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Abstract

Light scattering is a fundamental property that can be exploited to create essential devices such as particle analysers.

The most common particle size analyser relies on measuring the angle-dependent diffracted light from a sample

illuminated by a laser beam. Compared to other non-light-based counterparts, such a laser diffraction scheme offers

precision, but it does so at the expense of size, complexity and cost. In this paper, we introduce the concept of a new

particle size analyser in a collimated beam configuration using a consumer electronic camera and machine learning.

The key novelty is a small form factor angular spatial filter that allows for the collection of light scattered by the

particles up to predefined discrete angles. The filter is combined with a light-emitting diode and a complementary

metal-oxide-semiconductor image sensor array to acquire angularly resolved scattering images. From these images, a

machine learning model predicts the volume median diameter of the particles. To validate the proposed device, glass

beads with diameters ranging from 13 to 125 µm were measured in suspension at several concentrations. We were

able to correct for multiple scattering effects and predict the particle size with mean absolute percentage errors of

5.09% and 2.5% for the cases without and with concentration as an input parameter, respectively. When only spherical

particles were analysed, the former error was significantly reduced (0.72%). Given that it is compact (on the order of

ten cm) and built with low-cost consumer electronics, the newly designed particle size analyser has significant

potential for use outside a standard laboratory, for example, in online and in-line industrial process monitoring.

Introduction

Particle size analysis based on light scattering has

widespread application in many fields, as it allows rela-

tively easy optical characterisation of samples enabling

improved quality control of products in many industries

including pharmaceutical, food, cosmetic, polymer pro-

duction, etc.1–3. Recent years have seen many advance-

ments in light scattering technologies for particle

characterisation. For submicron particle measurement,

dynamic light scattering (DLS)4 has now become an

industry standard technique. This method analyses the

fluctuations of scattered light by particles in suspension

when illuminated with a laser to determine the velocity of

the Brownian motion, which can then be used to obtain

the hydrodynamic size of particles using the Stokes-

Einstein relationship. Although DLS is a useful approach

to determine the size distribution of many nano- and

biomaterials systems, it does suffer from several dis-

advantages. For example, DLS is a low-resolution method

that is not suitable for measuring polydisperse samples,

while the presence of large particles can affect the size

accuracy4. Other scattering techniques have emerged,

such as nanoparticle tracking analysis (NTA)5, which

tracks individual particle movement through scattering

using image recording. NTA also measures the hydro-

dynamic size of particles from the diffusion coefficient but
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is capable of overcoming some of the limitations posed by

DLS5,6.

While the above-mentioned techniques are best suited

for measuring particles typically in the submicron region,

particle size analysers (PSAs) based on static light scat-

tering or laser diffraction (LD)7,8 have become the most

popular and widely used instruments for measuring par-

ticles from hundreds of nanometres to several millimetres.

Similar scattering theory is also utilised in systems based

on non-electromagnetic wave propagation, such as

ultrasonic analysers9,10. In LD PSAs, a laser beam is used

to irradiate a dilute suspension of particles. The light

scattered by the particles in the forward direction is

focused by a lens onto a large array of concentric pho-

todetector rings. The smaller the particle is, the larger the

scattering angle of the laser beam is. Thus, by measuring

the angle-dependent scattered intensity, one can infer the

particle size distribution using Fraunhofer or Mie scat-

tering models11,12. In the latter case, prior knowledge of

the refractive index of the particle being measured as well

as the dispersant is required.

Commercial LD PSAs have gained popularity due to

their broad dynamic range, rapid measurement, high

reproducibility and the capability to perform online

measurements. However, these devices are generally large

in size (~700 × 300 × 450mm), heavy (~30 kg) and

expensive (in the 50–200 K€ range). On the one hand, the

large size of common devices is due to the large distance

needed between the sample and the detectors to provide

the desired angular resolution. Furthermore, their high

price is mainly due to the use of expensive laser sources

and a large number of detectors, i.e., one sensor for each

scattering angle to be monitored. Some commercial

devices contain up to twenty sensors. This complexity of

commercial LD PSAs, together with the fact that they

often require maintenance and highly trained personnel,

make them impractical in the majority of online industrial

applications, which require the installation of probes in

processing environments, often at multiple locations.

