
An SVM Learning Approach to Robotic Grasping
Raphael Pelossof, Andrew Miller, Peter Allen, Tony Jebara

Department of Computer Science, Columbia University, New York, New York, 10027
Email: rp2056@columbia.edu, {amiller, allen, jebara}@cs.columbia.edu

Abstract— Finding appropriate stable grasps for a hand (either
robotic or human) on an arbitrary object has proved to be
a challenging and difficult problem. The space of grasping
parameters coupled with the degrees-of-freedom and geometry of
the object to be grasped creates a high-dimensional, non- smooth
manifold. Traditional search methods applied to this manifold are
typically not powerful enough to find appropriate stable grasping
solutions, let alone optimal grasps. We address this issue in this
paper, which attempts to find optimal grasps of objects using a
grasping simulator. Our unique approach to the problem involves
a combination of numerical methods to recover parts of the
grasp quality surface with any robotic hand, and contemporary
machine learning methods to interpolate that surface, in order
to find the optimal grasp.

I. INTRODUCTION

The grasp planning problem is extremely difficult because
of the number of degrees of freedom of a robotic hand. For
example, the Barrett hand (a 3-fingered robotic hand) we use
has 10 degrees of freedom, 6 for orientation in space, and 4
for finger manipulation. This number of DOF’s creates a large
search space of hand configurations. We note that humans have
a much larger space, since the number of DOF’s of the human
hand far exceeds most robotic hands. However, humans are
capable of learning grasps through experience. The goal of
our research is to apply new machine learning techniques to
this problem and effectively have robots learn how to grasp
arbitrary objects.

We are using supervised training to learn what is a good
grasp for a robotic hand. This requires a method that allows
us to try a large number of grasps of an object and report a
metric on the quality of each grasp in the training set. Using
this training set, we can then generate basis functions that can
effectively both predict the quality of an arbitrary new set of
grasping parameters and also use these basis functions to find
an optimal set of grasping parameters for an object.

To build up our training data, we are using a robotic
grasping simulator called GraspIt! developed by Miller and
Allen [1]. This simulator, described in section III, takes as
input a robotic hand model, object description, and a set of
grasping parameters and calculates the grasp quality for that
grasp. The simulator is fast, contains full collision detection,
and allows a choice of material properties for the robot hand
and object which can affect grasp quality. By sub-sampling
the grasping parameter space using this simulator, we can
efficiently create large training sets with grasp metrics. The
simulator also allows us to visualize each grasp as needed.

In previous work [2] GraspIt! was used to plan grasps for
objects using a heuristic based approach that attempted to sub-

sample a reduced parameter space and choose the best grasp
for an object. While effective in that context, it is clear that
this approach is limited. We believe a learning approach is
needed to extend robotic grasping to arbitrary objects. We are
encouraged by results in machine learning, and in particular
Support Vector Machines (SVM’s), which have shown great
promise in difficult learning problems.

Using this method we can approximate the grasp quality
measure for a new set of grasping parameters, select an optimal
grasp from the space of grasping parameters of an object,
and hopefully extend these results to different objects. These
parameters correspond to the degrees of freedom of an actual
hand, rather than the placement of point contacts on the object
surface. It is also important to note that our method is not
dependent on a single type of robotic hand or class of objects.
It provides a robust system for testing different robotic hands,
and analyzing the quality space that they span.

We briefly mention other related research. Several authors
have used learning for visually guided grasping [3], [4], [5].
Wheeler et al. have developed a learning system for high level
grasping [6], and Oztop and Arbib used Hebbian learning to
grasp unknown objects [7]. Rezzoug and Groce [8] use multi-
stage neural networks to learn grasping postures.

II. OBJECT MODELING

First presented by Barr [9], the superquadric model can
create a wide range of smooth objects, with a smooth tran-
sition between them. The need for a small fixed number of
parameters to describe this family of objects makes it perfect
for using with learning algorithms that expect a fixed length
feature vector. Research in the past has produced results in
superquadric recovery from images [10] and touch [11]. This
will enable our system to connect to a vision system and model
objects in the image as composite superquadrics.

