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Abstract. Model checkers based on Petri net coverability have been
used successfully in recent years to verify safety properties of concurrent
shared-memory or asynchronous message-passing software. We revisit a
constraint approach to coverability based on classical Petri net analysis
techniques. We show how to utilize an SMT solver to implement the
constraint approach, and additionally, to generate an inductive invari-
ant from a safety proof. We empirically evaluate our procedure on a
large set of existing Petri net benchmarks. Even though our technique is
incomplete, it can quickly discharge most of the safe instances. Addition-
ally, the inductive invariants computed are usually orders of magnitude
smaller than those produced by existing solvers.

1 Introduction

In recent years many papers have proposed and developed techniques for the
verification of concurrent software [10,6,1,11,4]. In particular, model checkers
based on Petri net coverability have been successfully applied. Petri nets are a
simple and natural automata-like model for concurrent systems, and can model
certain programs with an unbounded number of threads or thread creation. In a
nutshell, the places of the net correspond to program locations, and the number
of tokens in a place models the number of threads that are currently at that
location. This point was first observed in [9], and later revisited in [3] and, more
implicitly, in [10,6].

The problem whether at least one thread can reach a given program location
(modelling some kind of error), naturally reduces to the coverability problem for
Petri nets: given a net N and a marking M , decide whether some reachable
marking of N covers M , i.e., puts at least as many tokens as M on each place.
While the decidability and EXPSPACE-completeness of the coverability problem
were settled long ago [12,17], new algorithmic ideas have been developed in recent
years [8,7,21,11,13]. The techniques are based on forward or backward state-space
exploration, which is accelerated in a number of ways in order to cope with the
possibly infinite number of states.

In this paper we revisit an approach to the coverability problem based on
classical Petri net analysis techniques: the marking equation and traps [16,18].
The marking equation is a system of linear constraints that can be easily derived
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from the net, and whose set of solutions overapproximates the set of reachable
markings. This system can be supplemented with linear constraints specifying a
set of unsafe markings, and solved using standard linear or integer programming.
If the constraints are infeasible, then all reachable markings are safe. If not,
then one can try different aproaches. In [5] a solution of the constraints is used
to derive an additional constraint in the shape of a trap: a set of places that,
loosely speaking, once marked cannot be “emptied”; the process can be iterated.
More recently, in [22], Wimmel and Wolf propose to use the solution to guide a
state space exploration searching for an unsafe marking; if the search fails, then
information gathered during it is used to construct an additional constraint.

Constraint-based techniques, while known for a while, have always suffered
from the absence of efficient decision procedures for linear arithmetic together
with Boolean satisfiability. Profiting from recent advances in SMT-solving tech-
nology, we reimplement the technique of [5] on top of the Z3 SMT solver [2], and
apply it to a large collection of benchmarks.

The technique is theoretically incomplete, i.e., the set of linear constraints
derived from the marking equation and traps may be feasible even if all reach-
able markings are safe. Our first and surprising finding is that, despite this fact,
the technique is powerful enough to prove safety of 96 out of a total of 115 safe
benchmarks gathered from current research papers in concurrent software veri-
fication. In contrast, three different state-of-the-art tools for coverability proved
only 61, 51, or 33 of these 115 cases! Moreover, and possibly due to the char-
acteristics of the application domain, even the simplest version of the technique
—based on the marking equation— is successful in 84 cases.

As a second contribution, and inspired by work on interpolation, we show that
a dual version of the classical set of constraints, equivalent in expressive power,
can be used not only to check safety, but to produce an inductive invariant. While
some existing solvers based on state-space exploration can also produce such
invariants, we show that inductive invariants obtained through our technique
are usually orders of magnitude smaller. Additionally, while we can use the SMT
solver iteratively to minimize the invariant, the tool almost always provides a
minimal one at the first attempt.

