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An SVD-Based Projection Method
for Interpolation onSE(3)
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Abstract—This paper develops a method for generating smooth
trajectories for a moving rigid body with specified boundary
conditions. Our method involves two key steps: 1) the generation
of optimal trajectories in +( ), a subgroup of the affine
group in IR and 2) the projection of the trajectories onto (3),
the Lie group of rigid body displacements. The overall procedure
is invariant with respect to both the local coordinates on the
manifold and the choice of the inertial frame. The benefits of
the method are threefold. First, it is possible to apply any of the
variety of well-known efficient techniques to generate optimal
curves on +( ). Second, the method yields approximations
to optimal solutions for general choices of Riemannian metrics on

(3). Third, from a computational point of view, the method
we propose is less expensive than traditional methods.

Index Terms—Interpolation, Lie groups, trajectory generation.

I. INTRODUCTION

WE ADDRESS the problem of finding a smooth motion
that interpolates between two given positions and orien-

tations. This problem finds applications in robotics and com-
puter graphics. The problem is well understood in Euclidean
spaces [1]–[3], but it is not clear how these techniques can be
generalized to curved spaces. There are two main issues that
need to be addressed, particularly on non-Euclidean spaces. It
is desirable that the computational scheme be independent of the
description of the space and invariant with respect to the choice
of the coordinate systems used to describe the motion. Secondly,
the smoothness properties and the optimality of the trajectories
need to be considered.

Shoemake [4] proposed a scheme for interpolating rotations
with Bezier curves based on the spherical analog of the de
Casteljau algorithm. This idea was extended by Ge and Ravani
[5] and Park and Ravani [6] to spatial motions. The focus in
these papers is on the generalization of the notion of interpola-
tion from the Euclidean space to a curved space.

Another class of methods is based on the representation
of Bezier curves with Bernstein polynomials. Ge and Ravani
[7] used the dual-unit quaternion representation of
and subsequently applied Euclidean methods to interpolate in
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this space. Jütler [8] formulated a more general version of the
polynomial interpolation by using dual (instead of dual unit)
quaternions to parameterize . In such a parameterization,
an element of corresponds to a whole equivalence class
of dual quaternions. Srinivasan [9] and Jütler [10] propose the
use of spatial rational B-splines for interpolation. Park and
Kang [11] derived a rational interpolating scheme for the group
of rotations by representing the group with Cayley pa-
rameters and using Euclidean methods in this parameter space.
Marthinsen [12] suggests the use of Hermite interpolation and
the use of truncated inverse of the differential of the exponential
mapping and the truncated Baker–Campbell–Hausdorff for-
mula to simplify the constuction of interpolation polynomials.
The advantage of these methods is that they produce rational
curves.

It is worth noting that all these works (with the exception of
[6]) use a particular parameterization of the group and do not
discuss the invariance of their methods. In contrast, Noakeset
al. [13] derived the necessary conditions for cubic splines on
general manifolds without using a coordinate chart. These re-
sults are extended in [14] to the dynamic interpolation problem.
Necessary conditions for higher order splines are derived in
Camarinhaet al.[15]. A coordinate-free formulation of the vari-
ational approach was used to generate shortest paths and min-
imum acceleration and jerk trajectories on and
in [16]. However, analytical solutions are available only in the
simplest of cases, and the procedure for solving optimal mo-
tions, in general, is computationally intensive. If optimality is
sacrificed, it is possible to generate bi-invariant trajectories for
interpolation and approximation using the exponential map on
the Lie algebra [17]. While the solutions are of closed form, the
resulting trajectories have no optimality properties. In contrast,
optimality is taken into account in [18], where Newton and con-
jugate gradient algorithms are developed into the more general
framework of Grassmann and Stiefel manifolds.

In this paper, we build on previous work [13], [15]–[17] to
generate smooth curves. We pursue a geometric approach and
require that our results be invariant with respect to the choice
of reference frames and independent of the parameterization of
the manifold. Our approach is defining a metric on the group of
rigid body displacements which has physical significance (in-
duces the kinetic energy of the moving body as a norm). The
bi-ivariant metric on [19] and the left invariant metric
proposed by Park and Brockett [20] are special cases of our gen-
eral treatment. Also, this paper generalizes our preliminary re-
sults presented in [21].

