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Abstract

For an SEIRS epidemic model with stochastic perturbations on transmission from the

susceptible class to the latent and infectious classes, we prove the existence of global

positive solutions. For sufficiently small values of the perturbation parameter, we

prove the almost surely exponential stability of the disease-free equilibrium whenever

a certain invariantRσ is below unity. HereRσ <R, the latter being the basic

reproduction number of the underlying deterministic model. Biologically, the main

result has the following significance for a disease model that has an incubation phase

of the pathogen: A small stochastic perturbation on the transmission rate from

susceptible to infectious via the latent phase will enhance the stability of the

disease-free state if both components of the perturbation are non-trivial; otherwise

the stability will not be disturbed. Simulations illustrate the main stability theorem.
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1 Introduction

In recent years, a number of articles have been published on stochastic differential equa-

tionmodels of population dynamics of infectious diseases. In comparisonwithmodels de-

scribed by ordinary differential equations (ode), the stochastic differential equation (sde)

models provide of course a means of accommodating randomness in the model. Two

themes of special interest in the modeling of population dynamics of a disease are the sta-

bility of equilibrium points and the optimal control of interventions such as vaccination,

quarantine, public health education and others. For sdemodels, optimal control problems

and solutions are presented in [] of Cai and Luo, [] of Ishikawa and in []. In the stochas-

tic setting, stability of equilibria and the long term persistence or extinction of a disease in

a population have been studied inmost of the sdemodels in the literature. Such studies use

different versions of stability. Stochastic perturbation has also been studied in multigroup

models, such as in [–] for example. In many cases it has been proved that the introduc-

tion of stochastic perturbations into an ode epidemic model system can possibly render

an unstable disease-free equilibrium of the ode system to become stable in the stochastic

differential equation system. This phenomenon was highlighted in [] by Chen et al., []

by Gray et al. and in [] for instance.

Since the basic models such as [] by Li et al. on diseases of the SEIRS type, many vari-

ations have been presented in the literature, such as [] of Melesse and Gumel. Starting

with an ode model of SEIRS type, in this paper we study the effect of stochastic pertur-

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13662-017-1166-6
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-017-1166-6&domain=pdf
mailto:pwitbooi@uwc.ac.za


Witbooi Advances in Difference Equations  ( 2017)  2017:109 Page 2 of 16

bations on the stability of the disease-free equilibrium of the system. The models in []

and in [] have perturbations of the transmission rate from the S-class to the I-class. The

latter models do not include a latent infection compartment such as the E compartment

in SEIR type models. The current paper is among the first studies of a disease model with

a latent infection compartment, having a perturbation of the disease transmission. In the

literature there are stochastic models such as in [] and [] having latent infection com-

partments, but with the stochastic perturbations not directly aimed at transmission. We

prove the existence of solutions which are almost surely global and positive.We also study

stability of the disease-free equilibrium. In particular, we introduce an invariantRσ of the

model that is related to the basic reproduction number R of the underlying determinis-

tic model, with Rσ <R. With the given type of randomness in the system, we prove that

there is a greater chance of the disease vanishing from the population. The main results

are illustrated with simulations.

2 Preliminaries

Notation . ByRn
+ (resp.R

n
++) we denote the set of points inR

n having only non-negative

(resp. strictly positive) coordinates.

We assume throughout the paper that we have a complete probability space (�,F ,P),

equipped with a filtration, {Ft}t≥, that is right continuous and with F containing all the

subsets havingmeasure zero.We consider a one-dimensionalWiener processW (t) on this

filtered probability space.

Consider the k-dimensional stochastic differential equation, for somemulti-dimensional

Wiener process B(t):

dx(t) = f
(

x(t), t
)

dt + g
(

x(t), t
)

dB(t), with x() = x. (.)

A solution is denoted by x(t,x). Assume that f (, t) = g(, t) =  for all t ≥ , so that the

origin point is an equilibrium point of equation (.).

By L we denote the infinitesimal generator (see for instance []) associated with the

function displayed in equation (.), defined for a function V (t,x) ∈ C,(R+ ×R
k).

Definition . (See []) The equilibrium x =  of the system (.) is said to be almost

surely exponentially stable if for each initial value x in a given subset, we have

lim sup
t→∞



t
ln

∣

∣x(t,x)
∣

∣ <  (a.s.).

The limit lim supt→∞

t

lnx(t) is called the Lyapunov exponent of x(·).

The following lemmawas utilized in [] and proved in []. For completeness we include

the simple proof.

