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ABSTRACT 

In this paper, we present an NoC (Networks-on-Chip) router with 

an SDRAM-aware flow control. Based on a priority-based 

arbitration, it schedules packets to improve memory utilization 

and reduce memory latency. Moreover, our multi-scheduling 

scheme performed by the multiple SDRAM-aware routers helps to 

achieve better SDRAM performance and save the hardware cost 

of NoC platform. Experimental results show that our SDRAM-

aware router improves memory latency by 18% and memory 

utilization by 4.9% on average with over 42% saving of gate 

count of the NoC platform with dual memory subsystem. 

Categories and Subject Descriptors 

C.2.1 [COMPUTER-COMMUNICATION NETWORKS]: 

Network Architecture and Design - Packet-switching networks. 

General Terms 

Algorithms, Performance, Design. 

Keywords 

Networks-on-Chip, router, flow control, memory 

1. INTRODUCTION 
An NoC (Networks-on-Chip) has been proposed as a scalable 

solution to complex on-chip interconnection problems [1, 2]. 

Recently, one inter-layer interconnection comes to extend the 

NoC into three dimensions by TSV (Through-Si-Vias) technology 

[3]. Especially, a 3D NoC embedded with multiple SDRAMs 

(Synchronous Dynamic Random Access Memory) for L2 or L3 

caches on top of processing elements in different layers achieves 

higher memory bandwidth, shorter latency and more reliable 

electrical features than a conventional 2D NoC only interfacing 

with one or two off-chip SDRAMs [4]. 

A memory subsystem managing an SDRAM is one of the most 

important components in most 2D/3D NoC designs since the 

performance of the whole system is considerably sensitive to the 

performance of the memory subsystem. However, a memory 

subsystem frequently underperforms due to characteristic 

operation flows of an SDRAM [5] and dynamic accesses by 

various processing components. For example, DDR (Double Data 

Rate) II SDRAM utilization (defined as the number of clock 

cycles transferred valid data divided by the total number of clock 

cycles required to access data) becomes much worse by 55% in 

DTV (Digital Television) application [6]. Moreover, the 

corresponding number of memory subsystem is also equipped to 

manage the SDRAMs. Since the gate count of a single memory 

subsystem occupies over 35% of the entire 3×3 NoC platform 

consisting of a single memory subsystem, nine routers and twelve 

links from our experimental results, the NoC design cost highly 

increases depending on the number of memory subsystem. 

Therefore, considerable attention has shifted toward memory-

aware NoC exploration to improve memory utilization and latency 

and save the design cost of the NoC platform.  

In this paper, we propose an SDRAM-aware NoC router 

improving total SDRAM utilization and latency and decoupling 

the NoC design cost from the number of SDRAM. Our key ideas 

are two-fold. First, if an NoC router schedules packets to access 

SDRAM efficiently, the packets arrive at a memory subsystem 

into the order that is more friendly to SDRAM operations. At a 

result, the complexity of a memory subsystem considerably 

decreases while the memory performance is more improved. Since 

our SDRAM-aware router uses existing resources to schedule 

packets, e.g. input buffers for storing blocked packets or other 

flow-control mechanisms, the additional design cost is tiny. 

Instead, heavy reordering buffers and a scheduler are removed in a 

memory subsystem. Second, a multi-scheduling scheme 

performed by multiple SDRAM-aware routers outperforms a 

single-scheduling scheme performed by a single memory 

subsystem. The reason is that the performance of a single 

scheduling scheme is mainly limited by the depth of reordering 

buffers in a memory subsystem. However, our multi-scheduling 

scheme uses all input buffers in multiple routers to reorder packets. 

Based on these ideas, the major novelty and contribution of this 

paper include the following. 

 We propose an NoC router with an SDRAM-aware flow 

control. It schedules a packet to access an SDRAM instead 

of a memory subsystem. 

 We employ both a priority-based arbitration based on 

SDRAM-awareness and a multi-scheduling scheme that are 

performed by multiple NoC routers. 

 We show that the NoC design with our SDRAM-aware 

router can achieve higher memory utilization, shorter 

memory latency and cheaper hardware cost than the 

conventional NoC design with an SDRAM-unaware router.  

