
An SDRAM-Aware Router for Networks-on-Chip
Wooyoung Jang and David Z. Pan

Department of Electrical and Computer Engineering

University of Texas at Austin

wyjang@cerc.utexas.edu, dpan@ece.utexas.edu

ABSTRACT

In this paper, we present an NoC (Networks-on-Chip) router with

an SDRAM-aware flow control. Based on a priority-based

arbitration, it schedules packets to improve memory utilization

and reduce memory latency. Moreover, our multi-scheduling

scheme performed by the multiple SDRAM-aware routers helps to

achieve better SDRAM performance and save the hardware cost

of NoC platform. Experimental results show that our SDRAM-

aware router improves memory latency by 18% and memory

utilization by 4.9% on average with over 42% saving of gate

count of the NoC platform with dual memory subsystem.

Categories and Subject Descriptors

C.2.1 [COMPUTER-COMMUNICATION NETWORKS]:

Network Architecture and Design - Packet-switching networks.

General Terms

Algorithms, Performance, Design.

Keywords

Networks-on-Chip, router, flow control, memory

1. INTRODUCTION
An NoC (Networks-on-Chip) has been proposed as a scalable

solution to complex on-chip interconnection problems [1, 2].

Recently, one inter-layer interconnection comes to extend the

NoC into three dimensions by TSV (Through-Si-Vias) technology

[3]. Especially, a 3D NoC embedded with multiple SDRAMs

(Synchronous Dynamic Random Access Memory) for L2 or L3

caches on top of processing elements in different layers achieves

higher memory bandwidth, shorter latency and more reliable

electrical features than a conventional 2D NoC only interfacing

with one or two off-chip SDRAMs [4].

A memory subsystem managing an SDRAM is one of the most

important components in most 2D/3D NoC designs since the

performance of the whole system is considerably sensitive to the

performance of the memory subsystem. However, a memory

subsystem frequently underperforms due to characteristic

operation flows of an SDRAM [5] and dynamic accesses by

various processing components. For example, DDR (Double Data

Rate) II SDRAM utilization (defined as the number of clock

cycles transferred valid data divided by the total number of clock

cycles required to access data) becomes much worse by 55% in

DTV (Digital Television) application [6]. Moreover, the

corresponding number of memory subsystem is also equipped to

manage the SDRAMs. Since the gate count of a single memory

subsystem occupies over 35% of the entire 3×3 NoC platform

consisting of a single memory subsystem, nine routers and twelve

links from our experimental results, the NoC design cost highly

increases depending on the number of memory subsystem.

Therefore, considerable attention has shifted toward memory-

aware NoC exploration to improve memory utilization and latency

and save the design cost of the NoC platform.

In this paper, we propose an SDRAM-aware NoC router

improving total SDRAM utilization and latency and decoupling

the NoC design cost from the number of SDRAM. Our key ideas

are two-fold. First, if an NoC router schedules packets to access

SDRAM efficiently, the packets arrive at a memory subsystem

into the order that is more friendly to SDRAM operations. At a

result, the complexity of a memory subsystem considerably

decreases while the memory performance is more improved. Since

our SDRAM-aware router uses existing resources to schedule

packets, e.g. input buffers for storing blocked packets or other

flow-control mechanisms, the additional design cost is tiny.

Instead, heavy reordering buffers and a scheduler are removed in a

memory subsystem. Second, a multi-scheduling scheme

performed by multiple SDRAM-aware routers outperforms a

single-scheduling scheme performed by a single memory

subsystem. The reason is that the performance of a single

scheduling scheme is mainly limited by the depth of reordering

buffers in a memory subsystem. However, our multi-scheduling

scheme uses all input buffers in multiple routers to reorder packets.

Based on these ideas, the major novelty and contribution of this

paper include the following.

 We propose an NoC router with an SDRAM-aware flow

control. It schedules a packet to access an SDRAM instead

of a memory subsystem.

 We employ both a priority-based arbitration based on

SDRAM-awareness and a multi-scheduling scheme that are

performed by multiple NoC routers.

 We show that the NoC design with our SDRAM-aware

router can achieve higher memory utilization, shorter

memory latency and cheaper hardware cost than the

conventional NoC design with an SDRAM-unaware router.

