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ABSTRACT 52 

Without an effective prophylactic solution, infections from SARS-CoV-2 continue to rise 53 

worldwide with devastating health and economic costs. SARS-CoV-2 gains entry into host cells 54 

via an interaction between its Spike protein and the host cell receptor angiotensin converting 55 

enzyme 2 (ACE2). Disruption of this interaction confers potent neutralization of viral entry, 56 

providing an avenue for vaccine design and for therapeutic antibodies. Here, we develop single-57 

domain antibodies (nanobodies) that potently disrupt the interaction between the SARS-CoV-2 58 

Spike and ACE2. By screening a yeast surface-displayed library of synthetic nanobody 59 

sequences, we identified a panel of nanobodies that bind to multiple epitopes on Spike and 60 

block ACE2 interaction via two distinct mechanisms. Cryogenic electron microscopy (cryo-EM) 61 

revealed that one exceptionally stable nanobody, Nb6, binds Spike in a fully inactive 62 

conformation with its receptor binding domains (RBDs) locked into their inaccessible down-63 

state, incapable of binding ACE2. Affinity maturation and structure-guided design of 64 

multivalency yielded a trivalent nanobody, mNb6-tri, with femtomolar affinity for SARS-CoV-2 65 

Spike and picomolar neutralization of SARS-CoV-2 infection. mNb6-tri retains stability and 66 

function after aerosolization, lyophilization, and heat treatment. These properties may enable 67 

aerosol-mediated delivery of this potent neutralizer directly to the airway epithelia, promising to 68 

yield a widely deployable, patient-friendly prophylactic and/or early infection therapeutic agent to 69 

stem the worst pandemic in a century. 70 

  71 
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MAIN TEXT: 72 

Over the last two decades, three zoonotic β-coronaviruses have entered the human population, 73 

causing severe respiratory symptoms with high mortality (1-3). The ongoing COVID-19 74 

pandemic is caused by SARS-CoV-2, the most readily transmissible of these three 75 

coronaviruses (4-7). SARS-CoV-2 has wrecked the world’s economy and societies to an 76 

unprecedented extent, to date (Aug. 14, 2020) causing 751,154 77 

reported deaths around the globe (8). Although public health measures have slowed its spread 78 

in many regions, infection hotspots keep reemerging. No successful vaccine or preventive 79 

treatment has yet been manufactured for any coronavirus, and the time to develop an effective 80 

and broadly available vaccine for SARS-CoV-2 remains uncertain. The development of novel 81 

therapeutic and prophylactic approaches thus remains essential, both as temporary stopgaps 82 

until an effective vaccine is generated and as permanent solutions for those segments of the 83 

population for which vaccination proves ineffective or contraindicated. 84 

  85 

Coronavirus virions are bounded by a membrane envelope that contains ~25 copies of the 86 

homotrimeric transmembrane spike glycoprotein (Spike) responsible for virus entry into the host 87 

cell (9). The surface-exposed portion of Spike is composed of two domains, S1 and S2 (10). The 88 

S1 domain mediates the interaction between virus and its host cell receptor, the angiotensin 89 

converting enzyme 2 (ACE2), while the S2 domain catalyzes fusion of the viral and host cell 90 

membranes (3, 11-13). During its biogenesis, the Spike protein is proteolytically cleaved 91 

between the S1 and S2 domains, which primes the virus for cellular entry (10). Contained within 92 

S1 is the receptor binding domain (RBD), which directly binds to ACE2. The RBD is attached to 93 

the body of Spike by a flexible region and can exist in an inaccessible down-state or an 94 

accessible up-state (14, 15). Binding to ACE2 requires the RBD in the up-state and enables 95 

cleavage by host proteases TMPRSS2 or cathepsin, triggering a dramatic conformational 96 

change in S2 that enables viral entry (16). In SARS-CoV-2 virions, Spike oscillates between an 97 

active, open conformation with at least one RBD in the up-state and an inactive, closed 98 

conformation with all RBDs in the down-state (9, 11, 14, 15). 99 

  100 

By screening a high-complexity yeast surface-displayed library of synthetic nanobodies, we 101 

have uncovered a collection of nanobodies that block the Spike-ACE2 interaction. Biochemical 102 

and structural studies revealed that two classes of these nanobodies act in distinct ways to 103 

prevent ACE2 binding. Combining affinity maturation and structure-guided multimerization, we 104 

optimized these agents and generated Spike binders that match or exceed the potency of most 105 
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monoclonal antibodies disclosed to date. Our lead neutralizing molecule, mNb6-tri, blocks 106 