Our initial results use only undeformed superellipsoids,
however, in future work we intend to apply our method to
superparaboloids and supertoroids with varying deformation
and scaling. The 3D superellipsoid is the spherical product of
two 2D curves [9].

The values ε1 and ε2 affect the roundness of the shape in
the horizontal and vertical directions respectively, and their
values range between 0 and 2. Because the system ultimately
should be able to find grasps for any superellipsoid, it must
be trained on a variety of different examples. In order to
have a manageable number of grasps that must be evaluated
when generating training data, we have chosen 9 representative
models that span the space of superellipsoids by choosing ε1



and ε2 to be one of 0.3, 1.0, or 1.7. Because the collision
detection system within GraspIt! can only handle polygonal
models, we approximate each of the superellipsoids with a
triangular mesh. To create a mesh, we sample r(η, ω) using
a 25x25 matrix of evenly distributed values of η and ω, and
triangulate the resulting points. The overall mesh is then scaled
to fit within a 180mm cube, which would fit within a grasp
of the hand we are using for our tests.

III. GENERATING TRAINING DATA

To learn how to grasp these superquadrics requires a method
of generating example grasps with their associated quality. For
this we made use of GraspIt!, an interactive simulation, plan-
ning, analysis, and visualization system for robotic grasping
(see figure 1(a). It can import a wide variety of different hand
and robot designs, and a world populated with objects, all of
which can be manipulated with in a virtual 3D workspace. A
custom collision detection and contact determination system
prevents bodies from passing through each other and can
find and mark contact locations. The grasp analysis system
can evaluate grasps formed with the hand using a variety of
different quality measures, and the results of this analysis
can be visualized by showing the weak point of a grasp
or presenting projections of the 6D grasp wrench space. A
dynamics engine can compute contact and friction forces over
time, and allows for the evaluation of user written robot control
algorithms [12].

For our experiments we used a model of the Barrett hand,
but this method could be applied to other hands as well. It
is an eight-axis, three-fingered mechanical hand with each
finger having two joints. One finger (often called the thumb) is
stationary and the other two can spread synchronously up to
180 degrees about the palm. Although there are eight axes,
the hand is controlled by four motors. Each of the three
fingers has one actuated proximal link, and a coupled distal
link that moves at a fixed rate with the proximal link. A
novel clutch mechanism allows the distal link to continue to
move if the proximal link’s motion is obstructed (referred to
as breakaway). An additional motor controls the synchronous
spread of the two fingers about the palm.

After the Barrett hand and a polygonalized superquadric
model have been loaded into the workspace, the grasp tester
can read a file of grasp starting positions and test the quality
of each one, recording the results. To perform a grasp, the
hand is first placed at the starting position, and the fingers are
spread to the designated angle. Next, the hand is moved along
the grasp approach direction until it is prevented from moving
further by a contact. Then the fingers are closed around the
object until contacts or joint limits prevent further motion. If
at least one finger is in contact with the object at this point,
the grasp is evaluated as described below. Figure 1(a) shows
an example grasp evaluated within the GraspIt! system.

A. Grasp Evaluation

The tester can be used with any form of grasp evaluation
that results in a scalar value. Since our aim is to find stable

grasps for pick and place operations, we are using a quality
metric that determines the magnitude of the largest worst-case
disturbance wrench that can be resisted by a grasp of unit
strength. This measure has been proposed in several forms,
but it is best described by Ferrari and Canny [13].

The process involves approximating the contact friction
cones as a convex sum of a finite number of force vectors
around the boundary of the cone, computing the associated
object wrench for each force vector, and then finding the
convex hull of this set of wrenches. If we assume that each
of the contact cones has unit height, then the convex hull
corresponds to the L1 grasp wrench space described by Ferrari
and Canny. This space represents the space of wrenches that
can be applied by the grasp given that the sum total of the
contact normal forces is one. If the origin is not contained
within this space, the grasp does not have force-closure,
meaning there exists some set of disturbance wrenches that
cannot be resisted by the grasp. In this case the quality of the
grasp is 0. Otherwise, the quality of the grasp is equal to the
distance from the origin to the closest facet of the convex hull.
The wrench in this direction is the most difficult for the grasp
to apply. It is important to note that the amount of friction that
can be supported by the contacts greatly affects this quality
measure. GraspIt! allows each body to have an associated
material type and determines the coefficient of friction for
each contact based on a lookup table of material types. In
our examples, the palm and inner links of the Barrett hand are
plastic, the outer links are rubber, and the superquadrics are
metal. The coefficient of friction between plastic and metal
surfaces is defined as 0.2, and between rubber and metal it is
1.0.

