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Abstract

Exploratory factor analysis is a widely used statistical technique in the social sciences.
It attempts to identify underlying factors that explain the pattern of correlations within a
set of observed variables. A statistical software package is needed to perform the calcula-
tions. However, there are some limitations with popular statistical software packages, like
SPSS. The R programming language is a free software package for statistical and graphical
computing. It offers many packages written by contributors from all over the world and
programming resources that allow it to overcome the dialog limitations of SPSS. This
paper offers an SPSS dialog written in the R programming language with the help of some
packages, so that researchers with little or no knowledge in programming, or those who are
accustomed to making their calculations based on statistical dialogs, have more options
when applying factor analysis to their data and hence can adopt a better approach when
dealing with ordinal, Likert-type data.

Keywords: polychoric correlations, principal component analysis, factor analysis, internal re-
liability.

1. Introduction

In SPSS (IBM Corporation 2010a), the only correlation matrix available to perform ex-
ploratory factor analysis is the Pearson’s correlation, few rotations are available, parallel
analysis and Velicer’s minimum average partial criteria (MAP) to determine the number of
factors to retain are not available, and internal reliability is based mainly on Cronbach’s
alpha. Some implications of software limitations, like those referred, can be seen in many
research done by social scientists. Thereby, for extraction and rotation of factors, principal
component analysis and varimax rotation are frequently used. Also commonly used, are the
Kaiser criterion and/or the scree test to decide the correct number of factors to retain. The
analysis is almost always performed with Pearson’s correlations even when the data is ordinal.
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These procedures are usually the default option in statistical software packages like SPSS, but
it will not always yield the best results. This paper offers a SPSS dialog to overcome some of
the SPSS dialog limitations and also offers some other options that may be or become useful
for someone’s work. The SPSS dialog is written in the R programming language (R Develop-
ment Core Team 2011), and requires SPSS 19 (IBM Corporation 2010a), the R plug-in 2.10
(IBM Corporation 2010b) and the following R packages: polycor (Fox 2009), psych (Revelle
2011), GPArotation (Bernaards and Jennrich 2005), nFactors (Raiche and Magis 2011), corp-
cor (Schaefer, Opgen-Rhein, Zuber, Duarte Silva, and Strimmer 2011) and ICS (Nordhausen,
Oja, and Tyler 2008).

2. Principal component and factor analysis

Principal component analysis (PCA) is the default method of extraction in many statistical
software packages, including SPSS. Principal components analysis is a technique for form-
ing new variables (called principal components) which are linear composites of the original
variables and are uncorrelated among themselves. It is computed using the variances of the
manifest variables, in such a way that the the first principal component accounts for as much
as possible of the variance, the second principal component accounts for as much as possible
of the remaining variance, and successively for the rest of the principal components. Princi-
pal components analysis is often confused with factor analysis, a related but a conceptually
distinct technique. Both techniques can be used to reduce a larger number of variables to a
smaller number of components or factors. They are interdependent procedures which means
that they do not assume the existence of a dependent variable. However, the aim of fac-
tor analysis is to uncover the latent structure of a set of variables, i.e., to reveal any latent
variables that explain the correlations among the variables, called dimensions. Hence, factor
analysis is based on the assumption that all variables are correlated to some degree. There-
fore, those variables that share similar underlying dimensions should be highly correlated,
and those variables that measure different dimensions should yield low correlations (Sharma
2007; Ho 2006). During factor extraction the shared variance of a variable is partitioned into
unique variance and error variance but only shared variance appears in the solution. Usually
to test the adequacy of the correlation matrix to perform a factor analysis, one tests if the
correlation matrix is the identity matrix. SPSS provides the χ2 test of Bartlett (1951). There
are two more χ2 tests, available in the package psych, the test of Jennrich (1970) and the test
of Steiger (1980). Besides the Bartlett test, these two tests are also available in the present
menu. Nevertheless, χ2 tests tend to reject the null hypothesis for big samples, so they have
questionable interest for practical applications.

2.1. Rotations

The goal of rotation is to simplify and clarify the data structure. A rotation can help to choose
the correct number of factors to retain and can also help the interpretation of the solution.
One can do a factor analysis with different values of the number of factors extracted, perform-
ing rotations, and, eventually, choosing the solution that has the more logical interpretation.
Interpretation of factors is subjective, and usually can be made less subjective after a rotation.
Rotation consists of multiplying the solution by a nonsingular linear application called the
rotation matrix. The objective is to obtain a matrix of loadings whose entries, in absolute
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value, are close to zero or to one. There are some choices available in popular software pack-
ages. In SPSS, one has varimax, quartimax, and equamax as orthogonal methods of rotation
and direct oblimin and promax as oblique methods of rotation. Orthogonal rotations produce
factors that are uncorrelated while oblique methods allow the factors to be correlated. In
the social sciences where one expects some correlation among the factors, oblique rotations
should theoretically drive a more accurate solution. If the best factorial solution involves fac-
tors uncorrelated, orthogonal and oblique rotations produce nearly identical results (Costello
and Osborne 2005; Fabrigar, Wegener, MacCallum, and Strahan 1999).