SARS-CoV-2 entry in human cells at picomolar efficacy and withstands aerosolization, 107 

lyophilization, and elevated temperatures. mNb6-tri provides a promising approach to deliver a 108 

potent SARS-CoV-2 neutralizing molecule directly to the airways for prophylaxis or therapy. 109 

 110 

RESULTS 111 

Synthetic nanobodies that disrupt Spike-ACE2 interaction 112 

To isolate nanobodies that neutralize SARS-CoV-2, we screened a yeast surface-displayed 113 

library of >2x109 synthetic nanobody sequences. Our strategy was to screen for binders to the 114 

full Spike protein ectodomain, in order to capture not only those nanobodies that would compete 115 

by binding to the ACE2-binding site on the RBD directly but also those that might bind 116 

elsewhere on Spike and block ACE2 interaction through indirect mechanisms. We used a 117 

mutant form of SARS-CoV-2 Spike (Spike*,) as the antigen (15). Spike* lacks one of the two 118 

activating proteolytic cleavage sites between the S1 and S2 domains and introduces two 119 

mutations to stabilize the pre-fusion conformation. Spike* expressed in mammalian cells binds 120 

ACE2 with a KD = 44 nM (Supplementary Fig. 1), consistent with previous reports (17). Next, we 121 

labeled Spike* with biotin or with fluorescent dyes and selected nanobody-displaying yeast over 122 

multiple rounds, first by magnetic bead binding and then by fluorescence-activated cell sorting 123 

(Fig. 1A). 124 

 125 

Three rounds of selection yielded 21 unique nanobodies that bound Spike* and showed 126 

decreased Spike* binding in the presence of ACE2. Closer inspection of their binding properties 127 

revealed that these nanobodies fall into two distinct classes. One group (Class I) binds the RBD 128 

and competes with ACE2 (Fig. 1B). A prototypical example of this class is nanobody Nb6, which 129 

binds to Spike* and to RBD alone with a KD of 210 nM and 41 nM, respectively (Fig. 1C; Table 130 

1). Another group (Class II), exemplified by nanobody Nb3, binds to Spike* (KD = 61 nM), but 131 

displays no binding to RBD alone (Fig. 1C, Table 1). In the presence of excess ACE2, binding of 132 

Nb6 and other Class I nanobodies is blocked entirely, whereas binding of Nb3 and other Class II 133 

nanobodies is decreased only moderately (Fig. 1B). These results suggest that Class I 134 

nanobodies target the RBD to block ACE2 binding, whereas Class II nanobodies target other 135 

epitopes and decrease ACE2 interaction with Spike allosterically or through steric interference. 136 

Indeed, surface plasmon resonance (SPR) experiments demonstrate that Class I and Class II 137 

nanobodies can bind Spike* simultaneously (Fig. 1D). 138 

 139 
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Analysis of the kinetic rate constants for Class I nanobodies revealed a consistently greater 140 

association rate constant (ka) for nanobody binding to the isolated RBD than to full-length Spike* 141 

(Table 1), which suggests that RBD accessibility influences the KD. We next tested the efficacy 142 

of our nanobodies, both Class I and Class II, to inhibit binding of fluorescently labeled Spike* to 143 

ACE2-expressing HEK293 cells (Table 1, Fig. 1E). Class I nanobodies emerged with highly 144 

variable activity in this assay with Nb6 and Nb11 as two of the most potent clones with IC50 145 

values of 370 and 540 nM, respectively (Table 1). For unexplained reasons, Class II nanobodies 146 

showed little to no activity in this assay (Table 1, Fig. 1E).  147 

 148 

Going forward, we prioritized two Class I nanobodies, Nb6 and Nb11, that combine potent 149 

Spike* binding with relatively small differences in ka between binding to Spike* or RBD. We 150 

reasoned that the epitopes recognized by Nb6 and Nb11 would be more readily accessible in 151 

the Spike protein on intact virions. For Class II nanobodies we prioritized Nb3 because of its 152 

optimal stability and yield during purification. 153 

 154 

Nb6 and Nb11 target the RBD and directly compete with ACE2 155 

To define the binding sites of Nb6 and Nb11, we determined their cryogenic electron 156 

microscopy (cryo-EM) structures bound to Spike* (Fig. 2A-B, Supplementary Fig. 2-4, 157 