The application of LD PSAs is also normally restricted

to dilute suspensions. This is because the optical models

used to estimate the particle size distribution (PSD) are

based on a single scattering approximation. In practice,

most industrial processes require measuring concentrated

suspensions, where multiple scattering becomes a pro-

minent effect. Multiple scattering in dense media leads to

an underestimation of the particle size since the light

scattered by the particles encounters diffraction points

multiple times before reaching the detector, which in turn

increases the apparent scattering angle13. To overcome

this issue, LD PSAs require appropriate sampling and

dilution systems, which increase capital investments and

operational costs. Another approach is to apply multiple

scattering correction models together with the optical

models to compute the PSD. A large number of algo-

rithms for multiple scattering correction can be found in

the literature14–16. However, these algorithms typically

require implementing a complex correction, which

increases the computation time and is often not suitable

for online measurements16.

An alternative approach to compute the PSD without

the use of optical models and complex correction factors

is to apply machine learning (ML) techniques17. Machine

learning is a valuable tool that relies on pattern recogni-

tion to learn and adapt to changes in processes and pro-

vide reliable results. It has been previously shown that,

given the concentration and the angular distribution of

scattered light, ML models can predict particle size even

at high concentrations18,19. Such optimisations open up

new opportunities for the use of LD PSAs in industrial

processes without the need for time-consuming and

cumbersome sample preparation. However, the low

integration level for multiple sensor configuration and

high cost of current commercial LD PSAs still remain

significant barriers for their widespread implementation

in online industrial monitoring.

Particles have also been measured using imaging tech-

niques. More specifically, lens-free imaging systems that

use complementary metal-oxide-semiconductor (CMOS)

image sensors can perform direct imaging of particle

holograms20 or particle diffraction patterns21. These sys-

tems allow the measurement of individual particles, dif-

ferentiating them by geometrical shape, and do not

require a significant refractive index difference between

the particles and the containing medium22. In this work,

we propose a novel low-cost and miniaturised PSA in a

collimated beam configuration using a CMOS image

sensor and an ML model based on a random forest

algorithm23. In contrast to other lens-free imaging sys-

tems using CMOS sensors, we analyse the angular dis-

tribution of scattered light from an ensemble of particles,

similar to the LD PSA. The proposed PSA device enables

the measurement of samples with high concentrations.

The key innovation in our proposed device is a small form

factor (5 mm diameter, 17 mm long) angular spatial filter

(ASF) made with an array of holes with different dia-

meters that are extruded from a polymer rod. Light col-

lected from different sized holes is representative of a

different set of scattering angles. Upon illumination of the

target sample with a light-emitting diode (LED), the ASF

allows characterising the angular dependence of the

scattered light by performing angle-resolved cumulative

light power measurements. The patented ASF technol-

ogy24 enables setting a specific design for each working

size range. The rest of the analyser consists of off-the-

shelf consumer electronic products, such as a CMOS

image sensor array and LED light source. This design

significantly reduces the cost and size compared to those
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of commercial LD PSAs, which require several detectors

to obtain an adequately resolved angular scattering

distribution.

To validate the new PSA, glass beads of different size

distributions were measured, ranging from 13 µm to

150 µm at several concentrations in liquid dispersions.

The random forest algorithm enables overcoming the

current understanding of the theoretical limitations due

to multiple scattering, enlarging the working size range

and application possibilities, especially for measurements

in liquid. By analysing the raw ASF images obtained from

the CMOS image sensor array, we show how multiple

scattering becomes prominent at high concentrations

depending on the particle size being measured and how

the random forest algorithm can correct this issue. Thus,

the proposed PSA has great potential to become a cost-

effective and compact solution for a broad range of

industrial applications.

Results

Design and fabrication of ASF

The ASF is the core of the proposed particle size ana-

lyser, which is capable of distinguishing different spatial

frequencies scattered from the sample by means of a low-

pass angular filter array. The ASF used in this work is an

array of holes of different diameters that function as

apertures (Fig. 1a). The angular acceptance— we call it the

cut-off angle, θc—for the scattered light of the apertures is

determined by the hole’s diameter (D) and length (L):

θc ¼ arctan
D

L

� �

ð1Þ

The light scattered up to predefined θc values (shown with

dashed vertical lines in Fig. 1b, c) is measured using a

CMOS image sensor array that can simultaneously

acquire power from multiple apertures (holes). This

design allows the reconstruction of the cumulative

angular scattering profile, as shown in Fig. 1c. In this

description of the PSA and ASF working principle, we

assume, for simplicity, that the inner walls of the ASF do

not reflect, there is no crosstalk between the holes and the

hole filtering has a square-like response up to the

corresponding cut-off angle. In addition, Eq. 1 does not

include effects on the calculation of θc due to light

diffraction in the filter holes. In our work, as we will show

later, there are instances where we observed residual

reflection and diffraction effects through the ASF holes.