Among rotations, varimax is the most popular one. The purpose of this rotation is to achieve
a solution where each factor has a small number of large loadings and a large number of small
loadings, simplifying interpretation, since each variable tends to have high loadings with only
one or with only few factors. The quartimax rotation minimizes the number of factors needed
to explain each variable, and the equamax rotation is a compromise between varimax and
quartimax rotations (IBM Corporation 2010a). The options concerning oblique rotations in
SPSS are the oblimin family and promax rotation, which performs faster than oblimin and
tries to fit a target matrix. Promax consists of two steps. The first step defines the target
matrix, a solution obtained after a orthogonal rotation (almost always a varimax rotation)
whose entries are raised to some power (kappa, that typically is some value between 2 and 4).
The second step is obtained by computing a least square fit from the solution to the target
matrix (Hendrickson and White 1964). The present menu gives the choice of the orthogonal
rotation performed in first step (including the no rotation option, which may have little or no
interest, but it is available to someone who wants to try it). Oblimin is a family of methods
for oblique rotations. The parameter delta allows the solution to be more or less oblique. For
delta equal to zero, the solution is the most oblique, and the rotation is called quartimin. For
γ = 1/2 one has the the biquartimin criterion and is called covarimin for γ = 1.

There are several other methods that are less popular and less used and known, and are briefly
in the next paragraph. Some may not have been tested or applied in factor analysis practice,
perhaps because these options are not available in computer programs and hence require pro-
gramming for their implementation (Bernaards and Jennrich 2005). Some of these rotations
are available in the present SPSS menu. They can be used as alternatives to achieve an in-
terpretable and meaningful solution. Several orthogonal and oblique rotations are described
in Browne (2001) and Bernaards and Jennrich (2005).

Almost all rotations are based on choosing a criterion to minimize. Promax is an excep-
tion. The family for the Crawford-Ferguson method is a set of rotations parametrized by
κ (Crawford and Ferguson 1970). For different values of κ there are different names for
the rotations. Being the loading matrix a p by m matrix (p variables and m factors), for
κ = 0 the rotation is named quartimax, for κ = 1/p varimax, for κ = m/(2p) equamax, for
κ = (m− 1)/(p+m− 2) parsimax, and for κ = 1 factor parsimony (Bernaards and Jennrich
2005). Infomax is a rotation that gives good results for both orthogonal and oblique rota-
tions according to Browne (2001). The simplest entropy criterion works well for orthogonal
rotation but is not appropriate for oblique rotation (Bernaards and Jennrich 2005). Similarly,
the McCammon minimum entropy works for orthogonal rotation, but it is unsatisfactory in
oblique rotation (Browne 2001). Oblimax criterion is another oblique rotation available. The
algorithms from the package GPArotation (Bernaards and Jennrich 2005) implement both
the oblique and orthogonal cases for Bentler criteria. The tandem criteria are two rotation
methods, Principles I and II, to be used sequentially. Principle I is used to determine the
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number of factors, and Principle II is used for final rotation (Bernaards and Jennrich 2005).
Geomin criteria is available for both orthogonal and oblique rotations but may be not optimal
for orthogonal rotation (Browne 2001). Simplimax is an oblique rotation method proposed
by Kiers (1994). It was defined to rotate so that a given number of small loadings are as close
to zero as possible, hence, to perform this rotation an extra argument k is necessary. This is
the number of loadings close to zero (Bernaards and Jennrich 2005). Generally, the greater
the number of small loadings, the simpler the loading matrix.

2.2. Polychoric correlations

Given that factor analysis is based on correlations between measured variables, a correlation
or covariance matrix for the variables must be computed. The variables should be measured
at least at the ordinal level, although two-category nominal variables can also be used. Fre-
quently, when dealing with Likert-type data, the computed correlation matrix is the Pearson’s
correlation matrix, due in part to the fact that in almost all the popular statistical packages,
only Pearson’s correlations are available to perform a principal component or factor anal-
ysis, although literature suggests that it is incorrect to treat nominal and ordinal data as
interval or ratio (Bernstein and Teng 1989; Gilley and Uhlig 1993; Stevens 1946). Applying
traditional factor analysis procedures to item-level data almost always produces misleading
results. Several authors explain the scale problem and suggest alternative procedures when
attempting to establish the validity of a Likert scale since ordinal variables do not have a
metric scale and tend to be attenuated due to the restriction on range (Marcus-Roberts and
Roberts 1987; Mislevy 1986; Muthèn 1984; Muthèn and Kaplan 1985). Also, traditional fac-
tor analysis procedures produce meaningful results only if the data is continuous and is also
multivariate normal. Item-level data almost never meets these requirements (O’Connor 2010;
Bernstein and Teng 1989).

The correlation between two items is affected by their substantive similarity and by the
similarities of their statistical distributions (Bernstein, Garbin, and Teng 1988). Items with
similar distributions tend to correlate more strongly with one another than do with items with
dissimilar distributions (Bernstein et al. 1988; Nunnaly and Bernstein 1994). Factor analyses
using Pearson’s correlations, when dealing with Likert-type data may produce factors that are
based solely on item distribution similarity. The items may appear multidimensional when in
fact they are not (Bernstein et al. 1988).

An ordinal variable can be thought of as a crude representation of an unobserved continu-
ous variable. The estimates of the correlations between the unobserved variables are called
polychoric correlations. Hence, they are used when both variables are dichotomous or ordinal
but both are assumed to reflect underlying continuous variables. These type of correlations
extrapolate what the categorical variables distributions would be if they were continuous,
adding tails to the distribution. As such it is an estimate strongly based on the assumption
of an underlying continuous bivariate normal distribution. Polychoric correlations coefficients
are maximum likelihood estimates of the Pearson’s correlations for those underlying normally
distributed variables. When both variables are dichotomous the polychoric correlations may
be called tetrachoric correlations. Factor analysis for ordinal data should be conducted on the
raw-data matrix of polychoric correlations and not on Pearson’s correlations. Studies suggest
that polychoric correlations should used when dealing with ordinal data, or in the presence
of strong skewness or kurtosis (Muthèn and Kaplan 1985; Gilley and Uhlig 1993), as is often
the case of Likert items.



