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ABSTRACT

We extend the baseline Susceptible-Exposed-Infectious-Recovered (SEIR) infectious disease 

epidemiology model to understand the role of testing and case-dependent quarantine. Our model 

nests the SEIR model. During a period of asymptomatic infection, testing can reveal infection 

that otherwise would only be revealed later when symptoms develop. Along with those 

displaying symptoms, such individuals are deemed known positive cases. Quarantine policy is 

case-dependent in that it can depend on whether a case is unknown, known positive, known 

negative, or recovered. Testing therefore makes possible the identification and quarantine of 

infected individuals and release of non-infected individuals. We fix a quarantine technology—a 

parameter determining the differential rate of transmission in quarantine—and compare simple 

testing and quarantine policies. We start with a baseline quarantine-only policy that replicates the 

rate at which individuals are entering quarantine in the US in March, 2020. We show that the total 

deaths that occur under this policy can occur under looser quarantine measures and a substantial 

increase in random testing of asymptomatic individuals. Testing at a higher rate in conjunction 
with targeted quarantine policies can (i) dampen the economic impact of the coronavirus and (ii) 

reduce peak symptomatic infections—relevant for hospital capacity constraints. Our model can 

be plugged into richer quantitative extensions of the SEIR model of the kind currently being used 

to forecast the effects of public health and economic policies.
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“Once again, our key message is: test, test, test.” — @WHO, March 16, 2020

“We suggest a strategy of massive testing that goes far beyond the group currently being tested — those most likely infected.

Instead, we need to test as many people as possible. If we know who is infected, who is not and who has recovered, we could

greatly relax social isolation requirements and send both the uninfected and the recovered back to work.”

— Searchinger (Princeton), LaManita (Virginia Tech Med.), Douglas (Cornell Med.), March 23, 2020,

Washington Post

Introduction

We are interested in understanding the role of testing asymptomatic cases and targeted quarantine in the trajectory

of the coronavirus pandemic. Our working hypothesis is that in combination with a quarantine policy that iso-

lates individuals conditional on being known positive cases, increased testing may lead to shorter-lived quarantine

measures. To study this we incorporate incomplete information in the textbook SEIR model (Susceptible-Exposed-

Infectious-Recovered) (Kermack and McKendrick, 1927). Unknown, asymptomatic cases may be resolved by test-

ing.1 This enables policies that vary depending on whether an individual case is an unknown, known positive,

known negative, or recovered. Figure 1 describes these possibilities. In a calibrated version of the model, we show

that increasing random testing and relaxing targeted quarantine measures can deliver the same amount of deaths

with a lower impact on the economy and lower peak symptomatic case load.

This paper comes with four very serious disclaimers. First, we are not epidemiologists. However, after read-

ing a number of papers we concluded that there was not a framework for discussing some of the pressing pub-

lic health policy questions, in particular the potential role of broad testing in ameliorating quarantine measures.

Should countries quarantine everyone at large social cost, or test everyone and apply quarantine in a more directed

fashion. Some models feature testing conditional on developing symptoms which allows for better care and re-

duced mortality, but to the best of our knowledge no models considered testing asymptomatic individuals so that

positive cases can be recognized and isolated. We would be very happy to learn from medical professionals and

epidemiologists that we have misread the literature and that this has been studied before.

Second, our model does not feature the full set of features that one would desire in order to make quantitative

statements and predictions. These would include transmission across geography, an age distribution of individu-

als with systematically different probabilities of infection conditional on contact with a positive case. Our model is,

however, a simple extension of and nests a textbook SEIR model which forms the backbone of more sophisticated

quantitative models. We also do not model the medical care block in detail. Like the SEIR model we abstract from

issues such as congestion of medical services. To that extent, we hope that this paper demonstrates that incomplete

information, testing and conditional policies can be simply and intuitively integrated into richer models. We view

the technical and computational costs low relative to the payoffs.2

1Recent empirical evidence from random samples drawn in an Italian town suggest that around 50 to 75 percent of infected cases are
asymptomatic: Link to La Repubblica article, March 16, 2020.

2Specifically, while the SIER model augmented for quarantine would have 8 states—the 4 S-E-I-R states each augmented for quarantine
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Third, for most of this paper we fix an effectiveness of quarantine in reducing meeting rates of individuals. We

assume that complete isolation is off the table, however note here that improving quarantine would have large

effects. Therefore our exercise should be interpreted as follows: given access to a quarantine technology of some

fixed effectiveness, how does testing allow that technology be applied differently across individuals, potentially

mitigating costs of the pandemic. A different paper could be written on the quantitative effects of increasing the

effectiveness of quarantine. In Section 7 we repeat our main counterfactual under a more effective quarantine and

show how testing allows quarantine measures to be relaxed even further.

Finally, our model is not a behavioural economic model that integrates an epidemiological model as in Kremer

(1996) or the equilibrium model of Greenwood, Kircher, Santos, and Tertilt (2019). We think understanding the role

of testing in information acquisition should be key to any such integration. A simple S(E)IR model integrated into

an economic model with only common (non-targeted) quarantine policies available will unavoidably lead to a trade-

off between mortality and economic activity. More quarantine, less mortality, and vice versa. By increasing testing

of asymptomatic cases and conditional quarantine, we show that the model can deliver constant mortality rates

and higher economic activity, as measured by the fraction of individuals out of quarantine. Theories of quarantine

vs. mortality trade-offs are therefore discussions of second best policies, while testing presents a potentially better

option.

Contribution. We include the minimal necessary modifications of the SEIR model in order to be able to address

the public health effects of testing asymptomatic cases. We augment the SEIR model, which we nest, as follows. In

the SEIR model an individual may be characterized as being in one of four health states: susceptible (S), exposed

(E), infected (I) and recovered (R). Our aim is to try to understand the role of asymptomatic transmission and

how testing and / or quarantine of asymptomatic cases can effect the prorogation of infection and mortality. Our

modifications therefore makes policies contingent on what is known about an individual. The policy we consider is

quarantine which lowers the rate of transmission. With incomplete information, an individual that has contracted

the corona virus, but is yet to present symptoms, will be infectious and subject to the quarantine rule for unknown

cases. If tested, however, the true health state of the individual is revealed and they are subject to the same

quarantine rules as known positive cases. Similarly such an individual, if untested, cannot be subject to quarantine

policies that apply to known positive cases.

Results. We calibrate the model to data on the spread of the coronavirus and medical outcomes. This calibration

is ‘standard’ with respect to the SEIR models published over the last month. As a baseline we simulate the model

without policy interventions, which delivers the same trajectory for the pandemic as the SEIR model. We then

consider a benchmark counterfactual with common quarantine measures and no testing. We then ask the question,

If we increase testing, how much can we relax quarantine measures while making sure that deaths do not increase? We show

that increasing testing can accommodate extensive relaxation of quarantine measures. If we assume that economic

output, and social well-being are inversely proportional to the number of individuals quarantined, this implies

and non-quarantine—our model requires 12 states, with the additional 4 states reflecting the information structure of the model.
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Figure 1: Incomplete information, testing, and an example of targeted quarantine policies

that testing can result in a pandemic with smaller economic losses and social costs while keeping the human cost

constant. That is, the common sense result prevails.

