCO algorithm.
procedure Disco(L, U)

if number of atoms < basis size then

[cAest, cI] ← DiscoBasis(L, U)
else

[cAest, cI] ← DiscoRecursive(L, U)
end if

return cAest, cI

end procedure

procedure DiscoBasis(L, U)
cI ← LikelyLocalizableComponents(L, U)
for i = 1, . . . , Length(cI) do

cAest{i} ← SdpLocalize(cI{i}, L, U)
cAest{i} ← Refine(cAest{i}, cI{i}, L, U)

end for

return cAest, cI

end procedure

procedure DiscoRecursive(L, U)
[L1, U1, L2, U2] ← Partition(L, U)
[cAest1, cI1] ← Disco(L1, U1)
[cAest2, cI2] ← Disco(L2, U2)
cAest ← [cAest1, cAest2]
cI ← [cI1, cI2]
repeat

[cAest, cI] ← CombineChunks(cAest, cI)
[cAest, cI] ← Refine(cAest, cI,L, U)

until no change
return cAest, cI

end procedure

4.2. Recursive case: How to split and combine.

4.2.1. Partitioning into subgroups. Before we discuss DISCO’s partitioning
procedure, we briefly describe the procedure used by DISCO’s parent, the DAFGL
algorithm [3]. The DAFGL algorithm partitions the set of atoms into consecutive sub-
groups such that consecutive subgroups have overlapping atoms (see Figure 4.2). It
then solves each subgroup separately and combines the solutions together. Partition-
ing in DAFGL is done by repeatedly applying the symmetric reverse Cuthill–McKee
(RCM) matrix permutation to submatrices of the distance matrix. The RCM per-
mutation is specially designed to cluster the nonzero entries of a matrix toward the
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Fig. 4.1. Since the number of atoms is too large (n = 402 > basis size = 300), we divide the
atoms into two subgroups; see Figure 4.3. We solve the subgroups independently (top left and right).
The subgroups have overlapping atoms, which are colored in green (bottom left). The overlapping
atoms allow us to align the two subgroups to form a realization of the molecule.

Fig. 4.2. This permutation of the distance matrix illustrates DAFGL’s partitioning strategy.
The dots represent the known distances, and the shaded squares represent the subgroups.

diagonal. We observe in Figure 4.2 that many of the edges are not available to any
subgroup, as they lie outside all the shaded squares. We believe that DAFGL’s par-
titioning procedure discards too many edges, and this is the reason why DAFGL
performs poorly when the given distances are sparse, say less than 50% of pairwise
distances being less than 6Å. The lesson learned from DAFGL’s shortcoming is that
DISCO’s partitioning method must try to keep as many edges in its subgroups as
possible.

Suppose that we wish to localize the set of atoms A, but there are too many
atoms in A for us to apply an SDP relaxation directly. We therefore divide A into
two nonoverlapping subgroups A1 and A2. The two objectives in this division are that
the number of edges between subgroups is approximately minimized, to maximize the
chance that each subgroup will be localizable, and that the subgroups are approxi-
mately equal in size, so that the recursive procedure will be fast.

It is not immediately obvious, after localizing A1 and A2, how we should combine
them to form a configuration forA. Our method for merging two subgroups together is
to make use of overlapping atoms between the subgroups. If the overlapping atoms are
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localized in both groups, then the two configurations can be aligned via a combination
of translation, rotation, and refection. Of course, A1 and A2 were constructed to have
no overlapping atoms. Thus we need to enlarge them to subgroups B1 ⊃ A1,B2 ⊃ A2,
which have overlapping atoms. We construct B1 by adding some atoms Ã2 ⊂ A2 to
A1. Similarly, we add atoms Ã1 ⊂ A1 to A2 to create B2. The set of atoms Ã1, Ã2

comprises auxiliary atoms added to A1 and A2 to create overlap. While A1 and A2

were constructed so as tominimize the number of edges (i, j) ∈ N with i ∈ A1, j ∈ A2,
Ã1 and Ã2 are constructed so as to maximize the number of edges (i, j) ∈ N with
i ∈ A1, j ∈ Ã2, and (i, j) ∈ N with i ∈ Ã1, j ∈ A2. The reason for this is that we
want the set of atoms B1 = A1 ∪ Ã2 and B2 = A2 ∪ Ã1 to be localizable, so we want
as many edges within B1 and B2 as possible.