Journal of Statistical Software 5

2.3. Number of factors to retain

When doing a factor analysis and after factor extraction, one must decide how many factors
to retain. The correct number is fundamental. One disadvantage that can occur is when the
correct number of non-trivial principal components is not retained for subsequent analysis.
In this case either relevant information is lost (underestimation) or noise is included (overes-
timation), provoking an inaccurate description of the underlying patterns of the correlations
among the variables.

Extracting too few factors (underextraction) results in a loss of relevant information, and
can overlook potentially relevant factors, in an inaccurate unifying of two or more factors,
and an increase in the error of the loadings. Extracting too many factors (overextraction)
increases results with noise included, factor splitting, factors with few high loadings, and
gives too much substantive importance to trivial factors (O’Connor 2000; Wood, Tataryn,
and Gorsuch 1996; Zwick and Velicer 1986; Peres-Neto, Jackson, and Somers 2005). Wood
et al. (1996) have studied the effects of under and overextraction in principal factor analysis
with varimax rotation. They found that overextraction generally leads to less error than does
underextraction.

The default in most statistical popular software packages, such as SPSS, when dealing with
a correlation matrix, is the Kaiser criterion, to retain all factors with eigenvalues greater
than one and the scree test. The Kaiser criterion may overestimate or underestimate the
true number of factors, but it usually overestimates the true number of factors (Costello
and Osborne 2005; Lance, Butts, and Michels 2006; Zwick and Velicer 1986). The scree test
involves examining the graph of the eigenvalues and looking for the bend in the data where
the curve flattens out.

Two less well-known procedures, parallel analysis and Velicer’s minimum average partial
(MAP) criteria, usually yield optimal solutions for the number of factors to retain (Wood
et al. 1996; Zwick and Velicer 1986).

Parallel analysis is often recommended as the best method to assess the true number of factors
(Velicer, Eaton, and Fava 2000; Lance et al. 2006; Zwick and Velicer 1986). It retains the
components that account for more variance than the components derived from generated
random data. Normally distributed random data are generated, and the eigenvalues for the
correlation matrices of random data representing the same number of cases and variables
are computed. Then, the mean or a particular percentile, usually the 95th percentile, of the
distribution of random eigenvalues computed are compared and plotted together with the
actual eigenvalues (Cota, Longman, Holden, and Fekken 1993; Glorfeld 1995; Turner 1998).
The intersection of the two lines determines the number of factors to be extracted. The SPSS
dialog presented in this paper gives the choice of choosing the data generated. Hence, one
can choose between normally distributed random data or permuted data, to perform parallel
analysis. This last procedure has the advantage of having the possibility of being conducted
with different correlation matrices beyond Pearson’s correlation, and has the advantage of
following the original data distribution. Also, the SPSS dialog presented has the option to
choose between the eigenvalues obtained from a principal component analysis or from a factor
analysis.

Velicer’s MAP criteria was developed by Velicer, and is similar to parallel analysis in the results
achieved (Velicer 1976; Velicer and Jackson 1990). With this criteria, components are retained
as long as the variance in the correlation matrix represents systematic variance. The number of
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components is determined by the step number k (k varies from zero to the number of variables
less one), that results in the lowest average squared partial correlation between variables after
removing the effect of the first k principal components. For k = 0,Velicer’s MAP corresponds
to the average values for the original correlations. If the minimum is achieved for k = 0
no component should be retained. Zwick and Velicer (1986) found that Velicer’s MAP test
was very accurate for components with large eigenvalues, or where there was an average
of eight or more variables per component. Zwick and Velicer (1986), through simulation’s
studies, observed that the performance of the Velicer’s MAP method was quite accurate across
several situations, although, specifically when there are few variables loading in a particular
component or when there are low variables loadings, MAP criteria can underestimate the
real number of factors (Zwick and Velicer 1986; Ledesma and Valero-Mora 2007). Peres-Neto
et al. (2005) applied Velicer’s MAP after removing the step k = 0. Velicer’s MAP test has
been revised by Velicer et al. (2000), with the partial correlations raised to the 4th power
(rather than squared). These results are available in the SPSS dialog created.

Although accurate and easy to use, these two methods are not available in popular statistical
software packages, like SPSS. O’Connor (2000) wrote programs in SPSS and SAS syntax to
allow computation of parallel analyses and Velicer’s MAP in SPSS and SAS. Parallel anal-
yses on both principal components and common factor analysis (also called principal factor
analysis or principal axis factoring) can be conducted. Instead of working with the original
correlation matrix as in principal component analysis, common factor analysis works with
a modified correlation matrix, on which the diagonal elements are replaced by estimates of
the communalities. Hence, while principal components looks for the factors that explain the
total variance of a set of variables, common factor analysis only looks for the factors that can
account for the shared correlation between the variables. When one wants to conduct a com-
mon factor analysis, there is no agreement if one should use principal component eigenvalues
or common factor eigenvalues to determine the number of factors to retain. The procedure
usually used in common factor analysis is the extraction and examination of principal com-
ponent eigenvalues, but some authors argue that if one wants to conduct a common factor
analysis, the common factor eigenvalues should be used to determine the number of factors
to retain (O’Connor 2000, 2010). The present SPSS dialog allows both options.