B. Spanning the Set of Possible Grasps

Our supervised learning requires a set of grasps that can
potentially span the space of grasp parameters. Choosing a
good parameterization is important to effectively sub-sample
the space, and to include both good and bad grasps. If all 10
hand parameters (4 for internal motors and 6 for the relative
pose of the wrist) are allowed to vary freely, only a very small
sub-space of these values would result in worthwhile grasps.
Many of them would have the fingers penetrating the object or
not able to touch it at all. We have identified a minimal set of 4
parameters that effectively span the set of possible grasps and
provide a large enough ratio of good to bad grasps to make
learning possible. First we assume the palm should always be
parallel to the surface of the object, hence the hand approach
vector used by the tester will always be normal to the object
surface at each grasp starting position. Since the tester moves
the hand along the approach vector until contact occurs, we
do not need a parameter to specify the distance of the palm
from the object surface. We also do not need to specify the
finger joint angles, since the fingers will start in a fully open
position and will be closed around the object by the tester. This
leaves us with two parameters, η and ω, to specify the starting
position of the palm, one parameter to specify the roll angle of
the hand about the approach vector (also referred to as thumb



(a) (c) (e)

(b) (d) (f)

Fig. 1. (a) The GraspIt! simulator allows us to import a robot hand model (here a Barrett hand) and a object model (here a superellipsoid with ε1 = ε2 = 1.8)
and evaluate a large number of grasps of the object. This image shows one successful grasp of this object. The grasp has a quality of 0.339, and the two
windows on the left show projections of the grasp wrench space. The upper window shows the space of forces that can be applied to the object without a
net torque, and the lower window shows the space of torques that can be applied without applying a net force. (b) For each superquadric in the training
set we generate 1,600 grasp starting poses. These cover 16 positions over 1/8th of the total surface area, with 100 random combinations of different thumb
orientations and finger spread angles. Here the long vector from each point denotes the grasp approach direction and the collection of short vectors shows
the various thumb orientations. The spread angle is not shown. (c-d) Graphs of the average grasp quality of 25 grasps at each of 16x9 points over half of a
polygonalized sphere (ε1 = 1, ε2 = 1), and (e-f) over a polygonalized rounded diamond shape (ε1 = 1, ε2 = 0.2).

orientation), and one parameter to specify the spread angle of
the fingers. Because of the symmetric nature of superellipsoids
we only have to vary η and ω between 0 and π/2, or 1/8th
of the total surface. In our initial tests we are using a regular
sampling of 3 values for η and 6 values for ω. This results in
16 unique starting positions since 3 positions coincide when
ω = π/2. To choose values for the remaining 2 parameters
we employ a Monte-Carlo approach, and randomly choose
roll angles between 0 and 360 degrees and spread angles
between 0 and 90 degrees. Spread angles past 90 degrees rarely
result in force closure grasps. Figure 1(b) shows an example
superquadric (with ε1 = 0.2 and ε2 = 1.8) and the set of
grasp starting positions that were generated. For each grasp
starting position, the tester moves the hand, closes the fingers,
evaluates the grasp, and records the quality.

As a test of our data generation, we created 2 sets of 3,600
grasps each for two superquadrics, one a sphere (ε1 = 1, ε2 =
1) and the other an rounded diamond (ε1 = 1, ε2 = 0.2). We
sampled the grasp position parameters such that we had 16

values of η from 0 to 2π, and 9 values of ω from 0 to π/2,
and at each position we chose 25 combinations of random
hand roll and finger spread angles. To graph the results we
averaged the quality of the 25 grasps at each position, and
show this average over the 16x9 position samples. As expected
the average quality of the grasps of the sphere was uniform,
and the quality of the grasps of the rounded diamond was
nearly uniform at the top where it resembles the sphere (see
figure 1(c)). However, grasps near the equator of the diamond
resulted in 8 roughly symmetrical peaks in quality due to the
4 symmetrical edges of the object.