The rest of this paper is organized as follows. In the next section, 

we survey related works. In section 3, SDRAM operation 

principle and SDRAM scheduling are reviewed. In section 4, a 

problem in NoC design with a memory subsystem and our basic 

solution are present. Section 5 presents a detailed description of 

the SDRAM-aware router. Experimental results are shown in 

Section 6. Finally, section 7 concludes the paper. 

 

 



2. RELATED WORKS 
A 3D NoC embedded with multiple SDRAMs provides more 

bandwidth, shorter latency and less number of timing-critical 

paths. However, the corresponding number of an expensive 

memory subsystem is also equipped to manage the SDRAMs. A 

memory subsystem usually consists of three parts, i.e., a buffer, a 

SDRAM scheduler and a SDRAM interface signal generator, 

where the depth of buffer and the scheduler for reordering 

memory accesses are a key factor of high memory utilization and 

short memory latency. Memory access scheduler proposed in [7] 

supports preemption and reordering to optimize bandwidth and 

average latency. The schedulers discussed in [8, 9] support 

preemption for high-priority requestors to decouple latency and 

data rate. PREDATOR proposes grouping memory accesses and a 

predictable arbiter for this group in [10]. Memory scheduler 

proposed in [11] adopts the adaptive history-based algorithm. 

Flow control in an NoC router focuses on how network resources, 

e.g. channel bandwidth, buffer capacity and control state, are 

allocated to packets traversing a network. A decentralized control 

system and a predictive explicit-rate control are developed in [12, 

13]. A predictive flow controller that controls the packet injection 

rate is proposed in [14]. To improve the overall execution time 

and link utilization, optimal link scheduler and shared buffer 

router architecture are proposed in [15]. An open-loop flow 

control scheme is proposed in [16] to reduce the conflicts of data 

transfers from multiple memory modules to the same masters. Our 

SDRAM-aware flow-controller schedules packets to improve the 

utilization and latency of SDRAM based on priority-based 

arbitration and a multi-scheduling scheme, which can work 

together with other flow controls and routing schemes.  

3. PRELIMINARY 

3.1 Basic SDRAM Operation 
An SDRAM has a three dimensional structure, i.e., a bank, a row 

and a column as shown in Fig. 1. Basic commands to access the 

SDRAM are ACT (Activate), R/W (Read/Write) and PRE 

(Precharge), where the ACT is executed with a BA (Bank 

Address) and an RA (Row Address), the R/W is executed with a 

BA and a CA (Column Address) and the PRE is executed with a 

BA. In Fig. 1, when any idle bank is activated by ACT, one row 

data of the bank move to a row buffer of the bank. It takes tRCD to 

complete the ACT. Timing parameters of a DDR II SDRAM used 

in this paper is shown in Table 1. Then, R/W is executed on the 

filled row buffer. After read latency called CL or write latency 

called tDQSS, successive data go from or to the SDRAM. Finally, 

PRE is executed to deactivate the active row buffer in the bank. It 

also takes tRP to become the idle state again. 

3.2 Memory Scheduling 
An SDRAM consists of independent multiple banks while address 

and data resources serialize access to different banks, as shown in 

Fig. 1. Its benefit is that pin/wire resources are saved and 

commands to a different bank are pipelined, i.e. while data is 

transferred to or from one bank, the rest of banks become idle and 

active for a later request. Nevertheless, the improvement of 

SDRAM utilization is still limited due to wasted cycles caused by 

the above characteristic operation flows of an SDRAM and 

dynamic accesses by various processing components. Main factors 

that deteriorate the SDRAM utilization are the following or their 

combinations: 

 Continuous accesses of the same bank with different RAs. 

 Write (read) access followed by any read (write) access. 

The first factor called bank conflict is the most critical to SDRAM 

utilization since a bank activated by the former access should get 

idle and then active for the later access. In Fig. 2, there are two 

SDRAM schedulers that reorder four read accesses, i.e. read 1 

(RA 0, BA 0, CA 0), read 2 (RA 1, BA 0, CA 0), read 3 (RA 0, 

BA 1, CA 0) and read 4 (RA 1, BA 1, CA 0). As shown in Fig. 

