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Abstract— This paper presents a sum of squares (SOS,
for brevity) based observer design for a more general class
of polynomial fuzzy systems with the polynomial matrices
Ai(x(t)) and Bi(x(t)) that are permitted to be dependent of
the states x(t). First, we briefly summarize previous works
on SOS-based observer designs for two limited classes of
polynomial fuzzy systems. To overcome the difficulty of the fact
that does not realize the so-called separation principle design
for the more general class, this paper provides a practical design
procedure of a polynomial fuzzy controller and a polynomial
fuzzy observer without lack of guaranteeing the stability of the
overall control system in addition to converging state estimation
error (via the observer) to zero. The design approach discussed
in this paper is more general than the existing LMI approaches
(to T-S fuzzy controller and observer designs) and also than
the previous SOS-based observer designs. To illustrate the
validity of the design approach, a design example is provided.
The example shows the utility of our SOS approach to the
polynomial fuzzy observer-based control for the more general
class of polynomial fuzzy systems.

I. INTRODUCTION

The Takagi-Sugeno (T-S) fuzzy model-based control

methodology [1] has received a great deal of attention after

LMI-based designs have been discussed in [2]-[3]. The fuzzy

model-based control methodology [1] provides a natural,

simple and effective design approach to complement other

nonlinear control techniques (e.g., [4]) that require special

and rather involved knowledge.

Recently, the authors have first presented a sum of squares

(SOS, for brevity) approach [5]-[10] to polynomial fuzzy

control system designs. This is a completely different ap-

proach from the existing LMI approaches [1], [11]. Our

SOS approach [5]-[10] provided more extensive results for

the existing LMI approaches to T-S fuzzy model and con-

trol. After the SOS-based controller designs [5]-[10] have

been addressed, we also presented an observer-based design

[12] for the polynomial fuzzy systems with the polynomial

matrices Ai and Bi that are independent of the states x

to be estimated (shortly name it as Class I). Furthermore,

we discussed an observer-based design [13] for a wider

class of polynomial fuzzy systems with the polynomial

matrices Ai that are permitted to be dependent of the states

x to be estimated (shortly name it as Class II). Both of
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the design conditions are represented in terms of SOS.

More importantly, it should be emphasized that the so-called

separation principle design realizes for both of the classes.

This paper presents a polynomial fuzzy observer design for

a more general class of polynomial fuzzy systems, i.e., the

polynomial fuzzy systems with the polynomial matrices Ai

and Bi that are permitted to be dependent of the states x to

be estimated (shortly name it as Class III).

It is well known that stability conditions for the T-S

fuzzy system reduce to LMIs, e.g., [1]. Hence, the stability

conditions can be solved numerically and efficiently by

interior point algorithms, e.g., by LMI solvers. On the other

hand, some kinds of control design conditions [5]-[10] for

polynomial fuzzy systems reduce to SOS problems. Clearly,

the problem is never directly solved by LMI solvers and

can be solved via the SOSTOOLS [14] and an SDP solver.

Thus, SOS can be regarded as an extensive representation of

LMIs. The computational method used in this paper relies

on the SOS decomposition of multivariate polynomials. A

multivariate polynomial f(x(t)) (where x(t) ∈ Rn) is an

SOS if there exist polynomials f1(x(t)), · · · , fk(x(t)) such

that f(x(t)) =
∑k

i=1
f2

i (x(t)). It is clear that f(x(t)) being

an SOS naturally implies f(x(t)) ≥ 0 for all x(t) ∈ Rn. For

more details of SOS, see [14].

II. POLYNOMIAL FUZZY MODEL AND PREVIOUS RESULTS

Section II recalls a polynomial fuzzy system defined in [5]-

[10] and summarizes the previous polynomial fuzzy observer

design results [12], [13].

Consider the following nonlinear system:

ẋ(t) = f(x(t),u(t)), (1)

where f is a nonlinear function. x(t) =
[x1(t) x2(t) · · · xn(t)]

T is the state vector and

u(t) = [u1(t) u2(t) · · · um(t)]T is the input vector.