Supplementary Table 1). Both nanobodies recognize RBD epitopes that overlap the ACE2 158 

binding site (Fig. 2E). For Nb6 and Nb11, we resolved nanobody binding to both the open and 159 

closed conformations of Spike*. We obtained a 3.0 Å map of Nb6 bound to closed Spike*, which 160 

enabled modeling of the Nb6-Spike* complex (Fig. 2A), including the complementarity 161 

determining regions (CDRs). We also obtained lower resolution maps for Nb6 bound to open 162 

Spike* (3.8 Å), Nb11 bound to open Spike* (4.2 Å), and Nb11 bound to closed Spike* (3.7 Å). 163 

For these lower resolution maps, we could define the nanobody’s binding orientation but not 164 

accurately model the CDRs. 165 

 166 

Nb6 bound to closed Spike* straddles the interface between two adjacent RBDs. The majority of 167 

the contacting surfaces are contributed by CDR1 and CDR2 of Nb6 (Fig. 2C). CDR3 contacts 168 

the adjacent RBD that is counterclockwise positioned when viewed from the top of Spike* (Fig. 169 

2C). The binding of one Nb6 therefore stabilizes two adjacent RBDs in the down-state. We 170 

surmise that this initial binding event pre-organizes the binding site for a second and third Nb6 171 

molecule to stabilize the closed Spike* conformation. Indeed, binding of two Nb6 molecules 172 

would lock all three RBDs into the down-state, thus highly favoring binding of a third Nb6 173 
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because binding would not entail any further entropic cost. By contrast, Nb11 bound to down-174 

state RBDs only contacts a single RBD (Fig. 2D).  175 

 176 

Nb3 interacts with the Spike S1 domain external to the RBD 177 

Our attempts to determine the binding site of Nb3 by cryo-EM proved unsuccessful. We 178 

therefore turned to radiolytic hydroxyl radical footprinting to determine potential binding sites for 179 

Nb3. Spike*, either apo or bound to Nb3, was exposed to 5-50 milliseconds of synchrotron X-ray 180 

radiation to label solvent-exposed amino acids with hydroxyl radicals. Radical-labeled amino 181 

acids were subsequently identified and quantified by mass spectrometry of trypsin/Lys-C or Glu-182 

C protease digested Spike*(18). Two neighboring surface residues on the S1 domain of Spike 183 

(M177 and H207) emerged as highly protected sites in the presence of Nb3 (Supplementary 184 

Fig. 5). The degree of protection is consistent with prior observations of antibody-antigen 185 

interactions by hydroxyl radical footprinting (19). Both M177 and H207 are greater than 40 Å 186 

distant from the ACE2 binding site on the RBD, suggesting that Nb3 may inhibit Spike-ACE2 187 

interactions through allosteric means. 188 

 189 

Rationally engineered multivalency increases potency 190 

The structure of Nb6 bound to closed Spike* enabled us to engineer bivalent and trivalent 191 

nanobodies predicted to lock all RBDs in the down-state. To this end, we inserted flexible Gly-192 

Ser linkers of either 15 or 20 amino acids to span the 52 Å distance between adjacent Nb6 193 

monomers bound to down-state RBDs in closed Spike* (Supplementary Fig. 6). Both linker 194 

lengths are too short to span the distance (72 Å) between Nb6 bound to a down-state RBD and 195 

an up-state RBD that would co-exist in an open Spike. Moreover, binding of three RBDs in the 196 

previously reported conformation of Nb6-bound open Spike* would be physically impossible 197 

even with longer linker length because of steric clashes (Supplementary Fig. 6). By contrast, the 198 

minimum distance between adjacent Nb11 monomers bound to either open or closed Spike* is 199 

68 Å (Supplementary Fig. 6). We therefore predicted that multivalent binding by Nb6 constructs 200 

would display significantly slowed dissociation rates due to the enhanced avidity afforded by 201 

Spike’s trimeric architecture.  202 

 203 

We assessed multivalent Nb6 binding to Spike* by SPR. Both bivalent Nb6 with a 15 amino acid 204 

linker (Nb6-bi) and trivalent Nb6 with two 20 amino acid linkers (Nb6-tri) dissociate from Spike* 205 

in a biphasic manner. The dissociation phase can be fitted to two components: a fast phase with 206 

kinetic rate constants kd1 of 2.7x10-2 s-1 for Nb6-bi and 2.9x10-2 s-1 for Nb6-tri, which are of the 207 
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same magnitude as that observed for monovalent Nb6 (kd = 5.6x10-2 s-1) and a slow phase that 208 

is dependent on avidity (kd2 = 3.1x10-4 for Nb6-bi and kd2 < 1.0x10-6 s-1 for Nb6-tri, respectively) 209 