The rest of this paper is organized as follows. In the next section,

we survey related works. In section 3, SDRAM operation

principle and SDRAM scheduling are reviewed. In section 4, a

problem in NoC design with a memory subsystem and our basic

solution are present. Section 5 presents a detailed description of

the SDRAM-aware router. Experimental results are shown in

Section 6. Finally, section 7 concludes the paper.

2. RELATED WORKS
A 3D NoC embedded with multiple SDRAMs provides more

bandwidth, shorter latency and less number of timing-critical

paths. However, the corresponding number of an expensive

memory subsystem is also equipped to manage the SDRAMs. A

memory subsystem usually consists of three parts, i.e., a buffer, a

SDRAM scheduler and a SDRAM interface signal generator,

where the depth of buffer and the scheduler for reordering

memory accesses are a key factor of high memory utilization and

short memory latency. Memory access scheduler proposed in [7]

supports preemption and reordering to optimize bandwidth and

average latency. The schedulers discussed in [8, 9] support

preemption for high-priority requestors to decouple latency and

data rate. PREDATOR proposes grouping memory accesses and a

predictable arbiter for this group in [10]. Memory scheduler

proposed in [11] adopts the adaptive history-based algorithm.

Flow control in an NoC router focuses on how network resources,

e.g. channel bandwidth, buffer capacity and control state, are

allocated to packets traversing a network. A decentralized control

system and a predictive explicit-rate control are developed in [12,

13]. A predictive flow controller that controls the packet injection

rate is proposed in [14]. To improve the overall execution time

and link utilization, optimal link scheduler and shared buffer

router architecture are proposed in [15]. An open-loop flow

control scheme is proposed in [16] to reduce the conflicts of data

transfers from multiple memory modules to the same masters. Our

SDRAM-aware flow-controller schedules packets to improve the

utilization and latency of SDRAM based on priority-based

arbitration and a multi-scheduling scheme, which can work

together with other flow controls and routing schemes.

3. PRELIMINARY

3.1 Basic SDRAM Operation
An SDRAM has a three dimensional structure, i.e., a bank, a row

and a column as shown in Fig. 1. Basic commands to access the

SDRAM are ACT (Activate), R/W (Read/Write) and PRE

(Precharge), where the ACT is executed with a BA (Bank

Address) and an RA (Row Address), the R/W is executed with a

BA and a CA (Column Address) and the PRE is executed with a

BA. In Fig. 1, when any idle bank is activated by ACT, one row

data of the bank move to a row buffer of the bank. It takes tRCD to

complete the ACT. Timing parameters of a DDR II SDRAM used

in this paper is shown in Table 1. Then, R/W is executed on the

filled row buffer. After read latency called CL or write latency

called tDQSS, successive data go from or to the SDRAM. Finally,

PRE is executed to deactivate the active row buffer in the bank. It

also takes tRP to become the idle state again.

3.2 Memory Scheduling
An SDRAM consists of independent multiple banks while address

and data resources serialize access to different banks, as shown in

Fig. 1. Its benefit is that pin/wire resources are saved and

commands to a different bank are pipelined, i.e. while data is

transferred to or from one bank, the rest of banks become idle and

active for a later request. Nevertheless, the improvement of

SDRAM utilization is still limited due to wasted cycles caused by

the above characteristic operation flows of an SDRAM and

dynamic accesses by various processing components. Main factors

that deteriorate the SDRAM utilization are the following or their

combinations:

 Continuous accesses of the same bank with different RAs.

 Write (read) access followed by any read (write) access.

The first factor called bank conflict is the most critical to SDRAM

utilization since a bank activated by the former access should get

idle and then active for the later access. In Fig. 2, there are two

SDRAM schedulers that reorder four read accesses, i.e. read 1

(RA 0, BA 0, CA 0), read 2 (RA 1, BA 0, CA 0), read 3 (RA 0,

BA 1, CA 0) and read 4 (RA 1, BA 1, CA 0). As shown in Fig.

2(a), let them scheduled in the order, read 1, read 2, read 3 and

read 4 by scheduler 1. After completing read 1 as mentioned in

section 3.1, read 2 cannot be immediately executed since the row

buffer of bank 0 is already occupied by the data of RA 0.