Related Work. Our starting point was the work of Esparza and Melzer on ex-
tending the marking equation with trap conditions to gain a stronger method for
proving safety of Petri nets [5]. We combined the constraint-based approach there
with modern SMT solvers. Their focus on (integer) linear programming tools of
the time enforced some limitations. First, while traps are naturally encoded us-
ing Boolean variables, [5] encoded traps and the marking equation together into
a set of linear constraints. This encoding came at a practical cost: the encoding
required (roughly) n × m constraints for a Petri net with n places and m transi-
tions, whereas the natural Boolean encoding requires m constraints. Moreover,
(I)LP solvers were not effective in searching large Boolean state spaces; our use
of modern SAT techniques alleviates this problem. Second, (I)LP solvers used by
[5] did not handle strict inequalities. Hence, the authors used additional tricks,
such as posing the problem that includes a strict inequality as a minimization
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p1:
p2:
p3:

procedure Process 1
begin

bit1 := false
while true do

bit1 := true
while bit2 do skip od
(∗ critical section ∗)
bit1 := false

od
end

q1:
q2:
q3:
q4:

q5:

procedure Process 2
begin

bit2 := false
while true do

bit2 := true
if bit1 then

bit2 := false
while bit1 do skip od
goto q1

fi
(∗ critical section ∗)
bit2 := false

od
end

Fig. 1. Lamport’s 1-bit algorithm for mutual exclusion [14]

problem, with the goal of minimizing the involved expression, and testing if the
minimal value equaled zero. Unfortunately, this trick led to numerical instabili-
ties. All of these concerns vanish by using an SMT solver.

The marking equation is also the starting point of [22], but the strategies
of this approach and ours are orthogonal: while we use the solutions of the
marking equation to derive new constraints, [22] uses them to guide state space
explorations that search for unsafe markings; new constraints are generated only
if the searches fail.

In contrast to other recent techniques for coverability [7,11,13], our technique
and the one of [22] are incomplete. However, in [22] Wimmel and Wolf obtain
very good results for business process benchmarks, and in this paper we empir-
ically demonstrate that our technique is effective for safe software verification
benchmarks, often beating well-optimized state exploration approaches.

Our technique theoretically applies not only to coverability but also to reach-
ability. It will be interesting to see whether the techniques can effectively verify
reachability questions, e.g., arising from liveness verification [6].

2 Preliminaries

A Petri net is a tuple (P, T, F, m0), where P is a set of places, T is a (disjoint) set
of transitions, F : (P ×T )∪(T ×P ) → {0, 1} is the flow function, and m0 : P → N

is the initial marking. For x ∈ P ∪T , the pre-set is •x = {y ∈ P ∪T | F (y, x) = 1}
and the post-set is x• = {y ∈ P ∪ T | F (x, y) = 1}. We extend the pre- and
post-set to a subset of P ∪T as the union of the pre- and post-sets of its elements.

A marking of a Petri net is a function m : P → N, which describes the number
of tokens m(p) in each place p ∈ P . Assuming an enumeration p1, . . . , pn of P ,
we often identify m and the vector (m(p1), . . . , m(pn)). For a subset P ′ ⊆ P of
places, we write m(P ′) =

∑
p∈P ′ m(p).
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Fig. 2. Petri net for Lamport’s 1-bit algorithm

A transition t ∈ T is enabled at m iff for all p ∈ •t, we have m(p) ≥ F (p, t). A
transition t enabled at m may fire, yielding a new marking m′ (denoted m

t−→ m′),
where m′(p) = m(p) + F (t, p) − F (p, t). A sequence of transitions, σ = t1t2 . . . tr

is an occurrence sequence of N iff there exist markings m1, . . . , mr such that
m0

t1−→ m1
t2−→ m2 . . .

tr−→ mr. The marking mr is said to be reachable from m0
by the occurrence of σ (denoted m0

σ−→ mr).
A property ϕ is a linear arithmetic constraint over the free variables P . The

property ϕ holds on a marking m iff m |= ϕ. A Petri net N satisfies a property
ϕ (denoted by N |= ϕ) iff for all reachable markings m0

σ−→ m, we have m |= ϕ.
A property ϕ is an invariant of N if it holds for every reachable marking. A
property is inductive if whenever m |= ϕ and m

t−→ m′ for some t ∈ T and
marking m′, we have m′ |= ϕ.

Petri nets are represented graphically as follows: places and transitions are
represented as circles and boxes, respectively. For x, y ∈ P ∪ T , there is an
arc leading from x to y iff F (x, y) = 1. As an example, consider Lamport’s 1-
bit algorithm for mutual exclusion [14], shown in Fig. 1. Fig. 2 shows a Petri
net model for the code. The two grey blocks model the control flow of the two
processes. For instance, the token in place p1 models the current position of
process 1 at program location p1. The three places in the middle of the diagram
model the current values of the variables. For instance, a token in place notbit1
indicates that the variable bit1 is currently set to false. The mutual exclusion
property, which states that the two processes cannot be in the critical section at
the same time, corresponds to the property that places p3 and q5 cannot both
have a token at the same time.