IV. SVM LEARNING FROM SIMULATED DATA

A. Feature Vectors and Training Data

Following the detailed explanation of the grasping system,
we now discuss the machine learning algorithms used to build
a regression mapping between object shape, grasp parameters
and grasp quality. Once trained, this regression mapping can
be used very efficiently to estimate the grasping parameters



ε1 ε2 Ux Uy Uz cos θ sin θ cos ρ sin ρ

Fig. 2. Input feature vector X

that obtain highest grasp quality for a new query set of su-
perquadric shape parameters. Our learned regression mapping
accepts a fixed length input vector that contains the shape
and grasping parameters and returns a single scalar which
estimates the grasp quality. If only provided with a subset
of the input vector (i.e. the shape parameters), the regression
algorithm will perform an efficient search for the optimal
setting of the missing input vector values (i.e. the grasp
parameters) that maximize grasp quality. While it is possible
to consider input vectors that are not of fixed length (via
more advanced kernel methods), in this setting we have only
considered the simple vector-input scalar-output regression
case. For effective learning, our input feature-vectors should
have some clustering in the high dimensional space, or produce
a smooth manifold.

The input feature vectors that we are currently dealing with
are as follows. The superquadric shape parameters ε1 and
ε2, a unit vector that points to the intersection between the
superquadric and the surface normal, the hand roll angle θ,
and the finger spread angle ρ. Figure 2 shows the entries in
each of our nine-dimensional input feature vectors. We use
Cartesian coordinates to represent the two angles to avoid
the discontinuity in the spherical representation at the angles
of 0 and 2π, which can confuse the SVM regression during
learning. We generate input vectors X1, . . . , XT by sampling
many shape and grasp poses. Each Xt of these input vectors
is provided to GraspIt! for simulation and generates a single
scalar quantity yt, which is the grasp quality. Thus, our training
data set is a set of T pairs of vector and scalar data points
(X1, y1), . . . , (XT , yT ). From this training dataset, we will
learn a function f(X) which will be used to estimate y using
support vector machine regression.

B. SVM Regression Training

Support vector machines have recently become popular
learning tools for performing classification [14], [15] and
regression [16], [17]. Typically, SVM classification is used
to build a function f(X) that predicts binary y values. SVM
regression on the other hand generates functions whose outputs
are scalars. However, unlike least-square or empirical methods,
SVM regression maintains the same motivation as SVM classi-
fication: minimizing a bound on the expected error for future
test data, inheriting interesting generalization properties and
sparsity. Consider the simplest case of linear SVM regression,
where f(X) is given by the following:

f(X) = WT X + b. (1)

Here, the function involves taking the inner product of the
input vector X with a model parameter W and adding the
scalar bias b. The SVM regression optimization problem finds
a linear function that predicts outputs almost equal to y with no

more than epsilon error (above or below) while simultaneously
minimizing the norm of W to encourage better generalization.
This finds the lowest norm or flattest linear function that
approximates the data within an epsilon-tube of sensitivity.
In other words, we minimize the following constrained cost
function:

min
W,b

1
2WT W subject to

{
yt − 〈W, Xt〉 − b ≤ ε
〈W, Xt〉 + b − yt ≤ ε

∀t.

(2)
Since the constraints may not always be satisfied (i.e. if some
y values have large noise or are outliers and can never fit the
epsilon-tube), we introduce T total ξ slack variables and T
total ξ∗ slack variables (a pair of for each data point) which
allow the program to permit some violations of the epsilon
tube. We end up with following relaxed regression which
accommodates the epsilon-sensitive tube while paying a linear
loss for violations when the regression predicts values outside
the tube:

min
W,b,�ξ,�ξ∗

1
2 ‖W‖2 + C

∑
t
ξt + ξ∗t ,

∀t

⎧⎨
⎩

yt − 〈W, Xt〉 − b ≤ ε + ξt

〈W, Xt〉 + b − yt ≤ ε + ξ∗t
ξt, ξ

∗
t ≥ 0

(3)