Lemma . For k ∈ N, let X(t) = (X(t),X(t), . . . ,Xk(t)) be a bounded R
k-valued function

and let (t,n) be any increasing unbounded sequence of positive real numbers. Then there is

a family of sequences (tl,n) such that, for each l ∈ {, , . . . ,k}, (tl,n) is a subsequence of (tl–,n)

and the sequence Xl(tl,n) converges to a chosen limit point of the sequence Xl(tl–,n).
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Proof Let b be an upper bound for the functions Xi(t). In the compact set [,b], we can

choose a limit point in the closure of the set {X(t,n)|n ∈ N} and select a convergent sub-

sequence (t,n) of (t,n) for which the limit is the chosen limit point. In the same way we

can start with the sequence (t,n) and pick a subsequence (t,n) for which (X(t,n)) is con-

vergent, etc. �

The function that we now introduce will be important in the stability analysis. Consider

any p ∈ [, ] and let q =  – p. Now we define the function

h :R++ →R+ by the rule x �→


x

(

p( – x) + qx
)
. (.)

Let h∗ : [, ] →R+ be the function defined by

h∗(p) =

⎧

⎨

⎩

p( – p) for ≤ p ≤ 

,

( – p) for 

< p ≤ .

Proposition . Let p, h and h∗ be as above, and let h = h|(,] be the (domain-) restriction

of h to (, ]. Then h∗(p) is the absolute minimum of h.

Proof If p = 

, then h(x) = (x)– and the result follows easily. Thus, for the remainder of

the proof we exclude the case p = 

. Then we observe that h tends to +∞ if x → + and

also, h tends to +∞ as x → +∞. Using calculus we find that h′(x) is continuous on R++

and has exactly one root x, which is x = p · |q – p|–. Therefore, the minimum of h is

h(x) whenever x ≤  and is h() otherwise. Further, x ≤  if and only if  ≤ p ≤ 

. The

rest of the proof follows readily. �

3 Themodel

Melesse and Gumel [] present a model for a disease of SEIRS type that may cause differ-

ent stages of infectiousness in a patient. In a special case of the mentioned model, in this

paper we study the effect of stochastic perturbations on the stability of the disease-free

equilibrium. The population, which at any time t consists of N(t) individuals, is regarded

as being divided into four compartments or classes. These are called the susceptible, ex-

posed, infectious and removed classes. Their sizes, at any time t, are denoted by S(t), E(t),

I(t) and R(t), respectively. The equations of motion of the system are assumed to be given

by the system (.) of stochastic differential equations. If σ =  then the system reduces to

a system of ode, which can be called the underlying deterministic model or the underlying

system of ode. For the system (.), the underlying system of ode coincides with a special

case of the model in []. Inflow into the population is assumed to be all into the class of

susceptibles, and it is at a rate μK . Additionally there is flow from the recovered class

into the class of susceptibles at a rate αR, due to loss of infection-acquired immunity. The

mortality rates in the different classes are denoted by μi (i = , , , ) and this allows for

higher mortality rates in classes which have been affected by the disease, such as also in

[] of Beretta et al. Hence the condition (.) below. The symbol β denotes the effective

contact rate. The parameters α and α determine the rates at which individuals in the

population pass from classes E to I and (respectively) from I to R.
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We further assume that W is a standard Brownian motion. The aim of the paper is to

have stochastic perturbations on the transmission rate. We do this by introducing two

complementary pairs of stochastic perturbation terms. The non-negative constants σ , p

and q are such that σ determines the intensity of the perturbation, while p and q are the

relative weights attached to the split parts of the perturbation. We assume that

 ≤ p≤  and p + q = 
(

see Remark .(b)
)

.

The first pair of perturbation terms (–σpSE dW and +σpSE dW ) constitutes randomness

in the transmission rate from the class S to the class E. Let us explain the presence of

the factor E (instead of I) in this component of the perturbation. We note that, for any

equilibrium point P∗ of the underlying system of ode, there is a proportionality,

I∗ =
α

α +μ

E∗,

and this motivates the presence of the factor E in the first pair of complementary per-

turbation terms. This form of the first pair of terms is particularly significant since we

are specifically concerned with what happens near disease-free equilibrium. The second

pair of complementary perturbation terms can be understood in view of the infection ul-

timately driving the susceptibles (via the E class) into the I class. The shorter the average

latent period, the more relevant does the latter perturbation become. All the parameters

are non-negative or positive constants. So for instance, if α = , then the model is said to

be of the SEIR type, but for α 
= , the model is referred to as SEIRS.