3 Marking Equation

We now recall a well-known method, which we call Safety, that provides a
sufficient condition for a given Petri net N to satisfy a property ϕ by reducing
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the problem to checking satisfiability of a linear arithmetic formula. We illustrate
the method on Lamport’s 1-bit algorithm for mutual exclusion.

Before going into details, we state several conventions. For a Petri net N =
(P, T, F, m0), we introduce a vector of |P | variables M , and a vector of |T |
variables X . The vectors M and X will be used to represent the current marking
and the number of occurrences of transitions in the occurrence sequence leading
to the current marking, respectively. If a place or a transition is given a specific
name, we use the same name for its associated variable. Given a place p, the
intended meaning of a constraint like p ≥ 3 is “at the current marking place
p must have at least 3 tokens.” Given a transition t, the intended meaning of
a constraint like t ≤ 2 is “in the occurrence sequence leading to the current
marking, transition t must fire at most twice.”

The key idea of the Safety method lies in the marking equation:

M = m0 + CX ,

where the incidence matrix C is a |P | × |T | matrix given by

C(p, t) = F (t, p) − F (p, t) .

For each place p, the marking equation contains a constraint that formulates a
simple token conservation law: the number of tokens in p at the current marking
is equal to the initial number of tokens m0(p), plus the number of tokens added by
the input transitions of p, minus the number of tokens removed by the output
transitions. So, for instance, in Lamport’s algorithm the constraint for place
notbit1 is:

notbit1 = 1 + s3 + t5 + t4 − s1 − t4 − t5 = 1 + s3 − s1 .

We equip the marking equation with the non-negativity conditions, modeling
that the number of tokens in a place, or the number of occurrences of a transition
in an occurrence sequence cannot become negative. All together, we get the
following set of marking constraints:

C(P, T, F, m0) ::

⎧
⎪⎨

⎪⎩

M = m0 + CX marking equation
M ≥ 0 non-negativity conditions for places
X ≥ 0 non-negativity conditions for transitions

Method Safety for checking that a property ϕ is invariant for a Petri net
N = (P, T, F, m0) consists of checking for satisfiability of the constraints

C(P, T, F, m0) ∧ ¬ϕ(M) . (1)

If the constraints are unsatisfiable, then no reachable marking violates ϕ. To see
that this is true, consider the converse: If there exists an occurrence sequence
m0

σ−→ m leading to a marking m that violates the property, then we can con-
struct a valuation of the variables that assigns m(p) to M(p) for each place
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p, and the number of occurrences of t in σ to X(t) for each transition t. This
valuation then satisfies the constraints.

The method does not work in the other direction: If the constraints (1) are
satisfiable, we cannot conclude that the property ϕ is violated.

As an example, consider the Lamport’s algorithm. Safety successfully proves
the property “if process 1 is at location p3, then bit1 = true” by showing that
C(P, T, F, m0) ∧ p3 ≥ 1 ∧ bit1 	= 1 is unsatisfiable. However, if we apply it to the
mutual exclusion property, i.e., check for satisfiability of C(P, T, F, m0) ∧ p3 ≥
1∧q5 ≥ 1, we obtain a solution, but we cannot conclude that the mutual exclusion
property does not hold.

Note that the marking constraints (1) are interpreted over integer variables.
As usual in program analysis, one can solve the constraints over rationals to
get an approximation of the method. Solving the constraints over rationals will
become useful in Section 5.

4 Refining Marking Equations with Traps

Esparza and Melzer [5] strengthened Safety with additional trap constraints.
A trap of a Petri net N = (P, T, F, m0) is a subset of places Q ⊆ P satisfying
the following condition for every transition t ∈ T : if t is an output transition of
at least one place of Q, then it is also an input transition of at least one place
of Q. Equivalently, Q is a trap if its set of output transitions is included in its
set of input transitions, i.e., if Q• ⊆ •Q. Here we present a variant of Esparza’s
and Melzer’s method that encodes traps using Boolean constraints. We call the
new method SafetyByRefinement.