We can succinctly describe the partitioning as splitting A into two localizable
groups A1 and A2, then growing A1 into B1 and A2 into B2 so that B1 and B2 are
both likely to be localizable. The splitting step should minimize intergroup edges, to
maximize the likelihood that A1 and A2 are localizable, while the growing step should
maximize intergroup edges, to maximize the likelihood that Ã2 and Ã1 are localizable
in B1 and B2.

To make our description more concrete, we give the pseudocode of the partition
algorithm as Algorithm 2. The operation of the algorithm is also illustrated in Fig-
ure 4.3. We elaborate on the details of the pseudocode below. The Partition method
consists of three stages: Split, Refine, and Overlap.

Algorithm 2. The partition algorithm.
procedure Partition(D)

[A1,A2] ← Split(D)
[A1,A2] ← Refine(D,A1,A2)
[B1,B2] ← Overlap(D,A1,A2)
return B1,B2

end procedure

procedure Split(D)
P ← SymRcm(D)
A1 ← p(1 : ⌊n

2
⌋), A2 ← p(⌊n

2
⌋+ 1 : n)

return A1,A2

end procedure

procedure Refine(D,A1,A2)
while exists a ∈ A1 closer to A2 do

A1 ← A1 \ {a}; A2 ← A2 ∪ {a}
end while

while exists a ∈ A2 closer to A1 do

A2 ← A2 \ {a}; A1 ← A1 ∪ {a}
end while

end procedure

procedure Overlap(D,A1,A2)
for i = 1, 2 do

repeat

a ← the closest point to Ai that is not in Ai

Ai ← Ai ∪ {a}
until Ai is of desired size

end for

end procedure

In the Split method, we compute the RCM permutation p of the rows and
columns of the distance matrix D, that approximately minimizes the bandwidth of
the matrix D(p,p). This is conveniently implemented as the symrcm command in
MATLAB. The RCM permutation has the effect of clustering the nonzero entries
toward the main diagonal, so that if we split the matrix with a vertical cut and
horizontal cut through the center of the matrix, then the majority of the edges are in
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Fig. 4.3. (left) An RCM permutation gives us a balanced cut, with few cross-edges (number
of cross-edges = 317). (middle) Refining the split reduces the number of cross-edges (number of
cross-edges = 266). (right) Expanding the nonoverlapping subgroups A1,A2 into the overlapping
subgroups B1,B2.

the (1,1) and (2,2) blocks, and only a few of the edges are in the (1,2) and (2,1) blocks.
Thus if we select A1 = p(1 : ⌊n/2⌋) and A2 = p(⌊n/2⌋ + 1 : n), this approximately
minimizes the number of edges from A1 to A2 (see Figure 4.3, left).

In the Refine method, we can reduce the number of intergroup edges as follows:
If an atom a ∈ A1 is “closer” to A2 than A1, then switch it over to A2. An atom is
“closer” to group A1 rather than group A2 if one of two conditions holds: (1) it has
more neighbors in group A1; (2) it has the same number of neighbors in groups A1

and A2, and its closest neighbor is in A1.
In the Overlap method, we compute B1 and B2. We begin by setting Bi to Ai,

then add to Bi the atom a not in Bi that is closest to Bi, repeating until Bi is has the
desired number of atoms.