2(a), let them scheduled in the order, read 1, read 2, read 3 and 

read 4 by scheduler 1. After completing read 1 as mentioned in 

section 3.1, read 2 cannot be immediately executed since the row 

buffer of bank 0 is already occupied by the data of RA 0. 

Therefore, PRE should be executed to release the filled row buffer 

of bank 0 and then ACT should be executed to fill the row buffer 

of bank 0 with the data of RA 1. On the other hand, read 3 can be 

pipelined, that is called bank interleaving since it has the different 

BA from the BA of read 2. At a result, the data 3 accessed by read 

3 are generated with no loss of clock cycles as shown in Fig. 2(a). 

The last read 4 conflicts with read 3 since they have the same BAs, 

but the different RAs. On the other hand, scheduler 2 changes the 

order of four reads: read 1, read 3, read 2, and read 4 as shown in 

Fig. 2(b). This order does not cause any bank conflict such that all 

of the read accesses are pipelined. Consequently, the second 

SDRAM scheduler lets all SDRAM accesses completed faster 

than the first SDRAM scheduler. In this example, memory 

utilization of the first scheduler is 9.5% (= 4 data / 42 clock 

cycles) and that of the second scheduler is 13.3% (= 4 data / 30 

clock cycles). 

Table 1: Timing parameter of DDR II SDRAM @333MHz [5] 

CL CAS (Column Access Strobe) latency (4 clocks) 

tRCD RAS (Row Access Strobe) to CAS delay (4 clocks) 

tRP Row precharge time (4 clocks) 

tWR Write recovery time (5 clocks) 

tWTR Internal write to read command delay (3 clocks) 

tDQSS 
DQS (Data Strobe) latching rising transitions to associated 

clock edges (1 clock) 
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Figure 1: SDRAM architecture 



The second factor is called data contention. Data pins or wires in 

an SDRAM are bidirectional while control and address pins or 

wires are unidirectional. Thus, input data can be collided with 

output data. To prevent it, at least one clock cycle should pass 

when a write access after a read access is accessed. A write access 

followed by a read access also waits for write recovery time (tWTR) 

after the write access, which degrades the memory performance. 

Therefore, continuous read or write accesses are encouraged. 

4. NOC DESIGN WITH SDRAM 

4.1 Problem Description 
The bank conflict and data contention frequently happen in the 

conventional NoC design due to the limited resources in the 

memory subsystem. Fig. 3 shows a simple example of bank 

conflict in the 2x3 NoC design. It includes one memory subsystem 

that schedules packets to avoid the bank conflict and data 

contention. In Fig. 3, RxBy means that an RA and a BA of packet 

are x and y, respectively and the arrow means a packet will move 

at the next cycle. We assume that the length of packet is 1, the 

memory subsystem includes two buffers to store two packets and 

its scheduler makes one of two stored packets executed every 

cycle (although actual execution time is longer than one cycle). 

Round-robin arbitration [17] as a flow control of NoC routers is 

adopted to assign a channel and a buffer of the next node to one 

packet among several competing packets. At cycle 0, three packets, 

R2B0, R2B1 and R3B0 get competition for advance to the router 

interconnecting with the memory subsystem and then R2B0 wins. 

R0B1 is executed in the memory subsystem. At cycle 1, R2B0 

advances to the router interconnecting with the memory 

subsystem and then R3B1 also advances to the empty router by 

the advance of R2B0. Then three packets, R2B1, R3B0 and R3B1 

also get competition such that R3B0 wins. R0B0 but not R1B1 is 

executed for avoiding bank conflict in the memory subsystem. At 

cycle 2, by round-robin arbitration R3B0 advances. Then, the rest 

of two packets get competition such that R2B1 wins. R1B1 is 

executed in the memory subsystem. At cycle 3, bank conflict 

happens in the memory subsystem since current execution is a 

bank 0 access and two buffers are also filled with bank 0 accesses, 

where all RAs are different. It is difficult to avoid bank conflict 

completely in the conventional NoC with the small depth of buffer. 