(Fig. 3A). The relatively similar kd for the fast phase suggests that a fraction of the observed 210 

binding for the multivalent constructs is nanobody binding to a single Spike* RBD. By contrast, 211 

the slow dissociation phase of Nb6-bi and Nb6-tri indicates engagement of two or three RBDs. 212 

We observed no dissociation for the slow phase of Nb6-tri over 10 minutes, indicating an upper 213 

boundary for kd2 of 1x10-6 s-1 and subpicomolar affinity. This measurement remains an upper-214 

bound estimate rather than an accurate measurement because the technique is limited by the 215 

intrinsic dissociation rate of Spike* from the chip imposed by the chemistry used to immobilize 216 

Spike*. 217 

 218 

We reasoned that the biphasic dissociation behavior could be explained by a slow 219 

interconversion between up- and down-state RBDs, with conversion to the more stable down-220 

state required for full trivalent binding. According to this view, a single domain of Nb6-tri 221 

engaged with an up-state RBD would dissociate rapidly. The system would then re-equilibrate 222 

as the RBD flips into the down-state, eventually allowing Nb6-tri to trap all RBDs in closed 223 

Spike*. To test this notion directly, we varied the time allowed for Nb6-tri binding to Spike*. 224 

Indeed, we observed an exponential decrease in the percent fast-phase with a t1/2 of 65 s (Fig. 225 

3B), which, we surmise, reflects the timescale of conversion between the RBD up- and down-226 

states in Spike*. Taken together, dimerization and trimerization of Nb6 afforded 750-fold and 227 

>200,000-fold gains in KD, respectively. 228 

 229 

Class I and II nanobodies prevent SARS-CoV-2 infection 230 

We next tested the neutralization activity of trivalent versions of our top Class I (Nb6 and Nb11) 231 

and Class II (Nb3) nanobodies against SARS-CoV-2 pseudotyped lentivirus. In this assay, 232 

SARS-CoV-2 Spike is expressed as a surface protein on a lentiviral particle that contains a 233 

ZsGreen reporter gene, which is integrated and expressed upon successful viral entry into cells 234 

harboring the ACE2 receptor (20). Nb6 and Nb11 inhibited pseudovirus infection with IC50 235 

values of 2.0 µM and 2.4 µM, respectively, and Nb3 inhibited pseudovirus infection with an IC50 236 

of 3.9 µM (Fig. 3C, Table 1). Nb6-tri shows a 2000-fold enhancement of inhibitory activity, with 237 

an IC50 of 1.2 nM, whereas trimerization of Nb11 and Nb3 resulted in more modest gains of 40- 238 

and 10-fold (51 nM and 400 nM), respectively (Fig. 3C).  239 

 240 
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We next confirmed these neutralization activities with a viral plaque assay using live SARS-241 

CoV-2 virus infection of VeroE6 cells. Consistent with its activity against pseudotyped lentivirus, 242 

Nb6-tri proved exceptionally potent, neutralizing SARS-CoV-2 with an average IC50 of 160 pM 243 

(Fig. 3D). Nb3-tri neutralized SARS-CoV-2 with an average IC50 of 140 nM (Fig. 3D).  244 

 245 

Affinity maturation yields a femtomolar KD Spike inhibitor 246 

We further optimized the potency of Nb6 by selecting high-affinity variants. To this end, we 247 

prepared a new library, starting with the Nb6 coding sequence, in which we varied each amino 248 

acid position of all three CDRs by saturation mutagenesis (Fig. 4A). After two rounds of 249 

magnetic bead-based selection, we isolated a population of high-affinity clones. Sequencing 250 

revealed two highly penetrant mutations: I27Y in CDR1 and P105Y in CDR3. We incorporated 251 

these two mutations into Nb6 to generate matured Nb6 (mNb6), which binds with 500-fold 252 

increased affinity to Spike* as measured by SPR (Fig. 4B). As a monomer, mNb6 inhibits both 253 

pseudovirus and live SARS-CoV-2 infection with low nanomolar potency, a ~200-fold 254 

improvement compared to Nb6 (Fig. 4I-J, Table 1). 255 

 256 

A 2.9 Å cryo-EM structure of mNb6 bound to Spike* shows that, like the parent nanobody Nb6, 257 

mNb6 binds to closed Spike (Fig. 4C, Supplementary Fig. 7). The higher resolution map allowed 258 

us to build a model with high confidence and determine the effects of the I27Y and P105Y 259 

substitutions. mNb6 induces a slight rearrangement of the down-state RBDs as compared to 260 

both previously determined structures of apo-Spike* and Spike* bound to Nb6, inducing a 9° 261 

rotation of the RBD away from the central three-fold symmetry axis (Fig. 4H) (14, 15). This 262 

deviation likely arises from a different interaction between CDR3 and Spike*, which nudges the 263 

