

An Ultra-Low Power In-Memory Computing Cell for

Binarized Neural Networks

Mr. Philip Chennakudy Jose

A thesis submitted for the degree of

Master of Research
at

Western Sydney University

August 2020

Supervisors:
Dr. Runchun Mark Wang
Dr. Upul Gunawardana

 2

List of Contents

List of Contents..2
List of Figures...3
List of Tables ..6
Abstract ...7
Acknowledgement ..8
Statement of Authentication ..9

Chapter 1 : Introduction ..10

1.1 : Background of DNNs ... 11

1.2 : Deep Neural Networks (DNNs) .. 12
1.2.1 : Activation Functions ... 14

1.3 : Building Deep-Neural Networks (DNN’s) from Perceptron’s ... 15
1.3.1 : Computational Complexity of DNNs .. 17

1.4 : Binarized Neural Networks (BNNs) .. 18

1.5 : Research Questions .. 18

1.6 : Objectives of the thesis:.. 19

1.7 : Thesis Organisation .. 20

Chapter 2 : Theoretical Background of Compute In-Memory ..21

2.1 : Compute In-Memory .. 21

2.2 : What is Compute in-Memory? .. 22

2.3 : In-Memory computing for DNN’s .. 24

Chapter 3 : Literature Survey ...27

3.1 : Near Memory Computing ... 27
3.1.1 : High-Density Memories .. 27
3.1.2 : 3-D Memory (Stacked Memory) ... 28

3.2 : In-Memory Computing (Processing In-Memory) .. 31
3.2.1 : Static Random-Access Memory (SRAM) ... 31

Chapter 4 : Proposed In-Memory Computing Cell ...39

4.1 : The proposed In-Memory architecture for BNN’s... 39

4.2 : Overview of 6T-SRAM Cell .. 40
4.2.1 : 6T-SRAM bit cell write operation ... 42
4.2.2 : 6T-SRAM cell read operation .. 43

4.3 : Digital to Analog Converter (DAC) Design .. 44
4.3.1 : MOSFET as a current source ... 44
4.3.2 : 4-Bit DAC Circuit Design ... 47

4.4 : Results and Analysis ... 50

Chapter 5 : Conclusion and Future Works ..66

5.1 : Conclusion .. 66

5.2 : Future Works ... 67
References: ... 69

 3

List of Figures

Figure 1.1. Relationship between Deep Learning and AI (Adopted from [13]) 11

Figure 1.2. Functionality of a single neuron (adopted from [15]) .. 12

Figure 1.3. Structure of a perceptron (recreated from[10])... 13

Figure 1.4. Computational neural network (Adopted from [10]) ... 13

Figure 1.5. Commonly used non-linear activation function. (a) sigmoid function, (b) ReLU
and (c) hyperbolic tangent [13] .. 14

Figure 1.6. Simplified view of a computational Neural Network [10] 15

Figure 1.7. Multi output perceptron [10] .. 15

Figure 1.8. Single layer neural network [10] .. 16

Figure 1.9. Fully connected or Dense layer neural network [10] ... 16

Figure 1.10. Representation of a deep-neural network [10] ... 17

Figure 1.11. Convolutional Neural Network [13] ... 17

Figure 2.1. The basic idea of in-memory computing and the conventional Von-Neuman
Architecture (adopted from [26]) ... 21

Figure 2.2. Relatively standard computing system for general purpose applications [30] 22

Figure 2.3. Typical Memory Hierarchy [31]... 23

Figure 2.4. Conventional Architecture [32] .. 24

Figure 2.5. Processing In-Memory Architecture recreated from [32] 25

Figure 2.6. Conventional data flow architecture for In-Memory computing recreated from
[32] ... 26

Figure 3.1. Fundamental Architecture of DiaNao [35] ... 28

Figure 3.2. HMC device with TSVs technology and fine pitch copper pillar interconnect [36]
.. 29

Figure 3.3. Fundamental structure of an HBM device [37] .. 29

Figure 3.4. Key components of Neurocube [38] ... 30

Figure 3.5. (a) Hardware architecture of Tetris, (b) detailed structure of an NN [39] 30

Figure 3.6. Overall architecture of QUEST [40] .. 31

Figure 3.7. Overall architecture of machine learning classifier [42] 32

Figure 3.8. (a) Cell current accumulation in machine learning classifier, (b) WLDAC circuit
diagram [42] ... 32

Figure 3.9. Overall architecture of CONV-SRAM [43] ... 33

Figure 3.10. Circuit diagram of GBL_DAC [43].. 33

Figure 3.11. Pre-charge enabling In-memory multiplication [44] .. 33

Figure 3.12. 8T-SRAM [45] ... 34

Figure 3.13. (a) configuration A, (b) configuration B [45] ... 34

Figure 3.14. structure of an M-BC with 8-transistors [46] ... 35

Figure 3.15. DIMA Architecture [48] ... 36

Figure 3.16. Chip architecture of DIMA inference processor [48] ... 37

Figure 3.17. IMC Unit [50] ... 37

Figure 4.1. Proposed IMC architecture for the BNN’s ... 40

Figure 4.2. Component layout of a 4x4 SRAM array [31] ... 41

Figure 4.3. Back to back connections of inverters in a typical 6T-SRAM cell [31]............... 41

Figure 4.4. Bi-stable operation of a cross-coupled inverter [31] .. 42

Figure 4.5. Conventional 6T-SRAM [31] ... 42

Figure 4.6. 6T-SRAM write operation [31] .. 43

Figure 4.7. 6T-SRAM write operation [31] .. 44

Figure 4.8. NMOS biased with gate and drain voltage [51] ... 45

 4

Figure 4.9. (a) NMOS in saturation operating as a current source, (b) current flow direction,
(c) 𝐼1 𝑣𝑠 𝑉𝐷𝑆 plot of saturated NMOS device [51]. ... 45

Figure 4.10. (a) Saturated PMOS in saturation operating as a current source, (b) current flow
direction, (c) 𝐼1 𝑣𝑠 𝑉𝐷𝑆 plot of saturated PMOS device [51] ... 46

Figure 4.11. Typical NMOS current mirror configuration [51] .. 46

Figure 4.12. An NMOS diode connected device [51]... 46

Figure 4.13. (a) 4-bit DAC circuit, (b) actual implementation of 4-bit DAC 48

Figure 4.14. Current flow (path_1) in 4-bit DAC circuit when 𝑊0 = ‘1' 49

Figure 4.15. Current flow (Path_2) in 4-bit DAC when 𝑊1 = ‘1' .. 49

Figure 4.16. Current flow (Path_3) in 4-bit DAC circuit when 𝑊2 = ‘1'............................... 50

Figure 4.17. Current flow (Path_4) in 4-bit DAC when 𝑊3 = ‘1' .. 50

Figure 4.18. (a) 𝐼𝐷 vs 𝑉𝐺𝑆 of an NMOS transistor with width W=280nm and length
L=130nm, 𝑉𝐷𝑆 is fixed at 1.2 V and 𝑉𝐺𝑆 varied from 0 V to 1.2 V. (b) Parametric analysis
for 𝐼𝐷 vs 𝑉𝐺𝑆 of NMOS where 𝑉𝐷𝑆 is varied from 0 V to 1.2 V in four steps. (c) 𝐼𝐷 vs 𝑉𝐷𝑆
characteristics for different values of 𝑉𝐺𝑆 for the same dimensions of an NMOS device, 𝑉𝐺𝑆 is fixed at 1.2 V whereas, 𝑉𝐷𝑆 is varied from 0 to 1.2 V. (d) Parametric analysis for 𝐼𝐷
vs 𝑉𝐷𝑆 for the same NMOS device with 𝑉𝐺𝑆 fixed at 1.2 V and 𝑉𝐺𝑆 varied from 0 V to 1.2
V in 4 steps... 52

Figure 4.19. (a) 𝐼𝐷 vs 𝑉𝐺𝑆 of an PMOS transistor with width W=280nm and length
L=130nm, 𝑉𝐷𝑆 is fixed at 1.2 V and 𝑉𝐺𝑆 varied from 0 V to 1.2 V. (b) Parametric analysis
for 𝐼𝐷 vs 𝑉𝐺𝑆 of NMOS where 𝑉𝐷𝑆 is varied from 0 V to 1.2 V in four steps. (c) 𝐼𝐷 vs 𝑉𝐷𝑆
characteristics for different values of 𝑉𝐺𝑆 for the same dimensions of an NMOS device, 𝑉𝐺𝑆 is fixed at 1.2 V whereas, 𝑉𝐷𝑆 is varied from 0 V to 1.2 V. (d) Parametric analysis for 𝐼𝐷 vs 𝑉𝐷𝑆 for the same NMOS device with 𝑉𝐺𝑆 fixed at 1.2 V and 𝑉𝐺𝑆 varied from 0 V to
1.2 V in 4 steps... 53

Figure 4.20. (a) plot of measured drain current from diode connected device 𝑀11 (𝐼𝐷𝑀11)
when the weights 𝑊3𝑊2𝑊1𝑊0 = 0000 is varied from 0 V to 0.2 V. (b) plot of output
voltage (𝑉𝑂𝑈𝑇) sweep across the weights 𝑊3𝑊2𝑊1𝑊0 = 0000 from 0 V to .2 V 55

Figure 4.21. (a) Plot of the drain current (𝐼𝐷𝑀11) vs the weights (𝑊3𝑊2𝑊1𝑊0) = 0100.
Gate voltages corresponding to the weights 𝑊3𝑊2𝑊0 are varied from 0 V to .2 V in four
steps for the binary weights ‘0’ and for binary weight ‘1’ gate voltage is varied from 0 V to
1.2 V in four steps. (b) Plot of the output voltage 𝑉𝑂𝑢𝑡 vs the weights (𝑊3𝑊2𝑊1𝑊0) =
0100. Gate voltages corresponding to the weights 𝑊3𝑊2𝑊0 are varied from 0 V to .2 V in
four steps for the binary weights ‘0’ and for binary weight ‘1’ gate voltage is varied from 0 V
to 1.2 V in four steps .. 55

Figure 4.22. (a) Plot of the drain current (𝐼𝐷𝑀11) vs the weights (𝑊3𝑊2𝑊1𝑊0) = 1001.
Gate voltages corresponding to the weights 𝑊2𝑊1 are varied from 0 V to .2 V in four steps
for the binary weights ‘0’ and for binary weight ‘1’(𝑊3𝑊0) gate voltage is varied from 0 V
to 1.2 V in four steps. (b) Plot of the output voltage 𝑉𝑂𝑢𝑡 vs the weights (𝑊3𝑊2𝑊1𝑊0) =
1001. Gate voltages corresponding to the weights 𝑊2𝑊1 are varied from 0 V to .2 V in four
steps for the binary weights ‘0’ and for binary weight ‘1’(𝑊3𝑊0) gate voltage is varied from
0 V to 1.2 V in four steps ... 56

Figure 4.23. (a) plot of measured drain current from diode connected device 𝑀11 (𝐼𝐷𝑀11)
when the weights 𝑊3𝑊2𝑊1𝑊0 = 1111 is varied from 0 V to 1.2 V. (b) plot of output
voltage (𝑉𝑂𝑈𝑇) sweep across the weights 𝑊3𝑊2𝑊1𝑊0 = 1111 from 0 V to 1.2 V 57

Figure 4.24. shows a plot of the drain current |𝐼𝐷𝑀11| for the 24 =16 weight combinations
starting from 0000 to 1111. .. 58

Figure 4.25. shows a plot of the output voltage 𝑉𝑂𝑢𝑡 for the 24 =16 weight combinations
starting from 0000 to 1111 ... 59

 5

Figure 4.26. (a) transient analysis for the proposed 4-bit DAC for 4000ns with a rise time
and fall time of the weight vectors (𝑊3𝑊2𝑊1𝑊0) defined as 5% (20ns) of the period of
weight pulses 𝑊0. (b) transient analysis of the 4-bit RDAC with rise time and fall time
defined as 1ps for all the weight vectors (𝑊3𝑊2𝑊1𝑊0) .. 61

Figure 4.27. Plot of measured power for a transient analysis of 4000ns. 𝑉𝑂𝑢𝑡 signal (blue
colour) represents the output voltage for the proposed 4-bit DAC. ′𝑝𝑤𝑟′ signal (yellow
colour) represent the average power .. 62

Figure 4.28. Layout of the designed 4-bit DAC ... 62

Figure 4.29. Layout of the 4-bit DAC circuit with 𝑀1 metal routing 63

Figure 4.30. Layout of the 4-bit DAC circuit with 𝑀2 metal routing 63

Figure 4.31. Layout of the 4-bit DAC circuit with 𝑀3 metal routing 63

Figure 4.32. DRC check results for 4-bit DAC, (b) summary of the LVS check, (c) LVS
debug check ... 64

Figure 4.33. Test bench circuit setup used for the post layout simulation 64

Figure 4.34. (a) Post layout simulation of 4-bit DAC when the weights (𝑊3𝑊2𝑊1𝑊0)
have 5% (20ns) rise and fall time of the period of 𝑊0. (b) Post layout simulation of 4-bit
DAC when the weights (𝑊3𝑊2𝑊1𝑊0) have 1ps rise and fall-time 65

 6

List of Tables

Table 1. Comparison of popular DNNs models (adopted from [13]) 18

Table 2. 4-bit DAC device dimensions used in the design ... 54

 7

Abstract

Deep Neural Networks (DNN’s) are widely used in many artificial intelligence applications

such as image classification and image recognition. Data movement in DNN’s results in

increased power consumption. The primary reason behind the energy-expensive data

movement in DNN’s is due to the conventional Von Neuman architecture in which computing

unit and memory are physically separated. To address the issue of energy-expensive data

movement in DNN’s in-memory computing schemes are proposed in the literature. The

fundamental principle behind in-memory computing is to enable the vector computations

closer to the memory. In-memory computing schemes based on CMOS technologies are of

great importance nowadays due to the ease of massive production and commercialization.

However, many of the proposed in-memory computing schemes suffer from power and

performance degradation. Besides, some of them are capable of reducing power consumption

only to a small extent and this requires sacrificing the overall signal to noise ratio (SNR).

This thesis discusses an efficient In-Memory Computing (IMC) cell for Binarized Neural

Networks (BNNs). Moreover, IMC cell was modelled using the simplest current computing

method. In this thesis, the developed IMC cell is a practical solution to the energy-expensive

data movement within the BNNs. A 4-bit Digital to Analog Converter (DAC) is designed and

simulated using 130nm CMOS process. Using the 4-bit DAC the functionality of IMC scheme

for BNNs is demonstrated. The optimised 4-bit DAC shows that it is a powerful IMC method

for BNNs. The results presented in this thesis show this approach of IMC is capable of

accurately performing dot operation between the input activations and the weights.

Furthermore, 4-bit DAC provides a 4-bit weight precision, which provides an effective means

to improve the overall accuracy.

 8

Acknowledgement

I would like to thank everyone who has been supportive throughout my Master of Research

study at Western Sydney University. Firstly, I would like to thank my supervisor Dr Runchun

Mark Wang for his limitless support throughout my studies. Without his support I would not

have been able to complete my thesis. I also like to thank Dr Wang for introducing me to this

wonderful area of research and for the training you have given to me to advance in this field.

Secondly, I would like to thank my co-supervisor Dr Upul Gunawardana for his constant

support and encouragement. I also would like to thank Dr Andrew Nicholson from ICNS, for

your support in Cadence setup and troubleshooting. I would also like to thank everyone from

ICNS.