4.2.2. Alignment of atom groups. Here we describe how to combine the
computed configurations for B1 and B2 to form a configuration for A. We shall adopt
the following notation to facilitate our discussion. Let B1, B2 be the coordinates for
the atoms in B1,B2, respectively, and let C1, C2 be the coordinates for the overlapping
atoms in B1,B2, respectively. If a is an atom in A, then let a denote its coordinates
in the configuration for A. If a ∈ B1 (resp., a ∈ B2), then let b1 (resp., b2) denote its
coordinates in the configuration B1 (resp., B2).

The first method we used to produce a configuration for A was to consider the
composition of translation, rotation, and reflection T that best aligns C2 to C1. If a
is in B1 but not in B2, then we set a = b1; if a is in B2 but not in B1, then we set
a = T (b2); if a is in both B1 and B2, then we set a = (b1 + T (b2))/2, the average
of b1 and T (b2). While this method is simple, it suffers from the disadvantage that
a few outliers can have a high degree of influence on the alignment. If a significant
number of the overlapping atoms are poorly localized, then the alignment may be
destroyed.

The method used by DISCO is slightly more sophisticated, so as to be more ro-
bust. Our strategy is to use an iterative alignment process. We find the overlapping
point such that the distance between its positions in the two configurations ‖b1 −
T (b2)‖ is the greatest. If it is greater than two times the mean distance over allover-
lapping points, then it is likely that this point is not accurately localized in either of the
two configurations, so we remove this outlier point and repeat the process; otherwise,
we conclude that this point is not an outlier, and T may give us a good alignment. By
discarding points whose coordinates do not agree well, it is hoped that our alignment
uses only points that are well localized in both groups. The linear transformation T
obtained from discarding outlier points goes through a second test. If the alignment
of the remaining overlapping points has high error, that is, if the RMSD is greater
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than a certain threshold, this indicates that it is not possible to accurately align B1

and B2 together, and we do not align them; otherwise, we proceed to align B1 and B2.

4.3. Basis case: Localizing an atom group. In this subsection, we explain
that certain individual atoms or even larger clusters of atoms may be difficult or
impossible to localize. If these “bad points” are not removed, oftentimes they will
introduce errors into the computed structure. Therefore, DISCO temporarily removes
these “bad points” and focuses on localizing only the remaining atoms which form
the “core” of the molecule. Below, we will present the procedure used by DISCO to
compute the likely localizable core of the molecule. Note that, after removing all the
“bad points” from the main computation in DISCO to localize the core structure, we
patch the “bad points” back to the core structure by applying a final round of the
gradient descent method to the minimization problems in section 3.2.

4.3.1. When DISCO fails. A prototype of DISCO was able to accurately lo-
calize certain molecules, but would produce high-error structures for other molecules.
Usually, the root of the trouble was that the configuration for one particular subgroup
had high error. Unfortunately, aligning a good configuration and a bad configuration
often produces a bad configuration, so that the error propagates up to the complete
protein configuration (see Figure 4.4).

+ →

Fig. 4.4. In each plot, a circle represents a true position, the red dot represents an estimated
position, and the blue line joins the corresponding true and estimated positions. This figure shows
how two subgroup configurations are aligned to produce a configuration for a larger group. Here,
because one subgroup configuration is poorly localized, the resulting configurations formed from this
poorly localized configuration are also unsatisfactory.

There are several reasons for some atom groups to be badly localized. One obvious
reason is that some of the atoms may have only three or fewer neighbors and so are not
uniquely localizable in general. The second reason is more subtle. When we plotted
the estimated positions against the true positions, we noticed that the badly localized
groups often consisted of two subgroups; each subgroup was well localized relative to
itself, but there were not many edges between the two subgroups, implying that the
subgroups were not well positioned relative to each other.

4.3.2. Identifying a likely localizable core. As we may observe from Figure
4.4, if one subgroup is poorly localized, the complete protein configuration could be
destroyed. Thus we must make an extra effort to ensure that we are able to accurately
localize each subgroup.