4.2 Basic Idea of SDRAM-Aware NoC Router 
In our NoC design, the packet scheduling for an SDRAM access 

is performed by multiple SDRAM-aware routers. Consequently, 

the possibility of bank conflict becomes lower since packets arrive 

at the memory subsystem into the order that is friendly to the 

SDRAM operation. Fig. 4 shows how an NoC with our SDRAM-

aware router works. At the first competition (cycle 0), the winner 

that advances to the router interconnecting with the memory 

subsystem is R2B1 that accesses bank 1 since the former access, 

R1B0 accessed bank 0. The rest of two packets may cause bank 

conflict since they have the same BAs but different RAs from the 

former access. At cycle 1, R2B1 advances and both competing 

packets, R2B0 and R2B1 can be a winner for advance but, R2B0 

is chosen in this example. At cycle 2, R2B0 advances and R3B1 

wins. Finally, R3B1 advances and R3B0 wins at cycle 3. 

Therefore, the proposed router prevents bank conflict better.  

In addition, while it is desirable to use multiple SDRAMs for high 

performance, it is not desirable to use a corresponding number of 

memory subsystems. The reason is that the memory subsystem in 

bank conflict
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Figure 3: Conventional NoC with round-robin flow control 
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Figure 4:  Novel NoC with SDRAM-aware flow control 
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Figure 2: Examples of SDRAM operation depending on schedulers 



Fig. 3 is too high in design cost due to a lot of buffers and a 

scheduler. Due to no buffer and no scheduler in the memory 

subsystem as shown in Fig. 4, our NoC design not only improves 

memory utilization and latency but also saves NoC design cost.  

5. SDRAM-AWARE NOC ROUTER 
Rather than a detail implementation, the proposed NoC router is 

about a novel paradigm for SDRAM-aware NoC exploration, 

which has a flow-control mechanism improve memory utilization 

and latency. Indeed, based on our idea, any deterministic and 

adaptive routing scheme can be combined to form our SDRAM-

aware router. Another flow-control mechanism mentioned in 

section 2 can also be combined to avoid deadlock and livelock 

[17], to make traffic load balanced on a network [12-14] and to 

manage buffers and channel bandwidth [15].  

5.1 Router Description 
Our NoC router consists of input buffers, routing logics, 

SDRAM-aware flow controllers and an output schedulers as 

shown in Fig. 5. A packet is split into so-called flits (flow control 

digits) which are then routed and stored in a pipelined fashion. 

The input buffers are managed by wormhole flow control or 

virtual-channel flow control and a backpressure is used to inform 

the upstream nodes when they must stop transmitting flits because 

all of the downstream flit buffers are full. For our experiment, the 

wormhole flow control is implemented due to its simplicity and 

wide popularity [17] and an on/off flow control is adopted to 

avoid the loss of flits as the backpressure. Our SDRAM-aware 

router can be implemented to both deterministic and adaptive 

routers according to a routing logic that guarantees deadlock and 

livelock freeness. The approaches to solve deadlock are to use 

virtual channels [17] and deterministic dimension-ordered 

routings (e.g. XY routing, odd-even routing) [17]. We implement 

the XY routing that is a deterministic and minimal path routing 

algorithm, i.e. free deadlock and livelock. Simply to avoid another 

deadlock condition mentioned in [16], a master can send requests 

to another slave only after finishing requests for one slave. 

In this router, over two flits arriving on different inputs buffers at 

the same time may both desire the same channel, where the final 

destination of flits is an SDRAM subsystem. In this case, the 

SDRAM-aware flow-control mechanism resolves this contention, 

allocating the channel to one packet and dealing with the others, 

blocked packets. Our SDRAM-aware flow control adopts winner-

take-all bandwidth allocation that allocates all of the bandwidth to 

one packet until it is finished or blocked before serving the other 

packets [17]. Output scheduling detects if the buffers of the next 

node are available or expects when the buffers are available such 

that each SDRAM-aware flow control can choose the best path for 

low latency when multiple paths are given by the routing logic. In 

next section, a detail SDRAM-aware flow-control mechanism that 

uses a priority-based arbitration is present. 

5.2 SDRAM-aware Flow Control 
Our flow control allocates a channel to one of the competing flits 

whose destination is a memory subsystem controlling an SDRAM. 