In the above, C is a scalar regularization parameter that
penalizes the amount of slack used (smaller values of C yield
more outlier rejection). This problem is now readily solvable
via any general quadratic program (QP) framework (e.g. in
Matlab) which recovers the D = 9 dimensional W vector, the
scalar bias b as well as the 2T slack ξ and ξ∗ variables. Instead,
however, it is traditional to rewrite the above constrained
optimization problem using Lagrange multipliers α and α∗

(a pair of alphas for each data point) as follows:

L = min
W,�ξ,�ξ∗

1
2 ‖W‖2 −

∑
t
α∗

t (ε + ξ∗t + yt − 〈W, Xt〉 − b)

−
∑

t
αt (ε + ξt − yt + 〈W, Xt〉 + b) + C

∑
t
(ξt + ξ∗t )

−
∑

t
(ηtξt + η∗

t ξ∗t ) subject to ξt ≥ 0 , ξ∗t ≥ 0 ∀t

(4)
Our previous constraints are captured via the α and α∗

Lagrange multipliers. Typically, however, we solve the dual
version of the above primal problem. The dual maximization
problem is more efficient to solve and readily accommodates
non-linear regression:

D = min
�α,�α∗

− 1
2

∑
t,t′

(α − α∗
t ) (αt′ − α∗

t′) 〈Xt, Xt′〉

−ε
∑

t
(αt − α∗

t ) +
∑

t
yt (αt − α∗

t )

subject to
∑

t
(αt − α∗

t ) = 0 αt, alpha∗
t ∈ [0, c]

(5)

The above can be solved using QP, recovering the 2T total α
and α∗ Lagrange multipliers. For efficiency, we used a method
similar to [18]. Reconstructing the regression function from the
above α and α∗ Lagrange multipliers:

f (X) =
∑

t
(αt − α∗

t ) 〈Xt, X〉 + b. (6)



An interesting result is that only a few α and α∗ Lagrange
multipliers

will be non-zero, these correspond to the points in the
regression that are on the boundary of the epsilon tube (called
support vectors) as well as outlier points outside of the tube.
Points inside the tube obtain zero α and α∗ values. This
sparsity yields good generalization to new testing conditions as
well as efficient computation of the regression function f(X).
The bias value b is computed from the Karush-Kuhn Tucker
conditions by noting that, for the support vectors, when αt lies
in (0, C) we must have f(Xt) = yt−ε and for support vectors
when α∗

t lies in (0, C) we must have f(Xt) = yt +ε . We can
readily accommodate nonlinear regression by replacing all the
inner product symbols in the dual formulation and in f(X)
by kernel evaluations as follows:

〈X, X ′〉 = XT X ′ → k (X, X ′) , (7)

where k(X, X ′) is any function that satisfies Mercer’s condi-
tion (i.e. positive-definiteness) and produces a scalar quantity
output. In our experiments, we used the radial basis function
(RBF) kernel which is known to handle various nonlinear
problems well:

k (X, X ′) = exp
(
−σ ‖X − X ′‖2

)
. (8)

We manually selected appropriate values of ε and σ and C dur-
ing training to ensure good generalization performance on test
data. In our experiments, values of ε = 0.02 and σ = 0.1 and
C = 600 performed reasonably well and provided an f(X)
function with good cross-validation accuracy. Ultimately, we
have the following learned function involving RBFs:

f (X) =
∑

t
(αt − α∗

t ) exp
(
−σ ‖Xt − X‖2

)
+ b. (9)

C. SVM Regression for Grasp Evaluation

Given our learned f(X) function (from many object shapes
and grasp pose vectors), we can now efficiently compute
the grasp quality. However, we wish to predict good grasps
from only shape parameters. This is also readily feasible
with our regression function as well. We simply have only
a sub-component of the X vector corresponding to the shape
information while the rest of the vector is missing. Thus, we
can estimate the remaining components of X by maximizing
the function f(X) to obtain the best possible grasp according
to our SVM. In other words, consider splitting the input vector
into two components X = [XaXb], we find the best setting
of Xb as follows:

Xb = arg max
Xb

f
([

Xa Xb
])

(10)

= arg max
Xb

∑
t
((αt − α∗

t )

exp
(
−σ ‖Xa

t − Xa‖2 − σ
∥∥Xb

t − Xb
∥∥2

)) (11)

One particularly interesting aspect of the above equation is
that it involves reweighting the RBFs in f(X) by the affinity
between the current Xa and the Xa

t support vectors in our
training set which seem to act like prototypes of shape vectors.