In [5], we proposed a new type of fuzzy model with

polynomial model consequence, i.e., fuzzy model whose

consequent parts are represented by polynomials. Using

the sector nonlinearity concept [1], we exactly represent

(1) with the following polynomial fuzzy model (2). The

main difference between the T-S fuzzy model [15] and the

polynomial fuzzy model is consequent part representation.

The fuzzy model (2) has a polynomial model consequence.

Model Rule i:

If z1(t) is Mi1 and · · · and zp(t) is Mip

then ẋ(t) = Ai(x(t))x(t) +Bi(x(t))u(t), (2)
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where i = 1, 2, · · · , r. r denotes the number of

Model Rules. The membership function associated with the

ith Model Rule and the jth premise variable component

is denoted by Mij . zj(t) (j = 1, 2, · · · , p) is the premise

variable. Each zj(t) is a measurable time-varying quantity

that may be measurable external variables and/or time. Note

that zj(t) is assumed to be independent of the states x.

Ai(x(t)) ∈ Rn×n and Bi(x(t)) ∈ Rn×m are polynomial

matrices in x(t). Therefore, Ai(x(t))x(t) + Bi(x(t))u(t)
is a polynomial vector. Thus, the polynomial fuzzy model

(2) has a polynomial in each consequent part.

The defuzzification process of the model (2) can be

represented as

ẋ(t) =
r

∑

i=1

hi(z(t)){Ai(x(t))x(t) +Bi(x(t))u(t)}, (3)

where

hi(z(t)) =

∏p

j=1
Mij(zj(t))

∑r
k=1

∏p
j=1

Mkj(zj(t))
.

It should be noted from the properties of membership func-

tions that hi(z(t)) ≥ 0 for all i and
∑r

i=1
hi(z(t)) = 1.

Thus, the overall fuzzy model is achieved by fuzzy blending

of the polynomial system models.

Remark 1: As shown in [5]-[9], the number of rules in

polynomial fuzzy model generally becomes fewer than that

in T-S fuzzy model, and our SOS approach to polynomial

fuzzy models provides much more relaxed results than the

existing LMI approaches to T-S fuzzy model and control.

The local polynomial systems in the consequent parts of

(2) may be represented with monomial vectors in x(t) as

defined in [5]-[9]. However, it should be noted that the

local polynomial systems in the consequent parts of (2) are

essentially equivalent representation of those defined in [5]-

[9].

It is not simple to design a polynomial observer for (3)

since Ai(x(t)) and Bi(x(t)) are dependent of the states

x(t) to be estimated. As a first step, we introduce the

following classes of polynomial fuzzy systems.

ẋ(t) =

r
∑

i=1

hi(z(t)){Ai(ρA(t))x(t) +Bi(ρB(t))u(t)}, (4)

where (4) reduces to (3) when ρA(t) = ρB(t) = x(t).
In the previous papers [12], [13], we discussed polynomial

observer-based designs for two classes:

Class I[12]: ρA(t) = y(t) and ρB(t) = y(t).
Class II[13]: ρA(t) = x(t) and ρB(t) = y(t).

In this paper, we will discuss the most general class (Class

III), that is, ρA(t) = ρB(t) = x(t).
From now, to lighten the notation, we will drop the

notation with respect to time t. For instance, we will employ

x and x̂ instead of x(t) and x̂(t), respectively, where x̂(t)
denotes the state estimated by polynomial fuzzy observers

as will be discussed later. Thus, we drop the notation with

respect to time t, but it should be kept in mind that x and

x̂ means x(t) and x̂(t), respectively.

Next, we define the outputs for the polynomial fuzzy

model as

y =

r
∑

i=1

hi(z)Cix, (5)

where y ∈ Rq is the output.

A. Class I

Class I design deals with the polynomial fuzzy model (6)

and (5).

ẋ =

r
∑

i=1

hi(z){Ai(y)x+Bi(y)u}. (6)

Clearly, all the elements in the Ai(y) and Bi(y) matrices

are measurable. A polynomial fuzzy observer [12] in Class

I is described as

˙̂x =

r
∑

i=1

hi(z){Ai(y)x̂+Bi(y)u+Li(y)(y − ŷ)}, (7)

ŷ =

r
∑

i=1

hi(z)Cix̂, (8)

where x̂ ∈ Rn is the state estimated via the observer. ŷ ∈
Rq is the output of the observer. Li(y) ∈ Rn×q for all i are

the polynomial observer gain matrices in y for each local

polynomial observer.