Therefore, our flow-control mechanism performs an arbitration to 

determine which flit gets the channel it has requested. After the 

arbitration, the winning flit advances over this channel. Our 

arbitration algorithm also decides how to dispose of any flits that 

do not get their requested destination. 

As shown in Algorithm 1, our arbitration is a priority-based 

algorithm, where the priority is composed from SDRAM 

awareness. The priority is assigned to all competing head flits 

which destination is a memory subsystem. Let h(n) be the head flit 

of  packet, which is already allocated a channel by the SDRAM-

aware flow control at nth arbitration. Body and tail flits are 

assigned the same channel as their head flit. Let hi(n+1) be one of 

all competing head flits (I) that may be allocated the same channel 

as h(n) at (n+1)th arbitration, where i∈I. The head flits, h(n)  and 

hi(n+1) contain addresses and command to access an SDRAM, 

denoted by (RAn, BAn, R/Wn) and (RAn+1,i, BAn+1,i, R/Wn+1,i), 

respectively, where the notations are (row address, bank address, 

read/write). At (n+1)th arbitration, all competing hi(n+1) are 

compared to h(n) and then given a delay point from Table 2 (line 

7) that is composed from DDR II SDRAM operating at 333MHz 

clock cycle [5] and that is changed according to the kind of 

SDRAM and operating speed. 

Table 2 shows how many clock cycles are wasted when hi(n+1) is 

accessed in an SDRAM after h(n). In Table 2, both case 1 and 10 

have no loss of clock cycle since hi(n+1) gets the same R/W, BA 

and RA as h(n), which means that data already stored in the row 

buffer of the same bank are accessed again by the same command. 

In case 3 and 12, data can be also accessed continuously since 

bank interleaving is completely performed as mentioned in section 

3.2. Case 4 and 6 have one clock loss between the former read and 

the latter write access to avoid data contention. Case 7 and 9 

waste 7 cycles to read data after writing data. Although bank 

interleaving is completely performed in case 7 and the continuous 

access of the same row buffer are performed in case 9, the later 

read command can be accepted tWRT (internal write to read 

command delay) after finishing the former write. Then read data 

go out from an SDRAM after CL. In case 5, after reading data, its 

row buffer should be idle and then active since a write access with 

the same BAs but different RAs are executed. Then, data are 

written after write latency. Case 2 is already explained in section 

3.2. Case 11 is a write-to-write access with the same BAs but the 
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Figure 5:  The proposed NoC router in mesh architecture 

Algorithm 1 SDRAM-Aware Flow Control Algorithm 

Input: h(n), hi(n+1) and table 2 

1:  for each hi(n+1), i∈I do 

2: if hi(n+1) is a new packet entering to the router then 

3: wi = 0; 

4: else 

5: wi = wi + waiting cycles from the previous arbitration(n); 

6: end if 

7: di = delay cycle between h(n) and hi(n+1) from table 2; 

8: pi = wi - di,; 

9: end for 

10: hi(n+1) with maximum(pi) is allocated to a channel; 

Output: h(n+1) 

 



different RAs. After the first writing, write recovery time (tWR) is 

needed. Then, its row buffer is released (tRP), filled with new data 

(tRCD), and finally wrote after write latency (tDQSS). Case 8 is the 

worst case since a read access with the same BAs but different 

RAs happens after writing data. The write access needs tWR and 

the row buffer should be released, filled with new data and finally 

read after read latency (CL). 

Our priority-based arbitration guarantees the upper bound latency 

since the low priority of packet may last for a long time. For 

example, let a packet with case 11 lose a competition against a 

packet with case 10. Nevertheless, since the priority condition is 

not changed at the next arbitration, the defeated packet keeps 

losing the next competition if it meets another packet with case 10. 

Therefore, the packet should escape from this competition after 

several defeats. To solve this starvation problem, our flow control 

counts the number of clock cycles passed from the first 

competition to the current competition (line 5) for each defeated 

packet. Then, this waiting time is subtracted by the delay cycle 

obtained in Table 2 (line 8). By this operation, any packet delayed 

for 17 clocks does not get a lower priority than a new packet 

entered in the router.  