I would also like to thank my parents for the support and encouragement throughout my studies.

Finally, I would like to thank my wife Jency for her support and her tolerance throughout my

studies.

 9

Statement of Authentication

The work presented in this thesis is, to the best of my knowledge and belief, original except
acknowledged in the text.

I hereby declare that I have not submitted this material either in full or in part, for a degree at
this or any other institution.

Mr. Philip Chennakudy Jose August 24, 2020

 10

Chapter 1 : Introduction

The invention of electricity has transformed countless industries such as transportation,

manufacturing, health care, communication and more. Today, Artificial Intelligence (AI) is

regarded as the new electricity and AI has already brought an equally big transformation. AI

applications are increasing day by day, and the driving force behind the rapid growth of AI are

mainly because of the recent developments that have happened in the field of Deep Neural

Networks (DNNs) [1].

DNNs are regarded as the backbone for the vast majority of artificial intelligence (AI)

applications that exist today. DNNs provide surprising accuracy for many of the AI

applications such as computer vision tasks [2]–[4], self-driving cars [5], image recognition [4],

speech recognition [6], very complex games [7], [8], and robotics [9]. In most of these

applications DNNs are outperforming human accuracy. DNNs have a special ability to

automatically extract the useful information that is needed for future predictions or to make a

decision. This is different from Machine learning (ML) algorithms, which typically tries to

define a set of rules in the data sets which are usually hand-engineered [10].

Applications involving DNNs can provide high accuracy, However, increased computational

complexity is one of the major drawbacks of DNN. To classify a 50K pixel image we need 4-

50 Giga operations if we employ image recognition using DNNs. There is a significant growth

of computational complexity over the years and this has resulted in huge power consumption.

The increased power consumption is mainly due to the conventional von-Neumann architecture

in which the processing unit (PU) and the memory are physically separated. Whenever a

computation is performed data will be taken from memory to PU creating more power

consumption. Data movement is regarded as the primary cause for higher energy consumption

in DNNs.

General-purpose compute engines such as Graphics Processing Units (GPUs), are widely used

in DNNs for efficient processing. Over the past years, there is an increase in research interest

providing more specialised accelerations of the DNN computations. Many of the recent works

are focused on bringing the memory closer to the computation module or performing the

computations in the memory itself. Another improvement happened is to perform computations

inside the sensors where the primary data for processing are collected [11], [12].

One way to reduce the computational and storage complexity of DNNs is to reduce precision

of weights and activations[13]. Binarized Neural Networks (BNNs) uses quantization to reduce

the precision of weights and activations [14].

 11

The main objective of this thesis is to demonstrate an in-memory computing (IMC) scheme for

BNNs. The thesis aims to design an IMC cell for BNNs using current based computing strategy

within the 6T-SRAM (Static Random Access Memory). To achieve this aim 4-bit DAC is

developed using 130nm CMOS process. The working of the 4-bit DAC during the read phase

of 6T-SRAM is investigated thoroughly. In addition, the performance of the 4-bit DAC is

assessed using various simulations.

1.1 : Background of DNNs

DNNs are also referred to as Deep Learning and are incredibly a powerful tool. It is a part of

AI. DNNs help as to create intelligent machines, which have the special ability to achieve goals

or to complete tasks like humans do [10]. Figure 1.1 depicts how AI and Deep Learning are

inter-related.

Figure 1.1. Relationship between Deep Learning and AI (Adopted from [13])

Intelligence is defined as the ability to make future decision’s by processing the information.

Furthermore, Artificial Intelligence (AI) are algorithms capable of making future decision’s by

processing the information’s [10]. Machine Learning (ML) is a subset of AI that specifically

focus on teaching an algorithm, how to process information without being programmed, to

complete the task at hand. This means that once a programme is created, it will be able to

perform intelligent activities, without being programmed again. ML algorithms try to define

sets of rules and features in data, which are usually hand-engineered. These algorithms also

overcome the laborious process of creating distinct programmes that could solve individual

problems in a domain by creating a single ML algorithm, that needs to learn by a process called

training, which could address each new problem [13].

 12

Brain-inspired computation is an area within the field of Machine Learning. The brain is the

best intelligent machine known to mankind for learning and solving problems. Brain-inspired

computations are simply programme or algorithms that take the key aspects of how the brain

works. It all depends upon how one understands how the brain works [13].

Although a lot of research is undergoing to explore how the brain works, neurons are

considered to be the important computational element inside a brain. The neurons are

connected to a number of input elements known as dendrites and connected to output elements

known as axons. Axons are connected to the dendrites of other neurons and the connection

between axon and dendrites is called a synapse [15]. Figure 1.2 depicts the functionality of a

single neuron.

Figure 1.2. Functionality of a single neuron (adopted from [15])

Synapse has the ability to scale the signal (𝑥𝑖) while it crosses the junction. Weights (𝑤𝑖) are

usually used to denote the scaling factor and is believed that, the brain learns from changes

associated with these weights. Different weights could produce different outputs. In ML,

learning refers to the adjustment of weights, in accordance with the stimulus, while the program

(Brain) doesn’t change. These are the key inspiration for the ML style computation.

Spiking computing is a subarea within brain-inspired computing. It is from the fact that,

communication between axons and dendrites are through spike-like pulses, and the information

that is exchanged does not only depends on spike amplitude, instead it depends on the time

duration between the pulse arrivals. IBM true North [8], is an example of the spiking

computation. Another subfield of the brain-inspired computation is the neural networks, which

is the main focus of this thesis.

1.2 : Deep Neural Networks (DNNs)

 13

The structural building block of DNNs is a single neuron, which is called a perceptron. The

structure of a perceptron is depicted in Figure 1.3.

Figure 1.3. Structure of a perceptron (recreated from[10])

Inputs to the neurons 𝑥1, 𝑥2, … . 𝑥𝑚, each of these inputs have a corresponding weight 𝑤1, 𝑤2, … . . 𝑤𝑚. The primary computation within a neuron or the perceptron is the weighted

sum of inputs and it resembles the scaling operation within a synapse. Furthermore, the result

of the weighted sum is passed through a non-linear activation function. This will cause the

perceptron to generate an output whenever inputs cross the defined threshold [10]. We will

discuss some of these activation functions in 1.2.1. The equation governing the operation of a

perceptron is in Equation (1.1) (adopted from [10]). �̂� = 𝑔(∑ 𝑥𝑖𝑤𝑖)𝑚𝑖=1 (1.1)

In equation 1.1 ‘�̂�’ is the output of the perceptron, ′𝑔′ is the non-linear activation function, and

‘𝑥𝑖𝑤𝑖′ is the linear combination of inputs. Another term that we use with perceptron is the bias.

As shown in Figure 1.4, the purpose of the bias term is to allow you to shift your activation

function to the left or right regardless of your inputs. A computational neural network is

depicted in Figure 1.4. The input layer of the neurons receives the input values and propagates

them to the middle layer which is also known as ‘hidden layer’. The final output of the network

to the user will be the weighted sum from one or more hidden layers [10]. To match with the

brain-inspired terminology with neurons, synapses are designated as weights and output of the

neurons referred to as activations.

Figure 1.4. Computational neural network (Adopted from [10]) �̂� = 𝑔(𝑤0 + ∑ 𝑥𝑖𝑤𝑖)𝑚𝑖=1 (1.2)

 14

In the equation 1.2 (adopted from [10]) ‘�̂�’ is the output of the perceptron, ′𝑔′ is the non-linear

activation function, and ‘𝑥𝑖𝑤𝑖′ is the linear combination of inputs, which is same as equation

1.1. The extra parameter here is the ‘𝑤0′ which is the bias.

Deep learning is another area within neural networks, comprising more than three layers and

are often termed as Deep Neural Networks (DNNs). In general, DNNs have more than a single

hidden layer. Today, the number of network layers used in deep learning applications are more

than a thousand. In this thesis DNNs are used to refer networks used in deep learning.

1.2.1 : Activation Functions

The sigmoid function defined in equation (1.3) (adopted from [10]) is very commonly used

activation function. Furthermore, the function takes any real number as input on the x-axis and

it transforms that real number into a scalar output between 0 and 1. More clearly the function

has a bounded output between 0 and 1.

A good example for the application of sigmoid function includes computations involving

probabilities. This is due to the fact that probability is always bounded between 0 and 1.

Moreover, the sigmoid function is really useful when the constrain is to output a single number,

so as to represent that number as a probability distribution.

 𝑔(𝑧) = 𝜎(𝑧) = 11+𝑒−𝑧 (1.3)

One problem associated with sigmoid function is the slow learning rate. Problems may occur

when the slope of the function is nearly zero. The slow learning problem is addressed using a

function called Rectified Linear Unit (ReLU). Equation 1.4 [10] represents a ReLU function.

 𝑔(𝑧) = max (0, 𝑧) (1.4)

Figure 1.5. Commonly used non-linear activation function. (a) sigmoid function, (b) ReLU and (c) hyperbolic
tangent [13]

Figure 1.5 depicts the commonly used non-linear activation function. Figure 1.5.a represents

the plot of a sigmoid function characterized by equation (1.3). Whereas, Figure 1.5.b

represents a ReLU function described by the equation (1.4). As shown in Figure 1.5.b the

 15

gradient (slope) of ReLU is always ‘1’ for all positive values, so that gradient is much less

likely to shrink to zero. Furthermore, the slope of the line is zero in the left-hand side. Finally,

Figure 1.5.c represents a hyperbolic tangent non-linear activation function characterized by

equation (1.5) [10].

 𝑔(𝑧) = 𝑒𝑧− 𝑒−𝑧𝑒𝑧 +𝑒−𝑧 (1.5)

The objective of activation functions is to introduce non-linearities into the network or data.

This objective is very important in real life because in real life almost all the data is non-linear.

Furthermore, non-linearity allows as to approximate arbitrary complex functions by

introducing non-linearities into decision boundaries. This makes neural network so powerful.

1.3 : Building Deep-Neural Networks (DNN’s) from Perceptron’s

Figure 1.6 depicts a simplified view of a computational neural network with bias and weight

labels removed. ‘z’ represents the output of the dot product. i.e., element-wise multiplication

of inputs with weights of the network. This operation is expressed in equation (1.6) (adopted

from [10]). The output ‘z’ is feed into the non-linear activation function to produce the output

of the network designated as ‘y’.

Figure 1.6. Simplified view of a computational Neural Network [10]

 𝑧 = 𝑤0 + ∑ 𝑥𝑗𝑤𝑗𝑚𝑗=1 (1.6)

A multi-output perceptron is depicted in Figure 1.7. This is created by adding another more

perceptron into the fundamental structure shown in Figure 1.6. The multi-output perceptron

shown in Figure 1.7 has two outputs 𝑦1and 𝑦2. One peculiarity of this structure is the presence

of dense layers, since all the inputs are densely connected to all the outputs [10].

Figure 1.7. Multi output perceptron [10]

 16

A single layer neural network is shown in Figure 1.8. The structure has a single hidden layer

that feds into the single output layer. Unlike the inputs and outputs, the states of the hidden

layers are not directly observable. One cannot directly enforce the states of hidden layers since

those states are learned as opposed to the inputs which are provided by the user. This reflects

the fact that the structure has two transformations. Firstly, a transformation between inputs and

the hidden layers. Secondly, the transformation between hidden layers and output layers [10].

Furthermore, both transformations have a different weight matrix 𝑤1 and 𝑤2 as shown in

Figure 1.8.

Figure 1.8. Single layer neural network [10]

Figure 1.9 represents a neural network with fully connected or dense layers between inputs

and hidden layers or hidden layers and outputs. Here the symbol ‘X’ represents the dense

layers. Stacking of more layers like this will helps to create a deep-neural network as shown in

Figure 1.10. The final output of the deep-neural network can be computed by going deep and

deep into the network representation. Equation (1.7) (adopted from [10]) represents the output

of the layer 𝑧𝑘,𝑖 in the Figure 1.10.

 𝑧𝑘,𝑖 = 𝑤0,𝑖(𝑘) + ∑ 𝑔(𝑧𝑘−1,𝑗)𝑤𝑗,𝑖(𝑘)𝑛𝑘−1𝑗=1 (1.7)

Figure 1.9. Fully connected or Dense layer neural network [10]

 17

As depicted in Figure 1.10 DNNs comprised of fully connected layers (multilayer

perceptron’s). Furthermore, output activations of a fully connected layer composed of the

weighted sum of all input activations. This means all output activations have a connection to

all inputs. Such a structure consumes more storage and it also requires more amount of

computations. Depending upon the applications several methods such as weight sharing,

sparsely connected layers have been used in literature to mitigate the issues of storage and

computations.

Figure 1.10. Representation of a deep-neural network [10]

1.3.1 : Computational Complexity of DNNs

Figure 1.11 shows convolutional neural networks (CNNs). CNNs are famous DNNs forms

which are based on convolutional layers. Furthermore, the computations within a convolutional

layer is basic convolution [13].

Figure 1.11. Convolutional Neural Network [13]

LeNet [16], AlexNet [17], Overfeat [18], VGG-16 [19], GoogLeNet [20], ResNet [21] are some

of the famous DNN models available in literature. Table 1 (adopted from [13]) shows a

comparison between those models across matrices such as the number of filters, number of

channels, weights and MACs. Forward pass through a DNN during inference requires an

 18

enormous amount of MAC operations and memory access. Consider the case of AlexNet in

Table 1 It requires 724 million MAC operations and 3 ∗ 109 memory access. Furthermore,

those operations are performed on 32-bit floating point operators.

From Table 1 it is clear that energy cost associated with arithmetic and memory operations for

DNN models during the inference phase is very high. This makes such models prohibitive for

a number of applications. One way to minimise the computational and memory access cost is

by quantizing the values to a smaller number of bits.

1.4 : Binarized Neural Networks (BNNs)

Binarization is a form of network quantization in which data can only have two values, either

+1 or -1. Furthermore, those two values can be represented using binary variable such that a

binary ‘1’ represents +1 and a binary ‘0’ represents the value -1. Binary Connect (BC) [22] is

one form of network in which weights are quantized. Whereas in binarized neural networks

(BNNs) both weight and activations are quantized [14].

A real-valued variable ‘x’ can be transformed into two values +1 and -1 using a deterministic

binarization function [14]. The deterministic binarization function defined in equation 1.8

(adopted from [14]) .

 𝑥𝑏 = 𝑆𝑖𝑔𝑛 (𝑥) = { +1 𝑖𝑓 𝑥 ≥ 0−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (1.8)

Table 1. Comparison of popular DNNs models (adopted from [13])

Metrices

LetNet-5

[16]

AlexNet

[17]

Overfeat fast

[18]

VGG-16

[19]

GoogLeNet-v1

[20]

ResNet-50

[21]

Input Size 28x28 227x227 231x231 224x224 224x224 224x224
CONV

Layers 2 5 5 13 57 53

Filter Size 5 3,5,11 3,5,11 3 1,3,5,7 1,3,7

Channels 1,20 3 - 256 3 - 1024 3 - 512 3 - 832 3 - 2048

Weights 2.6k 2.3M 16M 14.7M 6.0M 23.5M

MACs 283K 666M 2.67G 15.3G 1.43G 3.86G

FC Layer 2 3 3 3 1 1

Filter Size 1,4 1,6 1,6,12 1,7 1 1

Channels 50, 500 256 - 4096 1024 - 4096 512 - 4096 1024 2048

Filters 10, 500 1000 - 4096 1000 - 4096 1000 - 4096 1000 1000

Weights 58K 58.6M 130M 124M 1M 2M

MACs 58K 58.6M 130M 124M 1M 2M
Total

Weights 60K 61M 146M 138M 7M 25.5M

Total MACs 341K 724M 2.8G 15.5G 1.43G 3.9G

1.5 : Research Questions

 19

A comprehensive literature survey comprising near-memory and in-memory computing is

presented in Chapter 3. Several research questions raised in this thesis based on the literature

review discussed in Chapter 3 and are presented as follows:

i. Most of the DNN models explained earlier was designed to attain maximum accuracy.