To stabilize the system (5) - (8), we design a polynomial

fuzzy controller with the state feedback estimated by the

polynomial fuzzy observer (7) and (8).

u = −

r
∑

i=1

hi(z)Fi(y)x̂, (9)

where Fi(y) for all i are the polynomial feedback gain

matrices in y. The SOS-based observer design discussed in

[12] guarantees the so-called separation principle design for

the overall control system consisting of the polynomial fuzzy

system (6) and (5), the fuzzy controller (9) and the fuzzy

observer (7) and (8).

Remark 2: If the polynomial matrices Ai, Bi, Li and Fi

reduce to constant matrices in (5) - (9), they reduce to the

ordinary T-S fuzzy model [15], the T-S fuzzy controller [1]

and the T-S fuzzy observer [16]. In addition, the SOS-based

observer design discussed in [12] reduces to the existing

LMI design conditions [16] for the T-S fuzzy controller and

observers. Hence, the SOS-based observer design discussed

in [12] provides more relaxed results.

B. Class II

Class II considers more complicated class, i.e., Ai depends

on the state x instead of the output y. Class II design deals

with the polynomial fuzzy system (10) and (5)

ẋ =
r

∑

i=1

hi(z){Ai(x)x+Bi(y)u} (10)
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We design a polynomial fuzzy observer to estimate the

states of (10) and (5).

˙̂x =

r
∑

i=1

hi(z){Ai(x̂)x̂+Bi(y)u+Li(y, x̂)(y − ŷ)},

(11)

ŷ =

r
∑

i=1

hi(z)Cix̂, (12)

where Li(y, x̂) for all i are the polynomial observer gain

matrices in y and x̂. To stabilize the system (5) and (10) -

(12), we design a polynomial fuzzy controller with the state

feedback estimated by the polynomial observer.

u = −

r
∑

i=1

hi(z)Fi(x̂)x̂, (13)

where Fi(x̂) for all i are the polynomial feedback gain

matrices in x̂. SOS design conditions to determine Fi(x̂)
and Li(y, x̂) in Class II are derived in [13]. In general, even

in this class, it is difficult to separately design the polynomial

fuzzy controller (13) and observer (11) - (12). However, an

important lemma to realize the separation principle design is

presented in [13]. As a result, the SOS design conditions also

realize the separation principle design as well as in Class I.

III. MAIN RESULTS:CLASS III DESIGN

This section presents main results of this paper, i.e., the

most general class (Class III) design. Class III design deals

with the polynomial fuzzy system (14) and (5).

ẋ =
r

∑

i=1

hi(z){Ai(x)x+Bi(x)u} (14)

For the system (14) and (5), we design the following

polynomial fuzzy observer.

˙̂x =

r
∑

i=1

hi(z){Ai(x̂)x̂+Bi(x̂)u+Li(y, x̂)(y − ŷ)

(15)

ŷ =
r

∑

i=1

hi(z)Cix̂, (16)

where Li(y, x̂) for all i are the polynomial observer gain ma-

trices in y and x̂. It is extremely difficult to separately design

a polynomial fuzzy controller and observer in Class III. In

fact, to the best of our knowledge, there exist no literatures

on achieving the separation principle design in this class. To

overcome the difficulty, we propose a practical algorithm to

design a polynomial fuzzy controller and observer satisfying

the stability of the overall augmented system in addition to

converging state estimation error (via the observer) to zero.

The algorithm mainly consists of three steps.

Step 1 By assuming that all the states are measurable, we

design the following controller.

u = −

r
∑

i=1

hi(z)Fi(x)x (17)

The SOS conditions (see Theorem 1 below) derived

in [6], [8] are applied to determine the polynomial

feedback gains Fi(x).
Step 2 We replace the controller designed in Step 1 with

u = −
r

∑

i=1

hi(z)Fi(x̂)x̂, (18)

where x is replaced with x̂.