Finally, the packet with the maximum pi is allocated the channel 

(line 10) and the blocked packets wait for the next competition or 

get another competition at a different SDRAM-aware flow 

controller if multiple routing paths are allocated by a routing logic. 

Thus, if an adaptive router instead of a deterministic router is 

employed in a routing logic, the performance would be better. 

5.3 Hardware Implementation 
Simple logics are added in the SDRAM-aware router to compute 

the delay (di) and the waiting time (wi) while the buffers and 

schedulers of memory subsystem are removed as shown in Fig. 4. 

The buffers in the memory subsystem are used to store several 

packets and then to reorder the packets such that an SDRAM is 

accessed as fast as possible. However, since the massive size of 

packet is generated in a GPU (Graphics Processing Unit) and a 

high-definition video system, the size of buffers also becomes 

larger and larger. Our NoC embedded with SDRAMs does not 

require the buffers in the memory subsystem since the scheduling 

is performed in multiple NoC routers. Furthermore, the size of 

input buffer in the router does not increase since the maximum 

four input buffers per router in a mesh network substitute for the 

buffers of memory subsystem by wormhole flow control and our 

multi-scheduling scheme gets the similar effect to the increase of 

input buffers. Consequently, the distinguished decrease of buffers 

in the memory subsystem exceeds the increase by the complexity 

of arbiter in multiple routers such that total chip area decreases. In 

addition, each router can get a different scheduler for a faster 

SDRAM access or for another purpose, which is one of the most 

important benefits of a multi-scheduling scheme. 

6. EXPERIMENTAL RESULTS 
An NoC with our SDRAM-aware router is implemented in 

Verilog HDL (Hardware Description Language). A memory 

subsystem operates with a DDR II SDRAM at 333MHz [5] and is 

implemented by the design concept from Sonics’ MemMax [18] 

and Denali’s Databahn [19], where MemMax is an SDRAM 

scheduler with four 32-flit buffers and Databahn is an SDRAM 

signal generator. Both are included in a conventional NoC design 

with a round-robin flow control based router. This is compared to 

our NoC design that includes multiple SDRAM-aware routers and 

a SDRAM signal generator instead of a full memory subsystem. 

6.1 DTV Application 
Our SDRAM-aware NoC router is applied to a Samsung DTV 

system that consists of 9 subsystems, i.e., an ARM9, an MPEG 

(Moving Picture Experts Group) decoder, a DNIE (Digital Natural 

Image Engine), a GPU, an audio decoder, a TS (Transport 

Stream) decoder, an AV (Audio and Video) format converter, a 

channel decoder and a memory subsystem, which are mapped to 

3×3 mesh network. A conventional NoC router with round-robin 

flow control is gradually replaced by our SDRAM-aware router 

where the router that is the closest to a memory subsystem is 

replaced first and the router that is the farthest away from memory 

subsystem is replaced last. Fig. 6 shows the results according to 

the number of SDRAM-aware router placed to the order. In Fig. 

6(a), the memory utilization of our NoC design starts 57% in case 

of no buffer, no memory scheduler and no SDRAM-aware router. 

When three SDRAM-aware routers are placed, its memory 

utilization increases by 72% (4.8% higher than the conventional 

NoC design). The reason why it is no longer improved in the case 

that over three SDRAM-aware routers are employed is that the 

bank conflicts and data contentions are almost removed. In Fig. 

6(b), service latency is also shortened by 79 cycles (33% shorter 

than the conventional NoC design) since the high memory 

utilization lets a packet accessed faster with short waiting time 

and our flow control mechanism manages the upper bound latency. 