However, the angular dependence of the ASF holes and

the capability of the device to discriminate particle size

and concentration are preserved. If necessary, light

diffraction in the filter holes can be strongly reduced by

increasing D and L proportionally, i.e., still maintaining

the same θc, as the typical diffraction angle is inversely

proportional to D.

The larger the particle size is, the smaller the scattering

angle is. Thus, a smaller θc is required, which means a

larger L/D ratio. For example, to measure particles of

hundreds of microns, we estimate that a minimum L/D

ratio of 200 is required. For a typical length of several mm,

this would mean a maximum D on the order of 50 µm.

Making hole apertures with such dimensions and length is

very challenging, even for the latest generation of 3D

micro-printers using layer-by-layer fabrication. Other

sophisticated techniques, such as mask-less photo-

lithography, offer submicron resolution but cannot pro-

duce features with such high L/D. Additive manufacturing

with micro-machining, e.g., laser sintering, selective laser

melting and laser drilling, may achieve high L/D with

micron resolution, but they impose significant constraints

on the ASF, such as the combination of multiple pieces

requiring tight alignment tolerances.

In this study, an interesting approach to overcome these

fabrication hurdles and produce a highly optimised ASF

including large arrays of holes with high L/D was to use a

polymer extrusion technique. Such techniques have been

widely used in fabricating micro-structured polymer

optical fibres (mPOFs)25, for example. To construct the

ASF, a micro-structured cane was fabricated using a drill-

and-draw technique from a commercially available poly

(methyl methacrylate) (PMMA) rod from Nordisk Plast. A

cane preform was prepared by machining the rod to

60mm in diameter and 100mm in length, which was

followed by drilling the desired hole patterns. The pre-

form was then annealed for a week at 80 °C and drawn to

canes of 5 mm in diameter and 50mm in length. A

complete description of the experimental methodologies

involved in the drill-and-draw technique can be found

in26. This method of fabricating the ASF allows high

flexibility in design since both D and L for the holes can be

easily adjusted to collect scattering angles required for

specific applications.

The fabricated ASF used in this work consists of 23

holes with diameters ranging from 112 to 800 µm. The

length is selected to be 17mm so that the PSA incor-

porating such ASF can measure scattering angles from

0.38 to 2.7°. However, for measuring particles in suspen-

sion, these angles need to be corrected because the rays

from the particles undergo refraction at the flow cell wall,

i.e., water-glass and glass-air interfaces. The relation

between the detected (θc) and the actual (θ) scattering

angles is given by:

sin θ ¼ sin θc
nw

ð2Þ

where nw is the refractive index of the water, giving θ from

0.29 to 2.02°. Using Mie theory, we can approximate this

angular range of the current ASF to be suitable for

measuring particles from approximately 10 to 125 µm. A

Hussain et al. Light: Science & Applications            (2020) 9:21 Page 3 of 11



smaller and larger hole diameter-to-length ratio is

required to measure particles above and below this range,

respectively. Note that for very small particles (i.e., below

10 µm), the signal-to-noise ratio becomes a limiting factor

due to the weak scattering signal intensity. A more

sensitive image sensor array, such as a commercially

available single-photon camera, can be used to improve

the measurement at low scattering intensity. The

implementation of such a camera will be a topic of

further study.

To account for the multiple scattering effect at high

concentrations that causes widening of the scattering

lobe, we polish one side of the ASF along the entire

length. This process leaves an empty space inside the

holder, which acts as a large aperture. Such an aperture

allows the entire angular spectrum of the forward scat-

tered light to be collected from the sample.

The mPOF polymer used for fabricating the ASF is only

partly absorbing in the working wavelength range in the

visible spectrum. The inner walls of the ASF are thus

covered with a black acrylic paint to increase their

absorption and reduce reflection and crosstalk between

adjacent holes.