We first show that a left or right invariant metric on
is inherited from the ambient manifold
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Fig. 1. Inertial (fixed) frame and moving frame attached to the rigid body.

equipped with the appropriate metric.
Next, a projection operator that projects points and curves
from the ambient manifold onto is defined.
The uniqueness and smoothness of the projected trajectory are
discussed. Several examples are presented to illustrate how
curves generated in the ambient manifold can be projected to
get near-optimal results on and , especially when
the excursion of the trajectories is “small.” In certain cases, we
are also able to establish quantitative results that measure the
closeness of the generated trajectory to the optimal trajectory
[22].

II. BACKGROUND

A. Lie Groups and

Let denote the set of all positive-definite real
matrices and the subset of , defined as

Let

IR

and

IR

, , , and have the structure of a
group under matrix multiplication. Moreover, matrix multipli-
cation and inversion are both smooth operations, which make
all , , , and Lie groups.

and are subgroups of the general linear
group (the set of all nonsingular matrices) and of
the affine group IR , respectively. is
referred to as the special orthogonal group or the rotation group
on IR . is the special Euclidean group, and is the set of
all rigid displacements inIR .

Special consideration will be given to and .
Consider a rigid body moving in free space. Assume any iner-
tial reference frame fixed in space and a frame fixed
to the body at point as shown in Fig. 1. At each instance, the
configuration (position and orientation) of the rigid body can be
described by a homogeneous transformation matrix
corresponding to the displacement from frame to frame

.

On any Lie group the tangent space at the group identity has
the structure of a Lie algebra. The Lie algebras of and

denoted by and , respectively, are given by

IR

IR IR

where is the skew-symmetric operator.
Given a curve

an element of the Lie algebra can be identified with
the tangent vector at an arbitrary point by

(1)

where

(2)

is the corresponding element from .
A curve on physically represents a motion of the rigid

body. If is the vector pair corresponding to ,
then physically corresponds to the angular velocity of the rigid
body while is the linear velocity of the origin of the frame

, both expressed in the frame . In kinematics, elements
of this form are called twists and thus corresponds to the
set of all twists. The twist computed from (1) does not
depend on the choice of the inertial frame .

Since is a vector space, any element can be expressed as
a 3 1 vector of components corresponding to a chosen basis.
The standard basis for is

where is the canonical base inIR .
, , and represent instantaneous rotations about the

Cartesian axes, , and , respectively. The components of a
in this basis are given precisely by the angular ve-

locity vector .
The standard basis for is

The twists , and represent instantaneous translations
along the Cartesian axes, , and , respectively. The compo-
nents of a twist in this basis are given precisely by
the components of the velocity vector pair .
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B. Left Invariant Vector Fields

A left invariant differentiable vector field, , on is
obtained by left translation of an element . The value
of the vector field at an arbitrary point is given
by . Since the vectors are a basis
for the Lie algebra , any vector field can be expressed
as , where the coefficients vary over
the manifold. If the coefficients are constants, thenis left in-
variant. By defining , ,
we can associate a vector pair of functions to an arbitrary
vector field . If a curve describes a motion of the rigid
body and is the vector field tangent to , the
vector pair associated with corresponds to the instan-
taneous twist (screw axis) for the motion.

C. Local Parameterization of

In this paper, we choose a parameterization of induced
by the product structure IR . In other words, we define
a set of coordinates , , , , , for an arbitrary element

so that , , are the coordinates of
in IR . Exponential coordinates are chosen as local parameteri-
zation of . For sufficiently close to the iden-
tity (i.e., excluding the points , or,
equivalently, rotations through angles of), we define the expo-
nential coordinates , IR where is the
skew-symmetric matrix corresponding to .