RBDs into a new resting position. While the I27Y substitution optimizes local contacts between 264 

CDR1 in its original binding site on the RBD, the P105Y substitution leads to a marked 265 

rearrangement of CDR3 in mNb6 (Fig. 4F-G). This conformational change yields a different set 266 

of contacts between mNb6 CDR3 and the adjacent RBD (Fig. 4D). Remarkably, an X-ray crystal 267 

structure of mNb6 alone revealed dramatic conformational differences in CDR1 and CDR3 268 

between free and Spike*-bound mNb6, suggestive of significant conformational heterogeneity 269 

for the unbound nanobodies and induced-fit rearrangements upon binding to Spike* (Fig. 4E). 270 

 271 

The binding orientation of mNb6 is similar to that of Nb6, supporting the notion that our 272 

multivalent design would likewise enhance binding affinity. Unlike Nb6-tri, trivalent mNb6 273 

(mNb6-tri) bound to Spike with no observable fast-phase dissociation and no measurable 274 
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dissociation over ten minutes, yielding an upper bound for the dissociation rate constant kd of 275 

1.0x10-6 s-1 (t1/2 > 8 days) and a KD of <1 pM (Fig. 4B). As above, more precise measurements 276 

of the dissociation rate are precluded by the surface chemistry used to immobilize Spike*.  277 

 278 

mNb6-tri displays further gains in potency in both pseudovirus and live SARS-CoV-2 infection 279 

assays with IC50 values of 120 pM (5.0 ng/mL) and 54 pM (2.3 ng/mL), respectively (Fig. 4H-I, 280 

Table 1). Given the sub-picomolar affinity observed by SPR, it is likely that these viral 281 

neutralization potencies reflect the lower limit of the assays. mNb6-tri is therefore an 282 

exceptionally potent SARS-CoV-2 neutralizing antibody, among the most potent molecules 283 

disclosed to date.  284 

 285 

Nb6, Nb6-tri, mNb6, and mNb6-tri are robust proteins 286 

One of the most attractive properties that distinguishes nanobodies from traditional monoclonal 287 

antibodies is their extreme stability (21). We therefore tested Nb6, Nb6-tri, mNb6, and mNb6-tri 288 

for stability regarding temperature, lyophilization, and aerosolization. Temperature denaturation 289 

experiments using circular dichroism measurements to assess protein unfolding revealed 290 

melting temperatures of 66.9, 62.0, 67.6, and 61.4 °C for Nb6, Nb6-tri, mNb6 and mNb6-tri, 291 

respectively (Fig 5A). Aerosolization and prolonged heating of Nb6, mNb6, and mNb6-tri for 1 292 

hour at 50°C induced no loss of activity (Fig 5B). Moreover, mNb6 and mNb6-tri were stable to 293 

lyophilization and to aerosolization using a mesh nebulizer, showing no aggregation by size 294 

exclusion chromatography and preserved high affinity binding to Spike* (Fig. 5C-D). 295 

 296 

DISCUSSION 297 

There is a pressing need for prophylactics and therapeutics against SARS-CoV-2 infection. 298 

Most recent strategies to prevent SARS-CoV-2 entry into the host cell aim at blocking the 299 

ACE2-RBD interaction. High-affinity monoclonal antibodies, many identified from convalescent 300 

patients, are leading the way as potential therapeutics (22-29). While highly effective in vitro, 301 

these agents are expensive to produce by mammalian cell expression and need to be 302 

intravenously administered by healthcare professionals (30). Moreover, large doses are likely to 303 

be required for prophylactic viral neutralization, as only a small fraction of systemically 304 

circulating antibodies cross the epithelial cell layers that line the airways (31). By contrast, single 305 

domain antibodies (nanobodies) provide significant advantages in terms of production and 306 

deliverability. They can be inexpensively produced at scale in bacteria (E. coli) or yeast (P. 307 
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pastoris). Furthermore, their inherent stability enables aerosolized delivery directly to the nasal 308 

and lung epithelia by self-administered inhalation (32).  309 

 310 

Monomeric mNb6 is among the most potent single domain antibodies neutralizing SARS-CoV-2 311 

discovered to date. Multimerization of single domain antibodies has been shown to improve 312 

target affinity by avidity (32, 33). In the case of Nb6 and mNb6, however, our design strategy 313 

enabled a multimeric construct that simultaneously engages all three RBDs, yielding profound 314 

gains in potency. Furthermore, because RBDs must be in the up-state to engage with ACE2, 315 

conformational control of RBD accessibility can serve as an added neutralization mechanism. 316 