Design of the PSA using the ASF

Figure 2a depicts the schematic diagram of the pro-

posed PSA design based on the ASF. A fibre-coupled and

collimated red LED—with a wavelength of 632.8 nm—is

used as the light source. A 10mm beam illuminates the

sample containing particles dispersed in water. The

scattered and unscattered light from the sample is col-

lected by the ASF and the holder attached to the CMOS

image sensor array. Additional details on the CMOS can

be found in the Materials and Methods section.

All the data analysis in this work is conducted using

MATLAB and Python. A typical raw image from the

CMOS image sensor is shown in Fig. 2b and the fabri-

cated ASF in Fig. 2c. The corresponding lab prototype is

shown in Fig. 2d.

Measurements of particle suspensions

The experiments using the proposed PSA were carried

out with samples listed in Table 1 for concentrations

ranging from 1 to 40 mg ml−1. For the smallest particle

size range, i.e., 13–20 µm, the highest concentration that

could be measured was 10 mg ml−1, where above this

concentration the light intensity reaching the CMOS
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Fig. 1 Concept of the new particle size analyser. a Schematic diagram of the ASF showing how the cut-off angle, θc, is dependent on the diameter

(D) and the length (L) of the holes. Light rays scattered from particles entering at angles larger than θc will be absorbed by the sidewalls. b The

angular scattering profiles in water for three different glass beads of diameters 13, 50 and 125 μm with refractive index of 1.51 at a wavelength of

632.8 nm, simulated using the Mie algorithm30 in MATLAB. c Cumulative scattering intensity for the three particle sizes. Instead of sampling the

scattering profile at each angle, the ASF apertures perform a cumulative scattering power measurement from zero to a predetermined θc. The

corresponding θc for each ASF hole for L= 17 mm, derived from Eq. 1 and converted to that in water using Eq. 2, is indicated by dashed vertical lines

in b and c. We plot here results for single-particle scattering, but similar working principle description can be applied to the multiple-particle case
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image sensor array becomes too low and would require

longer integration times to achieve reliable results. At the

beginning of each sample measurement, 200ml of water

was circulated through the flow cell, and a set of five

images was obtained with a time gap of between 20 and

60 s. For each concentration, a sample suspension was

Collimator

Fiber-coupled

red LED Particles

suspended in

water

5 mm 10 mm

ASF with the

holder

CMOS sensor

(behind the filter

holder) 

c

ba

d

Fig. 2 Design of the proposed PSA using the ASF. a Schematic diagram of the PSA with a novel ASF that allows angle-resolved forward scattering

measurements, in combination with a CMOS image sensor array and a collimated LED source, b An example raw image of sample with a volume

median diameter of 44 µm at a concentration of 15 mg ml−1 obtained from the CMOS image sensor array. c Photograph of the fabricated ASF and

d laboratory prototype showing the compactness of the proposed PSA

Table 1 Sample characteristics and concentrations measured.

Sample Density (gcm−3) Refractive index

@ λ= 632.8 nm

Size range (µm) Commercial LD PSA (HELOS/KR-H2487) Concentrations

measured (mg ml−1)

D10 (µm) D50 (µm) D90 (µm)

Guyson 2.5 1.51 80 55 74 92 1,5,10,15,20,25,30,40,50

40 24 39 56 1,5,10,15,16,18,20,25,30

Cp5000 2.56 1.51 13–20 6 11.9 21 1,2,3,4,5,6,7,8,9,10

Sovitec 2.46 1.51 0–50 18 34.8 51 1,5,10,15,18,20,22,25,30,40

40–50 33 43.6 51

40–70 46 62.3 80

70–110 68 87.5 108

90–150 97 125.5 157
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added from the stock solution (100 mg ml−1 concentra-

tion) to the water, and images were captured. The flow

cell was cleaned with deionized water prior to measuring

each new sample. A schematic diagram of the experi-

mental setup is shown in Supplementary Fig. S1, and the

raw images obtained from the CMOS sensor of the

samples measured at a certain concentration are shown in

Supplementary Fig. S2.

The light distribution between the ASF holes depends

on the concentration. In Fig. 3a, we show this dependence

for glass beads with a 40–50 µm size distribution. The

intensity values plotted are the average of the five images

calculated using the ¨regionprops¨ function in MATLAB.

For the same concentration, smaller particles present a

larger effect on the measured intensity and its dependence

on the scattering angle (see Figure S3). This phenomenon

can be explained in terms of the multiple scattering effect,

where particles undergo several scattering events before

reaching the CMOS image sensor array14–16. The result is

the widening of the scattering angle and hence a decrease

in the forward scattering intensity. This finding is also

confirmed by Fig. 3b, where the average intensity of a

small hole for three different particle size distributions is

plotted against particle concentration.