The system of stochastic differential equations is as follows:

dS =
[

μ(K – S) – βSI + αR
]

dt – σS(pE + qI)dW ,

dE =
[

βSI – (α +μ)E
]

dt + σpSE dW ,

dI =
[

αE – (α +μ)I
]

dt + σqSI dW ,

dR =
[

αI – (α +μ)R
]

dt.

(.)

Throughout the paper we assume that

μ ≤ min{μ,μ,μ}. (.)

The basic reproduction number of the underlying deterministic model, see [], is

R =
αβK

(μ + α)(μ + α)
. (.a)

The following invariant Rσ of the model (.) shall feature in the main theorem on al-

most sure extinction of the I-class. In describing Rσ we use the number h∗ = h∗(p) from

Section :

Rσ =
αβK

(μ + α)(μ + α +


σ Kh∗)

. (.b)



Witbooi Advances in Difference Equations  ( 2017)  2017:109 Page 5 of 16

We introduce the following set:

�K =
{

x ∈R

++|x + x + x + x ≤ K

}

. (.)

Proposition . Suppose that, for some T , there is a local solution

X(t) =
(

S(t),E(t), I(t),R(t)
)

on t ∈ [,T)

for the system, with X(t) ∈ R

+ for each t ∈ [,T). If N() ≤ K , then N(t) ≤ K for each

t ∈ [,T).

Proof Given any such local solution X(t), then

d(N –K)

dt
= –μ(N –K) – (μ –μ)E – (μ –μ)I – (μ –μ)R.

The condition X(t) ∈R

++ together with μ ≤ min{μ,μ,μ} ensures that

(μ –μ)E + (μ –μ)I + (μ –μ)R ≥ .

Consequently,

d(N –K)

dt
+μ(N –K) = –(μ –μ)E – (μ –μ)I – (μ –μ)R≤ .

Solution of the first order linear ordinary differential equation reveals that if N() < K ,

then N(t) < K for all t ∈ [,T). �

We now prove the existence of solutions which are almost surely global and positive.

Theorem . Given any initial value X = (S,E, I,R) ∈ �K , then the system (.) ad-

mits a unique solution X(t) = (S(t),E(t), I(t),R(t)) on t ≥ , and this solution remains in�K

almost surely.

Proof The coefficients of the system (.) are locally Lipschitz continuous. By [], Theo-

rem ., for the given initial value X ∈ �K there is a unique local solution X(t) over the

interval t ∈ [, τen), where τen is the explosion time.

There is a number m ∈ N which is sufficiently large to allow S,E, I,R ∈ (/m,K).

For each n ∈N∩ [m,∞), let us write

Dn =

{

t ∈ [, τen) : S(t)≤


n
or E(t)≤



n
or I(t)≤



n
or R(t)≤



n

}

.

Then we define stopping times τn and τ∞ by taking τn to be the infimum of Dn if Dn 
= ∅

and otherwise τn = ∞. The set D∞ and the random variable τ∞ are defined as

D∞ =
{

t ∈ [, τen) : S(t)≤  or E(t)≤  or I(t)≤  or R(t)≤ 
}

,

τ∞ = lim
n→∞

τn = infD∞.
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For each γ > , let �(γ ) be the subset of � defined thus:

�(γ ) =
{

∈ �|τ∞(w) ≤ γ
}

.

We shall prove by contradiction that τen = ∞ (a.s.). So let us assume to the contrary that

there exist T ,C ∈R with C > , and with T < τen such that P(�(T)) = C.

Let us define the function V(X), for X = (S,E, I,R), by the formula:

V(X) = ln
K

S
+ ln

K

E
+ ln

K

I
+ ln

K

R
.

By Proposition ., each of the four terms ofV(X(t)) are non-negative for every t ∈ [, τ∞).

We set up a contradiction by calculating upper and lower bounds on expectations of V.

Firstly we calculate an upper bound. For every u ∈ [, τ∞ ∧ T) we have

dV

(

X(u)
)

=
–

S(u)

{[

μ

(

K – S(u)
)

– βS(u)I(u) + αR(u)
]

du

– σS(u)
(

pE(u) + qI(u)
)

dW (u)
}

–


E(u)

{[

βS(u)I(u) – (α +μ)E(u)
]

du + σpS(u)E(u)dW (u)
}

–


I(u)

{[

αE(u) – (α +μ)I(u)
]

du + σqS(t)I(u)dW (u)
}

–


R(u)

{

αI(u) – (α +μ)R(u)
}

du

+




{[

σ
(

pE(u) + qI(u)
)]

+
(

σpS(u)
)

+
(

σqS(u)
)}

du.