Therefore, PRE should be executed to release the filled row buffer

of bank 0 and then ACT should be executed to fill the row buffer

of bank 0 with the data of RA 1. On the other hand, read 3 can be

pipelined, that is called bank interleaving since it has the different

BA from the BA of read 2. At a result, the data 3 accessed by read

3 are generated with no loss of clock cycles as shown in Fig. 2(a).

The last read 4 conflicts with read 3 since they have the same BAs,

but the different RAs. On the other hand, scheduler 2 changes the

order of four reads: read 1, read 3, read 2, and read 4 as shown in

Fig. 2(b). This order does not cause any bank conflict such that all

of the read accesses are pipelined. Consequently, the second

SDRAM scheduler lets all SDRAM accesses completed faster

than the first SDRAM scheduler. In this example, memory

utilization of the first scheduler is 9.5% (= 4 data / 42 clock

cycles) and that of the second scheduler is 13.3% (= 4 data / 30

clock cycles).

Table 1: Timing parameter of DDR II SDRAM @333MHz [5]

CL CAS (Column Access Strobe) latency (4 clocks)

tRCD RAS (Row Access Strobe) to CAS delay (4 clocks)

tRP Row precharge time (4 clocks)

tWR Write recovery time (5 clocks)

tWTR Internal write to read command delay (3 clocks)

tDQSS
DQS (Data Strobe) latching rising transitions to associated

clock edges (1 clock)

activate

precharegebank

address 0

data

width row buffer

bank

address 1

bank

address n

.

.

.column

address

row

address

MUX

. . .

read

write

data from/to

memory subsystem

control and address

from memory

subsystem

Figure 1: SDRAM architecture

The second factor is called data contention. Data pins or wires in

an SDRAM are bidirectional while control and address pins or

wires are unidirectional. Thus, input data can be collided with

output data. To prevent it, at least one clock cycle should pass

when a write access after a read access is accessed. A write access

followed by a read access also waits for write recovery time (tWTR)

after the write access, which degrades the memory performance.

Therefore, continuous read or write accesses are encouraged.

4. NOC DESIGN WITH SDRAM

4.1 Problem Description
The bank conflict and data contention frequently happen in the

conventional NoC design due to the limited resources in the

memory subsystem. Fig. 3 shows a simple example of bank

conflict in the 2x3 NoC design. It includes one memory subsystem

that schedules packets to avoid the bank conflict and data

contention. In Fig. 3, RxBy means that an RA and a BA of packet

are x and y, respectively and the arrow means a packet will move

at the next cycle. We assume that the length of packet is 1, the

memory subsystem includes two buffers to store two packets and

its scheduler makes one of two stored packets executed every

cycle (although actual execution time is longer than one cycle).

Round-robin arbitration [17] as a flow control of NoC routers is

adopted to assign a channel and a buffer of the next node to one

packet among several competing packets. At cycle 0, three packets,

R2B0, R2B1 and R3B0 get competition for advance to the router

interconnecting with the memory subsystem and then R2B0 wins.

R0B1 is executed in the memory subsystem. At cycle 1, R2B0

advances to the router interconnecting with the memory

subsystem and then R3B1 also advances to the empty router by

the advance of R2B0. Then three packets, R2B1, R3B0 and R3B1

also get competition such that R3B0 wins. R0B0 but not R1B1 is

executed for avoiding bank conflict in the memory subsystem. At

cycle 2, by round-robin arbitration R3B0 advances. Then, the rest

of two packets get competition such that R2B1 wins. R1B1 is

executed in the memory subsystem. At cycle 3, bank conflict

happens in the memory subsystem since current execution is a

bank 0 access and two buffers are also filled with bank 0 accesses,

where all RAs are different. It is difficult to avoid bank conflict

completely in the conventional NoC with the small depth of buffer.

4.2 Basic Idea of SDRAM-Aware NoC Router
In our NoC design, the packet scheduling for an SDRAM access

is performed by multiple SDRAM-aware routers. Consequently,

the possibility of bank conflict becomes lower since packets arrive

at the memory subsystem into the order that is friendly to the

SDRAM operation. Fig. 4 shows how an NoC with our SDRAM-

aware router works. At the first competition (cycle 0), the winner

that advances to the router interconnecting with the memory

subsystem is R2B1 that accesses bank 1 since the former access,

R1B0 accessed bank 0. The rest of two packets may cause bank

conflict since they have the same BAs but different RAs from the

former access. At cycle 1, R2B1 advances and both competing

packets, R2B0 and R2B1 can be a winner for advance but, R2B0

is chosen in this example. At cycle 2, R2B0 advances and R3B1

wins. Finally, R3B1 advances and R3B0 wins at cycle 3.