Overview. This paper has seven sections. Section 1 reviews the related SEIR literature and recent papers using

this model to quantify the effects of the corona virus pandemic. Section 2 reviews some of the data regarding

infection and mortality, as well as policy responses in the form of testing and quarantine measures. Section 3

describes the model. Section 4 provides details of how we calibrate the model and provides baseline simulations of

the pandemic under no policy response. This replicates the familiar trajectories of infection and mortality of SEIR

models that have been used to model the evolution of the pandemic. Section 5 provides our main counterfactuals,

where we compare the consequences of common quarantine and no testing with targeted quarantine and testing policies.

Section 7 repeats these counterfactuals under a more effective quarantine technology. Section 8 concludes.

1 Literature review

Brauer and Castillo-Chavez (2012) provide a summary of recent SEIR models. SEIR stands for Susceptible, Ex-

posed (people not yet infectious), Infectious, and Removed (quarantined or immune). In particular, they discuss

frameworks of quarantine (setting aside individuals who are exposed) and isolation (setting aside individuals who

are infected, often called hospitalization).

A recent policy paper by Imperial College COVID-19 Response Team (2020) incorporates several policy pa-

rameters into an SEIR model that is enriched to accommodate geographical transmission and age dependency of

transmission and mortality rates.3 In particular, they consider a model with quarantine, asymptomatic patients,

and testing of hospitalized patients, with policy thresholds that depend on positive test rates. Their predictions

have been reported widely in the press. Our contribution is to model (i) the matching process between different

subgroups, thus endogenizing R0, and (ii) highlighting the importance of testing asymptomatic patients and, (iii)

3At the time of writing the codes for Imperial College COVID-19 Response Team (2020) were not publicly available, and the paper does
not feature any equations that would allow a researcher to replicate their model.
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quarantine policies that are contingent on the testing outcomes. Lastly, we use our measure of the fraction of in-

dividuals quarantined as a measure of loss of economic activity. This allows us to evaluate the role of widespread

testing which, as a policy, may have a similar mortality rates but lower quarantine rates.

Recent examples of testing and diagnosis in an SEIR model include Chowell, Fenimore, Castillo-Garsow, and

Castillo-Chavez (2003) who model the Severe acute respiratory syndrome (SARS) epidemic in 2002. The purpose

of testing and diagnosis in Chowell, Fenimore, Castillo-Garsow, and Castillo-Chavez (2003) is an improvement

in healthcare, which reduces the rate of recovery from nearly one half.4 In our model, the role for testing and

diagnosis is being able to efficiently target quarantine measures.

Recent examples of quarantine in an SEIR model include Feng (2007) who derive closed form expressions

for the maximum and final rates of infection. Feng (2007) has two notions of quarantine: one in which exposed

individuals (who may not be infectious) are set aside, and another in which infectious individuals are set aside

(often discussed as hospitalization). In our model, quarantine is similarly case dependent, but can only depend on

observed health status. Exposed individuals that do not display symptoms cannot be quarantined without being

identified in a random testing of asymptomatic individuals.

Empirically, the literature has begun to document the rate of transmission and incubation periods. Wu, Leung,

and Leung (2020) compile a summary of R0 across various viruses (SARS-CoV, MERS-CoV, Commonly circulating

human CoVs (229E, NL63, OC43, HKU1)), and estimate an SEIR model with international outflows. Using data

from Wuhan, they report an R0 of 2.68, and an incubation period of 6.1 days. The World Health Organization

(2020) report that the time from symptom recovery to detection fell from 12 days in early January to 3 days in early

February 2020. After symptom onset, it typically takes 2 weeks for a mild case to recover, or 3 to 6 weeks for severe

cases.

Empirically, the literature has also begun to document the role of quarantine in reducing transmission, and the

rate of asymptomatic transmission. Kucharski, Russell, Diamond, Liu, Edmunds, Funk, Eggo, Sun, Jit, Munday,

et al. (2020) estimate that in China, the basic reproductive rate R0 fell from 2.35 one week before travel restrictions

on Jan 23, 2020, to 1.05 one week after travel restrictions. They use an SEIR model and estimated on this data to

forecast the epidemic in China, extending the model to explicitly account for infections arriving and departing via

flights. Using data from Wuhan, Wang et al (2020) report a baseline reproductive rate of 3.86, that fell to 0.32 after

the vast lock-down intervention. They also find a high rate of asymptomatic transmission, leading us to consider

the asymptomatic state to be infectious as opposed to the baseline SEIR model which assumes that the ‘exposed’

state is non-infectious.5 A high rate of asymptomatic carry of the virus has been identified in Iceland, one of the

few countries to adopt random testing of asymptomatic individuals.6

In the economics literature Atkeson (2020) considers the effectiveness of temporary quarantine measures in a

baseline SEIR model similar to Feng (2007). Eichenbaum, Rebelo, and Trabandt (2020) nest a similar SIR model

4They report a SARs incubation period of 2 to 7 days, with most infected individuals either recovering after 7 to 10 days, or dying. The
SARS mortality rate is 4 percent or more. They estimate a basic reproductive number R0 = 1.2. They model a diagnosis rate and diagnosed
state. Individuals recover at a fast rate if diagnosed (8 days without diagnosis, 5 days with diagnosis).

5https://www.medrxiv.org/content/10.1101/2020.03.03.20030593v1
6https://www.buzzfeed.com/albertonardelli/coronavirus-testing-iceland. “Early results from deCode Genetics indicate that a low pro-

portion of the general population has contracted the virus and that about half of those who tested positive are non-symptomatic”.
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Figure 2: US cumulative cases and deaths - 4 weeks up to March 22

Notes: Source: John Hopkins CSSE, https://github.com/CSSEGISandData/COVID-19. Data reflect non-repatriated cases, and so exclude the
cases from the Diamond Princess and Grand Princess cruise ships.

in a canonical general equilibrium macroeconomic model of consumption, savings and labor supply. Individuals

catch and transmit the virus when consuming and working. They measure the effect of quarantine policies on

output and mortality. Our contribution to this strand of the economics literature is to enrich the underlying SEIR

by introducing scope for testing policies which may mitigate the output costs of quarantine policies while not

exacerbating the decline in output. It would be relatively straight-forward to integrate the information structure

of our model into Eichenbaum, Rebelo, and Trabandt (2020) in order to evaluate the economic benefits of broad

based testing.

2 Data on cases, deaths, quarantine and testing

This section provides a short overview of the evolution of the coronavirus pandemic in the United States.
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Figure 3: US testing

Notes: Source: John Hopkins CSSE, https://github.com/CSSEGISandData/COVID-19. Panel B plots the fraction of the untested population
that is tested each day. Let Tt be total cumulative tests—the black line in Panel A—, then Panel B plots (Tt − Tt−1)/(340m − Tt). The y-axis of
Panel B is in fractions of one percent, i.e. 0.01 on the y-axis corresponds to a daily testing rate of 0.01 percent.

Cases. The first case was reported in the U.S. on January 22, 2020. Figure 2 plots the evolution of confirmed cases

and deaths resulting from COVID-19.7 Table 1 reports the growth rate of cases (new cases divided by cumulative

cases) using different measurements. There are several dates with outlier growth rates due to testing rollouts. The

growth rate of cases is roughly 40 percent with these outliers included, and closer to 30 percent when we exclude

the outliers. Due to the lack of testing, the growth rate of cases in January and February is zero, thus lowering the

overall growth rate of cases significantly.