We remove some negative terms and deduce the following inequality:

dV

(

X(u)
)

≤
[

βI(u)
]

du + σ
(

pE(u) + qI(u)
)

dW (u) + (α +μ)du

– σpS(u)dW (u) + (α +μ)du – σqS(u)dW (u) + (α +μ)du

+




{(

σ
(

pE(u) + qI(u)
))

+
(

σpS(u)
)

+
(

σqS(u)
)}

du.

Now let

ρ = βK + (α +μ) + (α +μ) + (α +μ) +




(

σ (p + q)K
)

+



(σpK) +




(σqK),

and for t ∈ [, τ∞ ∧ T], letM(t) be

M(t) = σ

∫ t



[

pE(t) + qI(u) – pS(u) – qS(u)
]

dW (u).

Now we have the following inequality:

∫ t



dV

(

X(u)
)

≤ ρt +M(t).
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Therefore, for any k ∈N∩ [m,∞) we have

V

(

X(t ∧ τk)
)

–V

(

X()
)

≤ ρ(t ∧ τk) +M(t ∧ τk) (a.s.).

The stochastic processM(t) is a local martingale and therefore for any m ∈ N∩ [m,∞)

we have E[M(t ∧ τm)] =M() = . Consequently,

E
[

V

(

X(T ∧ τm)
)]

≤ ρ(T ∧ τm) +V

(

X()
)

≤ ρT +V

(

X()
)

,

and we have the upper bound which we set out to find. We now search for a lower bound

for E[V(X(T ∧ τm))]. Note that if w ∈ �(T) and we evaluate V(X(ζ )) for ζ = w(τm), then

we get

V

(

X(ζ )
)

≥ ln(mK ).

We can deduce the lower bound:

E
[

V

(

X(T ∧ τm)
)]

≥ C ln(mK ).

These two bounds yield

C ln(mK )≤ E
[

V

(

X(T ∧ τm)
)]

≤ ρT +V

(

X()
)

.

We can choose a value ofm sufficiently big, so that

C ln(mK ) > ρT +V

(

X()
)

,

leading to a contradiction. Therefore we must have τ∞ = ∞ almost surely. This completes

the proof of Theorem .. �

Remark . (a) In the remainder of this paper we assume that sample paths are restricted

to �, which is defined as follows:

� =
{

ω ∈ �|
(

S(t,ω),E(t,ω), I(t,ω),R(t,ω)
)

∈ �K for all t ≥ 
}

.

(b) Let us briefly consider a slightly different form of the stochastic perturbation. In the

first equation of the model (.), the (dS) equation, let us consider a perturbation of the

form (σE + σI)S dW , with σ and σ both non-negative and at least one of them being

non-zero. Now let σ = σ + σ. We set p = σ/σ and q = σ/σ . Then p,q ∈ [, ], p + q = 

and

(σE + σI)S dW = σS(pE + qI)dW .

The introduction of p and q simplifies the analysis when we get to deal with the func-

tion h(·).
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4 Stability theorems

The concept of stability of a deterministic system of differential equations ramifies into

different forms when dealing with stochastic differential equations. In this paper we shall

focus on almost sure exponential stability, which is conceptually uncomplicated.We prove

that when the basic reproduction numberR of the underlying deterministic model is be-

low unity, then the disease-free equilibrium is almost surely exponentially stable. We also

prove stronger results on I(t) converging to zero, in terms of the analogRσ ofR.

Theorem . IfR < , then the disease-free equilibrium of the system (.) is almost surely

exponentially stable.

The proof of Theorem . will be presented following a discussion which is relevant to

all the stability results that we derive in this paper.

Item . A construction and notation.

The following construction is crucial for the proofs of the stability theorems. We fix a

positive real number b and let a ≥  and a ≥ . Let us write (S(t),E(t), I(t),R(t)) = X(t).

We define the following stochastic processes:

z
(

X(t)
)

= a
(

K – S(t)
)

+ bE(t) + I(t) + aR(t),

Q(t) =
K – S(t)

z(X(t))
, Ez(t) =

E(t)

z(X(t))
, Iz(t) =

I(t)

z(X(t))
and Rz(t) =

R(t)

z(X(t)
.

Note that for every t >  we have

aQ(t) + bEz(t) + Iz(t) + aRz(t) = . (.)

Since (see Remark .) we assume the sample paths to be in the subset�, it follows that

z(X(t)) >  for all t > . Let

V
(

X(t)
)

= ln z
(

X(t)
)

.

For every sample pathw of theWiener processW (t), there exists an unbounded increasing

sequence (τw
n ) of positive time values for which

lim sup
t→∞

LV
(

X(t,w)
)

= lim
n→∞

LV
(

X
(

τw
n ,w

))

.