Besides those criteria, other procedures not available in SPSS are available in the present
menu. VSS criterion proposed by Revelle and Rocklin (1979), and two non graphical solutions
to the scree test proposed by Raiche, Riopel, and Blais (2006), the optimal coordinates and
an acceleration factor, are available.

To determine the optimal number of factors to extract, Revelle and Rocklin (1979) proposed
using the very simple structure criterion (VSS). The complexity of the items, indicated with
c, determines the structure of the simplified matrix. For each item, all loadings of a factor
matrix, except the biggest c, are set to zero. Then, the VSS criterion compares the correlation
matrix reproduced by the simplified version of the factor loadings to the original correlation
matrix. VSS criterion will tend to have its great value at the most interpretable number of
factors according to Revelle and Rocklin (1979) and Revelle (2011). Revelle (2011) states
that this criterion will not work very well if the data has a factor structure very complex, and
simulations suggest that it will work well if the complexities of some of the items are no more
than two.

For n eigenvalues, the optimal coordinates for factor i are, as described in the nFactors

manual, the extrapolated eigenvalue i, made by a line passing through the eigenvalue (i+ 1)
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and the last eigenvalue n. There are n− 2 lines like this. The factors are retained as long as
the observed eigenvalues are over the extrapolated ones. Simultaneously, the parallel analysis
criterion must be satisfied.

The scree plot (Cattell 1966) is a graphical representation of the eigenvalues, where the
eigenvalues are ordered by magnitude, and the eigenvalues are plotted against the factors
number. The choice of how many factors to retain is visual heuristic, looking for an elbow
of the curve. The number of factors to keep are the ones above the elbow in the plot.
The reason is that when the factors are important, the slope must be steep, while when the
factors correspond to error variance, the slope must be flat. According to the nFactors manual
and Raiche et al. (2006), the acceleration factor corresponds to a numerical solution of the
elbow of the scree plot. It corresponds to the maximum value of the numerical solution of the
approximation of the second derivative by finite differences, f ′′(i) ≈ f(i+1)−2f(i)+f(i−1).
The number of factors to retain corresponds to the solution found minus one. Simultaneously,
as with optimal coordinates, the parallel analysis criterion must be satisfied. This criterion
is a tentative of substituting the subjective visual heuristic of the elbow of the scree plot.
However, it seems that this criterion will tend to underestimate the number of factors, since
it can identify the elbow when the slope is steep.

2.4. Quality of adjustment

Assessing the quality of a particular factorial model can be made, in a heuristic way, by
computing the differences between the correlations observed in the sample data with the ones
estimated by the factorial model, called residuals. If those residuals are high, the model
poorly reproduces the data. The corresponding matrix is called the residual matrix and, in
an empirical way, it is considered that a high percentage of residuals less than 0.05 is an
indicator of good adjustment. Another way to assess the quality of the factorial model is
by using goodness-of-fit statistics, commonly used in structural equation analysis, like GFI
(goodness-of-fit index), AGFI (adjusted goodness-of-fit index) and RMSR (root mean square
residual, off-diagonal). GFI can be interpreted as the fraction of the correlations of the
observed variables that are explained by the model. Usually, values above 0.90 indicate a
good fit and above 0.95 indicate a very good fit. The AGFI is the GFI statistic adjusted for
the degrees of freedom, since GFI tends to overestimate the true value of the adjustment. The
RMSR employs the residual matrix and is also used to measure the quality of the adjustment.
Values less than 0.05 are considered very good while values below 0.1 are good. Higher values
are an indicator of bad adjustment.

The root mean square partial correlations controlling factors, named RMSP in the present
menu, is similar to RMSR, but calculated in the matrix of the partial correlations between
variables after the effects of all factors have been removed. These partial correlations reveal
how much variance each pair of variables share that is not explained by the factors extracted.
This index appears, according to our knowledge, only in the output of SAS (SAS Institute
Inc. 2010) and a model will be much better adjusted the lower its value.

2.5. Reliability

A measurement is said to be reliable or consistent if the measurement can produce similar
results if used again in similar circumstances. Hence, the reliability of a scale is the correlation
of that scale with the hypothetical one which truly measures what it is supposed to. Lack of
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reliability may result from negligence, guessing, differential perception, recording errors. In-
ternal consistency reliability (e.g., psychological tests) refers to the extent to which a measure
is consistent with itself.

Cronbach’s alpha is the most common internal reliability coefficient as it is the standard
approach for summated scales built from ordinal or continuous items. It requires multinormal
linear relations and assumes unidimensionality. A variation (Kruder-Richardson’s formula)
can be used with dichotomous items. In classical test theory, the observed score of an item
(variable measurement) can be decomposed into two components, the true score and the
error score (which in turn is decomposed into systematic error and random error). The true
score compared to the error score reflects the reliability of a measurement, being the reliability
higher when the proportion between those two scores components is higher. Cronbach’s alpha
equals zero when the true score is not measured at all and there is only an error component.
Cronbach’s alpha equals one when all items measure only the true score and there is no error
component. Crohnbach’s alpha (α) is given by:
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Standardized alpha (αst) is Cronbach’s alpha applied to standardized items, which means
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where co (xi, xj) is the correlation between xi and xj and G = V (xi) , i = 1, ...,m, since the
variance is constant.

When the factor loadings of each variable on the common factor are not equal, Cronbach’s
alpha is a lower bound of the reliability, giving a negatively biased estimate of the theoretical
reliability (Zumbo, Gadermann, and Zeisser 2007). Simulations conducted by Zumbo et al.
(2007) show that the negative bias is even more evident under the condition of negative
skewness of the variables.