Deaths. Figure 2 also plots the number of deaths and the cumulative number of deaths. Similar to the number of

cases, the number of deaths is stagnant prior to March. It then grows at a high rate with pronounced spikes. The

average growth rate in deaths is 48 percent per day, but also includes significant outliers due to sudden changes

in reporting.

Testing. Figure 3 reports cumulative tests and the testing rate per day. At its peak to date, the US tested just short

of 0.02 percent of its untested population in a single day. We will use this rate to benchmark the rates of testing

considered in counterfactuals. In particular we will consider testing rates that are significantly higher than what

we currently observe in the United States.

Quarantine. Table 2 reports the fraction of individuals who are quarantined in the United States. There are large

discrete jumps in the quarantine rate when California, New York, and Illinois announced state-wide shelter in

place orders.8 This is another important policy parameter. We must convert this series into a daily quarantine rate.

Roughly 24% of the population was quarantined over the course of 19 days since March 4, 2020. We approximate

7We include our tabulations of the source data on our websites. At the moment data on recoveries is not particularly accurate, however we
can add this later.

8We will refer to New York’s policy as shelter-in-place, despite alternative language used by the government of New York.
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Table 1: US average daily growth rate of cases

Since first case on 1/22 21.2%
March - From 1st to 19th 40.8%
March - From 1st to 19th - Exclusing outliers with rates ≥ 50% 31.1%

Source: Derived from data available from John Hopkins CSSE, https://github.com/CSSEGISandData/COVID-19.

Table 2: US quarantine

Date Event Quarantined Frac. of US Pop.

3/4/2020 0 0.00%
3/10/2020 New Rochelle 79,946 0.02%
3/16/2020 Bay Area 6,747,000 1.98%
3/19/2020 California 39,639,946 11.66%
3/21/2020 Illinois, New Jersey 61,193,957 17.99%
3/22/2020 New York 80,647,518 23.72%

Source: Dates of enactment taken from various news outlets

this with a quarantine rate of roughly 1% per day. More quarantines have followed rapidly during the writing of

this article.

3 Model

Throughout this section Figure 4 and Figure 5 may be useful to the reader. Figure 4 maps our model of transmission

into the SEIR model. Figure 5 overlays this with our model of information and testing.

3.1 Overview

We make five modifications to the standard SEIR model.

1. Health states. As shown in Figure 4 we relabel these states in order to make a later distinction in terms of

testing and quarantine. These we call health states. We also allow for the possibility that the exposed state is

infectious, that is that there is possibly asymptomatic transmission.

i. Non-infected, Asymptomatic (NA) - Individuals that have not been exposed to the virus, and are by

definition asymptomatic. This corresponds to S in the SEIR model: Susceptible.

ii. Infected, Asymptomatic (IA) - Individuals that have met an infected individual but are as yet asymp-

tomatic. This corresponds to E in the SEIR model: Exposed. Relative to the SEIR model we allow that

these individuals may also transmit the virus albeit at a lower frequency.

iii. Infected, Symptomatic (IS) - Individuals that have met an infected individual and are now showing

symptoms. This corresponds to I in the SEIR model: Infectious.
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iv. Recovered, Asymptomatic (RA) - Infected individuals that have entered the recovery phase and are

no longer infected. As in the textbook SEIR model we assume these individuals are immune.9 This

corresponds to R in the SEIR model: Recovered.

Figure 4: Transmission and the relationship between our model and the SEIR model

Notes: This figure shows how our states map into the SEIR model. To understand the role of testing we group the asymptomatic states S, E and
label these Non-infected,Asymptomatic (NA) and Infected, Asymptomatic (IA). Without testing, authorities nor individuals are able to differentiate
between these states. To denote this lack of information, we put a bar over them: NA, IA. Exposed individuals show symptoms, which is the I
state of the SEIR model. We label this Infected, Symptomatic (IS). Individuals may then recover, which is the R state of the SEIR model. We label
this Recovered, Asymptomatic (IA).

Figure 5: SEIR model with incomplete information and testing of asymptomatic individuals

Notes: This figure augments Figure 4 to show how we extend the SEIR model to accommodate testing and incomplete information. We add
two additional states that can be revealed by testing, which differentiate asymptomatic individuals {NA, IA}. We denote these with a tilde:

ĨA for identified infected, asymptomatic cases, and ÑA for identified non-infected, asymptomatic cases. We assume that symptomatic cases
IS are instantly identifiable so are known positives, and that recovered cases have been tracked such that RA cases are known negatives.

Figure 4 tracks an individual case through these states. In terms of medical transmission, we assume that

infected individuals are contagious, although with different rates of transmission. The different rates of trans-

mission nest the case that only IS individuals can transmit the disease, which is the case in the SEIR model.

Non-infected individuals cannot transmit the disease {NA, RA}.

The medical block of the model is very simple and could be enriched in many ways.10 Following the standard

SEIR model: (i) infected asymptomatic individuals show symptoms at rate δ, (ii) infected, symptomatic

9To the best of our knowledge there is no empirical evidence regarding immunity following COVID-19. A quantitative version of this
model would want to take this into account. This is not the point of departure studied in this paper.

10See http://gabgoh.github.io/COVID/index.html by Gabriel Goh for an example of an SEIR model of Transmission Dynamics that appends
a rich model of Clinical Dynamics which models hospitalization, length of hospital stay, and more. These states would intercede between IS,
RA and D, which is not the focus of this paper.
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individuals recover at rate ωR and die at rate ωD. Note that all individuals that become infected show

symptoms at some point, this could be relaxed.

2. Incomplete information. We allow for incomplete information, as described in Figure 5. In terms of policy,

we assume that unless tested, individuals without symptoms are indistinguishable and so must be treated

in the same way by quarantine policy. To achieve this we distinguish between two types of NA and IA

individuals. Adding these new cases in green to Figure 4 gives Figure 5. In the first case the diagnosis

regarding infection is unknown. These are unknown cases which we denote NA and IA. In the second case

the diagnosis regarding infection is known, which we denote ÑA and ĨA. This information structure implies

that testing and quarantine policies can not distinguish between the following pairs of cases: unknown cases

{NA, IA}, known positives { ĨA, IS}, and known negatives {ÑA, RA}. Our assumption that {ÑA, RA} are

not distinguishable is a simplifying assumption in order to maintain a finite set of states, which we discuss

below.

3. Meeting and transmission rates. We assume that the underlying parameters consist of an explicit interaction

of social meeting rates, which are mutable to quarantine / social distancing policies, and medical transmission

rates, which are the medical rates of transmission between two individuals that meet.

We denote quarantine and non-quarantine states by Q and NQ, respectively. Interacted with our 4 health

states, plus two additional information states, this gives 12 total states that individuals can be in. The meeting

rates of non-quarantined individuals is given by λ, and for quarantined individuals by λQ. We interpret the

ratio factor by which quarantine reduces the rate of social interaction (λ/λQ) as the quarantine technology and

treat it as a parameter.