Here we make a slight digression to a related result. In the case when exact
distances are given, Hendrickson [13] established sufficient conditions for unique lo-
calizability in R

3. These conditions are not of great import to us, and so we give
only a flavor of the conditions: (1) vertex 4-connectivity, (2) redundant rigidity—the
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Fig. 4.5. Finding the cut that minimizes the number of edges between subgroups.

graph is rigid after the removal of any edge, (3) stress testing—the null space of the
so-called “stress matrix” has dimension 4.

Unfortunately, Hendrickson’s results, while interesting, are not immediately ap-
plicable to our situation. Imagine a conformation that is kept rigid by a set of edges,
which are constrained to be of specified distances. If the specified distances are re-
laxed to distance bounds, it is possible that the conformation will have freedom to
flex or bend into a shape that is drastically different from the original. Thus to get a
good localization with noisy distances requires stricter conditions than to get a good
localization with exact distances.

To ensure that we can get a good localization of a group, we may have to dis-
card some of the atoms, or split the group into several subgroups (see section 4.3.1).
Atoms with fewer than four neighbors should be removed, because we have no hope
of localizing them accurately. We should also check whether it is possible to split the
atoms into two subgroups, both larger than the MinSplitSize,2 which have fewer
than MinCrossEdges edges between them. If this were the case, it may not be pos-
sible to localize both subgroups together accurately, but if we split the subgroups,
it may be possible to localize each of them accurately. The optimal choice of these
parameters is not known, but we have found that the value of 20 for MinSplitSize
and 50 for MinCrossEdges seems to work well in practice. With regard to our choice
for MinCrossEdges, in the case of exact distances, in general six edges are needed
to align two rigid subgroups. However, in our case the distance data may be very
noisy, so we may need many more edges to align the two groups well. This is why the
somewhat conservative value of 50 is chosen.

How should we split the atoms into two subgroups, both subgroups with at least
MinSplitSize atoms, so that there are as few edges between them as possible? This
problem is familiar to us, because it bears resemblance to the partitioning problem
that was discussed in section 4.2.1. This suggests that we could adapt the partitioning
algorithm to this splitting problem. The difference between the two problems is that
in the partitioning problem, we would like the two subgroups to have approximately
the same size, while in this situation we would like both subgroups to have at least
MinSplitSize atoms. DISCO finds the approximate minimum split by first apply-
ing the RCM permutation to permute the rows and columns of the distance matrix
and cluster the nonzero entries towards the diagonal. It then tries values of p from
MinSplitSize to n−MinSplitSize+1, to see which is the cut such that the number
of edges between atoms 1 : p and (p+ 1) : n is minimized (see Figure 4.5).

2We are looking for two rigid subgroups, which have few edges between them. The rigid subgroups
should not be a very small group of atoms.
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To present these ideas more concretely, we show the pseudocode of DISCO’s
localizable components algorithm in Algorithm 2.

Algorithm 2. Computing the likely localizable core.
procedure LocalizableComponents(A)

Remove atoms with fewer than 4 neighbors from A
[nCrossEdges,A1,A2] ← MinSplit(A)
if nCrossEdges < MinCrossEdges then

cI1 ← LocalizableComponents(A1)
cI2 ← LocalizableComponents(A2)
return [cI1, cI2]

else

return A
end if

end procedure

procedure MinSplit(A)
p ← SymRcm(D)
for i = MinSplitSize, . . . , n− MinSplitSize − 1 do

nCrossEdges{i} ← nCrossEdges(D,p(1 : i),p(i+ 1 : n))
end for

i ← MinIndex(nCrossEdges)
nCrossEdges ← nCrossEdges{i}
A1 ← A(1 : i); A2 ← A(i + 1 : n)

end procedure

5. Computational experiments. In section 5.1, we explain computational is-
sues in the DISCO algorithm. In section 5.2, we present the experimental setup. In
section 5.3, we discuss the numerical results.