The method SafetyByRefinement is based on the following observation
about traps. If Q is a trap and a marking m marks Q, i.e., m(p) > 0 for some
p ∈ Q, then for each occurrence sequence σ and marking m′ such that m

σ−→ m′,
we also have m′(p′) > 0 for some p′ ∈ Q. Indeed, by the trap property any
transition removing tokens from places of Q also adds at least one token to some
place of Q. So, while m′(Q) can be smaller than m(Q), it can never become 0.
In particular, if a trap Q satisfies m0(Q) > 0, then every reachable marking m
satisfies m(Q) > 0 as well.

Since the above property must hold for any trap, we can restrict the con-
straints from method Safety as follows. First, we add an additional vector B
of |P | Boolean variables. These variables are used to encode traps: for p ∈ P ,
B(p) is true if and only if place p is part of the trap. The following constraint
specifies that B encodes a trap:

trap(B) ::=
∧

t∈T

⎡

⎣
∨

p∈•t

B(p) =⇒
∨

p∈t•
B(p)

⎤

⎦ .

Next, we define a predicate mark(m, B) that specifies marking m marks a trap:

mark(m, B) ::=
∨

p∈P

B(p) ∧ (m(p) > 0) .
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Finally, we conjoin the following constraint to the constraints (1):

∀B : trap(B) ∧ mark(m0, B) =⇒ mark(M, B) . (2)

This constraint conceptually enumerates over all subsets of places, and ensures
that if the subset forms a trap, and this trap is marked by the initial marking,
then it is also marked by the current marking. Thus, markings violating the trap
constraint are eliminated.

While the above constraint provides a refinement of the Safety method, it
requires the SMT solver to reason with universally quantified variables. Instead
of directly using universal quantifiers, we use a counterexample-guided heuristic
[5,20] of adding trap constraints one-at-a-time in the following way.

If the set of constraints constructed so far (for instance, the set given by the
method Safety) is feasible, the SMT solver delivers a model that assigns values
to each place, corresponding to a potentially reachable marking m. We search
for a trap Pm that violates the trap condition (2) for this specific model m. If
we find such a trap, then we know that m is unreachable, and we can add the
constraint

∑
p∈Pm

M(p) ≥ 1 to exclude all markings that violate this specific
trap condition.

The search for Pm is a pure Boolean satisfiability question. We ask for an
assignment to

trap(B) ∧ mark(m0, B) ∧ ¬mark(m, B) (3)

Notice that for a fixed marking m, the predicate mark(m, B) simplifies to a
Boolean predicate. Given a satisfying assignment b for this formula, we add the
constraint

∑

p∈P
b(p)=true

M(p) ≥ 1 (4)

to the current set of constraints to rule out solutions that do not satisfy this
trap constraint. We iteratively add such constraints until either the constraints
are unsatisfiable or the Boolean constraints (3) are unsatisfiable (i.e., no traps
are found to invalidate the current solution).

This yields the method SafetyByRefinement. It is still not complete [5]:
one can find nets and unreachable markings that mark all traps of the net.

Let us apply the algorithm SafetyByRefinement to Lamport’s algorithm
and the mutual exclusion property. Recall that the markings violating the prop-
erty are those satisfying p3 ≥ 1 and q5 ≥ 1. Safety yields a satisfying assign-
ment with p3 = bit1 = q5 = 1, and p = 0 for all other places p, which corresponds
to a potentially reachable marking m. We search for a trap marked at m0 but
not at m. To simplify the notation, we simply write p instead of B(p). The
constraints derived from the trap property are:
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p1 ∨ notbit1 =⇒ p2 ∨ bit1
p2 ∨ notbit2 =⇒ p3 ∨ notbit2
p3 ∨ bit1 =⇒ p1 ∨ notbit1

q1 ∨ notbit2 =⇒ q2
q2 ∨ bit1 =⇒ q3 ∨ bit1
q3 =⇒ q4 ∨ notbit2
q4 ∨ notbit1 =⇒ q1 ∨ notbit1
q2 ∨ notbit1 =⇒ q5 ∨ notbit1
q5 =⇒ q1 ∨ notbit2

and the following constraints model that at least one of the places initially
marked belongs to the trap, but none of the places marked at the satisfying
assigment do:

p1 ∨ q1 ∨ notbit1 ∨ notbit2 ¬p3 ∧ ¬q5 ∧ ¬bit1

For this set of constraints we find the satisfying assignment that sets p2, notbit1,
notbit2, q2, q3 to true and all other variables to false. So this set of places is an ini-
tially marked trap, and so every reachable marking should put at least one token
in it. Hence we can add the refinement constraint to marking constraints (1):

p2 + q2 + q3 + notbit1 + notbit2 ≥ 1 .