For a given Xa containing just an object’s shape parameters
the maximization proceeds as follows. We first evaluate all Xb

values that were in our support vectors. The highest scoring
one of these is then used to seed a gradient ascent technique.
We then merely update the current estimate of the Xb with
gradient ascent on f(X) as given by the following update rule:

Xb ← Xb + δ
∑

t

(
(αt − α∗

t ) exp
(
−σ ‖Xa

t − Xa‖2 −
σ

∥∥Xb
t − Xb

∥∥2
) [

Xb
t − Xb

])
(12)

We use a small δ value and repeat until convergence. This
results in an estimated grasp Xb for a novel object in less than
1 second on a regular Pentium IV machine providing a very
fast initial guess for the robotic hand’s grasp parameters even
if the object shape subvector Xa is a novel configuration not
seen in our training dataset.

V. RESULTS

For each of the 9 superquadrics in our training set, we
generated 1,600 grasps, which consisted of 100 random roll
and spread angle combinations for each of the 16 grasp starting
positions. This gave us a total of 14,400 grasps, which were
evaluated by GraspIt! over the course of approximately 4 hours
on a Pentium IV 2.3 GHz Windows machine. It is important
to generate good training sets comprised of a large number of
stable grasps. The fact that only slightly more than 3,000 of
the total 14,440 grasps had zero quality (they were not force
closure grasps), appears to validate our approach of uniformly
sampling some parameters and randomly sampling others.

For each superquadric, that data was sorted, and all but
the best 150 grasps were eliminated. Of these 150 (for each
object), 135 were randomly chosen to be part of the training
set for the SVM, and the remaining 15 were put in the test
set. The results of the SVM training are shown in figures 3(a)
and 3(b). The accuracy of the SVM regression on testing
indicates that the learned f(X) function can be used to rank
the vectors of grasping parameters by their estimated grasp
qualities. Although the regression does not always favor the
simulated best grasp, it typically chooses grasps that still
perform well.

To test the noise in the GraspIt! simulation (arising from
polygonal shape approximations), we had GraspIt! perform
160 grasps with a fixed spread angle of 60 degrees at different
locations on an approximated sphere. On a true sphere the
quality would be uniform, but as the histogram in figure 3(c)
shows, there is a Gaussian noise distribution with a standard
deviation of 0.0192. Interestingly, the standard deviation of the
error between the predicted quality and the simulated quality
(during testing) is 0.0412. Thus the learned model has roughly
twice the noise of full simulation.

We then evaluated the regression function for its ability
to predict grasping parameters when queried with only shape
parameters. The procedure in the previous section (see eq. 11)
describes the arg maximization of quality to produce grasp
parameters. In figures 4(a)- 4(c), we show predicted grasps
from the SVM for both a shape previously seen in the



Fig. 5. Multiple deformed superquadrics can be combined to form more
interesting shapes to grasp.

training data as well as a novel shapes. The SVM-predicted
grasps appear qualitatively reasonable, and when simulated in
GraspIt!, they subsequently yielded high grasp qualities.

VI. DISCUSSION AND FUTURE WORK

Our modeling and simulation method had opened a door
to a variety of machine learning algorithms for grasp quality
regression. It appears that the data does form a consistent
mapping in high dimensional space, and therefore we were
able to get good results. Nevertheless it’s possible that with
different kernels one could improve on our results.