Armor’s reliability theta (θ) is a similar measure of reliability developed by Armor (1974).
Reliability theta is a coefficient that can be interpreted similar to other reliability coefficients.
It measures the internal consistency of the items in the first factor scale derived from a
principal component analysis. It is calculated using the equation:

θ =
p

p− 1

(

1−
1

λ1

)

where p is the number of items in the scale and λ1 is the first and largest eigenvalue from the
principal component analysis of the correlation matrix of the items comprehending the scale.
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Zumbo et al. (2007) proposed a polychoric correlation matrix to calculate Cronbach’s alpha
coefficient and Armor’s reliability theta coefficient, which they named ordinal reliability alpha
and ordinal reliability theta, respectively. They concluded that the ordinal reliability alpha
and theta provide consistently suitable estimates of the theoretical reliability regardless of the
magnitude of the theoretical reliability, the number of scale points, and the skewness of the
scale point distributions. These coefficients show to be appropriate to measure reliability in the
presence of skewed data, whereas alpha coefficient is affected by it, giving a negatively biased
estimate of the reliability. Hence, ordinal reliability alpha and ordinal theta will normally be
higher than the corresponding Cronbach’s alpha (Zumbo et al. 2007).

Besides Cronbach’s alpha, the others coefficients are not computed by popular statistical
software packages, like SPSS, but the SPSS dialog presented in this paper can estimate them.

3. Examples

The objective of the following examples is to show and explain some of the features available
on the menu that can help researchers work.

3.1. Example 1

The data set used in this example is in the file Example1.sav. This is simulated data and has
14 ordinal variables and 390 cases. The objective is to exhibit some features of the menu. The
first table of the output reports the number of valid cases (if listwise checked) or the number
of valid cases for each pair of variables (is pairwise checked). To determine the number of
factors that explain the correlations among the set of variables, polychoric correlations were
estimated by a two-step method (Figure 1).

The correlation matrix used for simulations of parallel analysis was also the polychoric one es-
timated by a quick two-step method (Figure 2). To perform a parallel analysis it is necessary
to simulate random correlation matrices with the same number of variables and cases of the
actual data. The simulated data is then subject to principal component analysis or common
factor analysis and the mean or a particular quantile of their eigenvalues is computed and
compared to the eigenvalues produced by the actual data. The criterion for factor extraction
is where the eigenvalues generated by random data exceed the eigenvalues produced by the ac-
tual data. In this example, parallel analysis was performed with the original data randomized
(permutation data), based on components model and on the 95th percentile, which means
that the data generated has been performed on a polychoric correlation matrix following the
original data distribution and a principal component analysis was performed to each permu-
tation with the 95th percentile for each set of eigenvalues computed and compared to the
eigenvalues produced by the actual data (Figures 2 and 3). The number of factors to retain
according to different rules are displayed in Figures 3, 4, 5, and 6. Based on the previous
results, a factor analysis was performed and four factors were retained. The extraction was
conducted by a principal component analysis from the polychoric correlation matrix estimated
by a two-step method (Figure 7). An orthogonal rotation of the factors, varimax rotation,
was also performed (Figure 8). One of the goals of factor analysis is to balance the percentage
of variation explained with limitation of the number of factors to extract. In this example,
the first four factors account for 89.726% of the variance in all the variables (Figure 9). For
factor analysis to be appropriate, the correlation matrix must reveal a substantial number
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Figure 1: Correlation matrix.

Figure 2: Parameters for parallel analysis.

Figure 3: Scree plot and other criteria.

Figure 4: Number of factors for different rules.
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Figure 5: Velicer’s MAP.

Figure 6: Very simple structure.

Figure 7: Factor analysis.

Figure 8: Factor rotation.
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(a) Variance explained.

(b) Variance explained after rotation.

Figure 9: Variance explained by the four factors.

(a) Tests. (b) KMO. (c) MSA.

Figure 10: Measures and tests of sampling adequacy.
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Figure 11: Residuals.

(a) GFI. (b) AGFI. (c) RMSR. (d) RMSP.

Figure 12: Goodness-of-fit statistics.

Figure 13: Loadings after rotation.
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(a) Factor diagram before rotation.

(b) Factor diagram after rotation.

Figure 14: Factor diagrams.
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(a) Ordinal alpha.

(b) Armor teta.

(c) Ordinal teta.

Figure 15: Reliability coefficients.

of significant correlations and most of the partial correlations must be low. By Bartlett’s,
Jennrich and Steiger tests, p-values less than 0.001 are obtained, indicating that the correla-
tion matrix is not an identity matrix. The measures given by KMO (KMO overall statistic)
and MSA (KMO statistic for each individual variable) show that all variables are adequate
to factor analysis. Although KMO = 0.659 reveals a mediocre value, all values of MSA are
over 0.40 (Figure 10). Hence, one can proceed with factor analysis without dropping any
variable. The residuals, the difference between the correlations estimated by the model and
the observed ones, are displayed in Figure 11, showing only 5.495% of residuals greater than
0.05. Although not usual in exploratory factor analysis, some goodness-of-fit statistics are
displayed (Figure 12). The loadings obtained after rotation are displayed in Figure 13. These
loadings are helpful in resolving the structure underlying the variables. To have a better idea
which variables load on each factor, a factor diagram is displayed. Loadings lower than 0.5
were omitted. For comparisons purposes, the factor diagram before rotation is also displayed
(Figure 14). One can also display some internal reliability coefficients regarding the output
of factor analysis. Automatically, each item is assigned to the factor with the higher loading.
In Figure 15, the three coefficients displayed show good reliability of the four factors. Also,
the scores of the factors can be recorded in a new database for further analysis.