On running the SMT solver again, we find the constraints are unsatisfiable,
proving that the mutual exclusion property holds.

5 Constructing Invariants from Constraints

We now show that one can compute inductive invariants from the method Safe-
tyByRefinement. That is, given a Petri net N = (P, T, F, m0) and a property
ϕ, if SafetyByRefinement (over the rationals) can prove N satisfies ϕ, then
in fact we can construct a linear inductive invariant that contains m0 and does
not intersect ¬ϕ. We call the new method InvariantByRefinement.

The key observation is to use a constraint system dual to the constraint sys-
tem for SafetyByRefinement. We assume ϕ is a co-linear property, i.e., the
negation ¬ϕ is represented as the constraints:

¬ϕ :: AM ≥ b

where A is a k ×|P | matrix, and b is a k ×1 vector, for some k ≥ 1. Furthermore,
we assume that there are l ≥ 0 trap constraints (4), which are collected in matrix
form DM ≥ 1, for an l × |P | matrix D, and an l × 1 vector of ones, denoted
simply by 1. Consider the following primal system S:

C(P, T, F, m0) marking constraints
AM ≥ b negation of property ϕ

DM ≥ 1 trap constraints

By transforming S into a suitable form and applying Farkas’ Lemma [19], we
get the following theorem.
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Theorem 1. The primal system S is unsatisfiable over the rational numbers if
and only if the following dual system S′ is satisfiable over the rational numbers.

λC ≤ 0 inductivity constraint
λm0 < Y1b + Y21 safety constraint

λ ≥ Y1A + Y2D property constraint
Y1, Y2 ≥ 0 non-negativity constraint

Here λ, Y1 and Y2 are vectors of variables of size 1 × |P |, 1 × k and 1 × l,
respectively.

If the primal system S is unsatisfiable, we can take λ from a solution to S′

and construct an inductive invariant:

I(M) ::= DM ≥ 1 ∧ λM ≤ λm0 .

In order to show that I(M) is an invariant, recall that for every reachable
marking m there is a solution to m = m0 + CX , with X ≥ 0. Multiplying by λ
and taking into account that λ is a solution to S′, we get

λm = λm0 + λCX ≤ λm0 .

Furthermore, every reachable marking satisfies the trap constraints DM ≥ 1.
On the other hand, a marking m that violates the property ϕ does not satisfy
I(M), for it either does not satisfy DM ≥ 1, or both Am ≥ b and Dm ≥ 1 hold.
But in the latter case we have

λm ≥ (Y1A + Y2D)m = Y1Am + Y2Dm ≥ Y1b + Y21 > λm0 .

In order to show that I(M) is inductive, we have to show that if I(m) holds
for some marking m (reachable or not), and m

t−→ m′ for some transition t, then
I(m′) holds as well. Indeed, in this case we have m′ = m + Cet, where et is the
unit vector with 1 in the t-th component and 0 elsewhere. Hence

λm′ = λ(m + Cet) = λm + λCet ≤ λm ≤ λm0 ,

and furthermore, as m satisfies the trap constraints, m′ also satisfies them.
So far, we have assumed that property ϕ is a co-linear property. However, it is

easy to extend the method to the case when ϕ = ϕ1∧. . .∧ϕr , and each ϕi is a co-
linear property. In that case, for each ϕi we invoke InvariantByRefinement
to obtain an inductive invariant Ii. One can easily verify that I1 ∧ . . . ∧ Ir is an
inductive invariant with respect to ϕ.

Minimizing invariants. Note that the system S′ from Theorem 1 may in general
have many solutions, and each solution yields an inductive invariant. Solutions
where λ has fewer non-zero components yield shorter inductive invariants I(M),
assuming terms in I(M) with coefficient zero are left out. We can force the
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Inductivity constraints

− p1 + p2 + bit1 − notbit1 ≤ 0
− p2 + p3 ≤ 0

p1 − p3 − bit1 + notbit1 ≤ 0

− q1 + q2 − notbit2 ≤ 0
− q2 + q3 ≤ 0

− q3 + q4 + notbit2 ≤ 0
q1 − q4 ≤ 0

− q2 + q5 ≤ 0
q1 − q5 + notbit2 ≤ 0

Safety constraint

p1 + q1 + notbit1 + notbit2 < target1 + target2 + trap1

Property constraints

p1 ≥ 0 q1 ≥ 0 q4 ≥ 0 bit1 ≥ 0
p2 ≥ trap1 q2 ≥ trap1 q5 ≥ target2 notbit1 ≥ trap1

p3 ≥ target1 q3 ≥ trap1 notbit2 ≥ trap1

Non-negativity constraints

target1, target2, trap1 ≥ 0

Fig. 3. System of constraints S ′ for Lamport’s algorithm and the mutual exclusion
property. Here, λ = (p1 p2 p3 q1 q2 q3 q4 q5 bit1 notbit1 notbit2), Y1 = (target1 target2)
and Y2 = (trap1).