Therefore, the proposed router prevents bank conflict better.

In addition, while it is desirable to use multiple SDRAMs for high

performance, it is not desirable to use a corresponding number of

memory subsystems. The reason is that the memory subsystem in

bank conflict

(a) cycle 0 (b) cycle 1 (c) cycle 2 (d) cycle 3

R3B1

R2B0

R3B0

R1B0R2B1

execution
buffers

R3B1

R3B0

R2B0R2B1 R3B1R3B0R2B1 R3B1

R0B0

R1B1

R1B0

R1B1

R1B0

R2B0

R2B1

R3B0

R2B0
R0B1 R0B0 R1B1 R1B0

schedulingmemory subsytem

router

Figure 3: Conventional NoC with round-robin flow control

R1B0 R2B1 R2B0

no bank conflict

(d) cycle 3(c) cycle 2(b) cycle 1(a) cycle 0

R3B1

R2B0

R3B0

R1B0R2B1

R3B1

R2B0

R3B0

R2B1 R3B1

R3B0

R2B0

R3B0

R3B1

R1B1

execution

Figure 4: Novel NoC with SDRAM-aware flow control

BANK 0

BANK 1

ACT

(RA0)

RD

(CA0)
PRE

ACT

(RA1)

RD

(CA0)
PRE

ACT

(RA0)

RD

(CA0)
PRE

ACT

(RA1)

RD

(CA0)
PRE

42 clocks

tRCD

4clk 4clk 4clk 4clk

4clk 4clk 4clk 4clk 4clk

(a) scheduler 1: read1 (RA0, BA0, CA0), read2 (RA1, BA0, CA0), read3 (RA0, BA1, CA0) and read4 (RA1, BA1, CA0)

read1 read2 read3 read4

4clk

CL

data

1
data 2DATA data 3 data 4

tRP tRCD

tRCD tRCDtRP

CL CL

BANK 0

BANK 1

ACT

(RA0)

RD

(CA0)
PRE

ACT

(RA1)

RD

(CA0)
PRE

ACT

(RA0)

RD

(CA0)
PRE

ACT

(RA1)

RD

(CA0)
PRE

30 clocks

4clk 4clk 4clk 4clk 4clk

4clk 4clk 4clk 4clk 4clk

(b) scheduler 2: read1 (RA0, BA0, CA0), read3 (RA0, BA1, CA0), read2 (RA1, BA0, CA0) and read4 (RA1, BA1, CA0)

read1 read3 read2 read4

DATA
data

1

data

3

data

2

data

4

tRCD tRCD

tRCDtRCD

tRP

tRP

CL CL

Figure 2: Examples of SDRAM operation depending on schedulers

Fig. 3 is too high in design cost due to a lot of buffers and a

scheduler. Due to no buffer and no scheduler in the memory

subsystem as shown in Fig. 4, our NoC design not only improves

memory utilization and latency but also saves NoC design cost.

5. SDRAM-AWARE NOC ROUTER
Rather than a detail implementation, the proposed NoC router is

about a novel paradigm for SDRAM-aware NoC exploration,

which has a flow-control mechanism improve memory utilization

and latency. Indeed, based on our idea, any deterministic and

adaptive routing scheme can be combined to form our SDRAM-

aware router. Another flow-control mechanism mentioned in

section 2 can also be combined to avoid deadlock and livelock

[17], to make traffic load balanced on a network [12-14] and to

manage buffers and channel bandwidth [15].

5.1 Router Description
Our NoC router consists of input buffers, routing logics,

SDRAM-aware flow controllers and an output schedulers as

shown in Fig. 5. A packet is split into so-called flits (flow control

digits) which are then routed and stored in a pipelined fashion.