The hardware implementation complexity of these models is not properly considered

[13]. One way to address this issue is by reducing the precision of operands as well as

operations. BNNs falls into the category of fixed-point precision reduction method.

ii. In BNNs both activations and weights are 1-bit fixed-point. This has a significant

impact in storage requirements. Furthermore, as the number of bits increases the energy

and area associated with a fixed-point adder increases linearly. Whereas, the area and

energy increase quadratically for a fixed-point multiplication [23].

iii. Memory energy consumption normalized with respect to multiply and accumulate

energy consumption is 100 times compared to SRAM, 500 times compared to DRAM

and 1000 times compared to Flash Memory [23]. In addition, most of the IMC scheme

for BNNs available in the literature focused on utilising 8T-SRAM or 10T-SRAM.

Compared to the conventional 6T-SRAM, 8T and 10T-SRAM consumes more power

and area. Are there any possibilities to design an IMC scheme for BNNs targeting edge

devices (L2, L3 caches)?

iv. Majority of the IMC scheme available in the literature do not fit for CNN applications

due to degradation of accuracy. Furthermore, this is from the fact that most of the

designs have 1-bit input or 1-bit output. Is it possible to design an IMC scheme for

BNNs that is capable of improving the accuracy?

v. Normally, an IMC scheme needs ADC (Analog to Digital Converter) and DAC for its

effectiveness. This also contributes to the total power consumption. Is it possible to

design an IMC scheme for BNNs mitigating the power consumption of ADC and DAC?

vi. Investigate the possibility of an IMC scheme for BNNs employing the use of current

computing (analog computing) which works well during the read operation of the 6T-

SRAM bit cell.

1.6 : Objectives of the thesis:

The main objective of this thesis is to investigate the possibility of an IMC scheme for the

BNNs targeting edge devices (L2 or L3 caches) and answer the research questions discussed

earlier.

 20

i. Investigate an IMC scheme for the BNN’s where input activations and weights are

quantised as +1 or -1 (encoded as binary ‘0’ for -1 & binary ‘1’ for +1). Furthermore,

the work must focus on storing the input activations in 6T-SRAM cell rather than the

weights.

ii. Determine the effectiveness of an IMC scheme for BNNs utilising the scope of current

computing (analog computing) within the 6T-SRAM bit cell by designing a 4-bit DAC

that can be attached to the output of a sense amplifier. Furthermore, check the

functionality of the DAC circuit which performs a dot product operation between the

input activations and the weights during the read phase of 6T-SRAM.

iii. Improve the accuracy of the system by enabling 4-bit precision to the weights

(𝑊3𝑊2𝑊1𝑊0).

1.7 : Thesis Organisation

This thesis is organised as follows,

The thesis starts with the research topic and the motivations, behind the selection of this

particular research area. A brief introduction to DNN’s, it’s terminologies, and drawbacks

(complexity) are discussed in Chapter 1. Furthermore, Chapter 1 also focused on discussing

key conceptual ideas of BNN’s including methods to reduce precision.

Chapter 2 has provided a detailed introduction to compute-in memory. The chapter starts with

the importance of compute in-memory and its relevance for today’s data-centric applications.

The basic difference between near memory computing and in-memory computing was also

highlighted in the chapter. Furthermore, the chapter also covered strategies for effective IMC

design for DNN’s.

Chapter 3 briefly reviewed the key advancements that happened in the field of compute in-

memory. Furthermore, the chapter also focused in reviewing, how compute in-memory was

used in memory technology such as SRAM.

The major objective of this thesis was to design and implement, an IMC scheme for BNN’s.

The detailed circuit and layout design, simulation and results are briefly discussed in Chapter

4. Chapter 5 concludes the thesis with future direction for improving the proposed method

and some of our future research plans.

 21

Chapter 2 : Theoretical Background of Compute In-Memory

2.1 : Compute In-Memory

Memories are a very important part of many computing systems. It allows storing critical

parameters and data, which needs to be accessed while processing. Faster and smaller

transistors are produced as a result of CMOS scaling. Even though CMOS scaling helped in

improving the modern CPU’s speed, the slow access time of memories have a negative impact

on the overall processing time. The increasing gap between memory access time and CPU

clock speed is often regarded as Memory Wall [24]. Multicore processors are common

nowadays. However, energy and bandwidth have become dominant issues while multicore

processors are operated in parallel [25].

Figure 2.1. The basic idea of in-memory computing and the conventional Von-Neuman Architecture (adopted
from [26])

Figure 2.1 depicts the conventional Von-Neuman architecture. The memory and processing

units are separated in this architecture, with data flows between them. Von-Neuman

architecture is regarded as the primary reason for memory becoming a bottleneck in computing

systems. Today’s computing systems are built based on Von-Neuman architecture, where data

is shuttled between memory and processing units. Once the execution of programs is over, the

results must have to be taken back to the memory from the processing unit. This process of

shuttling back and forth of data between the memory and the processing unit incurs a significant

loss of energy and latency. Data movement is very expensive in terms of energy and it is getting

aggravated by a tremendous growth in data-centric applications such as AI. Moreover, the

latency is another bottleneck associated with accessing data from memory unit is also

increasing [27].

It is more expensive to access data from memory compared to multiplying two numbers [23].

Modern approaches such as Graphics Processing Units (GPU), where hundreds of processors

 22

are kept in parallel [28], and Application Specific Processors [29], which are specifically

designed for certain applications are not able to mitigate the problems associated data

movements. Those problems have prompted researchers to think about another computing

paradigm which is different from Von-Neuman architecture and is known as In-Memory

Computing (IMC).

2.2 : What is Compute in-Memory?

Compute in Memory comprise of some typical solutions based on a single principle where

additional compute modules are created within the memory rather than moving the data out of

the main memory to the CPU. Such a method makes the system efficient and faster. Moreover,

such strategies are important for today’s data centric applications. Today AI systems are

operated on large data set. Moreover, those systems are designed to collect and process a large

amount of data. Due to data movement, the memory becomes a bottleneck in such systems.

Compute in-memory is designed to adjust those bottlenecks. Moreover, compute in-memory

is often treated as relative to any existing system comprising compute and memory [30].

Theoretically, one question arise which memory is referring to compute in-memory?

Figure 2.2 shows a relatively standard computing system for general purpose applications. The

system has a microprocessor with CPU and increasing large levels of cache. DRAM chips and

SSD (hard drive) are off-chip. During general operation, the system has a progression about

how the memory is used. L1 and L2 caches are small as well as the fastest in the memory

hierarchy and are placed nearer to the CPU.

Figure 2.2. Relatively standard computing system for general purpose applications [30]

The memory size increases gradually whereas speed decreases quickly as we move horizontally

from L1 cache to SSD. DRAM chips and SSD are an order of magnitude larger than the on-

chip memory (L1, L2, L3 Cache). For a memory system as shown in Figure 2.2 CPU works

directly on L1 cache, whereas other aspects of the memory systems such as L2 and L3 caches,

DRAM and SSD are accessed by the CPU at regular intervals. This means L1 cache is accessed

frequently, whereas L2 cache will be an order of magnitude less frequent compared to L1

 23

cache. Furthermore, L3 will be an order of magnitude less frequent compared to L2 cache. This

is applicable to off-chip DRAM chips and SSD memory as well [30]

Figure 2.3. Typical Memory Hierarchy [31]

Figure 2.3 depicts the general memory hierarchy. As we move up the pyramid the energy

decreases and speed increases. On the other hand, as we move down the pyramid the

manufacturing cost decreases with an increase in the density of stored bits. Therefore,

frequently accessed data are stored in memories that are nearer to the processing engines,

whereas data’s that are not accessed frequently are stored in distant memory units such as

DRAM or HDD’s.

Fundamentally Compute In-Memory is not applicable to L1 cache as it is used by CPU for

computation [30]. Instead, Compute In-Memory would mean,

• Compute at L2 cache which transports data from L2 to L1

• Compute at L3 cache, same as L2 cache.

• Compute at DRAM chips: Instead of transferring gigabytes of data through DDR

interface, compute directly at DRAM so to avoid data transfer.

• SSD(HDD): Instead of transferring terabytes of data, add compute in memory to SSD,

to avoid data transfer.

The existing memory structures available on today’s markets have some built-in assumptions.

1. “Temporal Locality: If any particular location of memory is accessed at a particular

point of time, then it is likely that the same location will be accessed again in the near

future” [30].

2. “Spatial Locality: If a particular storage location is referenced at a particular time, then

it is likely that the same location will be referenced again in the near feature” [30].

3. “Probability not certain: It is not possible to predict which data is needed next” [30].

 24

Most of the modern AI applications have data patterns that does not match well with the

traditional memory hierarchy shown in Figure 2.3 and moreover, it won’t work well with the

built-in assumptions. Compute In-Memory is specifically designed for capturing more difficult

access patterns. The amount of memory needed by any application over a period of time is

defined as the ‘working set’[30]. Moreover, the working set helps to determine the frequently

used/accessed memory locations.

Compute in-memory for an application is designed by two steps. Firstly, one should identify

the working set of that application. Secondly, map the working set to the memory location that

suits the application and finally, one should design a compute in-memory for the respective

application [30].

Compute In-Memory is not always useful. Firstly, an application is always needed to take

advantage of and hence not good for general purpose applications. Secondly, applications must

be greater than 90% of the system power and time. Otherwise, it is hard to get significant

improvements (10x). Finally, applications that suit into L1 cache are always hard to improve

[30].

2.3 : In-Memory computing for DNN’s

In conventional Von-Neuman architecture, the data is required to move from memory to CPU

for performing certain computations and the results are sent back to the memory. This

movement of data increases the overall energy consumption in DNN’s. Furthermore, the

distance between the memory and computational unit limits the overall bandwidth that supplies

data to the computing unit. In addition, it also reduces the overall throughput of the system.

This is referred to as the memory wall [24].

Several previous studies have tried to bring the memory and computing unit closer or to

integrate memory and computing units together. One of such is IMC, in which the

computational unit is integrated within the memory. This technique is applicable to various

memory technologies such as SRAM, DRAM etc. The interesting feature about this mode of

computation is that it mostly relies more on mixed-signal circuit design topologies that favours

them to perform the computation in analog domain [32].

Figure 2.4. Conventional Architecture [32]

 25

The conventional processing architectures used in DNN’s consist of two memory units. One

serves as the memory to store input activations and the other for storing weights. During the

DNN processing phase, both the input activations and weight vectors are readout and are

passed through a MAC as shown in Figure 2.4. The main issue with such a processing strategy

is two-folded. Firstly, the memory interface put a limitation on the number of weights that are

read at a time. Secondly, limited memory bandwidth possess a limitation in the number of

parallel MAC operations, consequently, overall throughput of the system is reduced [32].

The important operation within a DNN is MAC. The efficient processing of DNN can be

accomplished by matrix-vector multiplication. This matrix-vector multiplication can be

performed by an IMC strategy. Figure 2.5 depicts the architectural feature of IMC. The key

feature of the architecture is to move and integrate the computing unit into the weight memory

that serves to store the weight matrix. Moving of computation into the weight memory helps

to improve the processing in three ways [32]. Firstly, a significant reduction in weight

movement, which also reduces the reading of weights. Secondly, it helps to read out the final

outputs from the memory. Finally, processing In-memory also helps in increasing the overall

bandwidth, because of the number of weights that can be accessed in parallel increases. The

memory interface is not a constraint here, as the entire weight memory AxB can be read out in

parallel [32].

Figure 2.5. Processing In-Memory Architecture recreated from [32]

Figure 2.6 represents the conventional data flow architecture for IMC. In this architecture the

data flow inside the weight storage memory is assumed to be stationary. The input activations

stored in memory_1 are read and passed through a DAC and are applied to the storage elements

of weight memory through the word lines. MAC array is implemented using storage elements

that store the weights. At each storage element, a multiplication is performed. The computed

output activations or the partial sum of a computation are read from the memory using bit lines

(BL/BLB). For the implemented MAC array ‘A’ elements with ‘B’ rows can be accessed at

the same time. Furthermore, AXB operations are performed in parallel per cycle.

 26

Figure 2.6. Conventional data flow architecture for In-Memory computing recreated from [32]

One way to reduce the number of input activations read is to reuse the input activations used

in weight memory (memory_2) across the columns. DAC and ADC are required for converting

bit line (BL/BLB) and word line (WL) values. The cost of DAC in this architecture depends

on the precision of input activations whereas, the cost of ADC is decided by the precision of

outputs [32].

 27

Chapter 3 : Literature Survey

The significance of compute in-memory in today’s data centric applications was clearly

discussed in Chapter 2. Von-Neuman architecture is regarded as the primary reason for higher

energy consumption in DNN’s. To overcome the ‘memory wall’ compute-in-memory is

proposed in the literature. This chapter reviews the main advancement that has happened in the

field of compute in-memory. Furthermore, the chapter briefly reviews how compute-in-

memory is used in memory technology such as Static Random-Access Memory (SRAM).

The first section of the chapter is devoted to describing the efforts to bring computing nearer

to the off-chip memory (eg: DRAM, SSD etc.). This approach is referred to as near memory

computing. In such a strategy processing is performed very nearer or at close proximity to the

memory array, and hence the name near memory/near-data-processing. In recent years near

memory computing has focused on advanced memory technologies such as embedded-DRAM

(e-DRAM) and 3-dimensional stacked memories (3-d stacked DRAM’s). The second section

of this chapter focuses on In-Memory Computing (IMC). IMC tries to do the computations

within the confine of the computational memory unit to reduce the data movement

significantly. Many recent works are focused on IMC within the well-known SRAM, DRAM

and NVM.

3.1 : Near Memory Computing

Process technology for processors is different from high-density memories. As a result, high-

density memories are fabricated as individual chips. Separate Fabrication of memory chips

creates problems with accessing these off-chip memories (Bandwidth and energy). These

limitations can be overcome by creating compute near to the high-density memory. This

strategy helps in reducing the energy required for accessing the off-chip. Moreover, it improves

the overall memory bandwidth.

Advanced memory technologies such as e-DRAM and stacked DRAM’s (3-D) have enabled

processing near the memory. This section describes how these technologies are used to process

DNN’s.

3.1.1 : High-Density Memories

Off-chip access during DNN processing can be effectively reduced with the help of high-

density memories such as embedded DRAM (e-DRAM)[33]. Higher storage density is one of

the typical features of e-DRAM and hence is used to store megabytes of weights and

activations. One such design is DaDiaNo [34]. Figure 3.1 shows the fundamental architecture

 28

of DiaNao accelerator proposed by Chen.et. al [35]. DiaNao is famous for its speed and low

energy execution of DNN’s.

Figure 3.1. Fundamental Architecture of DiaNao [35]

The important part of a DiaNao architecture is the Neuronal Functional Unit (NFU), where

computations of a neuronal outputs are evaluated (Pipelined). The same DiaNao architecture

is modified to address the fundamental issue of memory storage (for reuse) and bandwidth (for

fetching) [34]. The key features of the architecture are three folded. Firstly, neurons and

synapses are placed close to each other. This helps in minimising the data movement.

