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ABSTRACT This paper presents a 0.46 mW and 2.4 GHz; All-Digital Phase-Locked Loop (ADPLL) 

through an Injection-Locked Frequency Multiplier (ILFM) and Continuous Frequency Tracking Loop 

(CFTL) circuitry for low power Internet-of-Thing (IoT) applications. In the proposed ADPLL architecture to 

save power, the need for Time-to-Digital Converter (TDC) is eliminated through providing the CFTL 

circuitry. This feature makes the design compact, low power, and suitable for IoT applications. The proposed 

design is based on a synthesizable pulse injection and frequency-locked loop along with an ultra-low-power 

LC Digitally-Controlled Oscillator (LC-DCO). The presented CFTL circuit adjusts the frequency of the DCO 

continuously and prevents the frequency drift after the reference injection. Inside the designed LC-DCO core, 

the power consumption is minimized by optimizing the gm ⁄ID  and adjusting the power supply to 0.5 V. The 

proposed ILFM based ADPLL is fabricated in 55 nm CMOS technology and covers the operational frequency 

range of 2.402 GHz to 2.480 GHz with a reference frequency of 32 MHz. The measured phase noise 

performance of the ADPLL is -111.15 dBc/Hz at 1 MHz offset frequency from the carrier frequency of 2.4 

GHz. It consumes only 0.46 mW power with an active area of 0.129 mm2. 

INDEX TERMS ADPLL; Injection Locked Frequency Multiplier; Low Power; Small Area; Internet of 
Things, Digitally-Controlled Oscillator; 

I. INTRODUCTION 

Nowadays, a frequency synthesizer is a key building block 

of a Radio Frequency (RF) transceiver, which provides the 

Local Oscillator (LO) signal to convert up or down the signal 

to the desired frequency band. With the advancement in 

Complementary-Metal-Oxide-Semiconductor (CMOS) 

technology, the design of a frequency multiplier based PLL 

is shifting from analog to digital, for low power and low area 

target applications [1]. The digital design provides 

significant advantages in terms of low power and low area 

[2-3]. Due to the benefits of the All-Digital Phase-Locked 

Loop (ADPLL), it becomes an attractive candidate for low 

power Internet-of-Things (IoT) applications. Traditional 

ADPLL design utilizes the Time-to-Digital Converter (TDC) 

for the phase offset detection [4-6]. But due to the high power 

consumption and complexity of the TDC, it is not suitable 

for low power design. Recently the Injection-Locked 

Frequency Multipliers (ILFM) become attractive options for 

the design of digital PLLs for a low phase noise performance 

with low power consumption [7-9]. As compared to analog 

sampling PLL, injection locked ADPLL offers less 

complexity, low cost and less area utilization.Through this 

technique, a very low jitter integer-N sclock multiplier can 

be implemented by using a ring oscillator (RO) or an LC 

Digitally Controlled Oscillator (DCO). The RO offers a 

wider tuning range with a small area but exhibits poor jitter 
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performance [10]. On the other hand, the LC-oscillator based 

ILFM offers better phase noise performance and outstanding 

power efficiency [11]. In [18-19] an injection locked rotary 

traveling- wave oscillator (IL-RTWO) is presented which 

offers low skew clock generation. We can get multiple 

phases and its provides similar phase noise performance as 

LC-VCO. 

    By taking the benefit of the LC-DCO, a low phase noise 

and power LC-DCO based ILFM is proposed in this paper. 

It offers low power consumption and better jitter and phase 

noise performance as compared to the RO based ADPLL or 

ILFM design.  

    The error between the oscillator target frequency and the 

free-running frequency degrades the performance of the 

ILFM. On the other hand, the work proposed in [12] does 

only foreground frequency adjustment. After the injection by 

the reference clock, the frequency of the oscillator drifts due 

to PVT variations. This frequency drift would not be detected 

by the frequency-locked loop, and the structure can suffer 

from large reference spurs. Besides, without continuous 

frequency tracking ability the ILFM does not offer excellent 

jitter performance. To keep the oscillator at the target 

frequency, a frequency tracking loop is required. To 

overcome this problem the works [4-17] propose different 

techniques to keep the frequency error as low as possible. 

Although it gives better jitter performance but at the cost of 

high power consumption and design complexity. Figure 1 

demonstrates the two approaches, with and without 

frequency tracking in the implementation of the ILFM. In 

Figure 1(a), a frequency lock loop (FLL) is used to bring the 

oscillator frequency near to the target frequency. After that, 

the FLL is disabled and reference frequency (FREF) is 

injected directly to the oscillator. In Figure 1 (b), an FLL is 

running continuously in the background to keep the DCO at 

the target frequency against PVT variations. 