We denote the transmission rates by ρA
(
ρS
)

for asymptomatic (symptomatic) cases to accommodate evidence

that transmission rates are higher in symptomatic cases. These give the probability that, conditional on

meeting an infected case (IA, ĨA, IS), a non-infected individual (NA, ÑA) becomes infected. Crucially, in-

dividuals do not know who is infected, and do not know that they have met an infected person.11

4. Testing. We introduce a role for testing. Our information structure has assumed that when symptoms

present, the individual and society know that the individual is infected. In this paper we do not cover

testing of symptomatic individuals, although this is obviously a hugely important area.12 We assume that

testing of asymptomatic individuals takes place at a rate τ. Testing fully reveals an individual’s health state.

Tests do not produce false negatives or false positives.

An issue arises in that individuals who have previously tested negative can become infected. This would

require them to transition to either ĨA or IA. If we assume either, then they move into a different group for

11This seems like a reasonable assumption to us despite one of the requisites for testing in many countries being that individuals can identify
an infected individual that they interacted with.

12Note that in our model if we were to test symptomatic individuals then all tests would yield positives. In the data a small fraction of tests
yield positives. In the US our interpretation of this is not that the US is testing asymptomatic people, but rather that individuals with similar
symptoms due to common colds and the flu are being tested. To introduce testing of symptomatic individuals one would really want to extend
the model to introduce an additional disease that presents observationally identical symptoms that can then be separated by testing.
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the purpose of policy. However the transition would not be observed since the individual remains asymp-

tomatic. Addressing this completely would require significantly enriching the model.13 To avoid this, and

in the spirit of this paper being a first step, we assume that testing has a ‘tagging’ property, such that the

transition from ÑA to ĨA is observed. We highlight this in the notes to Table 3.

5. Conditional quarantine. We allow for quarantine policy and restrict this to depend on the observable health

state of the individual. To keep the Markovian structure of the SEIR model, we quarantine individuals at

constant rates. When there is no testing, individuals are moved from non-quarantine (NQ) to quarantine (Q)

at rates ξu, ξ+, ξr, for unknown, known positive and recovered cases. When there is testing, individuals are

moved from non-quarantine (NQ) to quarantine (Q) at rates ξu, ξ−, ξ+, ξr, for unknown, known negative,

known positive, and recovered cases, where now the known positive cases include ĨA individuals. We

assume a set of corresponding rates at which individuals are released from quarantine: ru, r−, r+, rr.

3.2 Transmission

Given the above description of the model, we now describe transition rates of individuals between states. We

work in continuous time and when simulating the model we consider a discrete time approximation in which a

period is one hour and days are 14 hours long.

States. Individuals in the model are in one of 13 states:

- {Non-infected & Asymptomatic}×{Quarantine, Non-quarantine}×{Unknown, Known negative} → 4 states

- {Infected & Asymptomatic}×{Quarantine, Non-quarantine}×{Unknown, Known positive} → 4 states

- {Infected & Symptomatic} ×{Quarantine, Non-quarantine} → 2 states

- {Recovered & Aymptomatic} ×{Quarantine, Non-quarantine} → 2 states

- Deceased → 1 state

There is initially a distribution of a unit mass of individuals. When we simulate the model, we will assume that

these individuals are non-quarantined, asymptomatic and unknown cases, with a small number being infected:

NA, NQ and IA, NQ. We denote the mass of individuals in a state X in period t by MX
t .

Social interaction. In order to transmit the disease, individuals must first meet. We assume random matching.

Non-quarantined individuals meet other individuals at rate λ, while quarantined individuals meet others at rate

λQ. To save on notation we use, for example, NA to denote both NA and ÑA when distinguishing between the

two is not relevant.

13A richer model would include something like the following. Individuals tests are viewed as ‘good’ for some number of days. Policies
may therefore apply to individuals who were tested in, say, the ‘last 60 days’. It is understood that some of these individuals would become
infected and this would not be observed unless re-tested or symptoms develop. Given the law of large numbers, one could write down the
law of motion for the fraction of ‘tested negatives’ that have since become positive. In this model individuals would require re-testing to keep
track of the pandemic, a clear necessary extension of this model in order to use it quantitatively.
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The conditional probabilities of meetings are as follows. The mass of individuals that are out in the world to

bump into is given by Mt, and depends on the mass of individuals that are quarantined and non-quarantined:

Mt = λMNQ
t + λQ MQ

t .

The masses of non-quarantined and quarantined individuals are given by:

MNQ
t = MNA,NQ

t + MIA,NQ
t + MIS,NQ

t + MRA,NQ
t ,

MQ
t = MNA,Q

t + MIA,Q
t + MIS,Q

t + MRA,Q
t .

Conditional on meeting an individual, the probability that the individual is infected (non-infected) is given by π I
t(

πN
t

)
:

π I
t =

MI
t

Mt
=

λMI,NQ
t + λQ MI,Q

t

Mt
=

λ
[

MIA,NQ
t + MIS,NQ

t

]
+ λQ

[
MIA,Q

t + MIS,Q
t

]

Mt
,

πN
t =

MN
t

Mt
=

λMA,NQ
t + λQ MA,Q

t

Mt
=

λ
[

MNA,NQ
t + MRA,NQ

t

]
+ λQ

[
MNA,Q

t + MRA,Q
t

]

Mt
.

Conditional on meeting an infected individual, the probability that the infected individual is symptomatic (asymp-

tomatic) is given by π IA
t

(
π IS

t

)
:

π IA
t =

λMIA,NQ
t + λQ MIA,Q

t

MI
t

, π IS
t =

λMIS,NQ
t + λQ MIS,Q

t

MI
t

.

Infection. When individuals meet an infected individual, they become infected with probability ρA
(
ρS
)

if the

individual they meet is asymptomatic (symptomatic). Once infected, an individual does not know that they are

infected as they are initially asymptomatic. A test, which occurs at rate τ, would reveal that they are infected, and

the subject to quarantine policies of infected individuals. We assume that infected individuals all show symptoms

and do not transition straight to a recovery.14 Infected, asymptomatic, individuals show symptoms at a rate δ.

Infected symptomatic individuals then recover at rate ωR and die at rate ωD. Recovered individuals gain complete

immunity in our experiments.

Transmission rate. Combining the above, the rate of infection of a quarantined (non-quarantined) person is given

by λQαt, (λαt), where αt is the probability of infection conditional on a random meeting:

αt = π I
t

[
π IS

t ρS + π IA
t ρA

]
.

14This is to avoid the issue of having recovered individuals that do not know that they were ever infected. We plan to extend this later on.
The issue with this possibility is that we proliferate the state-space, adding a new state of Recovered, Uninformed, Asymptomatic. This will be
different to Non-infected, Uninformed, Aysmptomatic, due to the different immunity properties of the Recovered individual. Such a recovered
individual can then become infected, and so on and so forth, creating infinitely many states. Our assumption that all infected individuals
eventually know that they are infected by showing symptoms, and then know that they have recovered keeps the state-space finite while still
allowing for the key addition of asymptomatic transmission and incomplete information.
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Note that the infection rate can be written

λαt =
(

ρSλ
)
× π I

t

[
π IS

t + π IA
t

(
ρA

ρS

)]
.

Data on the rate of transmission alone will be insufficient to separately identify ρS and λ, although below we

discuss how variation in quarantine policy may be able to estimate these separately in future research.