Our SDRAM-aware NoC design and the conventional NoC 

design are also synthesized by DesignVision from Synopsys with 

TSMC130LV library. The gate count of SDRAM-aware NoC 

design is 24.8% smaller as shown in Fig. 6(c) even if all 

Table 2: Execution delay between h(n) and hi(n+1) 

Relation of h(n) with RWn, BAn, and RAn and hi(n+1) with  

RWn+1,i, BAn+1,i, and RA n+1,i 
delay cycle (di) @ 333MHz DDR II SDRAM case 

RWn=R 

RWn+1,i=R 
BAn=BAn+1,i 

RAn=RAn+1,i 0 cycle 1 

RAn≠RAn+1,i tRP (4 cycles) + tRCD (4 cycles) + CL (4 cycles) = 12 cycles 2 

BAn≠BAn+1,i 0 cycle 3 

RWn+1,i=W 
BAn=BAn+1,i 

RAn=RAn+1,i 1 cycle (timing gap between input and output not to collide) 4 

RAn≠RAn+1,i tRP (4 cycles) + tRCD (4 cycles) + tDQSS (1 cycle) = 9 cycles 5 

BAn≠BAn+1,i 1 cycle (timing gap between input and output not to collide) 6 

RWn=W 

RWn+1,i=R 
BAn=BAn+1,i 

RAn=RAn+1,i tWTR (3 cycles) + CL(4 cycles) = 7 cycles 7 

RAn≠RAn+1,i tWR (5cycles) + tRP (4 cycles) + tRCD (4 cycles) + CL (4 cycles) = 17 cycles 8 

BAn≠BAn+1,i tWTR (3 cycles) + CL (4 cycles) = 7 cycles 9 

RWn+1,i=W 
BAn=BAn+1,i 

RAn=RAn+1,i 0 cycle 10 

RAn≠RAn+1,i tWR (5cycles) + tRP (4 cycles) + tRCD (4 cycles) + tDQSS (1 cycle) = 14 cycles 11 

BAn≠BAn+1,i 0 cycle 12 

 



conventional NoC routers are replaced by our SDRAM-aware 

router. The reason is that large buffers and a memory scheduler in 

a memory subsystem are removed while the gate count increase 

caused by our flow-control mechanism is minimal. Thus, 

considering both the performance and the hardware cost, it is the 

best choice to replace three conventional routers to the SDRAM-

aware routers in our DTV application. Our SDRAM-aware NoC 

router is also applied into dual DTV model [20] containing two 

memory subsystems. As the result, over 42% gate count is saved. 

6.2 Experiments with Synthetic Benchmark 
We evaluate the improvement of memory utilization and latency 

using 10 randomly generated applications based on industrial IPs 

(Intellectual Properties). The IPs mapped into 3×3 to 6×6 mesh 

topology generate 4 to 32 flits per packet at dynamic intervals. 

Each simulation runs for one million cycles. Table 3 shows our 

SDRAM-aware NoC improves memory utilization by 4.9% and 

latency by 18% on average compared to the conventional NoC. 

Especially, the improvement is higher in 6x6 NoC than in 3x3 

NoC since packets passing through more SDRAM-aware routers 

are scheduled better for SDRAM operations. Thus, the 

improvement would be greater in a more complex NoC.  

7. CONCLUSION 
We propose a NoC router including an SDRAM-aware flow-

control mechanism. The proposed scheme allocates one of the 

competing packets toward an SDRAM, to a channel in our 

multiple routers based on SDRAM-awareness. Thus, the memory 

utilization and latency are more improved and the expensive 

buffers and scheduler of memory subsystem are removed. 

Furthermore, our SDRAM-aware router achieves better 

performance when it is employed in a more complex NoC design 

or when its routing scheme is adaptive. Our basic idea can be also 

extended to all SoCs with a flow controller and an SDRAM. 
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Table 3: Comparison in synthetic benchmarks 

Content router 3x3 NoC 6x6 NoC average 

memory 

utilization 

SDRAM-

aware NoC 
63.7% 61.2% 64.6 

conventional 

NoC 
59.4% 53.2% 59.7 

improvement 3.3% 8.0% 4.9% 

memory 

latency 

SDRAM-

aware NoC 
59 cycles 71 cycles 68 cycles 

conventional 

NoC 
65cycles 99 cycles 83 cycles 

improvement 9.2% 28.3% 18% 

 

    

(a) Memory utilization                                    (b)  Average latency                                           (c)  Gat e count ratio 

Figure 6:  Comparison in DTV application according to the number of SDRAM-aware routers 

 

 

 

 

 

 

 

 

 

 

 