Indeed, our Nb6-tri and mNb6-tri molecules were designed with this functionality in mind. Thus, 317 

when mNb6-tri engages with Spike, it prevents ACE2 binding by both directly occluding the 318 

binding site and by locking the RBDs into an inactive conformation. Although a multitude of 319 

other monoclonal and single-domain antibodies against SARS-CoV-2 Spike have been 320 

discovered to date, there are few if any molecules as potent and stable as mNb6-tri (33-43). 321 

Resistance to aerosolization, in particular, offers unprecedented opportunity for patient-friendly 322 

nasal and pulmonary administration. 323 

 324 

Our discovery of Class II neutralizing nanobodies demonstrates the presence of previously 325 

unexplored mechanisms of blocking Spike binding to ACE2. For one Class II nanobody, Nb3, 326 

we identified a likely binding site in the Spike S1 domain external to the RBDs. Previously 327 

discovered neutralizing antibodies from convalescent patients bind an epitope in a similar region 328 

of Spike (24, 26, 27). Binding of Nb3 to this epitope may allosterically stabilize RBDs in the 329 

down-state, thereby decreasing ACE2 binding. Pairing of Class I and Class II nanobodies in a 330 

prophylactic or therapeutic cocktail could thus be a highly advantageous strategy for both potent 331 

neutralization and prevention of escape variants. The combined stability, potency, and diverse 332 

epitope engagement of our anti-Spike nanobodies therefore provide a unique potential 333 

prophylactic and therapeutic strategy to limit the continued toll of the COVID-19 pandemic. 334 

  335 
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nanobodies for expression, designed affinity maturation libraries and performed selections, 563 

analyzed SPR data, and performed nanobody stability studies. The overall project was 564 

supervised by P.Walter and A.Manglik. 565 
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MAIN TEXT FIGURES 583 

 584 

 585 

Figure 1. Discovery of two distinct classes of anti-Spike nanobodies. A, Selection strategy 586 

for identification of anti-Spike nanobodies that disrupt Spike-ACE2 interactions using magnetic 587 

bead selections (MACS) or fluorescence activated cell sorting (FACS). B, Flow cytometry of 588 

yeast displaying Nb6 (a Class I nanobody) or Nb3 (a Class II nanobody). Nb6 binds Spike*-589 

Alexa 647 and receptor binding domain (RBD-Alexa 647). Nb6 binding to Spike* is completely 590 

disrupted by an excess (1.4 µM) of ACE2-Fc. Nb3 binds Spike*, but not the RBD. Nb3 binding 591 

to Spike* is partially decreased by ACE2-Fc. C, SPR of Nb6 and Nb3 binding to either Spike* or 592 

RBD. Red traces are raw data and global kinetic fits are shown in black. Nb3 shows no binding 593 

to RBD. D, SPR experiments with immobilized Spike* show that Class I and Class II nanobodies 594 

can bind Spike* simultaneously. By contrast, two Class I nanobodies or Class II nanobodies do 595 

not bind simultaneously. E, Nanobody inhibition of 1 nM Spike*-Alexa 647 binding to ACE2 596 

expressing HEK293T cells. n = 3 (ACE2, Nb3) or 5 (Nb6, Nb11) biological replicates. All error 597 

bars represent s.e.m.  598 
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 599 

 600 

Figure 2. Cryo-EM structures of Nb6 and Nb11 bound to Spike. A, Cryo-EM maps of Spike*-601 

Nb6 complex in either closed (left) or open (right) Spike* conformation. B, Cryo-EM maps of 602 

Spike*-Nb11 complex in either closed (left) or open (right) Spike* conformation. The top views 603 

show receptor binding domain (RBD) up- or down-states. C, Nb6 straddles the interface of two 604 

down-state RBDs, with CDR3 reaching over to an adjacent RBD. D, Nb11 binds a single RBD in 605 

the down-state (displayed) or similarly in the up-state. No cross-RBD contacts are made by 606 

Nb11 in either RBD up- or down-state. E, Comparison of RBD epitopes engaged by ACE2 607 

(purple), Nb6 (red), or Nb11 (green). Both Nb11 and Nb6 directly compete with ACE2 binding. 608 
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 609 