Moreover, placing neurons and synapses close to each other saves energy and time. Secondly,

neuron values are transferred compared to the synapse’s values. This helps in reducing the

external bandwidth since neuron values are an order of magnitude less compared to the

synapse’s values. Finally, the local storage is broken into smaller tiles to achieve higher internal

bandwidth. The NFU proposed in[34] is far more complex than the one in [35]. Higher latching

compared to SRAM, destructive reads and periodic refresh are the main drawbacks of using e-

DRAM.

3.1.2 : 3-D Memory (Stacked Memory)

3-D memory is the latest memory technology in which DRAM’s are stacked on top of one

another using a technology known as Through-Silicon-Vias (TSVs). Hybrid Memory Cube

(HMC)[36] and Hybrid Bandwidth Memory (HBM)[37] are commercial forms of 3-D

memory. Compared to the conventional 2-D memory, 3-D memories offer higher memory

bandwidth (order of magnitude) and at least 5-times reduction in access energy. Moreover,

TSVs offer less capacitance compared to the interconnects used in conventional 2-D memory.

Performance of multicore processors is often limited by the memory system bandwidth. To

address this issue, HMC [36] and HBM [37] are proposed in the literature. HMC is a three-

dimensional DRAM architecture, which improves overall system Bandwidth, latency, power

and density. Figure 3.2 shows an HMC device with TSVs technology and fine pitch copper

 29

pillar interconnect. Normally, HMC contains a stack of heterogeneous dies. Moreover, HMC

has a greater number of connections, so as to reduce the distance travelled by the signals.

Figure 3.2. HMC device with TSVs technology and fine pitch copper pillar interconnect [36]

However, HBM is a standard DRAM design capable of achieving a bandwidth greater than

256 Gbps with a reduction in overall power consumption. Figure 3.3 depicts the fundamental

structure of an HBM device. The core Die inside a heterogenous HBM structure composed of

a conventional DRAM architecture with TSVs interface. Compared to the conventional

DRAM’s, HBM offers improved capacity, bandwidth and power efficiency.

Figure 3.3. Fundamental structure of an HBM device [37]

Recent works on efficient DNN processing have explored the use of HMC in a number of ways.

Firstly, Neurocube [38] has brought the memory and computations close to each other with the

help of HMC technology. Figure 3.4 shows the key components of Neurocube. The

architecture composes of a global controller, processing elements (PE’s), routers and

programmable neuro sequence generator (PNG). Out of these key components, PE’s are the

main computing units, with several multiply and accumulate (MAC) units. Clusters of PE’s are

connected by a 2-D mesh network for processing. Moreover, PE’s are capable of accessing

memory channels in parallel. Furthermore, with the help of high-speed TSVs technology,

multiple PE’s are in communication with the DRAM vaults.

 30

Figure 3.4. Key components of Neurocube [38]

Another DNN processing work that has exploited the use of HMC is the Tetris[39]. Tetris is a

neural network accelerator exploiting near data processing. Figure 3.5.a depicts the hardware

architecture of Tetris. HMC is used as the substrate of Tetris and is divided vertically into 16,

32-bit wide vaults. DRAM dies are connected to the base logic using vault channel buses

utilizing TSVs technology. Each DRAM composed of either two banks or vaults. Moreover,

access to different vaults or banks can overlap. Figure 3.5.b shows the detailed structure of the

Neural Network (NN) engine within each vault. A 2-D network array is created by connecting

hundreds of PE’s together. Moreover, a global buffer is shared across all PE’s for storing and

accessing data from the memory.

Long DRAM latency remains problematic for the design aspects discussed earlier. One way to

improve the performance is by stacking SRAM’s instead of DRAM’s known as QUEST[40].

This design strategy helps in reducing memory access. Figure 3.6 depicts the overall

architecture of QUEST. An SRAM capacity of 96MB in total is achievable by stacking 8-

SRAM dies. The SRAM dies are connected to the chip using inductive coupling interface

known as Thru Chip Interface (TCI). TCI has a lower integration cost compared to TSVs.

Furthermore, with wireless communication (TCI) both high memory bandwidth and low access

latency are achieved.

So far 3-D memory design discussed involves TSVs or TCI for connecting memory and logic

dies, which are designed and fabricated separately. Monolithic 3-D integration is

nanotechnology, which helps to fabricate thin layers of logic and memory on the top of each

other. N3XT[41], uses a non-volatile memory using a monolithic 3-D integration system.

Figure 3.5. (a) Hardware architecture of Tetris, (b) detailed structure of an NN [39]

 31

Figure 3.6. Overall architecture of QUEST [40]

3.2 : In-Memory Computing (Processing In-Memory)

Compute in-memory based on CMOS technologies are of great importance nowadays due to

the presence of field effect transistors. Furthermore, the ease of massive production and

commercialisation makes CMOS technologies very trending. Emerging non-volatile memories

based on memristors are shown to be very efficient in performing dot product operation.

Analog dot product operations based on memristor technologies are very fast and efficient,

when compared to the Boolean operations. However, rapid commercialisation of memristor

technologies are hindered due to the challenges related to large scale manufacturing.

This section discusses in-memory computing, which enables computations within the memory.

The difference between conventional memory architecture and in-memory architecture was

highlighted in Chapter 2. Furthermore, the benefits of using compute in-memory were

discussed very briefly. This section primarily focuses on discussing well known compute in-

memory designs and how processing in memory is performed using memory technology such

as SRAM.

3.2.1 : Static Random-Access Memory (SRAM)

In recent years, a number of efficient DNN processing design’s enabling SRAM bit cell for

performing In-Memory and bit-cell computations have been proposed. In general, SRAM bit-

cell computations can be classified as current-based and charge-based design. Current-based

designs perform dot operations utilizing current-voltage (IV) characteristics of a bit-cell. A

well-known current-based bit-cell design is machine learning classifier implemented in 6T-

SRAM[42]. Since computations are performed inside the 6T-SRAM cell, excessive memory

access is reduced significantly.

Figure 3.7 depicts the overall architecture of the machine learning classifier. The whole system

operates in two modes. SRAM and Classify mode. During SRAM mode, normal read, write is

performed and during Classify mode the system implements a weak classifier. During the

classify mode, bit line pairs (BL & BLB) are pre-charged first. This is followed by driving the

 32

word lines (WL) with an analog voltage corresponding to the input activations. Word line

Digital to Analog Converters (WLDAC) are used at the periphery of each WL’s, enabling the

bit-cell to pull a current (IBC) modulated by its own WL voltage drop (VBL) from the bit lines

(BL or BLB) according to the stored data. This operation is equivalent to the dot product of the

stored data by +1/-1. All the IBC across columns add together as an inner product.

Figure 3.7. Overall architecture of machine learning classifier [42]

Figure 3.8.a shows the cell current accumulation and Figure 3.8.b depicts a WLDAC’s circuit

diagram. The binary-weighted PMOS current sources are selected using a 5-bit digital features.

Moreover, PMOS current sources helps in enhancing the linearity of charge drawn by bit-cells.

Furthermore, the driver transistor (𝑀𝐷𝑅) and a diode-connected access transistor (𝑀𝐴𝑅) are

biased using the current from the PMOS current source and helps in driving the WL’s.

Figure 3.8. (a) Cell current accumulation in machine learning classifier, (b) WLDAC circuit diagram [42]

Embedded machine learning classifier with 1-bit outputs or smaller number of output classes

are found to be insufficient for efficient implementation of CNN’s. This issue is addressed by

a current based IMC design with 7-bit inputs and outputs known as CONV-SRAM[43]. Figure

3.9 shows the overall architecture of a 256 x 64 CONV-SRAM array. The area of ADC’s and

analog multiply-and-average (MAVa) circuits are optimised by dividing the whole architecture

into 16 local arrays, with each array further divided into 16 rows.

CONV-SRAM uses a 10-T bit-cell instead of a 6-T, for storing binary weights across the local

array for individual 3-D filter in a CONV-layer. The dedicated ADC across each local array

computes the convolution outputs. The input feature maps (Xin) are converted to an analog

voltage with the help of column-wise DAC’s (GBL_DAC). Figure 3.10 shows the schematic

of the GBL_DAC circuit, which is shared across the local arrays. The schematic consists of

 33

cascaded constant PMOS current sources. Global read lines (GRBL) are charged with current

directly proportional to Xin for a duration of 𝑡𝑜𝑛. Small PMOS stack to charge GRBL, for all

input codes provides better linearity and mismatch compared to 6T-SRAM, ML-Classifier.

Furthermore, the pulse width of timing signals has fewer variations compared to PMOS 𝑉𝑡

variations.

Figure 3.9. Overall architecture of CONV-SRAM [43]

Figure 3.10. Circuit diagram of GBL_DAC [43]

Figure 3.11. Pre-charge enabling In-memory multiplication [44]

A novel In-Memory multiplication and accumulation inside 6T-SRAM is presented in[44]. The

work makes use of the pre-charge circuit where they encoded the bit significance of pre-charge

pulse, to perform analog multiplication inside the SRAM. Figure 3.11 shows the In-memory

multiplication. The operand ‘w’ is stored in the memory cells as shown in Figure 3.11.

Furthermore, on the word line, other operand is encoded as an analog voltage. Bit significance

pre-charge is performed by enabling the pre-charge circuit at different instance and hence the

analog multiplication in SRAM.

Apart from the 6T and 10T-SRAM bit cell current based computing designs, standard 8T-

SRAM has also been enabled for analog like In-Memory multibit dot product operations[45].

The fundamental idea here is to apply analog voltages to the read port of the 8T-SRAM bit-

 34

cell and concurrently sensing the output current. Without modifying or altering the standard

structure of the basic 8T-SRAM cell, two configurations of dot product computations are

performed. Figure 3.12 shows the basic structure of an 8T-SRAM. However, 8T-SRAM

consist of a basic 6T-SRAM bit-cell with two additional transistors which constitute the

decoupled read port.

Figure 3.12. 8T-SRAM [45]

Figure 3.13.a shows the first configuration enabling dot-product operation in 8T-SRAM. As

shown in the figure, whenever ‘SL’ is enabled by connecting it to the input voltage ‘vi’ and

‘RWL’ get turned ON [45]. Current ‘IRBL’ through ‘RBL’ is sensed and is directly

proportional to the dot product ‘vi.gi’, where ‘gi’ is the ‘ON/OFF’ conductance of transistor

M1 and M2 [45]. Another way to implement the dot product is depicted in Figure 3.13.b. Here

the analog voltage is applied to the ‘RWL’, where ‘SL’ is supplied with constant ‘Vbias’. The

current produced in this case is sensed in the same way discussed earlier

Figure 3.13. (a) configuration A, (b) configuration B [45]

Apart from performing dot operations using current based IMC design in SRAM bit-cells, it is

also possible to perform Boolean operations in conventional SRAM bit-cells using IMC. Such

a design is the X-SRAM [26]. The design explores in-memory vector operation within the

standard CMOS 8T and 8+T differential SRAM cells, with minimum modification of the

periphery circuit. The design explores six different configurations for in-memory vector

 35

operations. 75% of the total memory access have been saved by read-compute-store

mechanism, which enables the storing of computed Boolean directly on to the memory without

latching the data and write operations [26].

However, X-SRAM suffers a number of drawbacks. Firstly, NAND operation suffers low sense

margin and it requires additional timing control. Secondly, Boolean operation in 8T-SRAM

with voltage divider strategy requires additional voltage boosting. Finally, the differential cell 8+T- SRAM, requires two skewed sense amplifiers [26].

The IMC designs discussed so far focused on current based computing strategy in the SRAM

bit cells. Modern approaches for IMC designs have also utilised charge-based computing

strategy in SRAM bit cells too. One such design in the BNN implementation in which charge

based computations are enabled for storage and multiplications [46]. However, the bit cell size

is higher than that off conventional 6T-SRAM. Significant reduction in data movement, as well

as input and output activations, are the benefits of this design. Figure 3.14 shows a hidden

layer circuit and a neuron array structure of an M-BC with 8-transistors.

Figure 3.14. structure of an M-BC with 8-transistors [46]

Usually in BNN’s Input activations (IA) or weights (W) are 1-bit, so as to perform XNOR

operation. Conventionally, the charge sampled on the cap is taken as the output XNOR value,

whereas accumulation for the pre-activation are computed by shorting all the caps in the

neurons. Multiplying Bit-Cell (M-BC) is the key for eliminating or minimizing IA or W’s

movements. Moreover, pre-activation movement is eliminated by accumulation, which

happens as a part of charge shorting. Introducing two additional PMOS in standard 6T-SRAM

bit-cell, M-BC enables storage and XNOR operation at the cost of additional area.

Binary convolutions within the SRAM cell are accelerated using sectioned SRAM [47]. A

typical binary convolution operation is performed by XNOR operation followed by a

population count (pop-count). The work presents two techniques to accelerate the binary

convolution operation. Firstly, the parasitic capacitance present in 10T-SRAM is enabled as

charge sharing, so as to perform vector XNOR. Furthermore, this strategy helps in

approximating the pop-count. Secondly, the design has utilised bitwise XNOR, in which digital

 36

bit-tree adder performs the pop-count operations. Apart from the two-design strategy, the

design has enabled sectioned SRAM that allows performing multirow convolutions in parallel.

So far, the section discussed IMC using current and charge based designs. Recent works on the

efficient processing of DNN’s have also utilised the scope of mixed-signal circuit designs too.

Deep-In-Memory-Architectures (DIMA) or processors for inference applications using 6T-

SRAM array is a well-known mixed-signal circuit design enabling IMC with multifunctional

capabilities [48].

Figure 3.15. DIMA Architecture [48]

Figure 3.15 shows a conventional DIMA architecture. The DIMA architecture composes of

four stages. Firstly, Multi-Row Functional Read (MR-FR), that can access multiple rows in a

single pre-charge. Pulse Width Modulated- Word-line (PWM-WL) signals generate BL

voltages equivalent to a weighted sum of multiple bits. Secondly, ‘BL’ Processing (BLP) helps

in performing computations such as multiply, absolute value or comparison of the BL voltages.

Moreover, these computations are performed in massive-column-parallel fashion. Cross BL

Processing (CBLP)is the third vital part of DIMA, capable of aggregating the BLP voltage to

a scalar value. Furthermore, the same scalar value is sliced for the final decision. The final

stage of DIMA is the ADC and Slicing.

Figure 3.16 depicts the chip architecture of a DIMA inference processor. The chip architecture

is composed of a core, digital controller (CTRL) and an input register. The function of input

register is to stream the operands. However, the normal read and write circuitry is placed at the

bottom part of the chip, whereas In-Memory processing blocks are placed on the upper part of

the chip. Such a placement helps in physical separation as well as functional maintenance. The

 37

architecture is capable of processing 128, 8-b words per cycle. This means two consecutive

cycles can process 256 vectors, with 8-b elements.