number of non-zero components to be at most K by introducing a vector of |P |
variables Z, adding for each p ∈ P constraints

λ(p) > 0 =⇒ Z(p) = 1
λ(p) = 0 =⇒ Z(p) = 0

and adding a constraint
∑

p∈P Z(p) ≤ K. By varying K, we can find a solution
with the smallest number of non-zero components in λ.

Example. Consider again Lamport’s algorithm and the mutual exclusion prop-
erty. Recall that the negation of the property for this example is p3 ≥ 1∧q5 ≥ 1,
and the trap constraint is p2 + q2 + q3 + notbit1 + notbit2 ≥ 1. Fig. 3 shows the
system of constraints S′ for this example. A possible satisfying assignment sets
q1, q4, and bit1 to 0, p2, p3, and target1 to 2, and all other variables to 1. The
corresponding inductive invariant is:

I(M) ::= (p2 + q2 + q3 + notbit1 + notbit2 ≥ 1) ∧
(p1 + 2p2 + 2p3 + notbit1 + notbit2 + q2 + q3 + q5 ≤ 3) .

If we add constraints that bound the number of non-zero components in λ to
7, the SMT solver finds a new solution, setting p2, p3, notbit1, notbit2, q2, q3,



An SMT-Based Approach to Coverability Analysis 613

target1, target2, and trap1 to 1, and all other variables to 0. The corresponding
inductive invariant for this solution is

I ′(M) ::= (p2 + q2 + notbit1 + notbit2 + q3 ≥ 1) ∧
(p2 + p3 + notbit1 + notbit2 + q2 + q3 + q5 ≤ 2) .

6 Experimental Evaluation
We implemented our algorithms in a tool called Petrinizer. Petrinizer is imple-
mented as a script on top of the Z3 SMT solver [2]. It takes as input coverability
problem instances encoded in the MIST input format1, and it runs one of the se-
lected methods. We implemented all possible combinations of methods: with and
without trap refinement, with rational and integer arithmetic, with and without
invariant construction, with and without invariant minimization.

Our evaluation had two main goals. First, as the underlying methods are
incomplete, we wanted to measure their success rate on standard benchmark
sets. As a subgoal, we wanted to investigate the usefulness and necessity of
traps, the benefit of using integer arithmetic over rational arithmetic, and the
sizes of the constructed invariants. The second goal was to measure Petrinizer’s
performance and to compare it with state-of-the-art tools: IIC [13], BFC2 [11],
and MIST3.

Benchmarks. For the inputs used in the experiments, we collected coverability
problem instances originating from various sources. The collection contains 178
examples, out of which 115 are safe, and is organized into five example suites. The
first suite is a collection of Petri net examples from the MIST toolkit. This suite
contains a mixture of 29 examples, both safe and unsafe. It contains both real-
world and artificially created examples. The second suite consists of 46 Petri nets
that were used in the evaluation of BFC [11]. They originate from the analysis
of concurrent C programs, and they are mostly unsafe. The third and the fourth
suites come from the provenance analysis of messages in a medical system and a
bug-tracking system [15]. The medical suite contains 12 safe examples, and the
bug-tracking suite contains 41 examples, all safe except for one. The fifth suite
contains 50 examples that come from the analysis of Erlang programs [4]. We
generated them ourselves using an Erlang verification tool called Soter [4], from
the example programs found on Soter’s website4. Out of 50 examples in this
suite, 38 are safe. This suite also contains the largest example in the collection,
with 66,950 places and 213,635 transitions. For our evaluation, only the 115 safe
instances are interesting.
1 https://github.com/pierreganty/mist
2 The most recent version of BFC at the time of writing the paper was 2.0. However,

we noticed it sometimes reports inconsistent results, so we used version 1.0 instead.
The tool can be obtained at http://www.cprover.org/bfc/ .