3.2. Example 2

The data for this example was randomly generated in a linear subspace of dimension 7 from a
129 dimensional space. Three sets of data, with increasing noise added to the linear subspace,
were generated. The three data sets have 129 variables and 196 observations. The objective
is to compare different rules for the number of factors to retain. This data has different
levels of noise added. The files are named Example21.sav (few noise), Example22.sav (more
noise) and Example23.sav (even more noise). The parameters used for parallel analysis are
displayed in Figure 16. The number of factors to retain according to Kaiser rule, parallel
analysis and nongraphical scree tests are displayed in Figure 17.
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Figure 16: Example 2. Parameters for parallel analysis.

(a) With little noise. Number of factors to retain.

(b) With more noise. Number of factors to retain.

(c) With even more noise. Number of factors to retain.

Figure 17: Example 2. Number of factors to retain according to different rules.

Figure 18: Example 2. Velicer’s map criterion for the first three cases (few noise, more noise
and even more noise).

The Velicer’s MAP criteria points to the correct number of factors in the three cases (Figure
18). For increasing values of noise, the Kaiser rule begins to overestimate the correct number
of factors, while the opposite happens with parallel analysis. In this example, Kaiser rule
shows a great difficulty to deal with noise.

VSS criterion, as items were not of complexity one or two, underestimates the correct number
of factors (one factor for complexity one and two factors for complexity two).

Figure 19 shows the scree plot and some other criteria. Observe that the acceleration factor
points to only one factor. That is due to the big gap between the first two eigenvalues.
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(a) With little noise. (b) With more noise.

(c) With even more noise.

Figure 19: Example 2. Scree plot and other criteria.

Also, a fourth set of data, Example24.sav, derived from the previous dataset Example23.sav,
and transformed into ordinal data with four levels, was analyzed. Again, Velicer’s MAP
criteria points to the correct number of factors, although the revised version with the partial
correlations raised to the 4th power do not. The Kaiser rule behaves even worse, with the
increasing number of factors to retain. The results are shown in Figure 20.

3.3. Example 3

The data source for this example was drawn from SASS (Schools and Staffing and
Teacher Follow-up Surveys). The file named Example3.sav corresponds to the first
300 cases of 88 ordinal variables from the file SASS_99_00_S2a_v1_0.sav of the dataset
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(a) Parallel analysis and Kaiser rule.

(b) Velicer’s map.

Figure 20: Example 2. Number of factors according to different rules for the last data set.

(a) Example 3. Number of factors (pearson correlations).

(b) Example 3. Number of factors (polychoric correlations).

Figure 21: Example 3. Number of factors according to different rules.

(a) Example 3. Velicer’s map (pearson correla-
tions).

(b) Example 3. Velicer’s map (polychoric correla-
tions).

Figure 22: Example 3. Velicer’s map.
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SASS_1999-00_TFS_2000-01_v1_0_SPSS_Datasets.zip. The dataset is available online at
http://nces.ed.gov/EDAT/. The results were obtained using Pearson and polychoric cor-
relations. For parallel analysis, the actual eigenvalues were compared to the mean of the
Pearson’s correlations evaluated from 100 normally distributed random variables. As in the
previous example, the results show that the Kaiser rule overestimates the number of factors
to retain. The results are shown in Figures 21 and 22. Based only on these results, one would
point to 12 factors to retain. The results obtained by using polychoric correlations show the
approach to this number, especially for the parallel analysis and Velicer’s MAP.

4. Final remarks and conclusions

Exploratory factor analysis is a widely used applied statistical technique in the social sciences
that often deals with ordinal data. Some of the limitations of popular statistical software
packages can be overcome by this SPSS dialog. Also, this dialog offers some options that
a researcher may find useful. This is especially helpful for those researchers with little or
no knowledge in programming, or those who are accustomed to making their analysis with
statistical dialogs. The availability of the polychoric correlation matrix, besides Pearson’s
one, is useful. More rotations are available to apply to data, although the benefits of some
of these rotations are still not fully investigated. Velicer’s MAP and parallel analysis are also
available to help determining the correct number of factors to retain. In the above examples,
Velicer’s MAP showed the best performance and Kaiser rule, the default criteria in SPSS,
showed its bias to overestimate the true number of factors. Measures of quality of adjustment
and of internal consistency are also available.

Future updates to the software will be hosted on SourceForge at http://SourceForge.net/
projects/spssrmenu/.
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A. The menu

Obtain and install the appropriate version of R (R 2.10.1 for IBM SPSS Statistics 19) from
the R website before installing the R essentials and plugin. Download the R essentials for IBM
SPSS Statistics version 19 from http://sourceforge.net/projects/ibmspssstat/files/

VersionsforStatistics19/. If one has Windows Vista or Windows 7, before installing the R
essentials, disable user account control and download and install the appropriate version
of the R essentials. Then install the file named R-Factor.spd. The file is installed following
the commands: Utilities → Custom Dialogs → Install Custom Dialog..., and then
point to the file R-Factor.spd and the dialog will be available in Analyse → Dimension

Reduction → R Factor.... Eventually, for Windows Vista or Windows 7, users should
enable again the user account control.

Within the program, each line should not exceed 251 bytes. This can be a problem if one has
many input variables and/or their names are too long. To overcome this difficulty, one must
push the button Past to open the syntax window, and then, manually, break the line mdata

<- spssdata.GetDataFromSPSS(variables = c("...").