Figure 3.16. Chip architecture of DIMA inference processor [48]

DIMA-CNN [49], is a variant of DIMA architecture implemented with CNN. The architecture

and circuit topology used in this work mainly focuses on reducing energy and delay associated

with data movement in CNN. Furthermore, DIMA is embedded with mixed-signal

computations that are low swing and energy-efficient at the periphery of SRAM bit-cells. The

key design aspect of the work is a mixed-signal multiplier enabled for data reuse in

convolutions. The work has also tried to address some of the implementation issues. Firstly,

frequent data access, processing and convolutions in parallel are addressed through DIMA’s

energy efficiency, intrinsic parallelism, multiple bit-cell array banks and optimised kernel data

storage. Secondly, the sliding window for convolution is optimised by using sliding window

FM register. Finally, charge-recycling mixed-signal multiplier somewhat addresses data reuse

in analog computations.

Figure 3.17. IMC Unit [50]

Another variant of the mixed-signal IMC based on standard SRAM bit cell is presented in [50].

In this work an SRAM bit-cell composed of the standard 6T-SRAM cell, a binary multiplier

(XNOR based) and a pseudo-differential voltage-mode driver. Figure 3.17 shows the

fundamental IMC unit. The unit consists of 128-bit cells implementing mixed-signal dot

 38

product between 64 inputs and synapses. The first 64-bit-cells contains the synapse weights

which are multiplied with the inputs using XNOR gates, which are embedded within the bit-

cells. A pair of inverters (PIN) is used to accumulate the multiplication results. Furthermore,

the PIN’s are capable of driving the bit-cells to positive (𝑣𝑝) and negative (𝑣𝑛) voltage levels.

However, out of the 128-bit-cells only 64 are used for dot product operation. Whereas, out of

the remaining 64-bit-cells, 32 are used for ADC reference and 32 for offset cancellations. In

the final stage, pseudo-differential accumulators, output voltage levels and is converted to a

digital output by an ADC at each row.

 39

Chapter 4 : Proposed In-Memory Computing Cell

As discussed in Chapter 1 computational complexity of DNN’s are increasing as the number

of hidden layers increases. This in-turn requires an enormous amount of MAC operations and

memory access, needed for a forward pass within a DNN. One way to reduce the computational

cost and the memory access is to quantise the values of operands to a smaller number of bits.

The most extreme form of quantisation is known as ‘Binarization’ in which only two values

for the quantities +1 and -1 is used. These two variables can be represented using a binary

variable, where binary’1’ represents the value ‘+1’ and binary ‘0’ represents the value ‘-1’. In

this chapter, an In-Memory computing scheme for ‘Binarized Neural Network’ (BNN) is

proposed. Quantisation is applied to both weights and activations within the BNN’s (i.e., inputs

to the next subsequent layers).

4.1 : The proposed In-Memory architecture for BNN’s

Figure 4.1 shows the proposed 4x4 SRAM array employing In-Memory architecture for

BNN’s. The input activations corresponding to the layers of BNNs are stored in the memory.

This means that the input activations are stored in the individual 6T-SRAM bit cells which is

organised as 4 rows and 4 columns as in Figure 4.1. During the read operation, the sense

amplifiers sense the input activations stored in each bit cells along the column as analog voltage

and convert it to a digital data. The digital output of the sense amplifier is passed through the

proposed 4-bit Digital to Analog Converter (DAC), which enables a multiplication with the

input activations and the 4-bit weights (𝑊3𝑊2𝑊1𝑊0) applied as binary bits ‘1 or 0’ to produce

an output voltage (𝑉𝑂𝑢𝑡) in each individual column. The key aspects of the proposed IMC

design are as follows.

• An IMC scheme is proposed for the BNN’s where input activations and weights are

quantised as +1 or -1 (encoded as binary ‘0’ for -1 & binary ‘1’ for +1. In general, the

software implementation of BNNs using +1 and -1 is easy. But it is complicated in

hardware implementation. In this work, the designed IMC circuit is not capable of

handling ‘-1’. Instead, -1 is treated as ‘0’. This is due to the limitation of time allocated

for the research. However, this will be addressed in the next part of my research.).

Furthermore, the work focuses on storing the input activations corresponding to the

layers of BNNs in 6T-SRAM cell rather than the weights.

 40

• The proposed IMC scheme has utilised the scope of current computing (analog

computing) within the 6T-SRAM bit cell by designing a 4-bit DAC that can be attached

to the output of a sense amplifier.

• The proposed 4-bit DAC circuit enables a dot product operation between the input

activations and the weights (𝑊3𝑊2𝑊1𝑊0).

• Normally in BNN’s, XNOR operations on binary encoding is equivalent to a dot

operation, which requires the accumulation of all products. Furthermore, the

accumulation requires the summation of results. Usually, population count (pop-count)

is used to estimate the total number of 1 bit in a group. The proposed 4-bit DAC circuit

eliminates the need of pop-count. Accumulation (summation) of current happens within

the 4-bit DAC at an accumulation net. The 4-bit DAC act as a current adder where the

accumulated current is converted to an equivalent voltage with the help of the sensing

element.

• The important feature of the proposed 4-bit DAC is that it has 4-bit weight

(𝑊3𝑊2𝑊1𝑊0) precision which improves the overall throughput efficiency. This can be

further increased by the proper design of the circuit.

Figure 4.1. Proposed IMC architecture for the BNN’s

4.2 : Overview of 6T-SRAM Cell

Memories are characterised according to the area, speed and power. Smaller the area of a single

bit cell, more the memory that could be accommodated on a single chip. In other words, the

cost per bit can be reduced to a greater extent. In normal practice SRAM are arranged as an

array of memory locations. Writing and reading of a single bit from this array of memory is

regarded as the memory access. Figure 4.2 shows the component layout of 4x4 SRAM array.

In this array individual bit cells are organized as 4 rows by 4 columns [31].

 41

A common word line (WL) is shared across each 4 rows of bit lines (BL/BLB), whereas the

bit line pairs BL and BLB, shares multiple bit lines in a column. For an SRAM, with ′𝑛′number

of bit line pairs and ′𝑚′ is the bit width of a single word, the ratio (𝑛 𝑚⁄) is defined as the

column ratio [31].

Read and write operations are performed by the help of circuitry at the periphery of SRAM

arrays. The periphery circuits decode the address locations in the form of bits, which uniquely

points towards the SRAM array locations that need to access. During the upcoming access, the

address decoder sets one among the 4-word line high to enable that particular row. At this

moment all the other word lines are set to low, which in-turn disable the SRAM cells they

control. The activated word line enables all the SRAM bit cells on the selected row, connecting

to a pair of bit lines.

Figure 4.2. Component layout of a 4x4 SRAM array [31]

As stated earlier, the access operations are read and write. During read operations, the bit lines

will carry the analog signal from the selected bit lines to the sense amplifier that converts the

analog signal to digital data. In contrast, during the write operations, the incoming data is driven

into the selected SRAM cell through the bit lines.

Figure 4.3. Back to back connections of inverters in a typical 6T-SRAM cell [31]

The backbone of an SRAM array is the 6T-SRAM bit cell. The main characteristics of a 6T-

SRAM bit cell are low power dissipation, high switching speed and good noise margin. A 6T-

SRAM bit cell is realized by the back to back connection of two CMOS inverters as shown in

Figure 4.3. S1 and S2 are the two switches (access transistors) in the bit cell. Read and write

operations can be performed with the aid of these two switches. The CMOS inverters are

 42

configured in a cross-coupled fashion so that the output of one inverter is the input to the other

inverter. Such wiring results in a positive feedback loop to create a bi-stable storage element

[31].

Figure 4.4. Bi-stable operation of a cross-coupled inverter [31]

Figure 4.4 represents the bi-stable operation of the cross-coupled inverters. The configuration

in Figure 4.4.a shows the cell storing a ‘1’ bit, whereas Figure 4.4.b depicts the configuration

storing ‘0’ bit. The cells capability to provide a stable state is from the fact that as long as the

inverters are powered, the noise immunity of the inverters will ensure that the logic states are

not altered even in the presence of electrical noise on either inverter inputs.

Figure 4.5 shows a conventional 6T-SRAM. The main feature of 6T-SRAM is the back to

back connected inverters. The inverter pairs (T1, T3) and (T2, T4) act as the CMOS inverter

pairs. The output of (T1, T3) is connected to the input of (T2, T4) and output of (T2, T4) is

connected to the input of (T1, T3), as shown in Figure 4.5. The positive feedback makes sure

that the inverters are capable of storing the desired states ‘0’ and ‘1’ at the nodes N1 and N2,

as long as both the access transistors T5 and T6 are off and the SRAM cell is powered up.

Access transistors T5 and T6 are turned on during read and write operations, so that the internal

nodes N1, N2 will get connected to the bit lines BL and BLB [31].

Figure 4.5. Conventional 6T-SRAM [31]

4.2.1 : 6T-SRAM bit cell write operation

The first step in writing into an SRAM cell is to drive the bit lines BL and BLB to the data

values to be written. By asserting the word line (WL), both access transistors T5 and T6 get

 43

turned on. Assume that bit ‘1’ is available at BL and ‘0’ at BLB. So, when T5 and T6 turned

on we have ‘1’ at N1 and ‘0’ at N2. This will make transistors T2 on and T4 off. Furthermore,

‘0’ at N2, makes T1 off and T3 on [31]. Figure 4.6 shows the write operation within a 6-T

SRAM cell.

Figure 4.6. 6T-SRAM write operation [31]

If data to be written is opposite to the previously stored state, the potentials of high internal

node is lowered. This action purely depends on the drive strengths of pullup (PMOS) devices

and the access (NMOS) devices. An important parameter in the 6T-SRAM design is the ‘𝛾’-

ratio. The ratio of drive strength of access transistors (T5, T6) and pull up transistors (T3, T4)

is known as the ‘𝛾’-ratio. Write failure will occur if the 𝛾-ratio is very low. Transistors needs

to be properly sized so that 𝛾-ratio is high enough to lower the potentials of high internal node

(N1 or N2) below the 𝑣𝑡𝑟𝑖𝑝 of the inverter [31].

4.2.2 : 6T-SRAM cell read operation

The first step in read operation is to pre-charge the bit lines BL and BLB to a known voltage

‘VDD’. The word lines are activated and bit lines are kept floating. If the bit line columns are

large, the bit line capacitances are also very large. Depending on what is stored in bit lines pairs

BL and BLB, one of them starts to discharge through the access transistors (T5 or T6) and pull-

down NMOS transistors (T1 or T2) that are connected in series [31].

Changes in bit lines are very slow because of large capacitances. Bit line differential voltage

of the order of small millivolts can be sensed by a sense amplifier to output the stored data.

The discharge current produced during a read operation normally flows from bit line to the cell

ground. This normally happens to the side of the bit cell storing a logic ‘0’. This operation is

depicted in Figure 4.7.

As shown in Figure 4.7, the discharge current will increase the potential voltage at N2 and the

amount of disturbance on the drive strength of access transistor T6 and the pull-down NMOS

transistor (T2). If the increased potential voltage is above the 𝑣𝑡𝑟𝑖𝑝 of the connected inverter

 44

formed by the transistor pair (T1, T3) then the stored data gets flipped. This phenomenon is

known as read disturb [31].

The best way to prevent read disturb is to make the pull down NMOS transistors (T1 and T2),

stronger than the NMOS access transistors (T5 and T6). The ratio between the strength of pull

down NMOS transistor (T1, T2) to NMOS access transistors (T5, T6), known as the ‘𝛽’-ratio

and is another important parameter in SRAM design. A successful read operation can only be

performed by carrying out a careful sizing of NMOS transistors. This helps to achieve the

desired ‘𝛽’-ratio and thus eliminating read disturb [31].

Figure 4.7. 6T-SRAM write operation [31]

4.3 : Digital to Analog Converter (DAC) Design

This section presents a current based SRAM bit cell computation scheme. The current based

bit cell computation technique is used at the reading phase of SRAM operation. The basic idea

is to create binary weighted current sources using MOS devices namely PMOS and NMOS.

4.3.1 : MOSFET as a current source

An ideal current source is one whose output has a constant current, regardless of the voltage

applied between its inputs. MOSFET can operate as a voltage-controlled current source and

produces an amplification. When a MOS device is in saturation, its output current is relatively

constant[51].

Figure 4.8 shows an NMOS biased to be in saturation. Equation 4.1 (adopted from [51]),

represents the drain current that flows through the NMOS device. The drain current ‘𝐼𝐷’ in

equation 4.1 is a function of the drain voltage (𝑉𝐷𝑆) and gate source voltage (𝑉𝐺𝑆), around the

terminals. ‘µ𝑛’ represents the mobility of electrons in NMOS device, ‘𝐶𝑂𝑋’ is the gate oxide

thickness, (
𝑊𝐿) represents the aspect ratio of the MOS device where ‘W’ is the width and ‘L’ is

the length of the device. Finally, (𝑉𝐺𝑆 − 𝑉𝐷𝑆) represents the overdrive voltage. Plotting of

equation 4.1, gives a parabola reaching its peak at overdrive voltage, reaching the maximum

 45

current ‘𝐼𝐷𝑚𝑎𝑥’. Equation 4.2 (taken from [51]) shows the maximum drain current at the peak

of the parabola [51].

Figure 4.8. NMOS biased with gate and drain voltage [51] 𝐼𝐷 = µ𝑛𝐶𝑜𝑥 𝑊𝐿 [(𝑉𝐺𝑆 − 𝑉𝑇𝐻)2𝑉𝐷𝑆 − 12 𝑉𝐷𝑆2] (4.1) 𝐼𝐷𝑚𝑎𝑥 = 12 µ𝑛𝐶𝑜𝑥[(𝑉𝐺𝑆 − 𝑉𝑇𝐻)2] (4.2)

Whenever 𝑉𝐷𝑆 < (𝑉𝐺𝑆 − 𝑉𝑇𝐻), the MOS device starts to move towards the triode region. At the

parabolic maximum, drain current starts to deviate from the parabolic path, and becomes

relatively constant, as 𝑉𝐷𝑆 exceeds the overdrive voltage. At this point of operation, the device

is said to be in saturation [51]. 𝐼𝐷 = −µ𝑝𝐶𝑜𝑥 𝑊𝐿 [(𝑉𝐺𝑆 − 𝑉𝑇𝐻)2𝑉𝐷𝑆 − 12 𝑉𝐷𝑆2] (4.3)

Figure 4.9. (a) NMOS in saturation operating as a current source, (b) current flow direction, (c) 𝐼1 𝑣𝑠 𝑉𝐷𝑆 plot of

saturated NMOS device [51].

MOSFET in saturation can be used as a current source. Figure 4.9.a and Figure 4.10.a shows

an NMOS and PMOS current source. When an NMOS act as a current source, the current flows

from any arbitrary node ‘A’ in the circuit to the ground as shown in Figure 4.9.b. Whereas, in

the case of PMOS current source current always flows from ‘VDD’ to any arbitrary node ‘A’

as shown in Figure 4.10.b. Even in saturation, the current is not flat because of the channel

length modulation [51]. This phenomenon is represented in Figure 4.9.c and Figure 4.10.c. In

the proposed IMC work channel length modulation [51] is neglected.

 46

Figure 4.10. (a) Saturated PMOS in saturation operating as a current source, (b) current flow direction, (c) 𝐼1 𝑣𝑠 𝑉𝐷𝑆 plot of saturated PMOS device [51]

Multiple copies of the current source (NMOS & PMOS) can be created by a technique known

as a current mirror. A conventional NMOS current mirror is shown in Figure 4.11. ‘𝐼𝑟𝑒𝑓’ is

the ideal current source or the global current source that needs to be copied multiple times

within a circuit. ‘𝐼𝑟𝑒𝑓’ can be scaled to different values by sizing the dimensions of MOS

devices within the current mirror circuit [51].