Fix such a sequence. Then by Lemma . there exists a subsequence (twn ) for which the

following limits exist:

q = lim
n→∞

Q
(

X
(

twn ,w
))

, f = lim
n→∞

Ez

(

X
(

twn ,w
))

, i = lim
n→∞

Iz
(

X
(

twn ,w
))

,

r = lim
n→∞

Rz

(

X
(

twn ,w
))

and s = lim
n→∞

S
(

twn ,w
)

.
(.a)

Let us write

�(w) = lim
n→∞

L
(

V
(

X
(

twn ,w
)))

. (.b)
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Item . A useful inequality for LV (X(u)).

Using Itô’s formula we can express the stochastic process V (X(t)) as

V
(

X(t)
)

= V
(

X()
)

+

∫ t



LV
(

X(u)
)

du +M(t),

withM(t) being the Itô integral

M(t) =

∫ t



(σa)
pS(u)E(u) + qS(u)I(u)

z(X(u))
+ (σb)

pS(u)E(u)

z(X(u))
+ (σ )

qS(u)I(u)

z(X(u))
dW (u).

Since

(σa)
pS(u)E(u) + qS(u)I(u)

z(X(u))
+ (σb)

pS(u)E(u)

z(X(u))
+ (σ )

qS(u)I(u)

z(X(u))

≤ σa

(

pK


b
+ qK

)

+ σbpK


b
+ σqK ,

and the latter is a (bounded) fixed number, it follows that

lim
t→∞



t

∫ t



[

(σa)
pS(u)E(u) + qS(u)I(u)

z(X(u))
+ (σb)

pS(u)E(u)

z(X(u))
+ (σ )

qS(u)I(u)

z(X(u))

]

du < ∞.

Thus we may apply the strong law of large numbers for local martingales, as from [] for

instance, and we deduce that

lim
t→∞



t
M(t) =  (a.s.).

Since also

lim
t→∞



t
V () = ,

it follows that

lim sup
t→∞



t
V

(

X(t)
)

= lim sup
t→∞



t

∫ t



LV
(

X(u)
)

du (a.s.). (.)

Now we calculate LV (X(t)).

LV (X) =


z

[

–a
(

μ(K – S) – βSI + αR
)

+ b
(

βSI – (α +μ)E
)

+
(

αE – (α +μ)I
)

+ a
(

αI – (α +μ)R
)]

–
(σS)

z

(

a(pE + qI) + ab(pE + qI)pE + a(pE + qI)qI
)

–
(σS)

z

(

(pbE) + pqbEI + (qI)
)

.



Witbooi Advances in Difference Equations  ( 2017)  2017:109 Page 10 of 16

For our further analysis it will suffice to have a suitable function dominatingLV . From the

last equation we obtain

LV (X) ≤


z

[

–a
(

μ(K – S) – βSI
)

+ b
(

βSI – (α +μ)E
)

+
(

αE – (α +μ)I
)

+ a
(

αI – (α +μ)R
)]

–
(σS)

z

(

(pbE) + pqbEI + (qI)
)

.

Now we introduce notation from Item ., to obtain the following inequality:

LV (X) ≤ –a(μQ – βSIz) + b
(

βSIz – (α +μ)Ez

)

+
(

αEz – (α +μ)Iz
)

+ a
(

αIz – (α +μ)Rz

)

–
(σS)


(pbEz + qIz)

. (.)

Remark . In the proofs of the stability theorems we shall need to prove that, for paths

w ∈ �,

lim sup
t→∞



t

∫ t



LV
(

X(u,w)
)

du < .

To this end we note here that it suffices to prove that

lim sup
t→∞

LV
(

X(t,w)
)

< .

Proof of Theorem . SinceR <  we have the inequality

cβK – (α +μ) < , with c =
α

μ + α

.

Now we can choose a >  sufficiently small such that

(c + a)βK – (α +μ) < .

We can also choose positive real numbers a and a sufficiently small such that

(

c + a +
a

α +μ

)

βK – (α +μ) + aα < . (.)

Now let b = c + a(μ + α)
–, and with these values of a, b and a we define z(X(t)) as

in Item .. It suffices to prove that � < . We modify the inequality (.) ignoring the

last term, using S < K and noting that b(α +μ) – α = a. Then we deduce the following

inequality:

LV (X) ≤ –aμQ + (a + b)βKIz – aEz – (α +μ)Iz + aαIz – a(α +μ)Rz. (.)