Step 3 Note that Fi(x̂) obtained in Step 2 are known ma-

trices. We determine the polynomial observer gains

Li(y, x̂) by solving new SOS design conditions

(see Theorem 2 below).

We present the previous SOS conditions [6], [8] (Theorem

1 below) to determine the polynomial feedback gains Fi(x)
and new SOS design conditions (Theorem 2 below) to

determine the polynomial observer gains that are newly

derived in this paper.

Theorem 1: [6], [8] The system (14) and (5) can be sta-

bilized by the controller (17) if there exist a positive definite

matrix X1 ∈ R
n×n and polynomial matrices Mi(x) ∈

R
p×n satisfying the following SOS conditions.

vT
1
(X1 − ǫr1I)v1 is SOS (19)

− vT
2

(

X1A
T
i (x)−Mi(x)B

T
i (x)

+Ai(x)X1 −Bi(x)Mi(x) + ǫr2i(x)I

)

v2

is SOS (20)

− vT
3

(

X1A
T
i (x)−Mj(x)B

T
i (x)

+Ai(x)X1 −Bi(x)Mj(x)

+X1A
T
j (x)−Mi(x)B

T
j (x)

+Aj(x)X1 −Bj(x)Mi(x) + ǫr3ij (x)I

)

v3

is SOS i < j (21)

where v1, v2, v3 ∈ R
n denote vectors that are independent

of x. ǫr1 is a positive value. ǫr2i(x) and ǫr3ij (x) are non-

negative polynomials such that ǫr2i(x) > 0 and ǫr3ij (x) > 0
for x 6= 0. From the solutions X1 and Mi(x), the feedback

gain can be obtained as Fi(x) = Mi(x)X
−1

1
.

Theorem 2: The system (14) and (5) can be stabilized by

the polynomial fuzzy controller (18) and the estimation error

via the polynomial fuzzy observer (15) and (16) tends to

zero if there exist a positive definite matrix X2 ∈ R
n×n and

polynomial matrices N(y, x̂) ∈ R
n×q satisfying the fol-

lowing SOS conditions, where X1 and Fj(x̂) are solutions

satisfying the SOS conditions in Theorem 1 and are given
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(known) matrices in Theorem 2.

xT
v

([

X−1

1
X2 0

0 X2

]

− ǫo1I

)

xv is SOS (22)

− xT
v

([

Ω
11

ii Ω
12

ii

Ω
21

ii Ω
22

ii

]

+ ǫo2i(x,y, x̂)I

)

xv is SOS (23)

− xT
v

([

Ω
11

ij +Ω
11

ji Ω
12

ij +Ω
12

ji

Ω
21

ij +Ω
21

ji Ω
22

ij +Ω
22

ji

]

+ ǫo3ij (x,y, x̂)I

)

xv

is SOS i < j (24)

where

Ω
11

ij = X−1

1
X2(Ai(x̂)−Bi(x̂)Fj(x̂))

Ω
12

ij = X−1

1
Ni(y, x̂)Cj

Ω
21

ij = X2(Ai(x)−Ai(x̂)

− (Bi(x)−Bi(x̂))Fj(x̂))

Ω
22

ij = X2Ai(x)−Ni(y, x̂)Cj

xv = [x̂ e]T , e = x−x̂. ǫo1 is a positive value. ǫo2i(x,y, x̂)
and ǫo3ij (x,y, x̂) are nonnegative polynomials such that

ǫo2i(x,y, x̂) > 0 and ǫo3ij (x,y, x̂) > 0 for x,y, x̂ 6= 0.