Particle size prediction using a machine learning algorithm

While a high concentration leads to multiple scattering

effects, an excessively low concentration leads to a poor

signal-to-noise ratio. Therefore, a certain working con-

centration range must be defined for different particle size

distributions. To avoid this concentration dependence

and facilitate a wide working concentration range, we

developed a machine learning algorithm using a random

forest model, as explained within the Materials and

Methods, to predict D50 from a given image and

concentration value.

The image processing and the machine learning steps

are summarised as a flowchart in Fig. 4. The mean and the

standard deviation as a function of data points for one set

of measurements were first monitored. After 100 repeats,

no significant improvement in the predicted error was

observed. Hence, the model was trained and tested

100 times. The mean of 100 mean absolute percentage

error (MAPE) on the test sets was found to be 2.52%, with

a standard deviation of 0.73%. The performance of the

model on only one of these test sets is depicted in Fig. 5a, b.

The random forest model can therefore correct the

dependence on particle concentration that leads to the

multiple scattering effect (Fig. 5b) and predict the particle

size with high accuracy (Fig. 5a).

So far, we tested Model 1 to predict D50 using con-

centration as one of the inputs. Since in practice, the

particle size should be provided as an independent para-

meter from concentration, we tested Model 2, which

relies only on filter sizes and intensities to predict D50.

Upon testing the model, the MAPE was found to be

5.09 ± 1.56%. The predicted D50 vs nominal D50 and D50

vs concentration plots are given in Fig. 5c, d, respectively.

As expected, Model 1 has a higher precision than Model 2

when concentration information is given as input, but the

prediction error without concentration is still acceptable.

We also performed separate training of the model using

intensity values from the large hole only for all the particle

sizes measured (Supplementary Fig. S4). Note that the big

hole analysis is performed on the same images as the ASF

holes. The large hole intensity includes the entire angular
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multiple scattering
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spectrum for the scattered light and scales as the

absorption due to the particle solution. The model was

tested 100 times with different test sets. The mean pre-

dictions were found to deviate significantly from the

nominal values with varying concentrations, and the mean

error was increased to 23.03 ± 5.61%. This result confirms

that absorption analysis is not enough and that scattering

and the ASF play crucial roles in predicting particle size

with high accuracy using the random forest model. In

addition, the big hole analysis indicates that there are no

hidden correlations between the different images, other

than those related to the particles (e.g., size, concentra-

tion) on which scattering depends. If there were hidden

correlations, then the MAPE for the large hole would not

have given such large errors compared to those obtained

with the ASF analysis.

In particle size analysis, D50 is certainly one of the most

important parameters. However, some applications

require knowledge of the distribution, as given by the D10

and D90 parameters, which correspond to fine and coarse

particles, respectively, in the sample. The same machine

learning algorithm can also be trained to predict addi-

tional percentile values for the volume median diameter,

e.g., D5, D10, D15 to D95, without the need to modify the

experimental set-up. We performed a trial training of the

random forest model with the D10, D50 and D90 values

measured using a commercial LD PSA; on testing the

model, the MAPE was found to be 4.27 ± 1.64%, 3.02 ±

1.07% and 2.4 ± 0.8%, respectively. Even though the

results are quite promising with only one set of D10 and

D90 data for each size, they can be further improved by

measuring samples with the same D50 but varying dis-

tribution spread. Future development will include

experiments with different refractive indices and different

size range particles.

In addition to the above-mentioned batch measure-

ments, we performed a test flow-through measurement

(described in supplementary information) to demonstrate

the capability of our ML model for such measurements.

We collected data with two samples, 13-20 µm and

40-70 µm, for different concentrations and calibrated our

previous model with these data. We then tested the model

on a new set of data for the same samples collected on a

separate day. The MAPE for Model 1 was found to be

1.77 ± 0.25% (Supplementary Fig. S5). Though only two

samples were measured, this preliminary result suggests

that our system can be used to predict the change in

particle size for different samples. With further optimi-

sation, the flow measurement procedure and performance

can be improved, and the accuracy can be increased.