3.3 Transition rates

As an example of the mechanics of the model, we describe the full set of transition rates for non-infected asymp-

tomatic individuals, and infected asymptomatic individuals. These are the two cases that can be distinguished by

testing asymptomatic individuals. Table 3 provides transition rates between all 13 states. Along with initial condi-

tions for the distribution of individuals across health and information states is sufficient to simulate the model.

3.3.1 Non-infected, asymptomatic individuals

We consider this state as all non-infected individuals in the model are assumed to begin in one of these states.

There are four possible states for non-infected, asymptomatic individuals. They can be an unknown or known

negative case, and they can be non-quarantined or quarantined.

1. Consider an individual that is an unknown case and non-quarantined: NA, NQ.

– Quarantine - At rate ξu they take up quarantine and transition to NA, Q

– Infection - At rate λ they meet a random individual. With probability π I
t π IS

t

(
π I

t π IA
t

)
that individual

is infected and symptomatic (asymptomatic). The individual then becomes IA, NQ with probability

ρS
(
ρA
)

depending on who the meeting is with. The total transition rate to IA, NQ is therefore λαt.

– Testing - At rate τ, they are tested and since tests are perfect, learn they are not infected, so transition to

being a known negative case: ÑA, NQ.

2. Consider an individual that is an unknown case and quarantined: NA, Q.

– Quarantine - At rate ru they are released from quarantine and transition to NA, NQ.

– Infection - The rate of infection is lower in quarantine: λQαt ≤ λαt.

– Testing - At rate τ, they are tested, learn they are not infected, and transition to being a known negative

case: ÑA, Q.

3. Consider an individual that is a known negative case and non-quarantined: ÑA, NQ

– Quarantine - Since they are recognized as a negative case they may be quarantined at a lower rate

ξ− ≤ ξu. A policy of indiscriminate quarantine would have ξ− = ξu. A policy that allows negative

cases to circulate would have ξ− = 0.
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– Infection - The individual still becomes infected at rate λαt and in this case becomes an known infected,

asymptomatic case: ĨA, NQ.

4. Consider an individual that is a known negative case and quarantined: ÑA, Q

– Quarantine - Since they are recognized as a negative case they may be released from quarantined at a

higher rate r− ≥ ru. A policy of indiscriminate quarantine would have r− = ru. A policy that allows

negative cases to circulate would have r− = 1.

– Infection - The rate of infection is now reduced to λQαt

3.3.2 Infected, asymptomatic individuals

For brevity we consider the case only for non-quarantined individuals.

1. Consider an individual that is a unknown case: IA, NQ

– Quarantine - Since they are also unknown cases, the rate of quarantine is the same that which must

face NA, NQ individuals. At rate ξu they transition to quarantine: IA, Q .

– Infection - Since they are already infected there is no transition to infection.

– Testing - At rate τ, they are tested and since tests are perfect, learn they are not infected, so transition to

being a known positive case: IA, NQ.

2. Consider an individual that is a known positive case: ĨA, NQ

– Quarantine - Since this is a known case then it can be subjected to the same rate of quarantine as

infected, symptomatic cases. At rate ξ+ they transition to quarantine: ĨA, Q .

– Infection - Since they are already infected there is no transition to infection.

– Testing - Since they are already tested there is no further testing.

3.3.3 Transition rates between all states

Using the above logic and the structure of the model we can construct the matrix of flows between all 12 active

states and into the deceased state. Table 3 describes all such transition rates.

3.3.4 Nesting the SEIR and SIR models

The SEIR model is nested in our model under the following parameter restrictions.

- No quarantine: λ/λQ = 1

- No asymptomatic transmission: ρA/ρS = 0

- No testing: τ = 0

In this case individuals move from NA → IA → IS → RA, which correspond to the SEIR states. To obtain the

SIR model, additionally set δ = 1, such that infectiousness is immediate.
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A. Initial state B. Next instant states

Non-infected, Asymptomatic Infected, Asymptomatic Infected, Symptomatic Recovered Dead

NA, NQ NA, Q ÑA, NQ ÑA, Q IA, NQ IA, Q ĨA, NQ ĨA, Q IS, NQ IS, Q RA, NQ RA, Q D

NA NA, NQ ξu τ λαt

NA, Q ru τ λQαt

ÑA, NQ ξ− λαt

ÑA, Q r− λQαt

IA IA, NQ ξu τ δ

IA, Q ru τ δ

ĨA, NQ ξ+ δ

ĨA, Q r+ δ

IS IS, NQ ξ+ ωR ωD

IS, Q r+ ωR ωD

R RA, NQ ξr

RA, Q rr

Table 3: Transition rates between health and information states

Notes: This table gives the transition rates between states. Note that in any instant only one transition can occur. For example, an individual that is infected and asymptomatic
and not quarantined may transition to symptomatic and quarantined, but not to symptomatic and not-quarantined. The individual then may transition from symptomatic and non-
quarantined into quarantine. Blue terms refer to policies applied to unknown cases. Red terms refer to policies applied to known positive cases. Green terms refer to policies applied
to known negative cases. The Pink terms are the result of the testing-as-tagging assumption: once tested and known negative, the transition to infection is observed so the individual
becomes a known positive.
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3.4 Measurement

3.4.1 Basic reproduction number

Consider a hypothetical ‘date-zero’ case. An individual is in the state IA, NQ, while the rest of the population

is in NA, NQ and there are no quarantine procedures in place. A summary statistic of the transmission rate is

the expected number of infections caused by this single infected person: RIA,NQ
0 . We can state this recursively

as follows. At rate δ the individual becomes symptomatic, which will change their medical transmission rate to

ρS ≥ ρA :15

RIA,NQ
0 = λρA + (1 − δ)RIA,NQ

0 + δRIS,NQ
0

RIS,NQ
0 = λρS +

(
1 − ωR − ωD

)
RIS,NQ

0 .

This implies that

RIS,NQ
0 = λ

ρS

ωR + ωD
, RIA,NQ

0 =
ρSλ

δ

[
ρA

ρS
+

δ

ωR + ωD

]
(1)

The nested case of the SIR model, which removes the exposed state, is obtained by setting δ = 1 and has a transmis-

sion rate R0 = ρλ/
(
ωD + ωR

)
.

We can try to use data on transmission rates from Wuhan to bound the effectiveness of quarantine. We view

the Wuhan response as a quarantine everyone policy. If everyone is quarantined then

RIA,Q
0 =

ρSλQ

δ

[
ρA

ρS
+

δ

ωR + ωD

]

therefore the relative rates of transmission pre- and post-quarantine policy are informative of λ/λQ which is our

measure of the quarantine technology: λQ
/

λ = RIA,Q
0

/
RIA,NQ

0 . In Wuhan, RIA,NQ
0 = 3.86, while post qurantine

measures leads toRIA,Q
0 = 0.32. The Wuhan quarantine technology delivers λQ/λ ≈ 0.10. We therefore view this as

an upper bound on the quarantine technology in the United States: (λQ/λ)US ∈ [0.10, 1.00].

3.4.2 Measures of activity

To summarize some of our results we construct five metrics: Output, symptomatic infection, reported cases, mor-

tality and social well-being.

Output. A reasonable approximation of economic activity is that it scales with the number of non-quarantined

workers. We further assume that quarantined workers are Arel ∈ [0, 1) less productive than non-quarantined

workers, and that symptomatic workers do not produce. We therefore define output Yt as

Yt = MNA,NQ
t + MIA,NQ

t + MRA,NQ
t + Arel

(
MNA,Q

t + MIA,Q
t + MRA,Q

t

)
.