 610 

Figure 3. Multivalency improves nanobody affinity and inhibitory efficacy. A, SPR of Nb6 611 

and multivalent variants. Red traces show raw data and black lines show global kinetic fit for 612 

Nb6 and independent fits for association and dissociation phases for Nb6-bi and Nb6-tri. B, 613 

Dissociation phase SPR traces for Nb6-tri after variable association time ranging from 4 to 520 614 

s. Curves were normalized to maximal signal at the beginning of the dissociation phase. Percent 615 

fast phase is plotted as a function of association time (right) with a single exponential fit. n = 3 616 

independent biological replicates. C, Inhibition of pseudotyped lentivirus infection of ACE2 617 

expressing HEK293T cells. n = 3 biological replicates for all but Nb11-tri (n = 2) D, Inhibition of 618 

live SARS-CoV-2 virus. Representative biological replicate with n = 3 (right panel) or 4 (left 619 

panel) technical replicates per concentration. n = 3 biological replicates for all but Nb3 and Nb3-620 

tri (n = 2). All error bars represent s.e.m. 621 
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 623 

Figure 4. Affinity maturation of Nb6 yields a picomolar SARS-CoV-2 neutralizing 624 

molecule. A, A saturation mutagenesis library of Nb6 was subjected to two rounds of selection 625 

to identify consensus mutations I27Y and P105Y. B, SPR of mNb6 and mNb6-tri binding to 626 

immobilized Spike*. Red traces show raw data and black lines show global kinetic fit. No 627 

dissociation was observed for mNb6-tri over 10 minutes. C, Cryo-EM structure of Spike*-mNb6 628 

complex. D, Comparison of receptor binding domain (RBD) engagement by Nb6 and mNb6. 629 

One RBD was used to align both structures (RBD align), demonstrating changes in Nb6 and 630 

mNb6 position and the adjacent RBD. E, Comparison of mNb6 complementarity determining 631 

regions in either the cryo-EM structure of the Spike*-mNb6 complex or an X-ray crystal structure 632 

of mNb6 alone. F, CDR1 of Nb6 and mNb6 binding to the RBD. As compared to I27 in Nb6, Y27 633 

of mNb6 hydrogen bonds to Y453 and optimizes pi-pi and pi-cation interactions with the RBD. 634 

G, CDR3 of Nb6 and mNb6 binding to the RBD demonstrating a large conformational 635 

rearrangement of the entire loop in mNb6. H, Comparison of closed Spike* bound to mNb6 and 636 

Nb6. Rotational axis for RBD movement is highlighted. I, Inhibition of pseudotyped lentivirus 637 

infection of ACE2 expressing HEK293T cells by mNb6 and mNb6-tri. n = 3 biological replicates 638 
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J, mNb6 and mNb6-tri inhibit SARS-CoV-2 infection of VeroE6 cells in a plaque assay. 639 

Representative biological replicate with n = 4 technical replicates per concentration. n = 3 640 

biological replicates for all samples. All error bars represent s.e.m. 641 
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 643 

Figure 5. Nb6 and its derivates are robust proteins. A, Thermal denaturation of nanobodies 644 

assessed by circular dichroism measurement of molar ellipticity at 204 nm. Apparent melting 645 

temperatures (Tm) for each nanobody are indicated. B, Nanobody inhibition of 1 nM Spike*-646 

Alexa 647 binding to ACE2 expressing HEK293T cells after incubation at either 25 °C or 50 °C 647 

for 1 hour or after aerosolization. C, Size exclusion chromatography of nanobodies after 648 

lyophilization or aerosolization. D, Summary table of SPR kinetics data and affinities for 649 

aerosolized or lyophilized mNb6 and mNb6-tri. 650 
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Table 1. Anti-Spike nanobody affinity and neutralization potency 652 

 653 
aAverage values from n = 5 biological replicates for Nb6, Nb11, Nb15, Nb19 are presented, all 654 

others were tested with n = 3 biological replicates. 655 

Nanobody Class 

Spike* Binding RBD Binding Spike* 

Competition 

IC50 (s.e.m) 
(M)a 

SARS-CoV-2 

Pseudovirus 

IC50 (s.e.m.) 
(M)b 

Live 

SARS-CoV-2 
IC50 (s.e.m.) 