D. Riemannian Metrics on Lie Groups

If a smoothly varying positive-definite bilinear, symmetric
form is defined on the tangent space at each point on the
manifold, such a form is called a Riemannian metric and the
manifold is Riemannian [23], [24]. On (and on any Lie
group), an inner product on the Lie algebra can be extended to a
Riemannian metric over the manifold using left (or right) trans-
lation. To see this, consider the inner product of two elements

, defined by

(3)

where and are the 6 1 vectors of components of and
with respect to some basis andis a positive-definite matrix.

If and are tangent vectors at an arbitrary group element
and , are elements of identified with

and , respectively, the inner product in the tangent
space can be defined by

(4)

The metric obtained in such a way is said to be left invariant
[23].

III. RIEMANNIAN METRICS ON AND

In this section, we will show that there is a simple
way of defining a left or right invariant metric on

by introducing an appropriate constant
metric in . Defining a metric (i.e., the
kinetic energy) at the Lie algebra (or ) and ex-
tending it through left (right) translations will be equivalent to

inheriting the appropriate metric at each point from the ambient
manifold.

A. A Metric in

Let be a symmetric positive-definite matrix. For any
and any , define

(5)

By definition, form (5) is the same at all points in .
It is clear that it is quadratic in the entries of and . Let

IR be the column vectors obtained by collecting all
the elements of and row by row. Then,

where

IR

It is easy to see that is symmetric and positive definite if and
only if is symmetric and positive definite. Therefore, (5) is
a Riemmanian metric on when is symmetric and
positive definite. We next prove the following interesting result.

Proposition 1: The metric given by (5) defined on
is left invariant when restricted to . The restriction on

is bi-invariant if , , is the identity
matrix.

Proof: Let any and any vectors in the
tangent space at an arbitrary point of . Then, we have

and

from which we conclude that the metric1 is invariant under
left translations by elements from . Therefore, when re-
stricted to , metric (5) is left invariant. For right invari-
ance, if , we have

and

Therefore, right invariance is guaranteed only under the condi-
tion that , i.e., when commutes with all the
elements , which is easily seen to be equivalent to

.
Remark 1: If right invariance on is desired (and left

invariance is not needed), we can define

A similar proof shows that the metric will be right
invariant on for symmetric and positive definite and
bi-invariant if .

1We will use the subscriptGL whenever we refer to the metric in the am-
bient spaceGL (n).
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B. Induced Metric on

Even though the following derivation can be done in the gen-
eral case of an -dimensional manifold in the
ambient -dimensional manifold , we will limit our
discussion to the case to avoid new notation. Further, the
results are of direct interest in .

Let be an arbitrary element in . Let be two vec-
tors from and , the corresponding local
flows so that

The metric inherited from can be written as

where and are the cor-
responding twists from the Lie algebra . If we write the
above relation using the vector form of the twists, some elemen-
tary algebra leads to

(6)

where

(7)

is the matrix of the metric on as defined by (3). A dif-
ferent but equivalent way of arriving at the expression ofas
in (7) would be defining the metric in (i.e., at identity
of ) as being the one inherited from

, ( is the basis in ).
Left translating this metric throughout the manifold is equiva-
lent to inheriting the metric at each three-dimensional tangent
space of from the corresponding nine-dimensional tan-
gent space of .

Proposition 2: The metric on and the induced
metric on share the following properties.

• is symmetric if and only if is symmetric.
• If is positive definite, then is positive definite.
• If is positive definite, then is positive definite if and

only if the eigenvalues of satisfy the triangle inequality.

Proof: The first part follows immediately from (7). For the
second part, we can use (7) to prove that the eigenvaluesof

are given in terms of the eigenvaluesof by

(8)

Because is positive definite, it follows that which
implies , i.e., is positive definite. For the third part,
from (8) we have

(9)

If satisfy the triangle inequality, are positive and the claim
is proved.

Remark 2: In the particular case when , ,
from (7), we have , which is the standard bi-invariant
metric on . This is consistent with the second assertion
in Proposition 1. For , metric (5) induces the well-known
Frobenius matrix norm on [25].