15In the case where ρI = ρA and the transition from asymptomatic to symptomatic is instantaneous—i.e. as in the SIR model—then we
have the recursion R0 = λρ +

(
1 − ωD − ωR

)
R0 which gives R0 = λρ/

(
ωD + ωR

)
.
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In the initial period all individuals are non-quarantined, so Y0 = 1. Therefore Yt is in units of the percent change

in output from the initial period.

Symptomatic infection. A reasonable approximation of the load on the hospital system is that it scales with the

number of infected, symptomatic individuals. We therefore define hospital load Ht as

Ht = ηH MIS
t .

We do not consider a richer model of the rate of hospitalization of symptomatic cases, or the incidence of intensive

care. Empirical evidence suggests around 20 (5) percent of symptomatic cases require hospitalization (intensive

care). One could enrich the model such that mortality rates depend on Ht due to congestion and lack of resources,

but this is not the focus of this paper. We therefore present results as the percentage change in Ht period-on-period,

which subsumes linear scaling.

Testing and reported cases. Cases are reported when an asymptomatic infection case is tested, which occurs at

rate τ, or the instant an asymptomatic infection becomes symptomatic, which occurs at rate δ. Give Rt = 0, then

∆Rt = (τ + δ) MIA
t .

We also track the number of tests. Initial tests are zero Tt = 0 and then

∆Tt = τ
(

MNA
t + MIA

t

)
.

Mortality. Since the death state is absorbing total mortality is simply Xt = MD
t . In our counterfactuals we con-

sider combinations of testing and quarantine policies that keep this number at the end of the pandemic constant,

and compare the implications for symptomatic infections and output.

Social well-being. We consider a measure of social interaction. Non-quarantined individuals interact and we

add up these meetings each period to get a measure of social interaction. There are MNQ
t individuals that are

non-quarantined, in various health states. The rate at which these individuals meet non-quarantined individuals

is λπ
NQ
t , where π

NQ
t = λMNQ

t /(λMNQ
t + λQ MQ

t ). Therefore our period t measure of social well-being is

St = λMNQ
t ×

(
λMNQ

t

λMNQ
t + λQ MQ

t

)
.

The upper bound for St is given by a virus-free society in which all individuals are non-quarantined, so S0 = λ.

The lower bound for St is zero, which occurs when all individuals are quarantined.
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Parameter Source / Target Value

A. Known medical

Rate at which infected become symptomatic δ 6 days incubation period 1
/

6

Relative rate of asymptomatic transmission ρA
/

ρS No current evidence 1

Recovery ωR 14 day recovery period 1
/

14

Mortality ωD Mortality rate of 1 percent
(

0.01/0.99
)
× ωR

B. Calibrated
Rate of meeting λ Normalized contact rate 1

Rate of transmission ρS Given λ, gives RIA,NQ
0 = 2.5 0.0091

C. Policy parameters

Effectiveness of quarantine technology λQ/λ Half of that implied by Wuhan ∆R0 0.5
Testing of unidentified and asymptomatic cases τ 25 to 50 times peak US testing rate 0.5% per day

Quarantine rates for observable cases
{

ξu, ξ−, ξ+, ξr
}

See Section 5

Release rates from quarantine for observable cases
{

ru, r−, r+, rr
}

See Section 5

Table 4: Model parameters and values

4 Calibration

4.1 Parameters

Parameter values are given in Table 4. The parameters of the model can be classified intro three groups. The first

relate to ‘known’ medical parameters, which would be the equivalent of technological parameters in an economic

model, and that we can take from the literature that has formed so far. Obviously the extent to which these

parameters are well understood will evolve over time and we may use this information later on. The second

relate to parameters that are similarly technological in that we think that they represent immutable features of the

model, but that we do not have values for and require calibration. The third are policy parameters and relate to (i)

testing rates, (ii) effectiveness of quarantine, (iii) rules for quarantine. We describe these in the next section when

describing our counterfactuals.

Known medical. We assume that the rate at which infected individuals transition from asymptomatic to symp-

tomatic cases, δ, is such that the average incubation period is 6 days (Wu, Leung, and Leung, 2020). World

Health Organization (2020) report that the average recovery period is 14 days for mild infections, we therefore

set ωR = 1/14. There is little data on the relative rates of infection of symptomatic and asymptomatic individu-

als.16 We assume a common infection rate: ρA
/

ρS = 1.

From surveying estimates we target a mortality rate of 1 percent. In the model we denote this by πD, which is

16https://www.buzzfeed.com/albertonardelli/coronavirus-testing-iceland. “Early results from deCode Genetics indicate that a low pro-
portion of the general population has contracted the virus and that about half of those who tested positive are non-symptomatic”.
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the fraction of individuals experiencing symptoms (IS) that die. Then

πD =
ωD

ωR + ωD
.

We use this to determine ωD given ωR and πD = 0.01.

Unknown and calibrated. We use empirical estimates of the rate of basic transmission and equation (1) to calibrate

λ and ρS. We treat RIA,NQ
0 as data, taking the value of 2.5, which is in the middle of the range of empirical

estimates. Using equation (1) provides an equation in two unknowns
{

λ, ρS
}

.

Without further data these parameters cannot be separately identified. We therefore set λ = 1 and back out the

implied ρS that is consistent with (1). To match the same basic rate of transmission requires

ρS =
RIA,NQ

0

λ
δ

[(
ρA

ρS

)
+ δ

ωR+ωD

] .

In the future, within-region across-time variation in quarantine measures may allow us to separately identify
{

λ, ρS
}

. We set the quarantine technology λQ/λ = 0.50.

5 Counterfactuals

Our aim is to provide a small handful of counterfactuals with a minimal set of parameters. The configuration of

these parameters is given in Table 5, and their values are given in Table 6. Section 5 and Section 6 refer to Case 1 in

these tables, we consider Case 2—in which we repeat the exercise under more effective quarantine—in Section 7

Initial conditions. We seed the economy by choosing initial conditions that replicate the U.S. COVID-19 experi-

ence. We assume an initial infected population of 300 individuals and 1 detected case. We measure all model and

data counterparts as of the 100th detected case.

Vaccine. We abstract from the long-run, and instead focus on testing and quarantine in the current phase of the

pandemic. Consistent with this, we assume that in each case a vaccine is introduced to the economy after 500 days.

The vaccine moves individuals in any of the NA states through to RA, NQ state, which makes them immune. The

vaccine rolls out slowly, at a rate of 0.10 percent per day.

Counterfactuals. We then consider three different cases for the policy parameters:
{

ξu, ξ−, ξ+, ξr
}

,
{

ru, r−, r+, rr
}

,

τ. We express these parameters as daily rates, despite the model being hourly. With so many parameters we have

many degrees of freedom. We constrain these parameters in a simple way across counterfactuals so that we can

be precise, but others may wish to consider many alternatives. We consider one at the end. Given that we have
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assumed immunity, in all cases we set the quarantine rate of recovered individuals ξr to zero and their release rate

rr to 1.

Baseline. Our baseline model features no quarantine and no testing. With no testing ξ− and r− are off the table,

since no unknown cases are tested and identified as negative. We then set ξ+ = ξu = 0 and r+ = ru = 1.17 This is

the worst-case scenario in which the government does nothing to stop the spread of the virus.