    When the frequency tuning of the DCO through the FLL 

finished, the pulse injection circuit aligns the output phase of 

the DCO with F_REF and resets the phase error between two 

clocks. The effect of the reference frequency injection on the 

DCO output F_OUT  is shown in Figure 2.  

    Figure 3 compares the phase noise performance for free 

running DCO, ILFM with the only injection, and ILFM with 

injection and frequency tracking ability. In this paper, an 

ILFM based ADPLL design is proposed, that offers low 

complexity and low power consumption. The reference 

injection controller and FLL controller are designed using 

HDL, which is fully synthesizable. The major contributions 

of this paper are as follows: 

• Design of low power ILFM based ADPLL, which 

makes it suitable for low power and low-cost IoT 

applications. 

• Design of FLL and injection controller are fully 

synthesizable which offers low area and design 

portability. 
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FIGURE 1.  Conventional ILFM (a) Injection only (b) injection with frequency tracking. 
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FIGURE 3.  Phase noise trend for RI-based ADPLL when Injection 
without CFTL and injection with CFTL 
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• Design of low phase noise and low power LC-DCO 

that makes the whole design low power and suitable 

for the required specifications. 

    The rest of the paper is structured as follows: In section 2, 

the proposed architecture of the ILFM based ADPLL is 

discussed. Experimental results are discussed in section 3. 

Lastly, the paper is concluded in section 4. 

. 
II. PROPOSED ILFM BASED ADPLL ARCHITECTURE 

 

    The block diagram of the proposed architecture of the ILFM 

based ADPLL is shown in Figure. 4. It consists of Injection 

Controller (IJC), Continuous Frequency Tracking Loop 

(CFTL), DCO, Programmable Divider (PGD), and DCO 

Clock Counter (DCC). The task of the CFTL is to bring the 

DCO output frequency FOUT to the target center frequency 

which can be selected by the CH_SEL. The CFTL is operating 

at the reference frequency of FREF. The Frequency Control 

Word (FCW) is provided to the DCO by the CFTL to increase 

or decrease the frequency of the DCO output (FOUT). The 

FOUT is divided by the PGD and the output of the PGD is fed 

to the DCC. The output of the DCC is used by the CFTL and 

it is compared with the target value depending on the channel 

frequency. The CFTL increase or decrease the output 

frequency of DCO by adjusting the FCW. Once the CFTL 

brings the DCO frequency to the target frequency, it sets the 

FLL_LOCK signal to high and enables the IJC. The IJC 

adjusts the phase of the DCO by periodically injecting the 

reference frequency pulse to the DCO. The pulse width of the 

injection pulse is controlled by the INJ_Pulse_Ctrl, and 

different injection pulse widths would be made through this 

block. Narrow pulse width for the injection process is essential 

for reduction in distortion caused by pulse injection. However 

lock failure can occur due to  excessively narrow pulse width 

or strong distortion can occur due to wide pulse width. Figure. 

5 shows the block diagram of the IJC. It mainly consists of the 

Flip-Flop (FF), Delay Multiplexer (DM), and buffer delay 

line. It is designed through HDL to make it fully synthesizable. 

The data input of the FF is set to high, and it is clocked by 

FREF. The FREF propagates through the delay line.  

    The output of each delay cell is connected to the DM input. 

By controlling the INJ_Pulse_Ctrl, we can get the delayed 

version of FREF at the output of the DM. The output of DM 

is used to reset the FF to control the injection pulse width. The 

timing diagram of the operation of the IJC is shown in Figure. 

5. The purpose of the CFTL is to bring the free-running DCO 

output frequency to the target channel frequency. It uses a 

binary searching algorithm to bring the DCO frequency to the 

target frequency.   Let’s suppose we have 40 channels which 
can be specified through k where k= 0, 1, 2 … 39. To select a 
channel among 40 channels, the FLL generates the frequency 

control word (FCW) for the DCO by the following equation. 

 

                𝑁𝐹𝐶𝑊(𝑘) =  𝑘 + 𝑁𝐶𝐻0(
𝑀𝐷 × 10−6)                   (1 

 

Where the NFCW(k) is the required FCW as a function of k, 

NCH0 is the base frequency of the channel 0, M is the frequency 

multiplier for the DCO and DCO frequency division factor is 

given by D.  

   The block diagram of the CFTL is shown in the Figure. 6. 

The main blocks of the CFTL consist of the Main Controller 

(MC), Counter Mask Control (CMC), Target Frequency 

Control Word Generator (TFCWG), Frequency Offset 

Detector (FOD), and Capacitor Bank Decoder (CBD). The 

CFTL is fully synthesizable and designed by HDL coding. The 

MC is controlling the overall operation of the CFTL.  