(M)c 

ka     

(M-1s-1) 

kd         

(s-1) 

KD    

(M) 

ka     

(M-1s-1) 

kd 

(s-1) 

KD   

(M) 

Nb2 I 9.0x105 5.3x10-1 5.9x10-7 1.0x106 9.9x10-1 9.7x10-7 8.3x10-6  

(1.7x10-6)  
NP NP 

Nb3 II 1.8x106 1.1x10-1 6.1x10-8 NB NC 
3.9x10-6 

(7.9x10-7) 

3.0x10-6 

(3.2x10-7) 

Nb6 I 2.7x105 5.6x10-2 2.1x10-7 2.1x106 8.7x10-2 4.1x10-8 3.7x10-7 
(4.9x10-8) 

2.0x10-6 
(3.5x10-7)  

3.3x10-6 

(7.2x10-7) 

Nb8 I 1.4x105 8.1x10-1 5.8x10-6 6.6x105 3.3x10-1 5.1x10-7 
4.8x10-6 

(4.9x10-7) 
NP NP 

Nb11 I 1.2x106 1.6x10-1 1.4x10-7 3.2x106 2.4x10-1 7.6x10-8 5.4x10-7 

(1.2x10-7) 

2.4x10-6 

(5.4x10-7)  
NP 

Nb12 I 1.2x102 2.0x10-4 1.6x10-6 Biphasic Biphasic Biphasic 
2.5x10-7 

(5.5x10-8) 
1.2x10-6 

(9.0x10-7)  
NP 

Nb15 I 1.7x105 2.3x10-1 1.3x10-6 6.0x105 2.2x10-1 3.6x10-7 
2.2x10-6 

(2.5x10-7) 
6.7x10-6 

(3.6x10-6)  
NP 

Nb16 I 1.1x105 1.3x10-1 1.3x10-6 NP 
9.5x10-7 

(1.1x10-7) 
NP NP 

Nb17 II 7.3x105 2.0x10-1 2.7x10-7 NB NC 
7.6x10-6 

(1.0x10-6)  
NP 

Nb18 II 1.4x105 6.4x10-3 4.5x10-8 NB 
5.2x10-5 

(1.5x10-5) 
NP NP 

Nb19 I 2.4x104 1.1x10-1 4.5x10-6 1.0x105 8.9x10-2 8.8x10-7 
4.1x10-6 

(4.9x10-7) 

2.4x10-5 

(7.7x10-6)  
NP 

Nb24 I 9.3x105 2.7x10-1 2.9x10-7 2.4x106 3.5x10-1 1.5x10-7 
7.5x10-7 

(1.0x10-7) 
NP NP 

ACE2 N/A 2.7x105 1.2x10-2 4.4x10-8 NP NP NP 
1.7x10-7 

(6.6x10-8) 

6.2x10-7 
(1.7x10-7)  

NP 

mNb6 I 1.0x106 4.5x10-4 4.5x10-10 1.1x106 6.4x10-4 5.6x10-10 
1.3x10-9 

(4.1x10-10) 

6.3x10-9 

(1.6x10-9)  

1.2x10-8 

(2.5x10-9) 

Nb3-bi II NP NP NP NP NP NP NP 
3.6x10-7 

(1.5x10-7)  
1.8x10-7 

(1.2x10-8) 

Nb3-tri II Biphasic Biphasic Biphasic NP NP NP 
4.1x10-8 

(1.6x10-8)  
4.0x10-7 

(1.6x10-7)  
1.4x10-7 

(4.9x10-8) 

Nb6-bi I Biphasic Biphasic Biphasic NP NP NP NP 
6.3x10-8 

(1.5x10-8)  
NP 

Nb6-tri I Biphasic Biphasic Biphasic NP NP NP 
1.5x10-9 

(5.2x10-10)  
1.2x10-9 

(2.5x10-10)  
1.6x10-10 

(2.6x10-11) 

Nb11-tri I Biphasic Biphasic Biphasic NP NP NP NP 
5.1x10-8 

(1.6x10-8)  
NP 

ACE2-Fc N/A NP NP NP NP NP NP 
5.3x10-9 

(2.5x10-9)  

4.0x10-8 

(8.8x10-9) 
1.2x10-10 

2.6x10-8 

(8.5x10-9) 

mNb6-tri I 1.4x106 <1.0x10-6 <1.0x10-12 NP NP NP 
4.0x10-10 

(1.4x10-10)  
1.2x10-10 

(2.8x10-11)  
5.4x10-11 

(1.0x10-11) 
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bAverage values from n = 2 biological replicates for Nb12, Nb17, and Nb11-tri are presented, all 656 

others were tested with n = 3 biological replicates. 657 
cAverage values from n = 2 biological replicates for Nb3, Nb3-bi, and Nb3-tri. n = 3 biological 658 

replicates for all others.  659 

NB – no binding 660 

NC – no competition 661 

NP – not performed 662 
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