3 MIST consists of several methods, most of them based on EEC [8]. We used the
abstraction refinement method that tries to minimize the number of places in the
Petri net [7].

4 http://mjolnir.cs.ox.ac.uk/soter/

https://github.com/pierreganty/mist
http://www.cprover.org/bfc/
http://mjolnir.cs.ox.ac.uk/soter/
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Table 1. Safe examples that were successfully proved safe. Symbols Q and Z denote
rational and integer numbers.

Suite Safety/Q Safety/Z Ref./Q Ref./Z IIC BFC MIST Total
MIST 14 14 20 20 23 21 19 23
BFC 2 2 2 2 2 2 2 2
Medical 4 4 4 4 9 12 10 12
Bug-tracking 32 32 32 32 0 0 0 40
Erlang 32 32 36 38 17 26 2 38
Total 84 84 94 96 51 61 33 115

Rate of success on safe examples. As shown in Table 1, even with the weakest of
the methods —safety based on marking equation over rationals— Petrinizer is
able to prove safety for 84 out of 115 examples. Switching to integer arithmetic
does not help: the number of examples proved safe remains 84. Using refinement
via traps, Petrinizer proves safety for 94 examples. Switching to integer arith-
metic in this case helps: Another two examples are proved safe, totaling 96 out
of 115 examples. In contrast to these numbers, the most successful existing tool
turned out to be BFC, proving safety for only 61 examples. Even though the
methods these tools implement are theoretically complete, the tools themselves
are limited by the time and space they can use.

Looking at the results accross different suites, we see that Petrinizer performed
poorest on the medical suite, proving safety for only 4 out of 12 examples. On
the other hand, on the bug-tracking suite, which was completely intractable for
other tools, it proved safety for 32 out of 40 examples. Furthermore, using traps
and integer arithmetic, Petrinizer successfuly proved safety for all safe Erlang
examples. We find this result particularly surprising, as the original verification
problems for these examples seem non-trivial.

Invariant sizes. We measure the size of inductive invariants produced by Pe-
trinizer without minimization. We took the number of atomic (non-zero) terms
appearing in an invariant’s linear expressions as a measure of its size. When
we relate sizes of invariants to number of places in the corresponding Petri net
(top left graph in Fig. 4), we see that invariants are usually very succinct. As
an example, the largest invariant had 814 atomic terms, and the corresponding
Petri net, coming from the Erlang suite, had 4,763 places. For the largest Petri
net, with 66,950 places, the constructed invariant had 339 atomic terms.

The added benefit of minimization is negligible: there are only four examples
where the invariant was reduced, and the reduction was about 2-3%. Thus,
invariant minimization does not pay off for these examples.

We also compared sizes of constructed invariants with sizes of invariants pro-
duced by IIC [13]. IIC’s invariants are expressed as CNF formulas over atoms of
the form x < a, for a variable x and a constant a. As a measure of size for these
formulas, we took the number of atoms they contain. As the bottom left graph
in Fig. 4 shows, when compared to IIC’s invariants, Petrinizer’s invariants are
never larger, and are often orders of magnitude smaller.
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Fig. 4. Graph on the top left shows a relation of sizes of constructed invariants to
the number of places in the corresponding Petri nets. Graph on the bottom left shows
comparison in size of invariants produced by Petrinizer and IIC. Axes represent size
on a logarithmic scale. Each dot represents one example. The four graphs in the center
and on the right show time overhead of integer arithmetic, trap refinement, invariant
construction and invariant minimization. Axes represent time in seconds on a loga-
rithmic scale. Each dot represents execution time on one example. The graph on the
top right only shows examples for which at least one trap appeared in the refinement.
Similarly, the bottom center and bottom right graphs only show safe examples.

Performance. To ensure accuracy and fairness, all experiments were performed
on identical machines, equipped with Intel Xeon 2.66 GHz CPUs and 48 GB of
memory, running Linux 3.2.48.1 in 64-bit mode. Execution time was limited to
100,000 seconds (27 hours, 46 minutes and 40 seconds), and memory to 2 GB.

Due to dissimilarities between the compared tools, selecting a fair measure of
time was non-trivial. On the one hand, as Petrinizer communicates with Z3 via
temporary files, it spends a considerable amount of time doing I/O operations.
On the other hand, as BFC performs both a forward and a backward search,
it naturally splits the work into two threads, and runs them in parallel on two
CPU cores. In both cases, the actual elapsed time does not quite correspond to
the amount of computational effort we wanted to measure. Therefore, for the
measure of time we selected the user time, as reported by the time utility on
Linux. User time measures the total CPU time spent executing the process and
its children. In the case of Petrinizer, it excludes the I/O overhead, and in the
case of BFC, it includes total CPU time spent on both CPU cores.