From the solutions X2 and Ni(y, x̂), we can obtain observer

gain matrices as Li(y, x̂) = X−1

2
Ni(y, x̂).

Proof: Define the estimation error via the observer as

e = x− x̂. Then, the error dynamics are represented as

ė =

r
∑

i=1

r
∑

j=1

hi(z)hj(z)

{(Ai(x)−Ai(x̂)− (Bi(x)−Bi(x̂))Fj(x̂))x̂

+ (Ai(x)−Li(y, x̂)Cj)e}. (25)

Next, consider an augmented system with the vector

xv =

[

x̂

e

]

. (26)

We obtain the following augmented system:

ẋv =

r
∑

i=1

r
∑

j=1

hi(z)hj(z)





Ai(x̂)−Bi(x̂)Fj(x̂) Li(y, x̂)Cj

Ai(x)−Ai(x̂)
−(Bi(x)−Bi(x̂))Fj(x̂)

Ai(x)−Li(y, x̂)Cj



xv

=

r
∑

i=1

r
∑

j=1

hi(z)hj(z)Gij(x,y, x̂)xv, (27)

where

Gij(x,y, x̂) =

[

G11

ij (x̂) G12

ij (y, x̂)
G21

ij (x, x̂) G22

ij (x,y, x̂)

]

,

G11

ij (x̂) = Ai(x̂)−Bi(x̂)Fj(x̂),

G12

ij (y, x̂) = Li(y, x̂)Cj ,

G21

ij (x, x̂) = Ai(x)−Ai(x̂)− (Bi(x)−Bi(x̂))Fj(x̂),

G22

ij (x,y, x̂) = Ai(x)−Li(y, x̂)Cj .

Now, consider the following candidate of Lyapunov func-

tions.

V (xv) = xT
v X̃xv, (28)

where

X̃ =

[

X−1

1
X2 0

0 X2

]

> 0. (29)

The time derivative of V (xv) along the system trajectories

is

V̇ (xv) =

r
∑

i=1

r
∑

j=1

hi(z)hj(z)x
T
v (G

T
ij(x,y, x̂)X̃

+ X̃Gij(x,y, x̂))xv.

Since xT
v Hxv = xT

v H
Txv for any square matrix H , we

have

V̇ (xv) =2
r

∑

i=1

r
∑

j=1

hi(z)hj(z)x
T
v X̃Gij(x,y, x̂)xv

=2

r
∑

i=1

h2

i (z)x
T
v X̃Gii(x,y, x̂)xv

+ 2

r
∑

i=1

r
∑

i<j

hi(z)hj(z)x
T
v X̃(Gij(x,y, x̂)

+Gji(x,y, x̂))xv. (30)

V̇ (xv) < 0 at xv 6= 0 if (31)-(33) hold.

xT
v X̃xv > 0, (31)

− xT
v X̃Gii(x,y, x̂)xv > 0, (32)

− xT
v X̃(Gij(x,y, x̂) +Gji(x,y, x̂))xv > 0 i < j.

(33)

By defining as Ni(y, x̂) = X2Li(y, x̂), (32) can be rewrit-

ten as

xT
v X̃Gii(x,y, x̂)xv = xT

v

[

Ω
11

ii (x̂) Ω
12

ii (y, x̂)
Ω

21

ii (x, x̂) Ω
22

ii (x,y, x̂)

]

xv,

= xT
v Ωii(x,y, x̂)xv (34)

where

Ω
11

ii (x̂) = X−1

1
X2(Ai(x̂)−Bi(x̂)Fj(x̂)),

Ω
12

ii (y, x̂) = X−1

1
Ni(y, x̂)Cj ,

Ω
21

ii (x, x̂) = X2(Ai(x)−Ai(x̂)

− (Bi(x)−Bi(x̂))Fj(x̂)),

Ω
22

ii (x,y, x̂) = X2Ai(x)−Ni(y, x̂)Cj .

Also, (33) can be rewritten as

− xT
v (Ωij(x,y, x̂) +Ωji(x,y, x̂))xv > 0 i < j (35)

where

Ω
11

ij (x̂) = X−1

1
X2(Ai(x̂)−Bi(x̂)Fj(x̂)),

Ω
12

ij (y, x̂) = X−1

1
Ni(y, x̂)Cj ,

Ω
21

ij (x, x̂) = X2(Ai(x)−Ai(x̂)

− (Bi(x)−Bi(x̂))Fj(x̂)),

Ω
22

ij (x,y, x̂) = X2Ai(x)−Ni(y, x̂)Cj .
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Now, we arrive at the following SOSPs.

xT
v

([

X−1

1
X2 0

0 X2

]

− ǫo1I

)

xv is SOS, (36)

− xT
v

(

Ωii(x,y, x̂) + ǫo2i(x,y, x̂)I

)

xv is SOS, (37)

− xT
v

(

Ωij(x,y, x̂) +Ωji(x,y, x̂) + ǫo3i(x,y, x̂)I

)

xv

is SOS i < j, (38)

where ǫo1 , ǫo2i(x,y, x̂), ǫo3ij (x,y, x̂) are slack variables to

keep the positivity of (31), (32) and (33).