The input buffers are managed by wormhole flow control or

virtual-channel flow control and a backpressure is used to inform

the upstream nodes when they must stop transmitting flits because

all of the downstream flit buffers are full. For our experiment, the

wormhole flow control is implemented due to its simplicity and

wide popularity [17] and an on/off flow control is adopted to

avoid the loss of flits as the backpressure. Our SDRAM-aware

router can be implemented to both deterministic and adaptive

routers according to a routing logic that guarantees deadlock and

livelock freeness. The approaches to solve deadlock are to use

virtual channels [17] and deterministic dimension-ordered

routings (e.g. XY routing, odd-even routing) [17]. We implement

the XY routing that is a deterministic and minimal path routing

algorithm, i.e. free deadlock and livelock. Simply to avoid another

deadlock condition mentioned in [16], a master can send requests

to another slave only after finishing requests for one slave.

In this router, over two flits arriving on different inputs buffers at

the same time may both desire the same channel, where the final

destination of flits is an SDRAM subsystem. In this case, the

SDRAM-aware flow-control mechanism resolves this contention,

allocating the channel to one packet and dealing with the others,

blocked packets. Our SDRAM-aware flow control adopts winner-

take-all bandwidth allocation that allocates all of the bandwidth to

one packet until it is finished or blocked before serving the other

packets [17]. Output scheduling detects if the buffers of the next

node are available or expects when the buffers are available such

that each SDRAM-aware flow control can choose the best path for

low latency when multiple paths are given by the routing logic. In

next section, a detail SDRAM-aware flow-control mechanism that

uses a priority-based arbitration is present.

5.2 SDRAM-aware Flow Control
Our flow control allocates a channel to one of the competing flits

whose destination is a memory subsystem controlling an SDRAM.

Therefore, our flow-control mechanism performs an arbitration to

determine which flit gets the channel it has requested. After the

arbitration, the winning flit advances over this channel. Our

arbitration algorithm also decides how to dispose of any flits that

do not get their requested destination.

As shown in Algorithm 1, our arbitration is a priority-based

algorithm, where the priority is composed from SDRAM

awareness. The priority is assigned to all competing head flits

which destination is a memory subsystem. Let h(n) be the head flit

of packet, which is already allocated a channel by the SDRAM-

aware flow control at nth arbitration. Body and tail flits are

assigned the same channel as their head flit. Let hi(n+1) be one of

all competing head flits (I) that may be allocated the same channel

as h(n) at (n+1)th arbitration, where i∈I. The head flits, h(n) and

hi(n+1) contain addresses and command to access an SDRAM,

denoted by (RAn, BAn, R/Wn) and (RAn+1,i, BAn+1,i, R/Wn+1,i),

respectively, where the notations are (row address, bank address,

read/write). At (n+1)th arbitration, all competing hi(n+1) are

compared to h(n) and then given a delay point from Table 2 (line

7) that is composed from DDR II SDRAM operating at 333MHz

clock cycle [5] and that is changed according to the kind of

SDRAM and operating speed.

Table 2 shows how many clock cycles are wasted when hi(n+1) is

accessed in an SDRAM after h(n). In Table 2, both case 1 and 10

have no loss of clock cycle since hi(n+1) gets the same R/W, BA

and RA as h(n), which means that data already stored in the row

buffer of the same bank are accessed again by the same command.

In case 3 and 12, data can be also accessed continuously since

bank interleaving is completely performed as mentioned in section

3.2. Case 4 and 6 have one clock loss between the former read and

the latter write access to avoid data contention. Case 7 and 9

waste 7 cycles to read data after writing data. Although bank

interleaving is completely performed in case 7 and the continuous

access of the same row buffer are performed in case 9, the later

read command can be accepted tWRT (internal write to read

command delay) after finishing the former write. Then read data

go out from an SDRAM after CL. In case 5, after reading data, its

row buffer should be idle and then active since a write access with

the same BAs but different RAs are executed. Then, data are

written after write latency. Case 2 is already explained in section

3.2. Case 11 is a write-to-write access with the same BAs but the

Processing element

input buffer

Northern

input buffer

Southern

input buffer

Eastern

input buffer

SDRAM-aware

flow controller

SDRAM-aware

flow controller

SDRAM-aware

flow controller

SDRAM-aware

flow controller

SDRAM-aware

flow controller

Routing

logic

Routing

logic

Routing

logic

Routing

logic

Routing

logic

Northern

output scheduler

Western

input buffer

Southern

output scheduler

Eastern

output scheduler

Western

output scheduler

Flit flow Backpressure

Processing element

Figure 5: The proposed NoC router in mesh architecture

Algorithm 1 SDRAM-Aware Flow Control Algorithm

Input: h(n), hi(n+1) and table 2

1: for each hi(n+1), i∈I do

2: if hi(n+1) is a new packet entering to the router then

3: wi = 0;