A.1. Main dialog

The options available to deal with missing data are pairwise or listwise. The output shows
the number of valid cases for the option choosed.

One can perform several analyses:

❼ Correlations. Tests multivariate normality and displays correlation matrices of differ-
ent kinds.

❼ PCA. Performs a principal component analysis.

❼ FA. Performs a factorial analysis.

❼ FA options. Options for FA.

❼ Number factors. Criteria to help choosing the number of factors to retain.

❼ Score items. Scores items to a new database and calculates internal consistency coef-
ficients.

A.2. Correlations

The following correlation matrices can be analysed by checking in “correlations” the appro-
priate type:

❼ Pearson. Function corr.test from package psych.

❼ Polychoric (two step). Function hetcor from package polycor, computing quick
two-step estimates.

❼ Polychoric (max.lik.). Function hetcor from package polycor, computing maximum-
likelihood estimates.

❼ Spearman. Function corr.test from package psych.

http://sourceforge.net/projects/ibmspssstat/files/Versions for Statistics 19/
http://sourceforge.net/projects/ibmspssstat/files/Versions for Statistics 19/
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Tests of multivariate normality can be performed if checked. The tests for multivari-
ate normality are based on kurtosis (function mvnorm.kur.test from package ICS) and on
skewness (mvnorm.skew.test from package ICS).

Correlations differences. The differences on the values of different correlations types can
be performed.

A.3. PCA (Principal component analysis)

Check box PCA to perform a principal component analysis (function princomp).

One can choose the Correlation Matrix type where the analysis is going to be performed:

Pearson, Polychoric (two step), Polychoric (max.lik.) or Spearman or the Covariance
matrix.

Checking the box sort loadings by size sort loadings (function ICLUST.sort from package
psych).

A.4. FA (Factor analysis)

Check box FA to perform a factor analysis.

Extraction of factors make use of packages psych and nFactors. Allows one to specify the
method of factor extraction.

Available methods from package psych are:

❼ Principal components (function principal).

❼ Maximum likelihood (function fa).

❼ Principal axis factor (function fa). Accordind to the author of the package psych,
test cases comparing the output to SPSS suggest that the algorithm matches what SPSS
calls unweighted least squares.

❼ Minimum residual (function fa).

❼ Weighted least squares (function fa).

❼ Generalized least squares (function fa).

Available methods from packages nFactors are (four different choices of initial communal-
ities are given: Components, Maximum correlation, Generalized inverse and Multiple

correlation):

❼ Principal axis (function iterativePrincipalAxis).

❼ Principal axis factor (function principalAxis).

For each Rotation, T denotes orthogonal rotation and Q denotes oblique rotation. All the
rotations are from package GPArotation. Available are the following rotations: Varimax-T,
Quartimax-T, Oblimin, Quartimin-Q, Equamax-T, Parsimax-T, Factor parsimony-T,
Oblimin Biquartimin-Q, Oblimin Covarimin-Q, Oblimax-Q, Entropy-T, Simplimax-Q,
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BentlerT-T, BentlerQ-Q, TandemI-T, TandemII-T, GeominT-T, GeominQ-Q, InfomaxT-T,
InfomaxQ-Q, Mccammon-T.

Checking box Kaiser normalization, Kaiser normalization is done before rotation and then
undone after rotation, for rotations from GPArotation.

By selecting Do promax rotation, one can perform a promax oblique rotation (a two-stage
procedure where, commonly, the first stage consists of an orthogonal rotation such varimax
rotation). A promax rotation is only performed after an orthogonal rotation or no rotation.
The code is derived from the function Promax from package psych. It performs a promax
rotation after an orthogonal rotation specified in Rotation (includes the case where no previ-
ously rotation is selected). Kappa for promax rotation is the value of the power (typically
between 2 and 4) to which the loadings are raised to obtain the target matrix.

If simplimax rotation is selected, enter the number of loadings one wants close to zero in the
box k for simplimax rotation. If no number is written, the program assumes it equal to
p · (m− 1) for p variables and m factors.

Write how many factors to extract in the box Number of factors to extract. If this
number is excessive it is automatically adjusted to the maximum allowed.

Checking box Sort loadings by size, sort loadings (function fa.sort from psych).

One can choose the Correlation Matrix type where the analysis is going to be performed.

A.5. FA options

The following menus only work if FA (factor analysis) is selected.

In Display one can choose to display some useful coefficients and statistics:

❼ Scree Plot. Plot of the Cattell’s scree test (function plotuScree from package nFac-

tors).

❼ Residual correlations.

❼ Partial correlations controlling variables (partial correlations calculated by
function cor2pcor from package corpcor).

❼ Partial correlations controlling factors.

❼ KMO. Kaiser-Meyer-Olkin measure of sampling adequacy.

❼ MSA. Measures of sampling adequacy for each of the variables.

❼ GFI (simplified). Goodness-of-fit index simplified (Schumacher and Lomax 1996).

❼ AGFI (simplified). Adjusted goodness-of-fit index (Schumacher and Lomax 1996).

❼ RMSR. Root mean square residuals.

❼ Root mean square partials. RMSP, root mean square partial correlations controlling
factors.

❼ Determinant.
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❼ Bartlett’s test, Steiger test and Jennrich test.Test whether or not the corre-
lation matrix is an identity matrix (functions cortest.bartlett, cortest and
cortest.jennrich from package psych).