Policy interventions. We consider two policy interventions that capture broad quarantine and targeted quaran-

tine with testing. These policies begin on March 18th, which is two weeks after the first 100 cases are reported in

the data and in the model. Aiming to cut down on parameters, we assume that in both cases known positive cases

are quarantined and not released: ξ+ = 1, r+ = 0. We therefore have 6 parameters remaining: ξu and ru in the

quarantine case, and ξu, ξ−, ru and r− in the testing case.

1. No testing - Common Quarantine. Our first policy is an approximation of what we have observed in the

United States in March, 2020. In this counterfactual there is no testing of asymptomatic individuals and so no

known negative cases. There is therefore a common quarantine rate for all asymptomatic individuals. We set this

rate in counterfactual number 2 to ξu
2 = 0.010, implying a 1 percent per day quarantine rate. This is in line with

the data in Table 2, in which roughly 24 percent of the US population was quarantined within 19 days. We assume

that the rate of release from quarantine is zero.

2. Testing - Targeted quarantine. Our second policy assumes that the government tests asymptomatic individu-

als at a rate τ. While the US is testing at a rate of roughly 0.01 percent of the population per day.18 We assume that

the US increases its testing capacity by roughly 50 fold to τ = 0.5% per day. In levels, this would require testing

1,700,000 asymptomatic people per day, while the US is currently testing around 50,000 symptomatic people per day.

In the spirit of our paper being a proof of concept, we choose for comparison a very simple policy. We maintain

the rate of quarantine of unknown cases and assume that known negatives are not released (r−3 − = 0). These

stack the decks against the testing policy having large effects. The only targeted quarantine measure that we take

is to assume that non-quarantined known negative cases are quarantined at rate ξ−3 = ∆ × ξ−2 , with ∆ < 1. We

then choose a value for ∆ such that the policy delivers the same number of total deaths as the common quarantine

policy. This procedure delivers a value of ∆ = 0.20. When testing asymptomatic cases, the rate of quarantine of

known negative cases can be cut by a factor of five without increasing the total number of deaths caused by the

pandemic.

17For technical reasons, when we set a parameter to 1 we set it to a number > .98 percent per day (effectively 1).
18Countries like South Korea are testing at a rate of approximately 0.05 percent per day. This comes from reports of South Korean test-

ing capacity of 20,000 per day (❤tt♣s✿✴✴✇✇✇✳✇✐r❡❞✳❝♦✳✉❦✴❛rt✐❝❧❡✴s♦✉t❤✲❦♦r❡❛✲❝♦r♦♥❛✈✐r✉s) and a population in South Korea of 51.47
million.
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A. Counterfactuals B. Parameters

Quarantine rates Release rates Testing

ξ+ ξu ξ− ξr r+ ru r− rr τ

Baseline - Do nothing 0 0 — 0 1 1 — 1 0

Case 1 - Quarantine technology - λQ/λ = 0.50 - Section 5 & 6

1. No testing - Common quarantine 1 ξu — 0 0 0 — 1 0

2. Testing - Targeted quarantine 1 ξu
(

∆ × ξu
)

0 0 0 0 1 τ

Case 2 - Strong quarantine technology - λQ/λ = 0.30 - Section 7

1. No testing - Common quarantine 1 ξu — 0 0 0 — 1 0

2. Testing - Targeted quarantine 1
(

ψ × ξu
)

0 0 0 0 0 1 τ

Table 5: Configuration of policy parameters for each counterfactual

Notes: This table gives the configurations of the policy parameters of the model under our three counterfactuals. Recovered individuals are
immune and so never quarantined and always released. In the Baseline case there is no quarantine and no testing. Under the 1. No testing -
Common quarantine policy there is no testing, so uninfected and infected asymptomatic cases cannot be distinguished. Symptomatic cases are
the only known positives, and these are completely quarantined and not released. Unknown cases are quarantined at rate ξu

2 and not released.
Under the 2. Testing - Targeted quarantine policy there is testing of asymptomatic individuals at rate τ > 0. Negative, asymptomatic cases are
distinguished, quarantined at a lower rate, but released at the same rate as unknown cases. Given a value of τ we choose ∆ such that overall
deaths from Cases 1 and 2 are equivalent.

Description Policy parameter Daily rate

1. No testing - Common quarantine
Common quarantine rate ξu 1.0 %

2. Testing - Targeted quarantine
Testing rate τ 0.50 %

Case 1 - Quarantine technology λQ/λ = 0.50
Differential quarantine rate: Known negatives ∆ 0.20

Case 2 - Strong quarantine technology λQ/λ = 0.30
Differential quarantine rate: Unknown cases ψ 0.30

Table 6: Counterfactual parameters

Notes: The parameter ∆ is chosen so that both counterfactuals incur the same total deaths.

6 Results

Figure 6 plots our main results where we compare counterfactuals one and two. Statistics for these are given in

Tables 7, 8, 9, which include the Baseline simulation. Panel A plots the cumulative number of reported cases.

Panel B plots the number of infected, symptomatic cases. Given a constant rate of symptoms requiring medical
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Figure 6: Counterfactuals - Quarantine technology - λQ/λ = 0.50

Notes: The red dotted line corresponds to the counterfactual 1. No testing - Common quarantine. The blue dashed line corresponds to the
counterfactual 2. Testing - Targeted quarantine. Output is total non-quarantined, asymptomatic workers. Output in period zeros is equal to
one since all workers are non-quarantined and asymptomatic.

attention, we can think of Panel B as capturing the number of individuals entering the hospital system. Panel C

plots the cumulative fraction of the population that dies. Panel D plots measured output under the assumption

that non-quarantined individuals produce 50 percent as much as quarantined individuals (Arel = .5).

Cases. Common quarantine is effective at slowing the cumulative number of reported cases. Testing and targeted

quarantine are slightly more effective.

Case load. Panel B plots the fraction of infected symptomatic individuals in the economy. Both counterfactual

policies ‘flatten the curve’ relative to the baseline. The reduction in peak infection load is lower under the testing

policy. If we interpret case load as the stress put on hospital capacity, targeted quarantine with testing generates

the smallest peak load of cases. Common quarantine pushes the peak infection back by about 170 days, whereas

the targeted quarantine with testing tends to put the peak case load back by 250 days, buying an additional quarter

to prepare the medical system. Table 9 reports these statistics.

Deaths. Quarantine is an effective tool at reducing the number of deaths. The current US common quarantine

policy, if continued to be enacted at the same rate (1% of the U.S. population entering quarantine per day), would
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more than halve the fraction of the population that dies from the disease. Table 7 reports the deaths in levels in

each of the scenarios. We deliberately set the parameters of the targeted quarantine policy to deliver the same cu-

mulative deaths as the common quarantine policy, as can be seen clearly in Figure 6C. The testing policy backloads

these deaths. In the short run, there are fewer deaths, but in the long run, as known negative cases are quarantined

at a lower rate, total deaths converge.

Output. Table 7 shows that the baseline economy features very little output loss, driven entirely by the massive

loss of life. This is the only tradeoff of quarantine in the textbook SEIR model: if a government quarantines

individuals to reduce deaths, the lower output. The testing model and policy provide a third way, where output

losses are less, due to relaxed quarantine but the same number of deaths is achieved.