5.1. Computational issues.

5.1.1. SDP localization. In section 3, we presented the “measured distances”
and “distance bounds” SDP models for the graph-realization problem. We now have
to decide which model is more suitable for DISCO. We decided to use the “measured
distances” model for DISCO, because the running time is superior, while the accuracy
is comparable to that of the “distance bounds” model. With regards to the running
time, DISCO uses the software SDPT3 [24] to solve the SDPs. The running time
of SDPT3 is on the order of O(mn3) + O(m2n2) + Θ(m3) + Θ(n3), where m is the
number of constraints and n is the dimension of the SDP matrix. In our case, m
corresponds to the number of distances/bounds, and n corresponds to the number of
atoms. As the “distance bounds” model has (roughly) twice as many constraints as
the “measured distances” model, in practice, it may be 3–8 times slower on the same
input.

In the “measured distances” model, the regularization parameter γ has to be
chosen judiciously. The parameter affects the configuration in the following way:
the larger the parameter, the more separated the computed configuration. In the
extreme case when the parameter is very large, the regularization term will dominate
the distance error term to the extent that the objective value goes to minus infinity
because the atoms move as far apart as possible rather than fitting the distance
constraints. We have found that the value γ = γ̄ := m/25n seems to work well in
practice. We present our intuition for choosing such a value in the following. It is
expected that if the value of the distance term

∑

(i,j)∈N |eTijY eij − d̃2ij | and the value

of the separation term γ〈I, Y 〉 in (3.7) are balanced, then the computed configuration
will be neither too compact nor too separated. If we let r denote the half-diameter of
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the chunk, and we make the very crude estimates that

|‖si − sj‖2 − d̃2ij | ≈
∑

(i,j)∈N

|eTijY eij − d̃2ij | ≈ r2/25, Yii ≈ r2,

then this gives rise to the choice of γ = m/25n. The factor m/n comes from the fact
that there are m edges and n diagonal terms. In our computational experiments, we
have found that values γ ∈ (14 γ̄, 4γ̄) seem to work well in practice, so the SDP model
works well for a reasonably wide range of γ.

Let

σ(X) =
1

|N |
∑

(i,j)∈N

‖si − sj‖
‖struei − struej ‖ , τ(X) =

1

|N |
∑

(i,j)∈N

‖si − sj‖
d̃sij

.(5.1)

It would be useful to be able to quantify how “separated” an estimated configuration
is, compared to the true configuration. Ideally, we define the separation of a computed
configuration as σ(X) in (5.1), which requires us to know the true configuration. Since
we do not have the true configuration available, it is more appropriate to use the
approximate separation of a computed configuration, defined as τ(X) in (5.1). The
approximate separation of the computed configuration is a metric that helps us to
decide whether the SDP should be resolved with a different regularization parameter.
If the approximate separation indicates that the computed solution is “too compact”
(τ(X) < 0.8), then resolving the SDP with a larger γ (doubling γ) may produce a
“more separated” configuration that is closer to the true configuration. Similarly, if
the computed solution is “too separated” (τ(X) > 1.1), then resolving the SDP with
a smaller γ (halving γ) may produce a more accurate configuration.

The inclusion of MSD constraints can also help us to compute a better config-
uration from the SDP model. For physical reasons, there is a minimum separation
distance between any two atoms i and j, which we shall denote by αij . After solving
the SDP (3.7), we check to see if the minimum separation condition

‖si − sj‖2 ≈ Yii + Yjj − 2Yij ≥ α2
ij(5.2)

is satisfied for all pairs (i, j). If not, then we let E be the set of pairs (i, j) which violate
the condition. We then resolve the SDP (3.7), with the additional constraints (5.2) for
all (i, j) ∈ E . We observed that imposing the minimum separation constraint improves
the quality of the SDP solution. While it was reported in [26, p. 526] that the minimum
separation constraints pose a significant global optimization challenge for molecular
structure determination, we believe that the minimum separation constraints may in
fact be advantageous for finding a lower rank SDP solution from (3.7).