4: else

5: wi = wi + waiting cycles from the previous arbitration(n);

6: end if

7: di = delay cycle between h(n) and hi(n+1) from table 2;

8: pi = wi - di,;

9: end for

10: hi(n+1) with maximum(pi) is allocated to a channel;

Output: h(n+1)

different RAs. After the first writing, write recovery time (tWR) is

needed. Then, its row buffer is released (tRP), filled with new data

(tRCD), and finally wrote after write latency (tDQSS). Case 8 is the

worst case since a read access with the same BAs but different

RAs happens after writing data. The write access needs tWR and

the row buffer should be released, filled with new data and finally

read after read latency (CL).

Our priority-based arbitration guarantees the upper bound latency

since the low priority of packet may last for a long time. For

example, let a packet with case 11 lose a competition against a

packet with case 10. Nevertheless, since the priority condition is

not changed at the next arbitration, the defeated packet keeps

losing the next competition if it meets another packet with case 10.

Therefore, the packet should escape from this competition after

several defeats. To solve this starvation problem, our flow control

counts the number of clock cycles passed from the first

competition to the current competition (line 5) for each defeated

packet. Then, this waiting time is subtracted by the delay cycle

obtained in Table 2 (line 8). By this operation, any packet delayed

for 17 clocks does not get a lower priority than a new packet

entered in the router.

Finally, the packet with the maximum pi is allocated the channel

(line 10) and the blocked packets wait for the next competition or

get another competition at a different SDRAM-aware flow

controller if multiple routing paths are allocated by a routing logic.

Thus, if an adaptive router instead of a deterministic router is

employed in a routing logic, the performance would be better.

5.3 Hardware Implementation
Simple logics are added in the SDRAM-aware router to compute

the delay (di) and the waiting time (wi) while the buffers and

schedulers of memory subsystem are removed as shown in Fig. 4.

The buffers in the memory subsystem are used to store several

packets and then to reorder the packets such that an SDRAM is

accessed as fast as possible. However, since the massive size of

packet is generated in a GPU (Graphics Processing Unit) and a

high-definition video system, the size of buffers also becomes

larger and larger. Our NoC embedded with SDRAMs does not

require the buffers in the memory subsystem since the scheduling

is performed in multiple NoC routers. Furthermore, the size of

input buffer in the router does not increase since the maximum

four input buffers per router in a mesh network substitute for the

buffers of memory subsystem by wormhole flow control and our

multi-scheduling scheme gets the similar effect to the increase of

input buffers. Consequently, the distinguished decrease of buffers

in the memory subsystem exceeds the increase by the complexity

of arbiter in multiple routers such that total chip area decreases. In

addition, each router can get a different scheduler for a faster

SDRAM access or for another purpose, which is one of the most

important benefits of a multi-scheduling scheme.

6. EXPERIMENTAL RESULTS
An NoC with our SDRAM-aware router is implemented in

Verilog HDL (Hardware Description Language). A memory

subsystem operates with a DDR II SDRAM at 333MHz [5] and is

implemented by the design concept from Sonics’ MemMax [18]

and Denali’s Databahn [19], where MemMax is an SDRAM

scheduler with four 32-flit buffers and Databahn is an SDRAM

signal generator. Both are included in a conventional NoC design

with a round-robin flow control based router. This is compared to

our NoC design that includes multiple SDRAM-aware routers and

a SDRAM signal generator instead of a full memory subsystem.