    The DCC will count the DCO clock cycles within the 

counter mask duration generated by CMC. The TFCWG 

generates the target frequency control word (TFCW) which is 

provided to the MC. The FOD compares the current DCO 

frequency with the target DCO frequency. It generates the 

control signals for the MC to increase or decrease the DCO 

frequency. To achieve the target frequency, the CBD controls 

the capacitor banks in the DCO and increases or decreases the 
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FIGURE 4.  Block diagram of the ILFM based ADPLL. 
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FIGURE 5.  Block diagram of the injection controller. 
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FIGURE 6.  Block diagram of CFTL. 
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DCO frequency. The CBD generates a corresponding 

thermometer code to control the capacitor's bank in the DCO. 

The flow diagram indicating the operation of the CFTL is 

shown in Figure 7. When the CFTL is powered up, then it is 

initialized with the default setting of the DCO and wait till 

DCO output frequency is stable. Then the TFCW generates 

the Target_F code based on the CH_SEL. The MC provides 

mask control (M_CTRL) signal to the CMC to generate the 

counter mask. The DCC starts counting the number of cycles 

based on the counter mask provided by DCC_CTRL. The MC 

waits till DCC completes its operation. After the completion, 

the MC activates the FOD to compare the DCO current 

frequency (CNT_DCC) and the target frequency. The FOD 

generates the UP/DN control signals accordingly to increase 

or decrease the FOUT. The MN adjust the DCO frequency 

through a binary algorithm. The binary algorithm adjusts bits 

of the capacitor banks from MSB to LSB to achieve target 

DCO frequency. After adjusting all control bits of DCO, the 

MN generates the FLL LOCK signal and the DCO output 

frequency is set at the target frequency. In the case of 

continuous tracking, the CFTL again calculates the DCO 

current frequency and compensates any PVT variations. 

Reference frequency is used as 32 MHz with 50% duty 

cycle.Duty cycle of refence frequency significantly affects the 

operation of the ADPLL. It can result in incorrect calculation 

of output frequency of ADPLL and cause strong distortion at 

the output of ADPLL. 

    The DCO is designed by focusing on the ultra-low power 

consumption for IoT applications. The target frequency range 

of the DCO is from 2.402 GHz to 2.480 GHz. The DCO is 

designed by MOSFET switches and their sizes are adjusted to 

provide almost ideal characteristics. During the design, 

considering the Process, Voltage, and Temperature (PVT) 

variations, the frequency range of the DCO is optimized to use 

the maximum inductance value for the resonance. Besides, it 

offers high swing characteristics and omits the need for 

increasing current to achieve sufficient swing. The proposed 

DCO operates in the sub-threshold region and satisfies the 

oscillation condition of equation (2) as represented in [13]. 

 
                                   𝑔𝑚 ≥1/𝑅𝑝                                        (2 

 

where gm and Rp are the transconductance of the cross-coupled 

pair and equivalent parallel resistance of the tank, respectively. 

The high-frequency resolution is achieved through the fine-

tuning bank. The small capacitance is achieved through 

customized lateral MOM capacitors. This provides low 

capacitance values of 16.22 aF. An ultra-wide Aluminum (Al) 

metal layer is used as a superconductor to eliminate routing 

metal parasitic inductance. The simplified DCO schematic is 

shown in Figure 8. Three capacitor banks configurations 
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FIGURE 7. Flow diagram of CFTL 

 

 
FIGURE 8. Simplified architecture of DCO. 
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(MSB CAP BANK, LSB CAP BANK, and FINE CAP 

BANK) are shown which are controlled by the decoding 

FCW. A low supply voltage (VDD) of 0.5 V is used for the 

DCO, which reduces the total power consumption of the DCO 

circuit efficiently. Each MSB CAP Bank and LSB CAP bank 

consist of 32 capacitors units. While the FINE CAP bank 

consists of 64 unit capacitors. The 1- bit resolution of the MSB 

CAP BANK, LSB CAP BANK, and FINE CAP BANK is 

18.7 MHz, 72 kHz, and 4.8 kHz, respectively 

 