In this paper, we set the minimum separation distance αij to 1Å uniformly, re-
gardless of the types of the ith and jth atoms. In a more realistic setting, it is desirable
to set αij as the sum of the van der Waals radii of atoms i, j if they are not cova-
lently bonded. In that setting, the MSD αij is usually larger than 1Å. For example,
αij ≈ 3.2Å for the carbon and oxygen atoms if they are not covalently bonded.

5.1.2. Gradient descent. We have found that a regularized gradient descent
refinement performs better than the nonregularized counterpart. Recall that the atom
coordinates obtained via SDP localization are obtained by projecting Y onto the space
of rank-d matrices. This tends to give rise to a configuration that is “too compact,”
because the discarded dimensions may make significant contributions to some of the
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pairwise distances. Introducing a separation term in the objective function may induce
the atoms to spread out appropriately.

Here we describe the regularized gradient descent. Let us denote the initial iterate
by X0 = [s01, . . . , s

0
n], which we will assume is centered at the origin. The regularized

objective function is

∑

(i,j)∈N

(

‖si−sj‖− d̃ij
)2−µ

n
∑

i=1

‖si‖2 with µ =

∑

(i,j)∈N

(

‖s0i − s0j‖ − d̃ij
)2

10
∑n

i=1 ‖s0i ‖2
.(5.3)

We have found that the above regularization parameter µ works well in practice.
We remark that choosing a suitable maximum number of iterations and tolerance

level to terminate the gradient descent can significantly reduce the computational
time of the gradient descent component of DISCO.

5.2. Experimental setup. The DISCO source code was written in MATLAB,
and is freely available from the DISCO website [14]. DISCO uses the SDPT3 soft-
ware package of Toh, Todd, and Tütüncü [21, 25] to solve SDPs arising from graph
realization.

Our experimental platform was a dual-processor machine (2.40GHz Intel Core2
Duo processor) with 4GB RAM, running MATLAB version 7.3, which runs on only
one core. We tested DISCO using input data obtained from a set of 12 molecules taken
from the Protein Data Bank. The conformation of these molecules is already known,
so that our computed conformation can be compared with the true conformation.

The sparsity of the interatom distances was modeled by choosing at random
a proportion of the short-range interatom edges, subject to the condition that the
distance graph be connected.3 It is important to note that the structure of distances
thus generated may not give rise to a localizable problem even given exact distances.
Thus, it can be very challenging to produce a high-accuracy conformation under a
high level of noise. We have chosen to define short-range interatom distances as those
less than 6Å. The “magic number” of 6Å was selected because NMR techniques are
able to give us distance information between some pairs of atoms if they are less than
approximately 6Å apart. We have adopted this particular input data model because
it is simple and fairly realistic [3, 26].

In realistic molecular conformation problems, the exact interatom distances are
not given, but only lower and upper bounds on the interatom distances are known.
Thus after selecting a certain proportion of short-range interatom distances, we add
noise to the distances to give us lower and upper bounds. In this paper, we have
experimented with “normal” and “uniform” noise. The noise level is specified by a
parameter ν, which indicates the expected value of the noise. When we say that we
have a noise level of 20%, it means that ν = 0.2. The bounds are specified by

dij = max
(

1, (1− |Zij |)dij
)

, dij = (1 + |Zij |)dij .

In the normal noise model, Zij , Zij are independent normal random variables with

zero mean and standard deviation ν
√

π/2. In the uniform noise model, Zij , Zij

are independent uniform random variables in the interval [0, 2ν]. We have defined
the normal and uniform noise models in such a way that for both noise models the
expected value of |Zij |, |Zij | is ν.

3The interested reader may refer to the code for the details of how the selection is done.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SDP-BASED DISTRIBUTED METHOD FOR GRAPH REALIZATION 4369

In addition to the lower and upper bounds, which are available for only some
pairwise distances, we have MSDs between all pairs of atoms. For physical reasons,
two atoms i and j must be separated by an MSD αij , which depends on particular
details such as the type of the pair of atoms (e.g., C-N, N-O), whether they are
covalently bonded, etc. The MSD gives a lower bound for the distance between
the two atoms. As mentioned in the previous subsection, for simplicity, we set the
minimum separation distance to be 1Å uniformly, regardless of the types of atoms.