We form limits as in equations (.a) and (.b), and after rearranging the termswe obtain

� ≤ –aμq +
[

(a + b)βK – (α +μ) + aα

]

i – af – a(α +μ)r.
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The coefficients of q, f and r are negative, and by inequality (.) the coefficient of i is also

negative. Since aq+bf + i+ar = , it follows that at least one of these limits {q, f , i, r}must

be non-zero. Hence � <  and the proof is complete. �

Theorem . implies that if a disease-free equilibrium is locally asymptotically stable

with respect to the underlying ode-system, then it is almost surely exponentially stable

with respect to the stochastic model, in particular, the perturbations do not disrupt the

stability of the disease-free equilibrium.

Remark . In the sequel we shall use a special form of the inequality (.), taking a =

a = . Then z = bE + I and from (.) we obtain the inequality

LV (X) ≤ b
(

βSIz – (α +μ)Ez

)

+
(

αEz – (α +μ)Iz
)

–
(σS)


(pbEz + qIz)

.

Since bEz =  – Iz, and with h(·) being the function as in equation (.), we can write

(pbEz + qIz)
 = Izh(Iz).

Since  < Iz < , by Proposition . we have h(Iz)≥ h∗(p). Therefore we can write

LV (X) ≤ b
(

βSIz – (α +μ)Ez

)

+
(

αEz – (α +μ)Iz
)

–
(σS)


Izh∗(p). (.)

We now present the main result of this paper, which proves that the stochastic pertur-

bation improves the stability of the disease-free equilibrium for small values of the pertur-

bation parameter.

Theorem . If the following conditions hold:

() Rσ < ,

() σ  ≤
cβ
Kh∗

with c = α
μ+α

,

then (E(t), I(t)) almost surely converges exponentially to .

Proof Let us assume the conditions () and () of the theorem to hold. In particular then,

the condition () is equivalent to

cβK – (α +μ) –



σ Kh∗ < .

Choose any positive number a to be sufficiently small such that

(

c +
a

α +μ

)

βK – (α +μ) –



σ Kh∗ < .

This can be written

bβK – (α +μ) –



σ Kh∗ < , with b = c +

a

α +μ

. (.)
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Using this value of b in the inequality (.) while a =  = a, yields

LV (X) ≤ Izg(S) – aEz, where g(S) = bβS – (α +μ) –
(σS)


h∗. (.)

The quadratic function g(ζ ) of equation (.) reaches an absolute maximum when ζ =

bβ(σ h∗)
–. By assumption () it follows that cβ(σ h∗)

– ≥ K . Therefore also

bβ

σ h∗

>
cβ

σ h∗

≥ K .

Considering that  < S ≤ K , it follows that g(S) ≤ g(K) and therefore

LV (X) ≤ Izg(K) – aEz.

Therefore (see the notation in Item .) we have

� ≤ ig(K) – af .

Now we observe that g(K) coincides with the left hand side of the inequality (.). Since

at least one of f and imust be non-zero, it follows that � < . This completes the proof of

Theorem .. �

In Section we shall further reflect on Theorem .. Also, Theorem . below combines

very well with Theorem .. However, while our main result Theorem . focused on

small perturbations, let us briefly address the case of larger perturbations. The following

theorem asserts that, for sufficiently large values of the perturbation parameter σ , the

disease will eventually vanish from the population.

Theorem . The pair (E(t), I(t)) almost surely converges exponentially to  if

σ  >
(cβ)

(α +μ)h∗
with c =

α

μ + α

.

Proof Let a be sufficiently small to support the inequality:

σ  >
[(c + a

μ+α
)β]

(α +μ)h∗
,

and let b = c + a(α + μ)
–. Now we revisit the construction presented under Item .,

using the constant b as selected and a =  = a. Then similar to the proof of Theorem .,

we obtain an inequality,

LV (X) ≤ Izg(S) – aEz, where g(S) = bβS – (α +μ) –
(σS)


h∗.

The inequality σ  > (bβ)

(α+μ)h

∗
is equivalent to

(

bβ

σ h∗

)

– (α +μ) < .



Witbooi Advances in Difference Equations  ( 2017)  2017:109 Page 13 of 16

Therefore,

g(S) = –
σ h∗



(

S –
bβ

σ h∗

S

)

– (α +μ)

= –
σ h∗



(

S –
bβ

σ h∗

)

+

(

bβ

σ h∗

)

– (α +μ)

< –
σ h∗



(

S –
bβ

σ h∗

)

< .

This implies that � ≤ ig(s) – af < , and the proof is complete. �

Theorem . If (E(t), I(t)) almost surely converges exponentially to , then

lim
t→∞

S(t) = K (a.s.) and lim
t→∞

R(t) =  (a.s.).