In other words, targeted quarantine and testing alters the output-death tradeoff. With extra degrees of freedom

in terms of policy, the government can do better than common quarantine both in terms of deaths and output. Figure

6D shows this clearly. Under targeted quarantine and testing, fewer individuals needs to be quarantined, output

is significantly higher in the first 100 days of the pandemic and recovers more quickly. Accumulating output

produced each period over the first year of the pandemic, output is 10 percent higher under the testing policy. in

the long run the change in output only reflects the loss of life over the pandemic, and both policies deliver the

same loss of life, long run output is the same.

We also report these results relative to pre-COVID-19 levels in Table 8. With targeted quarantine, the level

of output is 10 percent higher in the first 200 days than with common quarantine, and then the two economies

recover at a similar rate.

Caution. While we do not want readers to interpret our numbers literally since we are not epidemiologists and

this is a not a rich quantitative SEIR model, we view Figure 6, panels C and D as illustrating our main point:

targeted quarantine allows governments that can implement significant testing to produce more output than under

the common quarantine policy. If the medical system produces fewer deaths under a more distant and lower peak

case load, then the testing policy would also deliver fewer deaths. The policy can produce fewer deaths and higher

output.

6.1 Robustness

For brevity we make one note regarding the robustness of our results to enriching the medical block of the model.

We use this to highlight the usefulness of benchmarking counterfactuals.

Quantitative models being used to forecast the trajectory of the pandemic have richer medical blocks that

incorporate congestion and capacity constraints in the health care system. From our understanding of these models

we think that the following is true. Take an SEIR model and append an arbitrarily rich medical block. Now

consider two policies A and B that deliver the same total number of infections over the pandemic—that is, the area

underneath the curve in Figure 6B. If policy A has a lower peak than policy B then policy A will result in fewer

deaths than policy B.
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Experiment Deaths

After 100 days After 200 days After 300 days After 600 days

A. Deaths in Levels
Baseline - Do nothing 10,013 2,572,026 3,037,155 3,040,479
1. No testing - Common quarantine 731 23,989 228,605 879,634
2. Testing - Targeted quarantine 603 12,306 102,605 868,471

B. Deaths Relative to Baseline
1. No testing - Common quarantine -9,282 -2,548,036 -2,808,550 -2,160,845
2. Testing - Targeted quarantine -9,410 -2,559,719 -2,934,550 -2,172,008

Table 7: Counterfactual Deaths

Experiment Output

After 100 days After 200 days After 300 days After 600 days

1. Baseline - Do nothing 1.00 0.91 0.99 0.99
2. No testing - Common quarantine 0.72 0.58 0.55 0.90
3. Testing - Targeted quarantine 0.75 0.65 0.62 0.91

Table 8: Counterfactual Output:
(

Outputt = MA,NQ
t + 0.50 × MA,Q

t

)

Experiment Peak infection Days to peak

A. Levels
Baseline - Do nothing 68,368,137 166
1. No testing - Common quarantine 6,288,619 341
2. Testing - Targeted quarantine 5,921,942 403

B. Percent relative to Baseline
1. No testing - Common quarantine -90.80 % 105.42 %
2. Testing - Targeted quarantine -91.34 % 143.77 %

Table 9: Counterfactual Peak Infections

We have constructed our counterfactuals such that the area under the epidemiology curves are the same. To

see this recall that there is a constant rate of transition from symptomatic states to death. Therefore, under the law

of large numbers, fixing the total number of deaths across counterfactuals by construction fixes the total number

of infections across counterfactuals as well. That is, we know that by construction we have flattened the curve in

moving from the common quarantine to the test and targeted quarantine policy. Under a richer medical block, the

testing and quarantine policy will result in fewer deaths.

7 More effective quarantine

Before concluding we consider how our counterfactual and available policies change under a more effective quar-

antine, that is a lower λQ/λ. Recall that we considered a value of 0.10 for this statistic for Wuhan, and in out main

counterfactual exercise considered a half as effective quarantine technology in the US, such that λQ/λ = 0.50. We
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Figure 7: Counterfactuals - More effective quarantine technology - λQ/λ = 0.30

Notes: The red dotted line corresponds to the counterfactual 1. No testing - Common quarantine. The blue dashed line corresponds to the
counterfactual 2. Testing - Targeted quarantine. Output is total non-quarantined, asymptomatic workers. Output in period zeros is equal to
one since all workers are non-quarantined and asymptomatic.

now consider a more effective quarantine, halfway between these with λQ/λ = 0.30. Now with a more effective

quarantine, even if we set ∆ = 0 and quarantine no individuals that have tested negative, then the policy generates

fewer deaths than the no testing, common quarantine policy. This gives extra space for policy to reduce quaran-

tining other individuals. We again model this simply, reducing the rate of quarantine of unknown cases to ψ × ξu,

with ψ ≤ 1. Table 5 and Table 6 describe this additional counterfactual, and show that we can set ψ = 0.30 and

still incur the casualties from the epidemic as the baseline quarantine policy. Figure 7 shows that this substantially

reduces the decline in our measure of output, and again ‘flattens the curve’ in terms of projected symptomatic

infections.

8 Conclusion

This short paper conceptualizes a minor and easily implemented change to the standard SEIR model of infectious

disease transmission. We assume that quarantine policies can only depend on observed health states, which creates

a role for testing in distinguishing between infected and non-infected asymptomatic individuals. We demonstrate

via a simple calibration of the model, that testing asymptomatic individuals can stand-in for costly quarantine

25



measures. We make this notion precise by simultaneously reducing quarantine measures and increasing testing

such that the overall mortality rate of the pandemic remains constant at ‘Quarantine Everyone’ levels. With fewer

individuals quarantined, we infer that output of the economy would decline substantially less. Thus, targeted

quarantine and testing alters the output-death tradeoff. The government can do better than common quarantine

both in terms of deaths and output.

The model here is not immediately applicable for serious quantitative work. However, we think that our exer-

cises show that adding incomplete information and a role for testing through targeted quarantine does not overly

complicate the baseline model and allows discussion of testing policies that cannot be discussed in the baseline

complete information model. These additional features could be integrated into more quantitative epidemiology

models that append to the SEIR model demographics, geography, imperfect immunity, and so on.
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APPENDIX

A Additional tables and figures

Figure A1: Counterfactuals - Including baseline - Quarantine technology - λQ/λ = 0.50

Notes: In each panel the black solid line corresponds to counterfactual Baseline - Do nothing. The red dotted line corresponds to the coun-
terfactual 1. No testing - Common quarantine. The blue dashed line corresponds to the counterfactual 2. Testing - Targeted quarantine.
Output is total non-quarantined, asymptomatic workers. Output in period zero is equal to one since all workers are non-quarantined and
asymptomatic.
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Figure A2: Counterfactuals - Including baseline - More effective quarantine technology - λQ/λ = 0.30

Notes: In each panel the black solid line corresponds to counterfactual Baseline - Do nothing. The red dotted line corresponds to the coun-
terfactual 1. No testing - Common quarantine. The blue dashed line corresponds to the counterfactual 2. Testing - Targeted quarantine.
Output is total non-quarantined, asymptomatic workers. Output in period zero is equal to one since all workers are non-quarantined and
asymptomatic.
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