6.1 DTV Application
Our SDRAM-aware NoC router is applied to a Samsung DTV

system that consists of 9 subsystems, i.e., an ARM9, an MPEG

(Moving Picture Experts Group) decoder, a DNIE (Digital Natural

Image Engine), a GPU, an audio decoder, a TS (Transport

Stream) decoder, an AV (Audio and Video) format converter, a

channel decoder and a memory subsystem, which are mapped to

3×3 mesh network. A conventional NoC router with round-robin

flow control is gradually replaced by our SDRAM-aware router

where the router that is the closest to a memory subsystem is

replaced first and the router that is the farthest away from memory

subsystem is replaced last. Fig. 6 shows the results according to

the number of SDRAM-aware router placed to the order. In Fig.

6(a), the memory utilization of our NoC design starts 57% in case

of no buffer, no memory scheduler and no SDRAM-aware router.

When three SDRAM-aware routers are placed, its memory

utilization increases by 72% (4.8% higher than the conventional

NoC design). The reason why it is no longer improved in the case

that over three SDRAM-aware routers are employed is that the

bank conflicts and data contentions are almost removed. In Fig.

6(b), service latency is also shortened by 79 cycles (33% shorter

than the conventional NoC design) since the high memory

utilization lets a packet accessed faster with short waiting time

and our flow control mechanism manages the upper bound latency.

Our SDRAM-aware NoC design and the conventional NoC

design are also synthesized by DesignVision from Synopsys with

TSMC130LV library. The gate count of SDRAM-aware NoC

design is 24.8% smaller as shown in Fig. 6(c) even if all

Table 2: Execution delay between h(n) and hi(n+1)

Relation of h(n) with RWn, BAn, and RAn and hi(n+1) with

RWn+1,i, BAn+1,i, and RA n+1,i
delay cycle (di) @ 333MHz DDR II SDRAM case

RWn=R

RWn+1,i=R
BAn=BAn+1,i

RAn=RAn+1,i 0 cycle 1

RAn≠RAn+1,i tRP (4 cycles) + tRCD (4 cycles) + CL (4 cycles) = 12 cycles 2

BAn≠BAn+1,i 0 cycle 3

RWn+1,i=W
BAn=BAn+1,i

RAn=RAn+1,i 1 cycle (timing gap between input and output not to collide) 4

RAn≠RAn+1,i tRP (4 cycles) + tRCD (4 cycles) + tDQSS (1 cycle) = 9 cycles 5

BAn≠BAn+1,i 1 cycle (timing gap between input and output not to collide) 6

RWn=W

RWn+1,i=R
BAn=BAn+1,i

RAn=RAn+1,i tWTR (3 cycles) + CL(4 cycles) = 7 cycles 7

RAn≠RAn+1,i tWR (5cycles) + tRP (4 cycles) + tRCD (4 cycles) + CL (4 cycles) = 17 cycles 8

BAn≠BAn+1,i tWTR (3 cycles) + CL (4 cycles) = 7 cycles 9

RWn+1,i=W
BAn=BAn+1,i

RAn=RAn+1,i 0 cycle 10

RAn≠RAn+1,i tWR (5cycles) + tRP (4 cycles) + tRCD (4 cycles) + tDQSS (1 cycle) = 14 cycles 11

BAn≠BAn+1,i 0 cycle 12

conventional NoC routers are replaced by our SDRAM-aware

router. The reason is that large buffers and a memory scheduler in

a memory subsystem are removed while the gate count increase

caused by our flow-control mechanism is minimal. Thus,

considering both the performance and the hardware cost, it is the

best choice to replace three conventional routers to the SDRAM-

aware routers in our DTV application. Our SDRAM-aware NoC

router is also applied into dual DTV model [20] containing two

memory subsystems. As the result, over 42% gate count is saved.

6.2 Experiments with Synthetic Benchmark
We evaluate the improvement of memory utilization and latency

using 10 randomly generated applications based on industrial IPs

(Intellectual Properties). The IPs mapped into 3×3 to 6×6 mesh

topology generate 4 to 32 flits per packet at dynamic intervals.

Each simulation runs for one million cycles. Table 3 shows our

SDRAM-aware NoC improves memory utilization by 4.9% and

latency by 18% on average compared to the conventional NoC.

Especially, the improvement is higher in 6x6 NoC than in 3x3

NoC since packets passing through more SDRAM-aware routers

are scheduled better for SDRAM operations. Thus, the

improvement would be greater in a more complex NoC.