Figure 4.11. Typical NMOS current mirror configuration [51]

In Figure 4.11, the transistor M1is known as the diode-connected device. In a diode-connected

device, both drain (D) and gate (G) are tied together and it act as a two-terminal device, with

one terminal at the drain and other at the source as shown in Figure 4.12.

Figure 4.12. An NMOS diode connected device [51]

The reference current (𝐼𝑟𝑒𝑓), is normally connected to the shorted terminal between gate and

drain. Shorting the gate and drain together ensure that the potential at both the terminals are

the same, and hence M1 in saturation. Whenever a reference current (𝐼𝑟𝑒𝑓) is injected into the

diode connected device, it generates a voltage proportional to the injected ‘𝐼𝑟𝑒𝑓’. The voltage

from the diode connected device is injected into the gate (G) of M2, to make it conduct. The

output voltage produced by the diode connected device is used as 𝑉𝐺𝑆 for M2, to produce an

exact copy of 𝐼𝑟𝑒𝑓 at the drain terminal [51]. 𝐼𝑜𝑢𝑡 = (𝑊𝐿)2(𝑊𝐿)1 𝐼𝑟𝑒𝑓 (4.4)

 47

Equation 4.4 (adopted from [51] represents the output drain current from M2. Moreover, the

equation ensures that 𝐼𝑟𝑒𝑓 is properly copied, so as to generate 𝐼𝑜𝑢𝑡. However, the relationship

between 𝐼𝑟𝑒𝑓 and 𝐼𝑜𝑢𝑡 is just a constant number. Constant number is just the ratio of (𝑊𝐿)’s of

the MOS devices. Moreover, this ratio ensures that it is not temperature and supply

independent. However, one should ensure that the golden current source (𝐼𝑟𝑒𝑓) is a constant

one, so that 𝐼𝑜𝑢𝑡 will be.

4.3.2 : 4-Bit DAC Circuit Design

The fundamental neuron operation is governed by the equation 4.5 (adopted from [10]). The

4-bit DAC circuit deals with summation (∑) and product operation within the brackets of the

equation 4.5. Circuit diagram of the proposed 4-bit DAC circuit is shown in Figure 4.13.a.

During the read operation of 6T-SRAM bit cell, the differential bit-line voltages are sensed by

the sense amplifier and amplifies the changes in the bit-lines. The sense amplifier produces a

digital output corresponding to the sensed differential voltage from bit-lines BL and BLB. This

digital voltage is converted to a current by passing through a MOS device (NMOS). 𝑦𝑗 = 𝑓(∑ (𝑤𝑖𝑗𝑥𝑖)𝑖) (4.5)

In Figure 4.13.a, the current source 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛, represents the equivalent current to the digital

voltage from the output of sense amplifier. For simulation purpose, a unit cell current of 1µ𝐴

is used. For to design a 4-bit DAC that operates exactly as equation 4.5, firstly we need multiple

copies of 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛 , whenever a read operation is performed inside 6T-SRAM. A PMOS

current mirror is used to create identical copies of 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛. Transistor 𝑀0 is a diode connected

device with drain and gate terminals shorted together. Furthermore, this will ensure 𝑀0 is in

saturation. Transistors 𝑀1, 𝑀2, 𝑀3, and 𝑀4 act as exact copies of the current source 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛.The current 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛 is converted to an equivalent voltage of 𝑉𝑟𝑒𝑎𝑑−𝑠𝑒𝑛 by the

transistor 𝑀0 (diode-connected device).

The voltage 𝑉𝑟𝑒𝑎𝑑−𝑠𝑒𝑛 is used as the 𝑉𝐺𝑆 for the transistors 𝑀1, 𝑀2, 𝑀3, and 𝑀4. As the voltage 𝑉𝑟𝑒𝑎𝑑−𝑠𝑒𝑛 is injected into the gate of the transistors 𝑀1, 𝑀2, 𝑀3, and 𝑀4, devices satisfying the

bias condition starts to move from cut-off region to saturation. This makes transistors 𝑀1, 𝑀2, 𝑀3, and 𝑀4 acts as a binarized current sources (PMOS), and act as exact current copies

of 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛.

The 4-bit DAC circuit also consist of 4-binary weighted NMOS switches constituted by the

transistors 𝑀5, 𝑀6, 𝑀7, and 𝑀8. The weight vectors 𝑊0, 𝑊1, 𝑊2, and 𝑊3, are injected into the

gates of the transistors 𝑀5, 𝑀6, 𝑀7, and 𝑀8 as shown in Figure 4.13. The moment at which

 48

the transistors 𝑀5, 𝑀6, 𝑀7, and 𝑀8, meets its biasing conditions, the corresponding NMOS

transistor moves towards linear region and act as a switch. The switch opens and closes

according to the weight vectors 𝑊0, 𝑊1, 𝑊2, and 𝑊3 at the gates.

The 4-bit RDAC can have 16-binary weighted combinations, starting from W [3:0] = 4'b0000

to W [3:0] = 4'b1111. In Figure 4.13.a, the sizing of the transistors is also mentioned. PMOS

transistor 𝑀1 is eight times the width (𝑤) of transistor 𝑀4. Whereas, the width of PMOS

transistor 𝑀2 is four times that of 𝑀4. Furthermore, PMOS transistor 𝑀3 is twice the width of 𝑀4. PMOS transistor 𝑀4 is kept as a unit current source. Such a sizing of the transistor ensures

that the proposed 4-bit DAC works exactly as a digital to analog converter with sixteen levels

of distinct voltage levels at its output.

Figure 4.13. (a) 4-bit DAC circuit, (b) actual implementation of 4-bit DAC

Instead of using a transistor sizing as mentioned, the real implementation of 4-bit DAC in

cadence tool is shown in Figure 4.13.b. The basic idea is to create weighted currents. During

the normal working of the circuit, PMOS transistor 𝑀1 should produce 8∗ 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛, when

switch 𝑀5 is on. The same current can be produced by placing eight-unit size PMOS transistors 𝑀10to 𝑀17in parallel and shorting its drain. Such a configuration produces a current of

8∗ 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛, whenever the switch 𝑀5 is turned on. PMOS transistor 𝑀2 should produce

4∗ 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛 and can be achieved by placing 𝑀20to 𝑀23in parallel as shown in Figure 4.13.b.

Furthermore, PMOS transistor 𝑀3 should produce 2∗ 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛 . A current of two times 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛 is achieved by placing the transistors 𝑀30to 𝑀31in parallel and shorting their drains

 49

as shown in Figure 4.13.b. However, transistor 𝑀4 is kept as a unit current source, so that a

current of 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛 flows through it whenever the switch 𝑀8 is turned on.

The current 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛 after passing through 𝑀0, can flow through mainly four paths. The four

possible paths, path_1, path_2, path_3, path_4 are formed according to the weight vectors 𝑊0, 𝑊1, 𝑊2, 𝑊3, and injected into the gates of the respective NMOS transistors.

Path_1: 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛 current flows from the PMOS binary weighted current source 𝑀4 through

NMOS binary weighted switch 𝑀8 carrying a current of 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛 as shown in Figure 4.14.

Path_2: 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛 current flows from the PMOS binary weighted current source 𝑀3 through

NMOS binary weighted current source 𝑀7 carrying a current of 2 ∗ 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛 as shown in

Figure 4.15.

Path_3: 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛 current flows from the PMOS binary weighted current source 𝑀2 through

NMOS binary weighted current source 𝑀6 carrying a current of 4 ∗ 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛 as shown in

Figure 4.16.

Figure 4.14. Current flow (path_1) in 4-bit DAC circuit when 𝑊0 = ‘1'

Path_4: 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛 current flows from the PMOS binary weighted current source 𝑀1 through

NMOS binary weighted current source 𝑀5 carrying a current of 8 ∗ 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛 as shown in

Figure 4.17.

Figure 4.15. Current flow (Path_2) in 4-bit DAC when 𝑊1 = ‘1'

 50

Figure 4.16. Current flow (Path_3) in 4-bit DAC circuit when 𝑊2 = ‘1'

Figure 4.17. Current flow (Path_4) in 4-bit DAC when 𝑊3 = ‘1'

At node ‘A’ a current accumulation (∑) can be identified. The individual currents through the

four paths are available at node ‘A’. According to the Kirchhoff’s current law, the current at

node ‘A’, 𝐼𝐴 is equivalent to the sum of four currents arrived at node ‘A’ from the distinct four

paths. Equation 4.6 represents the total current at node ‘A’ when the weights applied are 𝑊3𝑊2𝑊1𝑊0 = 1111. 𝐼𝐴 = 8 ∗ 𝐼𝑟𝑒𝑎𝑑_𝑠𝑒𝑛 + 4 ∗ 𝐼𝑟𝑒𝑎𝑑_𝑠𝑒𝑛 + 2 ∗ 𝐼𝑟𝑒𝑎𝑑_𝑠𝑒𝑛 + 𝐼𝑟𝑒𝑎𝑑_𝑠𝑒𝑛 (4.6)

Equation 4.6 is similar to the fundamental neuron equation, that is represented in equation 4.5.

Current at node ‘A’ is comparatively large compared to the individual currents that flows

through the distinct four paths. Transistor 𝑀9 is a globally biased NMOS diode connected

device. The dimensions of 𝑀9 is adjusted to hold the large current 𝐼𝐴 accumulated at node ‘A’.

This globally biased device produces a voltage 𝑉𝐴, and is injected into the gate of NMOS device 𝑀10. The gate voltage 𝑉𝐴 and the biasing condition ensures that 𝑀10 is in saturation. 𝑀10 now

act as a current source, producing an equivalent current 𝐼𝐴, that is produced at node ‘A’.

Output of 4-bit DAC circuit is a voltage, sensed by PMOS diode connected device 𝑀11. 𝑀11

is biased from ‘vdd’. 𝑀11 produces an output voltage equivalent to the accumulated current 𝐼𝐴

at node ‘A’. The output voltage from the diode connected device 𝑀11 is a word-line (WL)

voltage, which could be written back to the output activation memory. In this work, we haven’t

implemented the write back circuit.

4.4 : Results and Analysis

 51

The I-V characteristics of an NMOS transistor (130nm) is depicted in Figure 4.18. Figure 4.18.a

shows ID vs 𝑉𝐺𝑆 of an NMOS transistor with width W=280nm and length L=130nm (minimum

W & L of the technology used for the experiment). 𝑉𝐷𝑆 is fixed at 1.2 V and 𝑉𝐺𝑆 varied from 0

V to 1.2 V. Furthermore, Figure 4.18.b shows the plot of parametric analysis for 𝐼𝐷 vs 𝑉𝐺𝑆 of

NMOS where 𝑉𝐷𝑆 is varied from 0 V to 1.2 V in four steps. It is evident from the sweep that

the threshold voltage (𝑉𝑇) of an NMOS transistor (130nm) is 355 mV. At this threshold voltage

the drain current (ID) is increasing abruptly. ID vs 𝑉𝐷𝑆 characteristics for varying 𝑉𝐺𝑆 for the

same dimensions of an NMOS device is shown in Figure 4.18.c. 𝑉𝐺𝑆 is fixed at 1.2 V whereas, 𝑉𝐷𝑆 is varied from 0 V to 1.2 V. Figure 4.18.d shows the parametric analysis for ID vs 𝑉𝐷𝑆 for

the same NMOS device with 𝑉𝐺𝑆 fixed at 1.2 V and 𝑉𝐺𝑆 varied from 0 V to 1.2 V in 4 steps. It

is also evident from the parametric analysis that drain current saturates at an overdrive voltage

of 𝑉𝐺𝑆 − 𝑉𝑇𝐻.

I-V characteristics for a PMOS device (130nm) of dimensions (W=280nm, L=130nm) is

depicted in Figure 4.19. 𝐼𝐷 vs 𝑉𝐺𝑆 of the PMOS device where 𝑉𝐷𝑆 is fixed at 1.2 V and 𝑉𝐺𝑆 is

varied from 0 V to 1.2 V is shown in Figure 4.19.a. Figure 4.19.b shows a parametric analysis

conducted in four steps for the 𝐼𝐷 vs 𝑉𝐺𝑆 of a PMOS device where 𝑉𝐷𝑆 is varied from 0 V to

1.2 V, keeping 𝑉𝐺𝑆 fixed at 1.2 V. From this experiment the threshold voltage of the PMOS

device (130nm) is identified as 300 mV. Both the plots for 𝐼𝐷 vs 𝑉𝐺𝑆 elucidates that the drain

current is getting rapid increase at 300 mV. 𝐼𝐷 vs 𝑉𝐷𝑆 for different values of 𝑉𝐺𝑆 (0 V to 1.2 V),

where 𝑉𝐷𝑆 is changed from 0 V to 1.2 V is plotted in Figure 4.19.c. A parametric analysis for

the same 𝐼𝐷 vs 𝑉𝐷𝑆 of the PMOS device with varying 𝑉𝐺𝑆 from 0 V to 1.2 V in four steps is

shown in Figure 4.19.d. The drain current of the PMOS device saturates at an overdrive voltage

of 𝑉𝐺𝑆 − 𝑉𝑇𝐻.

The operation of the proposed 4-bit DAC circuit configuration for performing dot operation

was simulated using Cadence Spectre on 130nm CMOS process. 𝑉𝐷𝐷 of 1.2 V is used for the

entire circuit analysis. The main components of the 4-bit DAC implementation are Read-Sense

current (𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛), of 1µ𝐴, equivalent to the current drawn from sense amplifier of the 6-T

SRAM, weight vectors applied to gates of NMOS transistors (input voltages) and the

conductance of the transistors according to the various states of read sense current and input

voltages (weights).

Consider 𝐼𝐷 𝑉𝑆 𝑉𝐷𝑆 plot of NMOS and PMOS in Figure 4.18.c and Figure 4.19.c. In general, we

expect a parabolic path for 𝐼𝐷 curve. But as depicted in Figure 4.18.c and Figure 4.19.c it did

not followed the parabolic path. The characteristic started as a parabola, the current attains the

 52

maximum and stayed as a constant. Furthermore, on close observation the current 𝐼𝐷 is not

actually a constant. In reality the curve goes up by a small amount (red colour) as we increase 𝑉𝐷𝑆 and is almost a straight line. The same issue is depicted in Figure 4.9.c and Figure 4.10.c.

In Figure 4.9.a, the source of NMOS transistor is grounded gate and drain has some amount of

voltage so that the device is in saturation. Device in saturation has a pinch-off point.

Furthermore, the voltage at the drain end is higher and pinch-off point has to move back a little

from its initial point. In other words, as 𝑉𝐷𝑆 increases the channel length (L) decreases by a

small amount. This enables the drain current 𝐼𝐷 to increase by a small amount. This behaviour

is known as channel length modulation [51].

Figure 4.18. (a) 𝐼𝐷 vs 𝑉𝐺𝑆 of an NMOS transistor with width W=280nm and length L=130nm, 𝑉𝐷𝑆 is fixed at 1.2
V and 𝑉𝐺𝑆 varied from 0 V to 1.2 V. (b) Parametric analysis for 𝐼𝐷 vs 𝑉𝐺𝑆 of NMOS where 𝑉𝐷𝑆 is varied from 0
V to 1.2 V in four steps. (c) 𝐼𝐷 vs 𝑉𝐷𝑆 characteristics for different values of 𝑉𝐺𝑆 for the same dimensions of an
NMOS device, 𝑉𝐺𝑆 is fixed at 1.2 V whereas, 𝑉𝐷𝑆 is varied from 0 to 1.2 V. (d) Parametric analysis for 𝐼𝐷 vs 𝑉𝐷𝑆
for the same NMOS device with 𝑉𝐺𝑆 fixed at 1.2 V and 𝑉𝐺𝑆 varied from 0 V to 1.2 V in 4 steps.