We also note that larger deviations from the nominal

value are observed for the Guyson beads (D50: 39 and

74 µm). Microscope images (see Supplementary Fig. S6a

and b) of these beads reveal the presence of some non-

spherical particles, the shape of which has an influence on

their scattering pattern. Supplementary Fig. S6c and d
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Fig. 4 Flowchart of the particle size detection algorithm using machine learning
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shows the performance of Model 2 for all glass beads

except the Guyson beads and for only the Guyson beads,

respectively, confirming that the MAPE is strongly

increased by the Guyson beads. By removing the particles

with a non-spherical shape from the sample analysis, the

MAPE becomes much smaller (0.72%). Therefore, our

device performs according to ISO1332027, which requires

that for polydisperse spherical particles, the measured

D50 should be within 2.5% of the quoted maximum or

minimum values for the reference materials. In future

work, by collecting more data, including on non-spherical

particles, one can expect that the precision of the device

will increase further.

Discussion

In this work, we proposed a novel design of a compact,

portable and cost-effective particle size analyser (PSA) in

a collimated beam configuration using a CMOS image

sensor and machine learning. Unlike commercially avail-

able counterparts, such as laser diffraction-based systems

that use several detectors to measure the scattering sig-

nature of particles, the proposed PSA uses an innovative

design including a novel, very small angular spatial filter.

The ASF combined with an LED and a CMOS image

sensor array allows the acquisition of angle-dependent

scattering images that are used by an ML model to predict

the median diameter of particles.

The proposed PSA was validated by measuring glass

beads of various size distributions at different con-

centrations. The results obtained from the ML model

showed that, given the particle concentration, the median

particle size could be measured, with a low mean absolute

percentage error of 2.5%, even in the presence of sig-

nificant multiple scattering. When the concentration is
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Hussain et al. Light: Science & Applications            (2020) 9:21 Page 8 of 11



not an input parameter, this error increases to 5%.

However, by removing samples with non-spherical parti-

cles, we achieve a MAPE of 0.72% for Model 2, i.e.,

without predefining concentration as an input parameter.

These performances compare well with those of com-

mercially available laser diffraction-based counterparts,

with reported device accuracies for monomodal latex

standards of approximately 0.6%.

While future improvements in the optical hardware and

a larger quantity of data for the ML algorithm, including

non-spherical particles collected with well-designed

sample feeding systems for dry and wet measurements,

will lead to higher precision, we intend to utilise the

inherent flexibility of the simple design and low hardware

cost of our proposed PSA for incorporation in online or

at-line applications. For online operations, such instru-

mentation is mostly used for quality assurance (QA) and

control purposes, which are often focused on measuring

system changes rather than necessarily exact values. We

have shown such an example of a real-time change

response with the proof-of-concept measurements in a

flow cell system using our proposed PSA. As such, the

performance is a trade-off between the hardware cost and

the required level of accuracy, where the exact error limits

will likely not be as low as those for commercial ex situ

PSAs. The additional benefit of online analysis is the

lower degree of sample intrusion, and thus, for many

particle processes, measurements are often actually more

representative of the system, even if the absolute instru-

ment error is higher.

Therefore, we believe our proposed PSA is an attractive

solution for online monitoring of particles in different

industrial processes without the need to perform dilution

operations. We also note that our proposed PSA device is

sensitive to the refractive index difference between the

particles and the surrounding medium. In principle, the

system may thus also be used in relevant biological

applications, for example, in the detection of micro-

organisms in water, such as Escherichia coli and Legio-

nella, and red cells in blood.

Materials and methods

Glass bead characterisation

To test the functionality of the newly designed PSA, we

measured various size distributions of glass beads at dif-

ferent concentrations, which are summarised in Table 1.

The sample suspensions in water at each concentration

are measured using a commercial LD PSA (Model

HELOS/KR-H2487, Sympatec GmbH, Clausthal-Zeller-

feld, Germany) for angular ranges below 35° (i.e., forward

scattering). In this work, an angular range of 0.1° to 9° is

used since this range is sensitive to particle sizes from

0.5 μm to 175 μm28. The volume median diameter D50

together with the volume-weighted 10th and 90th

percentiles, D10 and D90, respectively, of the particle

distributions for each sample measured with HELOS/KR-

H2487 are also listed in Table 1.