Remark 3: The quadratic form associated with metric
(6) can be interpreted as the (rotational) kinetic energy. Conse-
quently, can be thought of as the inertia matrix of a rigid
body with respect to a certain choice of the body frame .
The triangle inequality restriction fromProposition 2therefore
simply states that the principal moments of inertia of a rigid
body satisfy the triangle inequality, which, by definition, is true
for any rigid body. Therefore, for an arbitrarily shaped rigid
body with inertia matrix , we can formulate a (positive defi-
nite) metric (5) in the ambient manifold with matrix

(10)

Thus, (10) gives us a formula for constructing an ambient
metric space that is compatible with the given metric structure
of .

C. A Metric in

Let

(11)

be a symmetric positive-definite matrix, where
is the matrix of metric (5), IR , and IR. Let and
be two vectors from the tangent space at an arbitrary point

of ( and are matrices with all
entries of the last row equal to zero). Similar to Section III-A,
a quadratic form

(12)

is symmetric and positive definite if and only if is symmetric
and positive definite.

D. Induced Metric in

We can get a left invariant metric on by letting
inherit the metric given by (12) from . To derive
the induced metric in we follow the same procedure as
in Section III-B for the particular case of .



338 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 3, JUNE 2002

Let be an arbitrary element from . Let be two
vectors from and , the corresponding
local flows so that

Let

and the corresponding twists at time

The metric inherited from can be written as

Now, using the orthogonality of the rotational part ofand the
special form of the twist matrices, a straightforward calculation
leads to the result

Keeping the notation from Section III-B, if is the matrix of
the metric in induced by , then

(13)

and is given by (7).
Remark 4: The metric given by (13) is left invariant since the

matrix of this metric in the left invariant basis vector field is
constant.

Remark 5: If is symmetric and positive definite, then
given by (13) is symmetric and positive definite.

Remark 6: The quadratic form ’s associated with metric
(13) can be interpreted as being the kinetic energy of a moving
(rotating and translating) rigid body, whereis twice the mass

of the rigid body. If the body fixed frame is placed at the
centroid of the body, then . Moreover, if is aligned
with the principal axes of the body, then , where

is the diagonal inertia matrix of the body. In the most general
case, when the frame is displaced by some from
the centroid and the orientation parallel with the principal axes,
we have [16]

IV. PROJECTION ON

We can use the norm induced by metric (5) to define the dis-
tance between elements in . Using this distance, for a
given , we definethe projectionof on
as being the closest with respect to metric (5).

The solution of the projection problem is derived for the gen-
eral case of and is based on the following lemma (a
related treatment can be found in [26]).

Lemma 1: Let and its singular
value decomposition. Then, is the solution to the
maximization problem

Proof: The proof is based on the Cauchy–Schwartz in-
equality and is omitted. The interested reader is referred to [27]
for a detailed proof of an almost similar problem. The unique-
ness of the solution is also guaranteed.

The following proposition is the main result of this section.
Proposition 3: Let and , , the singular

value decomposition of (i.e., ). Then, the
projection of on with respect to metric (5) is given
by .

Proof: The problem to be solved is a minimization
problem

We have

Note that
and the quantities and are constant
and, therefore, does not affect the optimization. Therefore, the
problem to be solved becomes

With , according toLemma 1, the solution to
the above problem is .

Remark 7: Let denote the -dimensional subset
of symmetric matrices of .

• For the particular case when , describes the set
of all matrices that project to identity in metric (5)—the
fiber at identity. Note that the dimensions agree
is dimensional, the fiber is
dimensional; the sum gives , which is the dimension
of the ambient . Also, in this case, given

, the set that projects to (fiber at ) is the left
translated : .

• In the general case, the set of matrices that project to some
given in metric (5) is .

Remark 8: It is easy to see that the distance betweenand
in metric (5) is given by
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. For the particular case when , the distance be-
comes , which is the standard way of describing
how “far” a matrix is from being orthogonal.

The question we might ask is what happens with the solution
to the projection problem when the manifold is acted
upon by the group . The answer is given below.

Proposition 4: The solution to the projection problem on
is left invariant under actions of elements from .