Proof This proof is by contradiction, so let us suppose, to the contrary, that (on a subset

�lim of � of positive measure) we have limt→∞(K – S(t)) +R(t) > . Let z be as in Item .,

with a = b = a = . Then, since limt→∞ E(t) =  while limt→∞(K –S(t))+R(t) > , it follows

that f =  on�lim. Similarly it follows that i =  on�lim. Therefore from the inequality (.)

it follows that on �lim we have

� ≤ –μq – (α +μ)r.

Therefore, � < . This implies that z converges to  and, consequently, that limt→∞(K –

S(t)) + R(t) = , which is a contradiction. This completes the proof. �

Remark . (a) Theorem . is much more significant than Theorem . because in dis-

ease modeling, in practice one is more interested in smaller perturbations rather than the

larger perturbations. Let us denote the bounds on σ specified in Theorems . and .

by θ and θ respectively. If θ > θ, then these theorems can be combined, guaranteeing

the disease-free equilibrium to be almost surely exponentially stable irrespective of the

magnitude of σ .

(b) Of course, Theorem . serves to extend Theorems . and ..

5 Simulations

Theorem . suggests that Rσ is an approximation for a threshold that decides stability

in a way similar to the basic reproduction number. Simulations show that it is a rather

useful approximation. For a non-negative stochastic process, almost sure convergence to

 can be tested by computing the (approximation over finitely many paths, of the) mean

of sample paths. If the mean of I is not asymptotically stable, then I is not almost surely

exponentially stable. The simulations that were run produced trajectories of the mean of

I which consistently appears to converge to a value which is smaller than, or at least not

bigger than, in the deterministic case.

These simulations are obtained by considering an influenza infection of the type in []

and []. The relevant parameter values for α, α, μ, μ and μ are taken directly from

[] and other parameters values are derived. Our value for /α is obtained by taking the
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sum of the average times spent in the I(·)-compartments (of []). The value of μ is taken

as .μ. The parameter β is not kept fixed in these simulations. Here we note that

infections that are aerially transmitted will spread faster when people are in high density

locations with poor ventilation. So for instance the same disease has a higher value for

the effective contact rate, when considered in a concentration camp as compared to an

ordinary small village or rural area.

Initial values in millions are S() = , E() = , I() = . and R() = ..

Using the Euler-Maruyama scheme, we simulate the trajectories of one sample path of

the I-class of the model,

the mean of I , taken over , sample paths and indicated as ‘I (ave)’, and

the I-class trajectory ‘I determ’ (broken line) of the underlying deterministic model,

with the parameter values as explained above. We take

K =  (in millions),

and the values of the other parameters are all given, with one-day as time unit, in the

accompanying Table .

Parameters such as p and σ are difficult to compute.We choose p = . for simulation.

The parameters β and σ are varied in order to obtain different values ofRσ .

In Figure  we show trajectories for the case β = . and σ = ., for which we get

Rσ = .. In this case we cannot deduce stability of the disease-free equilibrium from

Theorem ., since condition () is not satisfied. In fact we observe the mean value of I as

seeming to converge to a positive value. The given I-path also does not seem to converge

to . We do note, however, that after  days (a relatively long period) it gives a mean I

value (computed as ,), which is lower than in the deterministic case (,).

In Figure  we show a case in which we take β = ., σ = ., and we calculate

R = . andRσ = .≤ . However, condition () is not satisfied. The I-trajectory

shown does not seem to converge to , although the mean seems to converge to . This

further demonstrates the need for condition () in Theorem . (other than condition ()

just being utilized in the proof ). In this case the deterministicmodel has a non-trivial equi-

librium value I∗ for I . For the stochastic case we observe that the mean seems to converge

to a value smaller than I∗.

Table 1 Numerical values of the fixed parameters

Parameter Value

μ0 (60× 365)–1 = 4.566× 10–5

μ1 4.566× 10–5

μ2 1.025μ0 = 4.680× 10–5

μ3 4.566× 10–5

α1 1.9–1 = 0.5263

α2 0.2

α3 (83.33)–1 = 0.012

Figure 1 Condition (1) of Theorem 4.6 is

violated.
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Figure 2 Condition (2) of Theorem 4.6 is

violated.

Figure 3 Theorem 4.6 guarantees the almost

sure extinction of the I-class.

In Figure we use β = ., σ = ., and thenwe haveR = . andRσ = ..

This time the parameters selection fulfills all the conditions of Theorem ., and indeed

what we see appears to be in line with the assertion of the theorem.