Clearly, the overall control system consisting of (14), (5),

(18), (15), and (16) are asymptotically and globally stable

and the estimation error tends to zero.

Remark 3: Currently, sum of squares programs (SOSPs)

are solved by reformulating them as semidefinite programs

(SDPs). SOSTOOLS automates the conversion from SOSP

to SDP and the SDP can be solved by a SDP solver [14].

At present, SOOSTOOLS uses other free MATLAB add-ons

such as SeDuMi [17] or SDPT3 [18] as the SDP solver.

In this paper, we numerically find X , Mi(x) and Ni(x)
satisfying the SOS conditions in Theorems 1 and 2 via

SeDuMi in addition to SOSTOOLS. For more details of how

to solve the SDPs using SeDuMi, see [14] and [17].

IV. DESIGN EXAMPLE

Consider the following nonlinear system.
{

ẋ1 = sinx1 − 5x2 + (x2

2
+ 5)u

ẋ2 = −x1 − x3

2

(39)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x
1

x
2

Fig. 1. System behavior without input.

Assume that x1 is measurable and y = x1. Fig. 1 shows

the behavior of the nonlinear system without input for several

initial states. It is found from the figure that this system is

unstable.

The system (39) can be exactly converted into the polyno-

mial fuzzy system (14) and (5) using the sector nonlinearity

[1], where r = 2, z = y,

A1(x) =

[

1 5
−1 −x2

2

]

,

A2(x) =

[

−0.2172 5
−1 −x2

2

]

,

B1(x) =

[

x2

2
+ 5
0

]

,

B2(x) =

[

x2

2
+ 5
0

]

,

C1 = C2 =
[

1 0
]

,

h1(z) =
siny + 0.2172y

1.2172y
,

h2(z) =
y − siny

1.2172y
.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x
1

x
2

Fig. 2. Control trajectories for same initial states as in Fig. 1.

Fig. 2 shows control result (for the same initial states

as Fig. 1) by the polynomial fuzzy controller and observer

designed using Theorem 1 and Theorem 2, where the order

of Mi(x̂) and Ni(y, x̂) are two. Fig. 3 shows the control

and estimation result starting from one of the initial states,

where x(0) = [0.3 0.3] and x̂(0) = [−0.3 − 0.3].
It can be found from the control results that the designed

polynomial fuzzy controller stabilizes the system and the

estimation error via the polynomial fuzzy observer tends to

zero.

Remark 4: Since A1(x), A2(x), B1(x) and B2(x) have

unmeasurable x2 in this design example, the previous SOS-

based observer designs discussed in [12] and [13] can not be

applied to this design example. Even if the sector nonlinearity

concept is applied to construct a Takagi-Sugeno fuzzy model

for the nonlinear system, the premise variables z contain x2.

Hence, the previous LMI conditions [16] can not be also

applied to the nonlinear system. On the other hand, since

our approach (Class III) discussed in this paper permits to
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have unmeasurable states in both of Ai and Bi matrices,

it is possible to design a polynomial fuzzy observer in this

example.

0 5 10 15 20
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time [sec]

y

 

 
y

Estimated y

Fig. 3. Control and estimation result.

.

V. CONCLUSIONS

This paper has presented a sum of squares (SOS) approach

to polynomial fuzzy controller and observer designs for the

more general class of polynomial fuzzy systems. To illustrate

the validity and applicability of the proposed approach, a

design example has been provided.

Our next subjects are to derive SOS-based observer design

conditions to realize the separation principle design even for

Class III and to apply our SOS-based observer designs to

helicopter control [10].
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