III. EXPERIMENTAL RESULTS 

The chip is fabricated using 55 nm CMOS technology. Figure 
9 shows the microphotograph of the proposed chip. The active 
area of the proposed ILFM is 0.129 mm2. The active size of 
DCO is 0.1175 mm2 which mainly because of the inductor. 
The area of IJC and CFTL is significantly smaller than the 
DCO.  
    The measurement environment of the proposed ILFM is 
shown in Figure 10. It consists of a fabricated chip with the 
test board, spectrum analyzer, power supply, and UART based 
control of chip The tuning curves for the DCO versus tuning 
codes to capacitor banks MSB and LSB are shown in Figure 
11. As we increase the tuning codes for the MSB capacitor 
bank, the output frequency of DCO is changing with a large 
frequency offset which is around 18 MHz. Due to PVT 

variation, the step size for the output frequency of DCO is not 
equal to the lower tuning range but in target frequency range 
the output frequency of DCO shows linear step size. The 
change in LSB tuning codes for the DCO shows almost linear 
behaviors and it has fewer effects of PVT variation at the DCO 

output frequency. Phase noise is measured by using divider 
output which divides the DCO output frequency by a factor of 
4. The phase noise performance of the ILFM based ADPLL is 
about -111.15 dBc/Hz at 1 MHz offset from the carrier 
frequency of 2.4 GHz. The operation of the FLL is shown in  

figure 12. The DCC generates a counter mask for counting the 
number of cycles of DCO output. At the start, the difference 
in the target frequency and DCO output frequency is large so 
a small counter mask is generated. When the output frequency 
of DCO is getting closer to the target frequency, CMC 
adaptively increases the duration of mask for the better 
accuracy of the target frequency. When the target frequency is 
achieved at the DCO output, the FLL_LOCK signal is set 
high. When the counter mask is generated through 
DCC_CTRL, the counter is reset through the RST_CNT 
signal. The phase noise of ILFM based ADPLL is shown in 
figure 13. The output frequency is 2.4 GHz for the 
measurement of DCO phase noise. The phase noise at offset 
of 10 kHz, 100 kHz, 1 MHz, 10 MHz and 100 MHz are -88.28 
dBc/Hz, -86.72 dBc/Hz, -111.15 dBc/Hz, -122.99 dBc/Hz, 
and -141.74 dBc/Hz respectively. The Spectrum of the output 
of ILFM based ADPLL after injection of 32 MHz reference 
are shown in figure 14. Table 1 shows the comparison of the 
proposed design with the previous architectures. The 
integrated rms jitter of proposed design is 1.652ps. Other 
works such as [16] , [17] and [7] shows better integrated rms 
jitter performance but at the cost of additional hardware which 
results in design complexity and higher power consumption. 

The figure of merit (FoM) to evaluate the performance of the 

design based on the measured integrated jitter and the power 

consumption is given by equation (3). 𝐹𝑜𝑀 = 10𝑙𝑜𝑔10 [(𝜎𝑡1𝑠) ( 𝑃𝐷𝐶1𝑚𝑊)]                        (3) 

Where σt is integrated jitter, PDC is the power consumption of 

the design, and 1s indicates the one second time reference.  

 
FIGURE 9.  Chip photograph of the proposed ILFM based ADPLL. 

 

 
FIGURE 10.  Chip Measurement Setup 

 

 
FIGURE 11.  Tuning curve of DCO versus tuning codes to cap banks 
MSB and LSB.. 
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TABLE 1 indicates that FOM of proposed design shows better 

performance than previous works. It is mainly due to less 

power consumption as compared to previous designs. 

 

VII. CONCLUSION 

An ILFM based ADPLL was proposed for low power IoT 

sensor applications. The ILFM based ADPLL eliminates the 

requirement of TDC which makes the design simple and 

reduces the power consumption. The operating frequency 

range of the ILFM based ADPLL is from 2.402 to 2.480 GHz. 

The power consumption of the whole architecture is  

 

 

minimized using all-digital implementation and design of an 

ultra low power LC-DCO. It consumes only 0.46 mW with an 

area of 0.129 mm2. The phase noise is -111.15 dBc/Hz at 1 

MHz offset from the carrier frequency of 2.4 GHz. 
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TABLE I 
PERFORMANCE COMPARISON 

  [14]  [15]  [16] [17] [7] This work 

Technology 
(nm) 

40 55 65 65 65 55 

Architecture PLL PLL PLL PLL PLL PLL 
Output Frequency 

Range (GHz) 
0.4-1.6 0.216 0.52-1.15 2.5-5.75 2.5-5.63 2.402-2.480 

Reference 
Frequency (MHz) 

50 27 150 125 156.25 32 

Integrated RMS 
jitter (ps) 

2.29 2.4 0.42 0.34 0.168 1.652 

Phase noise dBc 
@1MHz 

-106 -122 -119 -115 -105 -110.78 

Spur Level dBc -44 -70 NA -45 -42 -51.2 

Power (mW) 1.49 6.9 3.8 5.3 15.4 0.46 

Area (mm2) 0.14 0.03 0.028 0.09 0.06 0.129 

FOM -231.1 -224 -241.3 -242.1 -243.6 -245.3 
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