Electron micrographs of the particles dispersed in water

are also taken using a scanning electron microscope

(SEM), model DSM 982 Gemini (Zeiss/Germany). The

SEM is a low-voltage electron microscope (30 kV) with a

maximum magnification of 200,000, i.e., a resolution of

approximately 10 nm. The instrument detects both types

of electrons, namely, backscattered primary and back-

scattered secondary electrons, and therefore can provide

high sizing accuracy and three-dimensional impression.

The particle size distributions obtained from the

HELOS/KR-H2487 system together with the SEM images

of the glass beads used in the experiments are shown in

Supplementary Fig. S7.

Particle suspension preparation

For each size range to be measured, a known mass of

powder samples is taken and dispersed in a known

volume of deionized water to make a suspension. An

overhead stirrer at 300 rpm is used to prevent agglom-

eration or deposition of the particles in the beaker con-

taining the suspension. The suspension is then circulated

into a flow cell (component of HELOS-KR-SUCELL—

Sympatec GmbH, Clausthal-Zellerfeld, Germany; mea-

surement volume ~ 6ml) with a path length of 4 mm

using a peristaltic pump. The pressure of the pump is

controlled to prevent air bubble formation while main-

taining a homogeneous flow of suspension in the

measurement cell.

Image acquisition and processing

The CMOS image sensor array used to capture the

images is a Micron MT9P0311, and the images are

displayed using DevWare software. The active area of

the image sensor array is 5.7 × 4.28 mm= 24.4 mm2,

which is also the field-of-view of the proposed PSA

when the ASF is in close proximity to the flow cell; it

consists of 2592 × 1944 pixels, each of which has a size

of 2.2 × 2.2 µm. The array has four colour channels, of

which only red is used for data processing in our

experiments. The frame rate to obtain a full-resolution

image is 14 frames per second (fps).

Prior to each measurement, a dark image in the absence

of LED illumination is captured and subsequently sub-

tracted from the sample images. For each particle size

range, first, a reference image with only water is mea-

sured, and then, images of suspensions at different con-

centrations are measured.

Machine learning algorithm

The data from the sensor include an image per test

condition (concentration and standard particle size). The
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following procedure was developed to correlate the ima-

ges to the median volume particle size D50 used in each

test. First, the location of the 23 filter holes is established

using an image processing library (scikit-image, blob

detection) in Python. The pixel intensities and diameters

are calculated for each hole. The pixel intensities are then

converted to relative intensities, as percentages, using the

reference images to which pixel intensities of 100% are

assigned. A set of five images is obtained for each com-

bination of concentration and particle size, and the

average of these images corresponds to a single data point:

(a) the known concentration and D50 and (b) the relative

intensities and diameters for 23 holes. Second, the dataset

comprises 459 images that are randomly partitioned into

two sets: (a) the training set (344 images) and (b) the test

set (115 images).

Third, the random forest algorithm is used to find the

correlation between the input variables (the concentra-

tion, the 23 relative intensities and 23 hole diameters) and

the output variable (D50). Among the different ML

algorithms available29, we chose the random forest

because it is suitable for structured data, as in our case.

We have also made a preliminary comparison between

gradient boosting and random forest and confirmed that

the latter provides slightly better predictions for the

number of data points used in the analysis. The random

forest consists of multiple decision trees. Each tree is a

tree-like model of decisions. Each decision (splitting of the

data) uses one feature and its threshold value. Learning

(i.e., training) includes choosing the features, threshold

values and when to stop the tree. The model is developed

using a scikit learn machine learning library, with the

hyper-parameters given in Supplementary Table S1.

Fourth, the generation of the training/test sets is a

random process; therefore, model performance can

change from split to split. To handle this fluctuation, steps

2 and 3 are repeated 100 times. MAPE of model predic-

tions on the test set is used to assess the performance of

the model. It is defined as:

MAPE ¼ 100%
n

P

n

i¼0

Actual valuei�Predicted valuei
Actual valuei

�

�

�

�

�

� ð3Þ

where n is the number of images in the test set.

The mean MAPE of 100 models and their standard

deviations are reported as the final figure of merit. To

visualise the predictions of one of the models on the test

set, predictions are plotted per particle size.

Until now, we developed a model that predicts D50

using concentration as one of the inputs. We refer to this

as Model 1. For a truly functional sensor, however, pre-

dicting D50 only from intensity, without any input con-

centration, is essential. Therefore, we developed another

random forest model, Model 2, which uses only filter sizes

and intensities (i.e., 23 hole diameters and 23 intensity

values) to predict D50.
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