We report mean and median times measured for each tool in Table 2.
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Table 2. Mean and median times in seconds for each tool. We report times for safe
examples, as well as for all examples. Memory-out cases were set to the timeout value
of 100,000 s. Symbols Q and Z denote rational and integer numbers.

Method/tool Safety/Q Safety/Z Ref./Q Ref./Z Safety+inv. Safety+inv.min.
Mean (safe) 69.26 70.20 69.36 72.20 168.46 203.05
Median (safe) 2.45 2.23 2.35 3.81 3.70 4.03
Mean (all) 45.17 46.04 45.52 47.70 109.23 131.58
Median (all) 0.44 0.43 0.90 0.93 0.66 1.00

Method/tool Ref.+inv. Ref.+inv.min. IIC BFC MIST
Mean (safe) 228.88 275.12 56954.09 47126.12 69196.77
Median (safe) 5.96 6.30 100000.00 1642.43 100000.00
Mean (all) 148.57 178.45 44089.93 31017.80 61586.56
Median (all) 1.37 1.94 138.00 0.77 100000.00

Time overhead of Petrinizer’s methods. Before comparing Petrinizer with other
tools, we analyze time overhead of integer arithmetic, trap refinement, invariant
construction, and invariant minimization. The four graphs in the center and on
the right in Fig. 4 summarize the results. The top central graph shows that the
difference in performance between integer and rational arithmetic is negligible.

The top right graph in Fig. 4 shows that traps incur a significant overhead.
This is not too surprising as, each time a trap is found, the main system has
to be updated with a new trap constraint and solved again. Thus the actual
overhead depends on the number of traps that appear during the refinement. In
the experiments, there were 32 examples for refinement with integer arithmetic
where traps appeared at least once. The maximal number of traps in a single
example was 9. In the examples where traps appear once, we see a slowdown of
2-3×. In the extreme cases with 9 traps we see slowdowns of 10-16×.

In the case of invariant construction, as shown on the bottom central graph
in Fig. 4, the overhead is more uniform and predictable. The reason is that
constructing the invariant involves solving the dual form of the main system as
many times as there are disjuncts in the property violation constraint. In most
cases, the property violation constraint has one disjunct. A single example with
many disjuncts, having 8989 of them, appears on the graph as an outlier.

In the case of invariant minimization, as the bottom right graph in Fig. 4
shows, time overhead is quite severe. The underlying data contains examples of
slowdowns of up to 30×.

Comparison with other tools. The six graphs in Fig. 5 show the comparison of
execution times for Petrinizer vs. IIC, BFC, and MIST. In the comparison, we
used the refinement methods, both with and without invariant construction. In
general, we observe that other tools outperform Petrinizer on small examples, an
effect that can be explained by the overhead of starting script interpreters and
Z3. However, on large examples Petrinizer consistently outperforms other tools.
Not only does it finish in all cases within the given time and memory constraints,
it even finishes in under 100 seconds in all but two cases. The two cases are the
large example from the Erlang suite, with 66,950 places and 213,635 transitions
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Fig. 5. Comparison of execution time for Petrinizer vs. IIC, BFC and MIST. Graphs
in the top row show comparison in the case without invariant construction, and graphs
in the bottom row show comparison in the case with invariant construction. Axes
represent time in seconds on a logarithmic scale. Each dot represents execution time
on one example.

and, in the case of invariant construction, the example from the MIST suite,
with 8989 disjuncts in the property violation constraint.

Conclusions. Marking equations and traps are classical techniques in Petri net
theory, but have fallen out of favor in recent times in comparison with state-
space traversal techniques in combination with abstractions or symbolic repre-
sentations. Our experiments demonstrate that, when combined with the power
of a modern SMT solver, these techniques can be surprisingly effective in find-
ing proofs of correctness (inductive invariants) of common benchmark examples
arising out of software verification.

Our results also suggest incorporating these techniques into existing tools as
a cheap preprocessing step. A finer integration with these tools is conceivable,
where a satisfying assignment to a system of constraints is used to guide the
more sophisticated search, similar to [22].
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