If , the solution is bi-invariant.
Proof: Let , and the corre-

sponding projection , . Consider the ac-
tion of any on . Then, a singular value
decomposition (SVD) for yields .
Then, byProposition 3, the projection of on is

, which proves left invariance. However, right
translation of by gives and

. The translated projection is . Right in-
variance is therefore guaranteed if , i.e., com-
mutes with arbitrary elements from . This is true only if

.
Remark 9: For the case , it is worthwhile to note

that other projection methods do not exhibit bi-invariance. For
instance, it is customary to find the projection by
applying a Gram–Schmidt procedure ( decomposition). In
this case, it is easy to see that the solution is left invariant, but,
in general, it is not right invariant.

V. PROJECTION ON

Similar to Section IV, if a metric of the form (12) is defined
on with the matrix of the metric given by (11), we can
find the corresponding projection on . We consider the
case , which corresponds to a body frame fixed at
the centroid of the body.

Proposition 5: Let with the following block
partition:

IR

and , , be the singular value decomposition of .
Then, the projection of on is given by

Proof: Let

IR

The problem to be solved can be formulated as follows:

We have

The quantity is not involved in the optimization. There-
fore, the problem becomes

Since

and

we can separate the initial problem into two subproblems

1)

and

2)
IR

From Lemma 1, the solution to the first subproblem is
. For the second subproblem, note that is the only

critical point of the scalar function . It is easy
to verify that the Hessian at this point is , which is positive
definite. Therefore, the solution is which concludes the
proof.

Similar to the case, the projection on exhibits
several interesting invariance properties.

Proposition 6: The solution to the projection problem on
is left invariant under actions of elements from .

In the special case when , the projection is bi-invariant
under rotations.

Proof: Let

and define , , , such that

Let

be an arbitrary element from . Under left actions of ,
the solution pair becomes

which proves left invariance of the projection. For the second
part, note that the right translated solution pair is
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It is easy to see that . With
, we have . If only rotations

are taken into consideration, right invariance is proved. A more
detailed treatment of this case can be found in [21].

VI. PROJECTIONMETHOD

Based on the results we proved so far, we can outline a method
to generate an interpolating curve ,
while satisfying the boundary conditions

where the superscript denotes the th derivative. The
projection procedure consists of two steps.

Step 1) Generate the optimal curve in the ambient
manifold , which satisfies the boundary
conditions.

Step 2) Project from Step 1) onto .
Due to the fact that the metric we defined on is the

same at all points, the corresponding Christoffel symbols are
all zero. Consequently, the optimal curves in the ambient man-
ifold assume simple analytical forms. For example, geodesics
are straight lines, minimum acceleration curves are cubic poly-
nomial curves, and minimum jerk curves are fifth-order polyno-
mial curves in , all parameterized by time. Therefore,
in Step 1), the following curve is constructed in :

where the coefficients are linear functions
of the input data

Step 2) consists of an SVD decomposition weighted by the ma-
trix as described inProposition 5to produce the curve .

A. Left Invariance—Independence of Inertial Frame

If the interpolating curve on is generated by solving
the exact equations of the optimal motion in the Lie algebra

, i.e., (17) for geodesics, then the resulting trajectory is
invariant to displacements of the inertial frame . This means
that, given the optimal trajectory of the body with respect to an
inertial frame [i.e., a curve on ], the optimal trajectory
in a new displaced frame is obtained by left translation. The
geometric argument for this is that left invariance of the metric,
combined with the left invariance of the twists, gives invariance
of the metric to changes (constant diplacements) of the inertial
frame.

Similarly, for the projection method outlined above, we ask
if the generated motion is independent of the choice of the
reference frame . The answer is given in the following
proposition.

Proposition 7: The projection method on is left in-
variant, i.e., the generated trajectories are independent of the
choice of the inertial frame .

Proof: Assume the inertial frame is displaced to
and the transformation matrix giving the displacement of

in is . As seen from the new frame , the
boundary conditions are

and the interpolating curve in satisfying the new
boundary conditions becomes

where

Since the functions are linear, we conclude that
. Now usingProposition 6, the projection of

onto is simply . Thus, the projection
method on consisting of two steps is left invariant, i.e.,
the generated trajectories are invariant to displacements of the
inertial frame .