7. CONCLUSION
We propose a NoC router including an SDRAM-aware flow-

control mechanism. The proposed scheme allocates one of the

competing packets toward an SDRAM, to a channel in our

multiple routers based on SDRAM-awareness. Thus, the memory

utilization and latency are more improved and the expensive

buffers and scheduler of memory subsystem are removed.

Furthermore, our SDRAM-aware router achieves better

performance when it is employed in a more complex NoC design

or when its routing scheme is adaptive. Our basic idea can be also

extended to all SoCs with a flow controller and an SDRAM.

8. REFERENCES
[1] Luca Benini and Giovanni De Micheli, “Network on chips: a new

SoC paradigm,” Computer, 2002, 35, pp. 70-78.

[2] W. J. Dally and B. Towles, “Route Packets, Not wires: On-Chip

Interconnection Networks,” In Proc. Design Automation Conf.,

2001.

[3] A. W. Topol, et al., “Three-dimensional integrated circuits,” IBM J.

Research and Development, vol. 4, 2006.

[4] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, N. Vijaykrishnan, and

M. Kandemir, “Design and Management of 3D Chip

Multiprocessors Using Network-in-Memory,” In Proc. International

Symposium on Computer Architecture (ISCA), 2006.

[5] “Samsung DDR II SDRAM. Device operations & timing diagram,”

http://www.samsung.com/global/business/semiconductor.

[6] L. A. Vervoort, Philip Yeung, and Anil Reddy, “Addressing memory

bandwidth needs for next-generation digital TVs with cost-effective,

high-performance Consumer DRAM Solutions,”

http://www.rambus.com.

[7] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,

“Memory access scheduling,” In Proc. ISCA, 2000.

[8] S. Heithecker and R. Ernst, “Traffic shaping for an FPGA based

SDRAM controller with complex QoS requirements,” In Proc.

Design Automation Conference, 2005.

[9] W. D. Weber, “Efficient shared DRAM subsystem for SoCs,” Sonics

Inc., 2001, White paper.

[10] B. Akesson, K. Goossens and M. Ringhofer, “Predator: a predictable

SDRAM memory controller,” In Proc. CODES+ISSS, 2007.

[11] I. Hur and C. Lin, “Memory scheduling for modern

microprocessors,” ACM Trans. on Computer Systems, vol. 25, no. 4,

Dec. 2007.

[12] F. Paganini, J. Doyle, and S. Low, “Scalable laws for stable network

congestion control,” In Proc. IEEE Conference on Decision and

Control, 2001.

[13] Dongyu Qiu and Ness B. Shroff, “A Predictive flow control scheme

for efficient network utilization and QoS,” IEEE Trans. on

Networking, vol. 12, no. 1, Feb. 2004.

[14] U. Y. Ogras and R. Marculescu, “Prediction-based flow control for

network-on-chip traffic,” In Proc. Design Automation Conf., 2006.

[15] W. C. Kwon, S. M. Hong, S. Yoo, B. Min, K. M. Choi, and S. K. Eo,

“An open-loop flow control scheme based on the accurate global

information of on-chip communication,” In Proc. DATE, 2008.

[16] W. C. Kwon, S. Yoo, S. M. Hong, B. Min, K. M. Choi, and S. K. Eo,

“A practical approach of memory access parallelization to exploit

multiple off-chip DDR memories,” In Proc. DAC, 2008.

[17] W. J. Dally and B. Towles, “Principles and practices of

interconnection networks,” Morgan Kaufmann, 2004.

[18] “Sonics MemMax,” http://www.sonicsinc.com.

[19] “Denali Databahn: DRAM Memory Controller IP,”

http://www.denali.com.

Table 3: Comparison in synthetic benchmarks

Content router 3x3 NoC 6x6 NoC average

memory

utilization

SDRAM-

aware NoC
63.7% 61.2% 64.6

conventional

NoC
59.4% 53.2% 59.7

improvement 3.3% 8.0% 4.9%

memory

latency

SDRAM-

aware NoC
59 cycles 71 cycles 68 cycles

conventional

NoC
65cycles 99 cycles 83 cycles

improvement 9.2% 28.3% 18%

(a) Memory utilization (b) Average latency (c) Gat e count ratio

Figure 6: Comparison in DTV application according to the number of SDRAM-aware routers