The error of the computed configuration is measured by the RMSD. If the com-
puted configuration X is optimally aligned to the true configuration X∗, using the
procedure of section 3.3, then the RMSD is defined by the following formula:

RMSD =
1√
n

n
∑

i=1

‖xi − x∗
i ‖2.

The RMSD is a measure of the “average” deviation of the computed atom positions
from the true atom positions.

5.3. Results and discussion. To help the reader appreciate the difficulty of the
molecular conformation problem under the setup we have just described, we solved
two of the smaller molecules using sparse but exact distances. This information is
presented in Table 5.1. Even if we solve a molecular problem in a centralized fashion
without divide-and-conquer, due to the sparsity of the distance data, the problem is
not localizable, and we can get only an approximate solution.

Table 5.1

The molecular problem with sparse but exact distance data cannot always be solved exactly. We
have denoted by n the number of atoms in the molecule and by ℓ the number of atoms with degree
less than 4.

Input data: Subsets of exact distances ≤ 6Å
Molecule n 30% distances 20% distances

RMSD (Å) ℓ RMSD (Å) ℓ

1GM2 166 0.10 0 0.83 10
1PTQ 402 0.39 9 1.16 38

The performance of DISCO is listed in Tables 5.2 and 5.3, for the case when the
initial random number seed is set to zero, i.e., randn(’state’,0), rand(’state’,0).
The RMSD plots across the molecules, with 10 runs given different initial random
number seeds, is shown in Figure 5.1.

When given 30% of the short-range distances, which are corrupted by 20% noise,
for each molecule, DISCO is able to compute an accurate structure. We have a final
structure (core structure) with an RMSD of 0.9–1.6Å (0.6–1.6Å). The core structure
is the union of thelikely localizable components. Typically, the core structure is solved
to a slightly higher accuracy.

We believe these are the best numbers which we could hope for, and we present
an intuitive explanation of why this is so. For simplicity, let us assume that the
mean distance of any given edge is 3Å. This is reasonable because the maximum
given distance is about 6Å. Given 20% noise, we give a bound of about 2.4–3.6Å for
that edge. Thus each atom can move about 1.2Å. The RMSD should therefore be
approximately 1.2Å.

When given 20% of the short-range distances, the conformation problems become
more difficult, due to the extreme sparsity of available distances. For each problem,
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Table 5.2

We have denoted by ℓ the number of atoms with degree less than 4. The mean degree of an atom
is 10.8–12.6. The approximate core of the structure consists typically of 94–97% of the total number
of atoms. For large molecules, the SDP localization consumes about 70% of the running time, while
the gradient descent consumes about 20% of the running time. The numbers in parentheses are the
RMSD of the core structures.

Input data: 30% distances ≤ 6Å, corrupted by 20% noise

Molecule n ℓ RMSD (Å) Time (h:m:s)
Normal Uniform Normal Uniform

1GM2 166 0 0.92 (0.94) 0.74 (0.76) 00:00:08 00:00:13
1PTQ 402 9 1.08 (0.96) 1.00 (0.85) 00:00:23 00:00:18
1PHT 814 15 1.45 (0.69) 1.15 (0.56) 00:01:22 00:01:00
1AX8 1003 16 1.35 (1.17) 1.00 (0.80) 00:01:31 00:01:07
1TIM 1870 45 1.23 (1.03) 0.94 (0.80) 00:04:18 00:03:28
1RGS 2015 37 1.52 (1.36) 1.51 (1.41) 00:05:25 00:03:53
1KDH 2923 48 1.38 (1.16) 1.21 (0.89) 00:07:57 00:05:30
1BPM 3672 36 1.10 (1.03) 0.79 (0.73) 00:11:24 00:08:08
1TOA 4292 62 1.15 (1.07) 0.89 (0.78) 00:13:25 00:09:06
1MQQ 5681 46 0.92 (0.86) 0.82 (0.74) 00:23:56 00:17:24
1I7W 8629 134 2.45 (2.34) 1.51 (1.40) 00:40:39 00:31:26
1YGP 13488 87 1.92 (1.93) 1.50 (1.52) 01:20:35 01:00:55