One can display the Unrotated Factor Plot or the Rotated Factor Plot. The last one
is only displayed if a rotation is selected in FA (function factor.plot from package psych).
Plot factor loadings from two factors and assign items to clusters by different colours (the red
is for itens not assigned to any cluster).

❼ Plot factor loadings and Assign items to clusters if absolute values of

loadings are greater than some cut point choosed (the default is zero).

❼ One can choose which factors to plot and to assign clusters.

One can display the Unrotated Diagram or the Rotated Diagram. The last one is only
displayed if a rotation is selected in FA (fuction fa.diagram from package psych). Graphical
representation of factor loadings where all loadings with an absolute value greater than some
cut point are represented as an edge (path).

❼ Check box Sort loadings by size to sort loadings.

❼ One can check Only the biggest loading per item is shown to have each item as-
signed to only one factor.

❼ One can define the cut point in Show loadings with absolute value greater than

(default is 0.5).

A.6. Number factors

One can choose Parallel Analysis, Velicer’s MAP or Very Simple Structure (VSS) to
help finding the number of factors to retain.

Correlation matrix to analyse. This is the correlation matrix used to determine the compo-
nents or the factors of the actual data to perform the analysis.

Velicer’s MAP. Check if one wants to calculate the Velicer’s MAP. Velicer’s MAP with the
partial correlations squared and raised to the 4th power are shown in the output. Code is
based on O’Connor (2000).

Very simple structure (VSS). Indicates the number of factors to retain by comparing the
original correlation matrix to that reproduced for different complexities (function VSS from
package psych). The output shows the VSS maximum for complexity 1 and 2. Options
available:

❼ Fit the diagonal. Check if one wants to fit the diagonal.

❼ Number of factors to extract.

❼ Extraction. Specify the method of factor extraction.

❼ Rotation. Options are none, varimax, oblimin or promax.
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Parallel Analysis and Non Graphical Scree Test. Options:

❼ Number of samples. Write the number of samples to be drawn.

❼ Simulations based on: Mean or Quantile, which means that the mean or a particular
quantile from each set of eigenvalues computed from simulated data is compared to the
actual data eigenvalues. In case Quantile is checked, the quantile of the eigenvalues
must be mentioned (default is 0.95, percentile 95).

❼ Model indicates if parallel analysis is based on Components or on Factors, i.e., if simu-
lated data is subjected to principal component analysis or factor analysis.

❼ Samples from. Choose if samples are generated by random uncorrelated standard-
ized normal variables (check Normal distribution, where Pearson’s correlation ma-
trix is used), or by permutations of actual data (check Permutation). If one select
Permutation, one must choose if it is done with replacement or without, and the cor-
relation matrix to be calculated for each permutation (default is Pearson). Part of
the code is adapted from functions parallel and eigenBootParallel from package
nFactors.

The output contains several criteria of components/factors to retain:

Parallel analysis, the Kaiser rule, the acceleration factor (AF), the optimal coordinates (OC)
(functions nScree and plotnScree from package nFactors).

A.7. Score items

Check Scores to save the scores to a database according to the scales defined in Items and

Clusters. The function score.items from package psych is used. It will adjust scores for
reverse scored items.

❼ Save scores to database named:. Give a name to the database.

❼ Total or average scores?. Choose to write total scores or average scores.

❼ Missing values. Check Replace missing values with the item median or mean

or Do not sore cases with missing values.

❼ If replacing missing values. If one check to replace missing values, choose between
median or mean.

Reliability of Scales. Check Internal consistency and choose which coefficients are
going to be calculated. The scales to calculate the internal consistency are defined in Items

and Clusters. It will adjust scores for reverse scored items.

❼ Cronbach’s alpha. Calculates raw and standardized coefficients.

❼ Ordinal coefficient alpha. The same as Cronbach’s alpha coefficient but uses a
polychoric correlation matrix instead.
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❼ Armor’s reliability theta. It is given by the formula θ = p
1−p

(

1− 1

λ

)

, where p
is the number of items in the scale and λ is the largest eigenvalue from the principal
component analysis of the correlation matrix of the items of the scale.

❼ Ordinal coefficient theta. The same as Armor’s reliability theta coefficient but
uses a polychoric correlation matrix instead.

One can choose the method to estimate the polychoric correlations for ordinal coefficients in
Estimation of polychoric correlations (if needed).

Items and clusters. Scores or Internal consistency must be checked. If not, no output
is shown.

❼ Scales.

– Factors to clusters (FA required). Factor analysis must be checked. From
the matrix of loadings of a factor analysis, each item, according to the minimum
absolute loading indicated in Extract items with loadings absolute values

greater than (factors to clusters must be checked), is assigned to the clus-
ter corresponding to the largest factor loading for that item. Function
factor2cluster from package psych is used.

– All items equal (one cluster).

– Enter keys manually. Function make.keys from package psych is used to create
a keys matrix of −1, 0 or 1, to score each item of composite scales. The scales are
defined in Enter keys manually (enter keys manually must be checked). It
will adjust scores for reverse scored items (−1).

❼ Extract items with loadings absolute values greater than (factors to clus-

ters must be checked). To score items from a factor analysis.

❼ Enter keys manually (enter keys manually must be checked). To score items
assigned manually to scales.

Requesting to save the scores to a database or reliability of scales, provides some output
performed by the function score.items from package psych:

❼ Number of items for each scale.

❼ The average correlation within scales.

❼ The intercorrelation of all the scales.

❼ The unattenuated correlations of scales with coefficients raw alpha on the diagonal.

❼ Correlation of items with scales not corrected for item overlap.

❼ Correlation of items with scales corrected for item overlap.
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