Remark 10: Due to the linearity on the boundary conditions
of the curve in the ambient manifold, the first step is always
bi-invariant, i.e., invariant to arbitrary displacements in both the
inertial frame and the body frame . The invariance
properties of the overall method are, therefore, dictated by the
second step. According toProposition 6, the procedure is bi-in-
variant with respect only to rotations of in the particular
case of . In the most general case, i.e., for arbitrary
choices of , the method is left invariant to arbitrary displace-
ments of the inertial frame.

B. Uniqueness and Smoothness of the Projection

Due to the fact that IR and the met-
rics that we use are product metrics, it is sufficient to answer
the above questions for and the ambient . Also,
due to the left invariance of the generated trajectories, without
loss of generality, we can restrict our attention to curves passing
through identity. Finally, in accordance with the scope of this
paper, the discussion will be limited to geodesics and minimum
acceleration curves.

1) Uniqueness:Let us first note that even if the SVD of
some matrix from is not unique (it
is unique up to permutations of the singular values), the product

giving the projection on is unique. Finding
the projection on in the form using SVD is equiv-
alent to determining the polar decomposition ( or-
thogonal, symmetric and positive definite) with

, . Also, as noted in [28], using the polar de-
composition, one can find the orthogonal partby averaging
the matrix with its inverse transpose until convergence, which
can be proved to be cheaper to compute than the actual SVD of
the matrix. We use SVD throughout the paper simply because
there is a lot more information in SVD than in polar decom-
position. For example, proof ofLemma 1is much simpler than
the proof of a somewhat similar result given in the appendix of
[28], which uses the Lagrange multiplier method to solve a con-
strained optimization problem. Also, the invariance properties
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Fig. 2. Upper bounds on the end velocities onSO(3) are imposed so that the interpolating cubic in the ambient manifold does not leaveGL (3).

of the projection become transparent in the SVD. Moreover, the
deviation of the actual singular values of some matrix from 1 is
a good measure of how far that matrix is from being orthogonal.
In the actual implementation of the method, one can always use
polar decomposition if calculation becomes expensive.

Also, uniqueness of the projection as inProposition 3is guar-
anteed if is nonsingular [29]. Since is positive definite,
we only need to make sure that the smooth curve gener-
ated in the ambient manifold do not leave (an element
of with negative determinant will not project to a rota-
tion but to a reflection).

Consider the following interpolant betweenat and
at :

(14)

where is a smooth function with , .
According to [22], the singular values of are given by

where

(15)
By studying the binomial under the square root, it is easy to see
that , if and only if ,
integer. can become zero if and only if
and . Note that this condition corresponds to singular
points of the exponential coordinates for . Therefore, re-
stricting the magnitude of the rotation (which
is the usual assumption when exponential coordinates are used
as local parameterization of around identity) guarantees
that the singular values of stay positive when ,
i.e., stays in . As a particular case for ,
the geodesic in , , passing
through identity at does not leave if the magni-
tude of the rotation is less than.

For a minimum acceleration curve, we expect the stay con-
dition to also depend on the magnitudes of the end velocities.
Explicitly, the cubic polynomial interpolating boundary condi-
tions on given by , at and ,

at

(16)

can be rewritten as where

Let and denote the largest and smallest singular values
of some matrix. Then,

Using

finding a lower bound for reduces to finding a lower
bound for and an upper bound for .

is of the form (14), and, therefore, it has singular values
at , where is given by (15). It is easy to see that
for , , and, therefore, .

Now assume that the end velocities are upper bounded by
in 2-norm, i.e., . We have

Then, a sufficient condition for is

A plot of is presented in Fig. 2(a) for and
. It can be seen (even though this can be proved rig-

orously by taking derivatives of ) that the minimum
value of the function is always attained at , for all the
values of . We conclude that a sufficient condition
for a cubic interpolant of the form (16) to remain in for

can be expressed in terms of upper bounds on the end
velocities as To illustrate the magnitudes of
the allowed velocities, a plot of is given in Fig. 2(b)
for a . As expected, the upper bound on end veloc-
ities becomes more restrictive with the increase on the rotational
displacement.