6 Conclusion

In this paper we constructed an SEIRS model, with stochastic perturbations which can be

viewed as linked to the transmission rate out of the class of susceptibles. We proved that

the system of stochastic differential equations permits solutions that are almost surely

global and positive. The model permits a disease-free equilibrium which we showed to be

almost surely exponentially stable whenever the basic reproduction number of the under-

lying deterministic model is below unity, and even slightly beyond under given conditions.

Biologically we observe, in particular, the following effect of a stochastic perturbation on

the disease transmission in the case of a deterministic compartmental model which allows

for a latently infectious class. Given a small stochastic perturbation on the transmission

rate from susceptible to infectious via the latent phase, the stability of the disease-free

state will be improved if both components of the perturbation are non-trivial. If any one

of the components of the perturbation is zero, then the stability will not be disturbed. The

simulations confirm the proven results and also provide further insights, such as about

the behavior of the mean of the I-class trajectories.

Competing interests

The author declares that he has no competing interests.

Acknowledgements

The author acknowledges financial support by the National Research Foundation of South Africa.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 9 January 2016 Accepted: 31 March 2017

References

1. Cai, H, Luo, X: Stochastic control of an epidemic process. Int. J. Syst. Sci. 254, 821-828 (1994)
2. Ishikawa, M: Optimal strategies for vaccination using the stochastic SIRV model. Trans. Inst. Syst. Control Inf. Eng.

25(12), 343-348 (2012)
3. Witbooi, PJ, Muller, GE, van Schalkwyk, GJ: Vaccination control in a stochastic SVIR epidemic model. Comput. Math.

Methods Med. 2015, Article ID 271654 (2015).



Witbooi Advances in Difference Equations  ( 2017)  2017:109 Page 16 of 16

4. Yang, Q, Mao, X: Extinction and recurrence of multi-group SEIR epidemic models with stochastic perturbations.

Nonlinear Anal., Real World Appl. 14(3), 1434-1456 (2013)

5. Yuan, C, Jiang, D, O’Regan, D, Agarwal, RP: Stochastically asymptotically stability of the multi-group SEIR and SIR

models with random perturbation. Commun. Nonlinear Sci. Numer. Simul. 17, 2501-2516 (2012)

6. Zhao, J, Liu, M, Wang, W, Yang, P: The stability of SI epidemic model in complex networks with stochastic

perturbation. Abstr. Appl. Anal. 2014, Article ID 610959 (2014)

7. Chen, G, Li, T, Liu, C: Lyapunov exponent of a stochastic SIRS model. C. R. Math. 351(1-2), 33-35 (2013)

8. Gray, A, Greenhalgh, D, Hu, L, Mao, X, Pan, J: A stochastic differential equation SIS epidemic model. SIAM J. Appl. Math.

71(3), 876-902 (2011)

9. Witbooi, PJ: Stability of an SEIR epidemic model with independent stochastic perturbations. Physica A 392(20),

4928-4936 (2013)

10. Li, MY, Muldowney, JS, van den Driessche, P: Global stability of SEIRS models in epidemiology. Can. Appl. Math. Q.

7(4), 409-425 (1999)

11. Melesse, DY, Gumel, AB: Global asymptotic properties of an SEIRS model with multiple infectious stages. J. Math. Anal.

Appl. 366, 202-217 (2010)

12. Øksendal, B: Stochastic Differential Equations: An Introduction with Applications. Springer, New York (1998)

13. Mao, X: Stochastic Differential Equations and Applications. Horwood, Chichester (1997)

14. Witbooi, PJ: Stability of stochastic model of an SIR epidemic with vaccination. Acta Biotheor. (2017).

doi:10.1007/s10441-017-9308-5

15. Beretta, E, Hara, T, Ma, W, Takeuchi, Y: Global asymptotic stability of an SIR epidemic model with distributed time

delay. Nonlinear Anal., Theory Methods Appl. 47(6), 4107-4115 (2001)

16. Feller, W: An Introduction to Probability Theory and Its Applications, vol. II. Wiley, New York (1966)

17. Nuño, M, Reichert, TA, Chowell, G, Gumel, AB: Protecting residential care facilities from pandemic influenza. Proc. Natl.

Acad. Sci. USA 105(30), 10625-10630 (2008)

http://dx.doi.org/10.1007/s10441-017-9308-5

	An SEIRS epidemic model with stochastic transmission
	Abstract
	Keywords

	Introduction
	Preliminaries
	The model
	Stability theorems
	Simulations
	Conclusion
	Competing interests
	Acknowledgements
	Publisher's Note
	References