In this paper, we have shown a machine learning approach to
learning robotic grasps. Our results show promise in applying
new machine learning techniques such as SVM’s to learn op-
timal grasps of objects as well as transfer grasping knowledge
to new kinds of objects. In our experiments, we were able
to constrain the parameter space by choosing simple object
models and also using the somewhat limited Barrett robotic
hand. To extend these results to more complex hand designs
and more complex objects, we are working on two fronts.

First, to reduce the dimensionality of the hand parameter
space, we can make use of other sensors such as vision [19].
Our experiments are essentially “blind” in that there is no
other sensing other than contacts of the fingers and hand. If we
include simple vision processing, we can use knowledge about
an object’s silhouette or contour that can initially constrain the
grasp parameter space, particularly with respect to approach
vector of the object. This reduces the space of learned grasps
that must be spanned by a learning system, and allows us
to infer correct grasps. In a sense, we can create a coarse/fine
grasping system in which vision creates an index into a smaller
set of learned grasps that can be approximated by methods
such as SVM’s.

Second, our initial superquadric models are clearly not able
to model the full range of possible objects to be grasped.
However, these models can be combined into larger sets of
composite models that are composed of multiple superquadric
shapes. Figure 5 shows a complex object assembled from a
number of superquadrics that include bending and tapering
parameters.

One potential approach to solving this multi-superquadric
grasping problem involves using the SVM regression f(X)

function for single superquadrics in a cascade. We compute an
F (X) for multi-superquadrics from re-instantiations of f(X)
that are appropriately rotated and translated given the pose
of each superquadric. This maps a single f(X) to multiple
fi(X) functions. We can then devise a combination scheme
which updates F (X) which is initially set to zero by cascading
multiple fi(X) functions. For instance, we may consider
computing F (X) as the minimum of all the qualities of the
individual superquadrics: F (X) = mini fi(X). Alternatively,
we may use SVM regression to learn a composition function,
which iteratively assembles two superquadrics at a time to
produce a multi-superquadric grasp quality regression as fol-
lows: F (X) = g(fi(X), fj(X)). Here g() function has two-
dimensional inputs and one dimensional output.

Another promising direction is to consider kernels on more
general representations of 3D objects. For instance, a kernel
function was recently proposed between two vectors-sets (as
opposed to two vectors in our formulation) [20]. These vector-
sets need not be of the same size and the original work
demonstrates that these can be used to recognize point-clouds
of various shapes such as digits. Such vector-sets are useful for
representing 3D objects as a collection of 3D vertices which
is a very general representation which may be more promising
than superquadrics since it does not involve modularly piecing
together multiple shapes. Rather, it simply involves computing
a metric (or kernel affinity) between shape prototypes.

Of course, the results of this planning are not useful unless
they can be applied to an actual manipulation system. We have
shown that we can use a real-time model based vision system
to register the poses of simulated objects in the environment
with the poses of the actual objects they represent. Then
grasps planned within GraspIt! can be carried out on the actual
robot [21]. We would like to expand this vision system to au-
tomatically estimate object shape parameters using established
techniques for fitting superquadrics [10].

ACKNOWLEDGMENT

This work was supported in part by an NSF-ITR award IIS-
03-12693.

REFERENCES

[1] A. Miller and P. Allen, “GraspIt!: A versatile simulator for grasping
analysis,” in Proc. of the ASME Dynamic Systems and Control Division,
vol. 2, Orlando, FL, 2000, pp. 1251–1258.

[2] A. Miller, S. Knoop, H. Christensen, and P. Allen, “Automatic grasp
planning using shape primitives,” in Proc. of the 2003 IEEE Intl. Conf.
on Robotics and Automation, 2003, pp. 1824–1829.

[3] B. Rossler, J. Zhang, and A. Knoll, “Visual guided grasping of aggre-
gates using self-valuing learning,” in Proc. of 2002 IEEE Intl. Conf. on
Robotics and Automation, 2002, pp. 3912–3917.

[4] J. Piater, “Learning visual features to recommend grasp configurations.”
Univeristy of Massachusetts Amherst, Dept. of Computer Science, Tech.
Rep. 2000-40, 2000.

[5] I. Kamon, T. Flash, and S. Edelman, “Learning visually guided grasping:
a test case in sensorimotor learning,” IEEE Transactions on Systems,
Man and Cybernetics, vol. 28, no. 3, pp. 266–276, May 1998.