Remark 11: The bound on the amount of rotation is
not really restrictive, since rotationslarger than can always
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be achieved by rotating around the same axis but on
opposite direction.

2) Smoothness:Since the SVD (or polar decomposition) is a
smooth operation, and provided that the smooth curve generated
in the ambient manifold does not leave (this guarantees
unique projections), the projected curve on is smooth.

Singularities might occur due to the projection from
(a nine-dimensional manifold) to (a three-dimensional
manifold). Specifically, the projected curve can have a cusp
point when the tangent to the curve in the ambient space is also
tangent to the fiber of the projection. Also, a curve that meets
a fiber in two places will project to a curve with a self inter-
section. However, provided that the curve in is smooth
in time, since the goal of this method is motion generation for
robots, cusps and self intersection points are allowed. A cusp on
a smooth curve on will physically correspond to a situa-
tion when the angular velocity of the body smoothly decreases
to 0 and then starts increasing. This situation mostly occurs in
motion generation for nonholonomic robots. A self intersection
point corresponds to the body attaining the same pose at two
different times.

C. Closeness of Projected Curves to Optimal Interpolating
Trajectories

It can be proved [22] that in the Euclidean case ( ,
in (5) and (6)), the geodesic

interpolating between (at ) and (at )

follows the same path as the projection of the corre-
sponding line

but with a different parameterization, i.e.,

By inverting the function , one can also find the parameteriza-
tion of the line from , which will project to the exact
geodesic on .

For non-Euclidean metrics and higher order polyno-
mial curves, we cannot establish how close the projected curves
are to the optimal ones simply because there is no analytical,
closed form expression for the latter. However, numerical sim-
ulations like the ones included in Section VII give satisfactory
results.

VII. GENERATING SMOOTH CURVES ON AND

We will first focus on . Due to the product structure of
both IR and the metric for , all
the results are straightforward to extend to .

A. Geodesics on

The problem we approach is generating a geodesic be-
tween given end positions and on

. Without loss of generality, we will assume .
Indeed, a geodesic between two arbitrary pointsand is
the geodesic betweenand left translated by [13],
[16].

The differential equations to be satisfied by the geodesics on
equipped with metric are given by (2) together with

the celebrated Euler’s equations:

(17)

A nice derivation of (17) using differential geometric tools is
given in [16]. Even though (17) has an explicit solution in terms
of Jacobi elliptic functions [30], there is no closed form expres-
sion for the interpolating curve on the base manifold , ex-
cept for the special case when . In the general case, one
must solve the differential system given by (2) and (17) numer-
ically. A local parameterization of should be chosen and
three first-order differential equations relatingto the deriva-
tives of the parameters augment the system. Here, exponential
coordinates , , are used to parameterize . We
solve a system of six first-order nonlinear coupled differential
equations with three boundary conditions at each end. We ob-
tain the numerical solution by using a relaxation method [31].

In our projection method described above, we solve the
problem in , while keeping the proper boundary
conditions for . Geodesics are found in and
eventually projected back onto .

The geodesic in is

The projection onto using the metric is given by:

(18)

Illustrative examples are shown in Figs. 3 and 4, where end
positions on are given in exponential coordinates. In all
the examples, the initial condition is , which
corresponds to the body frame being parallel with the in-
ertial frame at . Both Figs. 3(a) and 4(a) correspond
to final condition (i.e., a rota-
tion of about the unit vector ),
while Figs. 3(b) and 4(b) describe the final condition

(i.e., a rotation of about the unit
vector ). In other words, Figs. 3(a)
and 4(a) represent a small (compared with) rotation, while
Figs. 3(b) and 4(b) are a rotation approximately four times that
in Figs. 3(a) and 4(a).

In Fig. 3, and the geodesic passing through identity
on is a uniformly parameterized line through the origin
in exponential coordinates. Also, as proved in [22], the pro-
jected geodesic follows the same path but with a different pa-
rameterization. When the displacement is small, as in Fig. 3(a),
the parameterizations of the curves obtained by relaxation and
projection are almost the same. The difference in parameteri-
zation is more pronounced in Fig. 3(b), when the excursion is
large.
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Fig. 3. Geodesics onSO(3) for an isotropic metricG = diagf3; 3; 3g drawn in exponential coordinates. (a)�(1) = [�=10; �=10; �=10] . (b) �(1) =
[�=6; �=3; �=2] .