Table 5.3

We have denoted by ℓ the number of atoms with degree less than 4. The mean degree of an atom
is 7.4–8.6. The approximate core of the structure consists typically of 88–92% of the total number
of atoms. For large molecules, the SDP localization consumes about 60% of the running time, while
the gradient descent consumes about 30% of the running time.

Input data: 20% distances ≤ 6 Å, corrupted by 10% noise

Molecule n ℓ RMSD (Å) Time (h:m:s)
Normal Uniform Normal Uniform

1GM2 166 7 1.44 (1.25) 0.92 (0.77) 00:00:04 00:00:04
1PTQ 402 46 1.49 (1.17) 1.48 (1.14) 00:00:14 00:00:10
1PHT 814 53 1.53 (1.13) 1.40 (0.97) 00:01:02 00:00:54
1AX8 1003 78 1.69 (1.40) 1.52 (1.17) 00:01:00 00:00:55
1TIM 1870 143 1.77 (1.41) 1.84 (1.50) 00:02:43 00:02:33
1RGS 2015 189 9.82 (9.51) 1.83 (1.39) 00:03:32 00:03:14
1KDH 2923 210 1.74 (1.31) 1.63 (1.13) 00:04:28 00:04:45
1BPM 3672 187 1.46 (1.14) 1.31 (0.91) 00:06:52 00:06:33
1TOA 4292 251 1.67 (1.26) 1.58 (1.16) 00:08:39 00:08:49
1MQQ 5681 275 1.17 (0.95) 1.17 (0.92) 00:14:31 00:14:21
1I7W 8629 516 4.04 (3.69) 3.87 (3.52) 00:26:52 00:26:04
1YGP 13488 570 1.83 (1.63) 1.70 (1.46) 01:01:21 00:57:31

the mean degree of each atom is 7.4–8.6, so the data is highly sparse. We set a lower
level of 10% noise for these experiments. Even under such challenging input, DISCO
is still able to produce a fairly accurate structure (≈ 2Å) for all the molecules except
1RGS and 1I7W (≈ 4Å) in Table 5.3.

In Figure 5.1, we plot the RMSDs for different random inputs of the samemolecule.
The graphs indicate that DISCO is able to produce an accurate conformation (RMSD<
3Å) for most of the molecules over different random inputs. DISCO does not perform so
well on the twomolecules 1RGSand 1I7W,which have less regular geometries. Although
we have designed DISCO with safeguards, DISCO will nevertheless occasionally make
mistakes in aligning subconfigurations that are not well localized.
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Fig. 5.1. For each molecule, ten random inputs were generated with different initial random
number seeds. We plot the RMSDs of the ten structures produced by DISCO against the molecule
number. (top left) 30% short-range distances, 20% normal noise; (top right) 30% short-range dis-
tances, 20% uniform noise; (bottom left) 20% short-range distances, 10% normal noise; (bottom
right) 20% short-range distances, 10% uniform noise.

6. Conclusionand futurework. Wehave proposed a novel divide-and-conquer,
SDP-based algorithm for the molecular conformation problem. Our computational ex-
periments demonstrate that DISCO is able to solve very sparse and highly noisy prob-
lems accurately, in a short amount of time. The largest molecule with more than 13000
atoms was solved in about one hour to an RMSD of 1.6Å, given only 30% of pairwise
distances less than 6Å and corrupted by 20% multiplicative noise. We hope that, with
the new tools and ideas developed in this paper, we will be able to tackle molecular con-
formation problems with highly realistic input data, as was done in [12].
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