[6] D. Wheeler, A. Fagg, and R. Grupen, “Learning prospective pick and
place behavior,” in Proc. of the IEEE/RSJ Intl. Conf. on Development
and Learning, 2002.



(a) (b) (c)

Fig. 3. (Best viewed in color) (a) For each of the 9 tested superquadrics we chosen the 150 best grasps and trained the SVM on 90% of this data (135
randomly selected grasps for each superquadric), and the quality of these grasps is shown in blue. Overlaid on top of that is the expected grasp quality for
each of the training grasps from the SVM regression. (b) The remaining 10% of our generated data is used for testing purposes. These are grasps that the
SVM has been not trained on. (c) The distribution of grasp quality for fixed spread angle grasps of an approximated sphere demonstrates the noise inherent
in the data generation due to polygonalization.

(a) (b) (c)

Fig. 4. (a) The optimal grasp of the SVM regression function for a superquadric shape previously seen in the training set (ε1 = 1, ε2 = 0.3). The quality
of this grasp as tested in GraspIt! is 0.402. (b-c) The optimal grasp of the SVM regression function for novel superquadrics (ε1 = 0.6, ε2 = 0.5) and
(ε1 = 1.3, ε2 = 0.2). The quality of these grasps as tested in GraspIt! is 0.315 and 0.102 respectively.

[7] E. Oztop and M. Arbib, “A biologically inspired learning to grasp
system,” in Proc. of the 23rd Annual Intl. Conf. of the IEEE Engineering
in Medicine and Biology Society, 2001, pp. 857–860.

[8] N. Rezzoug and P. Gorce, “A multistage neural network architecture to
learn hand grasping posture,” in Proc of the 2002 IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems, 2002, pp. 1705–1710.

[9] A. Barr, “Superquadrics and angle-preserving transformations,” IEEE
Computer Graphics and Applications, vol. 1, no. 1, pp. 11–23, 1981.

[10] A. Pentland, “Recognition by parts,” in Proc. First Intl. Conf. on
Computer Vision, 1987, pp. 612–620.

[11] P. Allen and P. Michelman, “Acquisition and interpretation of 3-D sensor
data from touch.” IEEE Transactions on Robotics and Automation, pp.
397–404, August 1990.

[12] A. Miller and H. Christensen, “Implementation of multi-rigid-body
dynamics within a robotic grasping simulator,” in Proc. of the 2003
IEEE Intl. Conf. on Robotics and Automation, 2003, pp. 2262–2268.

[13] C. Ferrari and J. Canny, “Planning optimal grasps,” in Proc. of the 1992
IEEE Intl. Conf. on Robotics and Automation, 1992, pp. 2290–2295.

[14] C. Burges, A tutorial on support vector machines for pattern recognition.
Kluwer Academic Publishers, 1998.

[15] C. Cortes and V. Vapnik, “Support vector networks,” Machine Learning,
vol. 20, pp. 273–297, 1995.

[16] A. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Royal Holloway College, Univerisity of London, Tech. Rep. NC-TR-98-
030, 1998.

[17] S. Gunn, Support Vector Machines for Classification and Regression.
University of Southampton, 1998.

[18] J. Platt, “Fast training of support vector machines using sequential
minimal optimization,” in Advances in Kernel Methods - Support Vector
Learning, B. Schölkopf, C. Burges, and A. Smola, Eds. MIT Press,
1999, pp. 185–208.

[19] M. Salganicoff, L. Ungar, and R. Bajcsy, “Active learning for
vision-based robot grasping,” in Recent Advances in Robot Learning,
J. Franklin, T. Mitchell, and S. Thrun, Eds. Kluwer, 1996.

[20] R. Kondor and T. Jebara, “A kernel between sets of vectors,” in Proc.
of the Intl. Conf. on Machine Learning, ICML, 2003.

[21] D. Kragić, A. Miller, and P. Allen, “Real-time tracking meets online
grasp planning,” in Proc. of the 2001 IEEE Intl. Conf. on Robotics and
Automation, 2001, pp. 2460–2465.