Fig. 4. Geodesics onSO(3) for metric G = diagf10; 10; 3g drawn in exponential coordinates. (a)�(1) = [�=10; �=10; �=10] . (b) �(1) =
[�=6; �=3; �=2] .

In Fig. 4, and the geodesics in exponential coor-
dinates are not straight lines anymore. Also, the geodesic and
the projected curve follow different paths. Again, the differ-
ence between the geodesic obtained by relaxation and the pro-
jected curve is more noticeable for larger displacements, as in
Fig. 4(b).

B. Minimum Acceleration Curves on

The differential equations to be satisfied by minimum acceler-
ation curves on with metric are known only for the case

[16]. In the general case, the calculation of the sym-
metricconnectioncorrespondingtoisvery involvedandalmost
intractable. The projection method can still be used to generate
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Fig. 5. Geodesic motion for a parallelepipedic body. (a) Relaxation method. (b) Projection method.

smooth interpolating motion, even though we do not have a way
ofcomparing thegenerated trajectorywith theoptimalone.

In what follows, the time interval will be and the
boundary conditions , , , are assumed to be
specified. The minimum acceleration curve in with a
constant metric is a cubic given by

where , , , are

Now the curve on is obtained by projecting onto
using (18). Several examples are shown in our previous

work [22].

C. Generation of Rigid Body Motion

Since we know how to generate near optimal curves
in , the extension to is simply adding the
well-known optimal curves fromIR . In the example consid-
ered in Fig. 5, a homogeneous parallelepiped is assumed to
move (rotate and translate) in free space. We assume that the
body frame is placed at the center of mass and aligned
with the principal axes of the body. Let, , and be the lengths
of the body along its , , and axes, respectively, and the
mass of the body. The matrix of metric is given by

The following boundary conditions were considered:

The geodesics for a parallelepiped with , ,
and are given in Fig. 5. For visualization, a small square
is drawn on one of its faces and the center of the parallelepiped
is shown starred. For this case,

As seen in Fig. 5, even though the total displacement between
the initial and final positions on is large (rotation angle
of ), there is no noticeable difference between the true
and the projected motions.

D. Computational Efficiency

It is not difficult to see that, from a computational point of
view, it is less expensive to generate interpolating motion using
the projection method as opposed to the relaxation method. Re-
call that the complexity of the SVD of a matrix is of
order [25]. If is the number of uniformly distributed points
in , then the number of flops required by the projection
method in is of order .

The relaxation method for generating solution at mesh
points of a system of differential equations with two
boundary conditions implies solving a linear
system in the corrections iteratively until the method relaxes
to the solution (corrections converge to zero) [31]. Gaussian
elimination, whose complexity is cubic, is used to solve the
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linear systems. Therefore, the number of flops required in the
relaxation method is of order .

Consider the problem of generating geodesics on .
Here . The projection method involves
flops while the relaxation method has complexity of the order

. For , as we used in this paper, the genera-
tion of geodesics on requires millions of flops
by the relaxation method, while requiring only thousands by the
projection method.

VIII. C ONCLUSION

This paper develops a method for generating smooth trajec-
tories for a moving rigid body with specified conditions at end
points. Our method involves two key steps: 1) the generation
of optimal trajectories in ; and 2) the projection of the
trajectories from to . The overall procedure is
invariant with respect to both the local coordinates on the man-
ifold, and the choice of the inertial frame. The benefits of the
method are three-fold. First, it is possible to apply any of the
variety of well-known efficient techniques to generate optimal
curves on [1], [3]. Second, the method yields nearly
optimal solutions for general choices of Riemannian metrics on

. For example, we can incorporate the dynamics of arbi-
trarily shaped rigid bodies. Third, from a computational point of
view, the method we propose is less expensive than traditional
methods. We presented the application of the basic ideas to a
motion generation problem with specified boundary conditions.
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