 53

Figure 4.19. (a) 𝐼𝐷 vs 𝑉𝐺𝑆 of an PMOS transistor with width W=280nm and length L=130nm, 𝑉𝐷𝑆 is fixed at 1.2
V and 𝑉𝐺𝑆 varied from 0 V to 1.2 V. (b) Parametric analysis for 𝐼𝐷 vs 𝑉𝐺𝑆 of NMOS where 𝑉𝐷𝑆 is varied from 0
V to 1.2 V in four steps. (c) 𝐼𝐷 vs 𝑉𝐷𝑆 characteristics for different values of 𝑉𝐺𝑆 for the same dimensions of an
NMOS device, 𝑉𝐺𝑆 is fixed at 1.2 V whereas, 𝑉𝐷𝑆 is varied from 0 V to 1.2 V. (d) Parametric analysis for 𝐼𝐷 vs 𝑉𝐷𝑆 for the same NMOS device with 𝑉𝐺𝑆 fixed at 1.2 V and 𝑉𝐺𝑆 varied from 0 V to 1.2 V in 4 steps.

Table 2 shows the 4-bit DAC device dimensions used in the design. The length of all devices

is kept constant. As mentioned earlier, unit cell PMOS current sources are created using a

device dimension of 𝑊 = 560𝑛𝑚 and 𝐿 = 130𝑛𝑚. The NMOS switch 𝑀5 needs to be wider

compared to the other switches so as to operate in linear region. The globally biased NMOS

diode connected device has a device dimension of 𝑊 = 4.2 µ𝑚 and 𝐿 = 130𝑛𝑚. The output

capacitance seen at the output of the circuit shown in Figure 4.13.b is negligible. So, the width

of both the device 𝑀10 & 𝑀11 are selected to be 𝑊 15⁄ th of the actual needed width. If the

output capacitance is large enough, it is also possible to increase the width of these devices so

that the device can source or sink more current.

The working of the 4-bit DAC is verified mainly using four worst case 4-bit weight

configurations. Using the weight vectors (𝑊3𝑊2𝑊1𝑊0) = 0000, 0100, 1001, 1111 the operation

 54

of the circuit is analysed. Firstly, Figure 4.20 shows the experimental behaviour of 4-bit DAC

circuit, when the binary weights are assigned as 𝑊3𝑊2𝑊1𝑊0 = 0000 and 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛 = 1µ𝐴.

Figure 4.20.a shows the plot of measured drain current from diode connected device 𝑀11

(𝐼𝐷𝑀11) when the weights 𝑊3𝑊2𝑊1𝑊0 = 0000 is varied from 0 V to 0.2 V. .2 V is not enough

to make the NMOS transistors 𝑀5,𝑀6, 𝑀7, 𝑀8 to turn on. The maximum drain current 𝐼𝐷𝑀11

measured is -667.5 pA. Figure 4.20.b shows plot of output voltage (𝑉𝑂𝑈𝑇) sweep across the

weights 𝑊3𝑊2𝑊1𝑊0 = 0000 from 0 V to .2 V. A maximum voltage of 1.089 V is measured

across the sensing device 𝑀11 when the weights are (𝑊3𝑊2𝑊1𝑊0) = 0000.

Table 2. 4-bit DAC device dimensions used in the design

Device Width (W) Length (L) No. of Fingers 𝑀0 280nm 130nm 2 𝑀10 280nm 130nm 2 𝑀11 280nm 130nm 2 𝑀12 280nm 130nm 2 𝑀13 280nm 130nm 2 𝑀14 280nm 130nm 2 𝑀15 280nm 130nm 2 𝑀16 280nm 130nm 2 𝑀17 280nm 130nm 2 𝑀20 280nm 130nm 2 𝑀21 280nm 130nm 2 𝑀22 280nm 130nm 2 𝑀23 280nm 130nm 2 𝑀30 280nm 130nm 2 𝑀31 280nm 130nm 2 𝑀4 280nm 130nm 2 𝑀5 280nm 130nm 1 𝑀6 280nm 130nm 1 𝑀7 280nm 130nm 1 𝑀8 280nm 130nm 3 𝑀9 280nm 130nm 15 𝑀10 280nm 130nm 1 𝑀11 280nm 130nm 2

Secondly, the response of the 4-bit DAC circuit for a weight combination (𝑊3𝑊2𝑊1𝑊0) =

0100 was analysed. Figure 4.21.a is the plot of the drain current (𝐼𝐷𝑀11) vs the weights

(𝑊3𝑊2𝑊1𝑊0) = 0100. The gate voltages corresponding to the weights 𝑊3𝑊2𝑊0 are varied

from 0 V to .2 V in four steps for the binary weights ‘0’, so that the NMOS transistors

 55

𝑀5, 𝑀6, 𝑀8 turns off. Furthermore, the binary weight ‘1’ is applied to the gate of 𝑀7 as a

voltage, which is varied from 0 V to 1.2 V in four steps for the analysis. The maximum drain

current 𝐼𝐷𝑀11 flowing through the drain of sensing device 𝑀11 while the weights applied are

0100 is -868.8 𝑛𝐴. Figure 4.21.b shows the plot of output voltage (𝑉𝑂𝑈𝑇) vs the weights

(𝑊3𝑊2𝑊1𝑊0) = 0100. The same experimental setup used for measuring 𝐼𝐷𝑀11 is used for

measuring (𝑉𝑂𝑈𝑇) as well. The maximum 𝑉𝑂𝑈𝑇 measured during the parametric sweep while

the weights are increased in four steps is 791.3 mV.

Figure 4.20. (a) plot of measured drain current from diode connected device 𝑀11 (𝐼𝐷𝑀11) when the weights 𝑊3𝑊2𝑊1𝑊0 = 0000 is varied from 0 V to 0.2 V. (b) plot of output voltage (𝑉𝑂𝑈𝑇) sweep across the weights 𝑊3𝑊2𝑊1𝑊0 = 0000 from 0 V to .2 V

Figure 4.21. (a) Plot of the drain current (𝐼𝐷𝑀11) vs the weights (𝑊3𝑊2𝑊1𝑊0) = 0100. Gate voltages
corresponding to the weights 𝑊3𝑊2𝑊0 are varied from 0 V to .2 V in four steps for the binary weights ‘0’ and for
binary weight ‘1’ gate voltage is varied from 0 V to 1.2 V in four steps. (b) Plot of the output voltage 𝑉𝑂𝑢𝑡 vs the
weights (𝑊3𝑊2𝑊1𝑊0) = 0100. Gate voltages corresponding to the weights 𝑊3𝑊2𝑊0 are varied from 0 V to .2 V

 56

in four steps for the binary weights ‘0’ and for binary weight ‘1’ gate voltage is varied from 0 V to 1.2 V in four
steps

The third case examined during the experimental phase is the behaviour of 4-bit DAC circuit

for the weight combination (𝑊3𝑊2𝑊1𝑊0) = 1001. Injecting those weights to the gates of the

NMOS transistors 𝑀5,𝑀6, 𝑀7, 𝑀8 makes 𝑀5,𝑀8 on while, 𝑀6,𝑀7 off. Figure 4.22.a shows the

plot of drain current 𝐼𝐷𝑀11measured when the gates of transistors 𝑀6,𝑀7 varied in four steps

from 0 V to .2 V, which is equivalent to a binary weight ‘0’. Furthermore, the gate voltages of

transistors 𝑀5,𝑀8 is varied from 0 V to 1.2 V in four steps which is equivalent to binary weight

‘1’. The maximum drain current (𝐼𝐷𝑀11) measured is -1.649 µ𝐴. The output voltage (𝑉𝑂𝑈𝑇)

measured across 𝑀11 is shown in Figure 4.22.b, where the maximum measured voltage is 753

mV.

Figure 4.22. (a) Plot of the drain current (𝐼𝐷𝑀11) vs the weights (𝑊3𝑊2𝑊1𝑊0) = 1001. Gate voltages
corresponding to the weights 𝑊2𝑊1 are varied from 0 V to .2 V in four steps for the binary weights ‘0’ and for
binary weight ‘1’(𝑊3𝑊0) gate voltage is varied from 0 V to 1.2 V in four steps. (b) Plot of the output voltage 𝑉𝑂𝑢𝑡
vs the weights (𝑊3𝑊2𝑊1𝑊0) = 1001. Gate voltages corresponding to the weights 𝑊2𝑊1 are varied from 0 V to
.2 V in four steps for the binary weights ‘0’ and for binary weight ‘1’(𝑊3𝑊0) gate voltage is varied from 0 V to
1.2 V in four steps

The final case is the worst-case weight combination (𝑊3𝑊2𝑊1𝑊0) = 1111. Those weights

make all the NMOS transistors 𝑀5,𝑀6, 𝑀7, 𝑀8 turned on. So, the total drain current measured

is the sum of the individual current flowing through the four individual paths. Figure 4.23.a

shows the plot of the drain current 𝐼𝐷𝑀11, while the gates of the NMOS transistors 𝑀5,𝑀6, 𝑀7, 𝑀8 varied from 0 V to 1.2 V in four steps, which is equivalent to a binary ‘1’.

During this phase of experiment 𝑉𝐷𝐷 is kept constant at 1.2 V. The maximum drain current 𝐼𝐷𝑀11 measured is -2.421 µ𝐴.

 57

Figure 4.23.b shows the plot of measured output voltage (𝑉𝑂𝑈𝑇) across 𝑀11, while 𝑉𝐷𝐷 is kept

constant at 1.2 V and gate voltages of transistors 𝑀5,𝑀6, 𝑀7, 𝑀8 varied from 0 V to 1.2 V in

four steps. The maximum measured output voltage is 727.3 mV.

The experimental analysis of the 4-bit DAC circuit shows that the drain current 𝐼𝐷𝑀11 is linear

according to the applied gate voltages (weights) of the NMOS transistors. Figure 4.24 shows a

plot of the drain current |𝐼𝐷𝑀11| for the 24 =16 weight combinations starting from 0000 to 1111.

The least drain current measured is .0067 µ𝐴 for the weight combination 0000.

Figure 4.23. (a) plot of measured drain current from diode connected device 𝑀11 (𝐼𝐷𝑀11) when the weights 𝑊3𝑊2𝑊1𝑊0 = 1111 is varied from 0 V to 1.2 V. (b) plot of output voltage (𝑉𝑂𝑈𝑇) sweep across the weights 𝑊3𝑊2𝑊1𝑊0 = 1111 from 0 V to 1.2 V

Even though the read sense current (𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛) applied is 1µ𝐴, the binary weighted current

sources 𝑀1,𝑀2, 𝑀3, 𝑀4 deviates from 1µ𝐴 and produce a higher current of 1.36 µ𝐴. This

deviation is mainly due to the channel length modulation. The same issue is occurring at the

NMOS current mirror used to copy the accumulated current. Replacing current mirrors with

cascode current mirror can eliminate this issue to an extent. However, a drain current equivalent

to zero is expected for the weight combination 0000. Even though the NMOS transistors 𝑀5,𝑀6, 𝑀7, 𝑀8 are turned off while weight 0000 are injected to their gates, a small leakage

current flows through the circuit.

Figure 4.24 can be interpreted in four ways. Firstly, for the weights (𝑊3𝑊2𝑊1𝑊0) = 0001,

0010, 0100, 1000 any one of the transistor 𝑀5,𝑀6, 𝑀7, 𝑀8 are on at the same time, letting the

current to flow through one of the active path and hence an accumulation of current. The

maximum current will get accumulated for the weight vector (𝑊3𝑊2𝑊1𝑊0) = 1000.

Furthermore, this weight vector will turn on the NMOS switch 𝑀5. Whenever, 𝑀5 is turned on

a current of 8 ∗ 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛 flows through the circuit.

 58

Figure 4.24. shows a plot of the drain current |𝐼𝐷𝑀11| for the 24 =16 weight combinations starting from 0000 to
1111.

Secondly, for the weight combination (𝑊3𝑊2𝑊1𝑊0) = 0011, 0101, 0110,1001,1010,1100 six

distinct current get accumulates for all the six-weight combination. This phenomenon is due to

the fact that, any two NMOS switches out of 𝑀5,𝑀6, 𝑀7, 𝑀8 are turned on at the same time.

Maximum current flows for the weight vector (𝑊3𝑊2𝑊1𝑊0) = 1100 whereas, least current

flows for the weight combination (𝑊3𝑊2𝑊1𝑊0) = 0011. This is due to the fact that, for the

weight vector (𝑊3𝑊2𝑊1𝑊0) = 1100, a current of 12 ∗ 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛 get accumulated. However,

only 3 ∗ 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛 flows through the circuit when weight vector (𝑊3𝑊2𝑊1𝑊0) = 0011 is

applied.

Third interpretation is associated with the weight combination (𝑊3𝑊2𝑊1𝑊0) = 0111, 1011,

1101, 1110. In this case any three NMOS switches among 𝑀5,𝑀6, 𝑀7, 𝑀8 are turned on at the

same time according to the weight vector. A maximum current of 14 ∗ 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛 flows through

the circuit when the weight vector is (𝑊3𝑊2𝑊1𝑊0) = 1110. Finally, for the weight combination

(𝑊3𝑊2𝑊1𝑊0) = 1111, all the NMOS switches 𝑀5,𝑀6, 𝑀7, 𝑀8 are turned on at the same time

and hence a current of 15 ∗ 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛 conducts through the circuit leading to a maximum

current of |𝐼𝐷𝑀11| = 2.42100µ𝐴.

The output voltage (𝑉𝑂𝑈𝑇) across the 4-bit DAC circuit is measured and plotted for the 24 =16

weight combinations as shown in Figure 4.25. Sixteen distinct voltage levels are measured for

the 16 weight combinations. The maximum voltage (𝑉𝑂𝑈𝑇) of 1.089 V is measured for the

weight combination (𝑊3𝑊2𝑊1𝑊0) = 0000, as all the NMOS transistors are turned off. Hence

the whole 𝑉𝐷𝐷 is dropped across the sensing device 𝑀11. Minimum voltage (𝑉𝑂𝑈𝑇) of 727.3

mV is measured for the weight combination (𝑊3𝑊2𝑊1𝑊0) = 1111. This is due to the fact that

 59

all the NMOS transistors 𝑀5,𝑀6, 𝑀7, 𝑀8 are turned on. It is also evident that the output voltage

primarily depends upon the weights applied to the gates of the NMOS transistors 𝑀5,𝑀6, 𝑀7, 𝑀8. For example, the weight combination (𝑊3𝑊2𝑊1𝑊0) = 0001, 0010, 0100, 1000

produce four different output voltages (𝑉𝑂𝑈𝑇). In this case any one of the NMOS transistor 𝑀5,𝑀6, 𝑀7, 𝑀8 is turned on at the same time. Whereas for the weights (𝑊3𝑊2𝑊1𝑊0) = 0011,

0101, 0110, 1001, 1010, 1100 any two NMOS switches among 𝑀5,𝑀6, 𝑀7, 𝑀8 is turned on at

the same time and hence produce six distinct output voltages. Maximum voltage is produced

for the weight combination (𝑊3𝑊2𝑊1𝑊0) = 1100 when a current of 12 ∗ 𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛 .

Furthermore, for the weight combination (𝑊3𝑊2𝑊1𝑊0) = 0111, 1011, 1101, 1110 three NMOS

transistors among 𝑀5,𝑀6, 𝑀7, 𝑀8 are turned on at the same time producing four different output

voltages. A maximum voltage of 730.9 mV is produced for the weight vector combination

(𝑊3𝑊2𝑊1𝑊0) = 1110.

Figure 4.25. shows a plot of the output voltage 𝑉𝑂𝑢𝑡 for the 24 =16 weight combinations starting from 0000 to
1111

Transient analysis for the proposed 4-bit DAC is performed for 4000ns. The 𝑉𝐷𝐷 is kept

constant at 1.2 V. A read sense current (𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛) = 1µ𝐴 is used. All the weights (𝑊3𝑊2𝑊1𝑊0)

is applied as a pulse with upper voltage swing of 1.2 V and lower voltage swing of 0 V. The

period of the weight vector 𝑊0 is 400ns with a pulse width of 200ns. For the weight vector 𝑊1

the period is defined as 800ns with a pulse width of 400ns. Weight vector 𝑊2 is applied for a

period of 1600ns with a pulse width of 800ns. Finally, the weight vector 𝑊3 is defined for a

 60

period of 3200ns with a pulse width of 1600ns. Such a combination helps to create all the

weight vectors starting from (𝑊3𝑊2𝑊1𝑊0) = 0000 to (𝑊3𝑊2𝑊1𝑊0) = 1111.

Figure 4.26.a shows the transient analysis for the proposed 4-bit DAC for 4000ns with a rise

time and fall time of the weight vectors (𝑊3𝑊2𝑊1𝑊0) defined as 5% (20ns) of the period of

the weight pulse 𝑊0. Whereas, Figure 4.26.b represents a transient analysis of the 4-bit DAC

with rise time and fall time defined as 1ps for all the weight vectors (𝑊3𝑊2𝑊1𝑊0). It is evident

from the transient analysis that the designed 4-bit DAC is working as expected with current

accumulation and voltage spike at each instant when the weight pulse makes a transition. It is

evident from the Figure 4.26.a and Figure 4.26.b, that sixteen different voltage steps are

happening throughout the transient analysis. This confirms the working of 4-bit DAC as a

perfect digital to analog converter.

The power analysis for the proposed 4-bit DAC is performed to measure the static power and

total power consumption. The static power for the proposed circuit is measured by applying

the weights (𝑊3𝑊2𝑊1𝑊0) as a static (DC) input, so that no switching activity will take place

in the circuit. The static power consumption of the 4-bit DAC is measured for two weight

combination. Firstly, when the weights (𝑊3𝑊2𝑊1𝑊0)= 1111, where all the NMOS switches 𝑀5,𝑀6, 𝑀7, 𝑀8 are conducting and hence the maximum current accumulation happens.

Furthermore, to measure the static power in this case, the gate voltages of NMOS switches 𝑀5,𝑀6, 𝑀7, 𝑀8 are maintained at 1.2 V. The current drawn by the 4-bit DAC circuit for this

weight combination is measured as i(A)= 2.2778755𝐸−05. Therefore, a static power of

2.6559511𝐸−05 (𝑃𝑆𝑎𝑡 = 𝑉𝐼) is consumed by the 4-bit DAC circuit for the weight combination

(𝑊3𝑊2𝑊1𝑊0)= 1111.

Secondly, the static power drawn by the 4-bit DAC circuit for the weight combination

(𝑊3𝑊2𝑊1𝑊0)= 0000 is measured. In this case the gate voltages of the NMOS switches 𝑀5,𝑀6, 𝑀7, 𝑀8 are maintained at 0 V, since the applied weights are 0000. This makes all the

NMOS switches turned off and hence no current conduction and accumulation. The current

drawn by the 4-bit DAC circuit from the supply voltage (𝑉𝐷𝐷) of 1.2 V is, measured as i(A) =

1.00051𝐸−06. A static power (𝑃𝑠𝑎𝑡) of 4.2562073𝐸−07 is consumed by the circuit for the weight

combination (𝑊3𝑊2𝑊1𝑊0)= 0000.

 61

Figure 4.26. (a) transient analysis for the proposed 4-bit DAC for 4000ns with a rise time and fall time of the
weight vectors (𝑊3𝑊2𝑊1𝑊0) defined as 5% (20ns) of the period of weight pulses 𝑊0. (b) transient analysis of
the 4-bit RDAC with rise time and fall time defined as 1ps for all the weight vectors (𝑊3𝑊2𝑊1𝑊0)

Finally, the total power consumption of the 4-bit DAC is also measured by running a transient

analysis for 4000ns. The weights are applied as pulse mentioned earlier. The supply voltage

(𝑉𝐷𝐷) is kept constant at 1.2 V. In order to calculate the total power consumption, the output

voltage 𝑉𝑜𝑢𝑡 of the circuit is measured after running the transient analysis. The measured output

voltage is plotted as 𝑉𝑜𝑢𝑡 (/vout (green signal)) and is shown in Figure 4.27. The transient

power for the corresponding 𝑉𝑜𝑢𝑡 is measured and plotted as shown in Figure 4.27 (/pwr (red

signal)). Furthermore, ‘pwr’ signal is clipped for a duration of 0ns to 3200ns and is averaged

(yellow signal) to calculate the total power consumption and is equal to 13.96𝐸−6.

 62

Figure 4.27. Plot of measured power for a transient analysis of 4000ns. 𝑉𝑂𝑢𝑡 signal (blue colour) represents the
output voltage for the proposed 4-bit DAC. ′𝑝𝑤𝑟′ signal (yellow colour) represent the average power

Figure 4.28. Layout of the designed 4-bit DAC

Layout of the designed 4-bit DAC circuit is shown in Figure 4.28. A compact layout design

consuming a size of 20.34µ𝑚 ∗ 4.73µ𝑚. The binary weighted PMOS current sources 𝑀1,𝑀2, 𝑀3, 𝑀4 and the diode connected device 𝑀0 are placed in same horizontal line. The

NMOS switches 𝑀5,𝑀6, 𝑀7, 𝑀8 are also placed in the same horizontal line maintaining

minimum DRC rules. Guard rings are created for 𝑉𝐷𝐷 and 𝐺𝑁𝐷. For the entire 4-bit DAC circuit

layout only three metal layers are used.

Figure 4.29 shows the layout of the circuit with 𝑀1 metal routing. 𝑀1 routing is only done in

horizontal direction whereas 𝑀2metal routing is performed in the vertical direction as shown

in Figure 4.30. 𝑀3 metal routing which is used only for the accumulation net in 4-bit DAC and

is depicted in Figure 4.31.

The NMOS current mirror comprising globally biased diode-connected device 𝑀9 and globally

biased NMOS 𝑀10 are placed adjacent to each other without violating the DRC rules. Finally,

the sensing device 𝑀11 is also placed adjacent to the binary-weighted PMOS current sources

 63

as shown in Figure 4.28. The routing of weights (𝑊3𝑊2𝑊1𝑊0) and read sense current

(𝐼𝑟𝑒𝑎𝑑−𝑠𝑒𝑛), are performed in fashion such that they can be applied to the left side of the 4-bit

DAC. Furthermore, the output of the circuit is routed to the right side of the layout.

However, the layout of the designed 4-bit DAC shown in Figure 4.28 will have matching

issues if taped out (binary-weighted current sources won’t match well). This issue of layout

matching can be improved by the common centroid method.

Figure 4.29. Layout of the 4-bit DAC circuit with 𝑀1 metal routing

Figure 4.30. Layout of the 4-bit DAC circuit with 𝑀2 metal routing

Figure 4.31. Layout of the 4-bit DAC circuit with 𝑀3 metal routing

 64

Figure 4.32.a shows the DRC check results and Figure 4.32.b depicts the summary of the

LVS check. Furthermore, LVS debug check is depicted in Figure 4.32.c. Figure 4.33 shows

the basic test bench circuit used for verifying the functionality of the proposed circuit during

post-layout simulation.

Figure 4.32. DRC check results for 4-bit DAC, (b) summary of the LVS check, (c) LVS debug check

Figure 4.33. Test bench circuit setup used for the post layout simulation

Post layout simulation is also carried out for the designed 4-bit DAC circuit in two steps. As

mentioned earlier the four weight vectors are applied in the form of pulses. An upper voltage

swing of 1.2 V and lower voltage swing of 0 V is used for the four weight vectors. The pulse

width and period of the weight vector (𝑊3𝑊2𝑊1𝑊0) are maintained the same as what was

used in the previous section. Figure 4.34.(a) shows the transient analysis performed on the test

bench circuit for 4000ns where, the weights (𝑊3𝑊2𝑊1𝑊0) used have rise and fall time fixed

at 5% (20ns) of the period of the pulse 𝑊0. 𝑉𝑜𝑢𝑡−𝑆𝑐ℎ𝑒𝑚𝑎𝑡𝑖𝑐 in Figure 4.34.(a) represents the

output voltage of the 4-Bit DAC circuit for the transient analysis whereas, 𝑉𝑜𝑢𝑡 shows the

behaviour of av_extracted view (post layout simulation) for the corresponding transient

analysis.

Figure 4.34.b represents post-layout simulation for the 4-bit DAC circuit when the weight

vectors (𝑊3𝑊2𝑊1𝑊0) have a rise-time and fall-time of 1ps. In both the cases, the av_extracted

view of 4-bit DAC has a delay in responding.

 65

Figure 4.34. (a) Post layout simulation of 4-bit DAC when the weights (𝑊3𝑊2𝑊1𝑊0) have 5% (20ns) rise and
fall time of the period of 𝑊0. (b) Post layout simulation of 4-bit DAC when the weights (𝑊3𝑊2𝑊1𝑊0) have 1ps
rise and fall-time

 66

Chapter 5 : Conclusion and Future Works

5.1 : Conclusion

This thesis presents the research conducted by the author on in-memory computing cell for

binarized neural networks. Through various investigations, the effectiveness of IMC cell for

BNNs was demonstrated. The current computing method was introduced with the intention of

modelling the IMC cell with binary-weighted current sources. The designed IMC cell was

successfully validated using various simulations (transient, DC and post-layout). This thesis

directly addresses the challenge of energy-expensive data movement and accuracy problems

associated with hardware implementation of BNNs.

The key conclusions drawn from the designed IMC cell for BNN’s are as follows.

• An IMC cell is designed for the BNN’s where input activations and weights are

quantised as +1 or -1 (encoded as binary ‘0’ for -1 & binary ‘1’ for +1. The IMC cell

was targeted for BNNs including -1. But the task could not be finished in the limited

research time.). Furthermore, the work focused on storing the input activations in 6T-

SRAM cell rather than the weights. The designed IMC cell can be effectively used in

edge devices (L2 or L3 caches).

• The designed IMC cell has utilised the scope of current computing (analog computing)

within the 6T-SRAM bit cell by designing a 4-bit DAC that can be attached to the

output of a sense amplifier. Furthermore, the designed 4-bit DAC circuit accurately

perform the dot product operation between the input activations and the weights

(𝑊3𝑊2𝑊1𝑊0).

• The IMC cell demonstrated in the thesis has effectively eliminated the need of a

population count. Furthermore, the designed 4-bit DAC act as a current adder.

• The designed 4-bit DAC functionality was verified using five worst-case test weight

scenarios (𝑊3𝑊2𝑊1𝑊0 = 0000, 0100, 1010, 1110, 1111). In all the five cases, the

accumulated current and output voltage is measured. It is noted that in all the cases the

accumulated current is linear to the weights injected into the gates of NMOS switches

(𝑀5,𝑀6, 𝑀7, 𝑀8).

• The designed 4-bit DAC has an average power consumption of 13.76𝐸−6. The static

power associated with the circuit is also measured. A minimum static power of 4.2562073𝐸−07 is measured for the designed 4-bit DAC by injecting the weights

(𝑊3𝑊2𝑊1𝑊0 = 0000) to the gates of NMOS switches (𝑀5,𝑀6, 𝑀7, 𝑀8), that makes

 67

them turned off. Whereas, a maximum static power of 2.6559511𝐸−05 measured is for

the weight combination (𝑊3𝑊2𝑊1𝑊0 = 1111), where all the NMOS switches

(𝑀5,𝑀6, 𝑀7, 𝑀8) are turned on.

• The important feature of the proposed 4-bit DAC is that it has 4-bit weight

(𝑊3𝑊2𝑊1𝑊0) precision which improves the overall accuracy. This can further be

increased by proper design of circuit.

• The layout of the designed 4-bit DAC has an area of 20.34µ𝑚 x 4.73µm.

5.2 : Future Works

Some possible directions for future research for IMC in BNN’s are as follows.

• 130nm is an old technology but the same design can be ported to state-of-the-art

process, e.g., 16nm. This will significantly improve the results presented in the thesis.

• Only a single bit cell performing IMC was implemented in this thesis. In future, a

convolutional neural network using the designed 4-bit DAC can be designed. This

includes designing mixed-signal circuits that are capable of writing back the output

voltage of 4-bit DAC to the 6T-SRAM cells storing input activations.

• The designed 4-bit DAC uses a reference current of 1µ𝐴𝑚𝑝𝑠. Due to channel length

modulation, the copied unit cell current sources produce a current of 1.36µ𝐴. The same

phenomenon is affecting the NMOS current mirror used to copy the accumulated

current. One way to overcome this problem is to use cascode current mirrors. This is

proposed to be implemented in the next stage of research.

• The layout of the designed 4-bit DAC has matching issues if taped out (binary weighted

current sources do not match). One way to improve the layout matching is to do the

layout using common the centroid method. This is also proposed to be implemented in

the next stage of research.

• The designed IMC scheme for BNN’s using 6T-SRAM only supports the usage of 1-

bit binary weights (1/0). In future works, it is proposed to make the current design to

support 2-bits ternary weights (+1/0/-1). Also, the options of upgrading the designed

IMC scheme capable of doing more computations such as Boolean, arithmetic into the

same memory can be investigated.

• As discussed earlier the current work can be used for edge devices (at L2 or L3 cache).

As we have more data, more memory will be needed for operation. Normally, this need

moving from L2, L3 caches to the main memory using DRAM. The memory energy

consumption normalized with respect to multiply and accumulate energy consumption

 68

is 100 times compared to SRAM, 500 times compared to DRAM and 1000 times

compared to Flash memory [23]. This is an important research area that can be studied

in-depth in future works.

 69

References:

[1] L. Y., B. Y., and H. G., “NatureDeepReview,” Nature, 2015.
[2] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” Int. J.

Comput. Vis., 2015.
[3] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic

segmentation,” in Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2015.
[4] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for action

recognition in videos,” in Advances in Neural Information Processing Systems, 2014.
[5] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, Multi-Agent, Reinforcement

Learning for Autonomous Driving,” arXiv preprint arXiv:1610.03295v1. 2016.
[6] G. Hinton et al., “Deep Neural Networks for Acoustic Modeling in Speech

Recognition,” IEEE Signal Process. Mag., 2012.
[7] D. Silver et al., “Mastering the game of Go with deep neural networks and tree

search,” Nature, 2016.
[8] M. R. Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, “Playing Atari with Deep Reinforcement Learning,”
IJCAI International Joint Conference on Artificial Intelligence. 2016.

[9] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, “Cognitive mapping
and planning for visual navigation,” in Proceedings - 30th IEEE Conference on

Computer Vision and Pattern Recognition, CVPR 2017, 2017.
[10] A. A. and A. Soleimany, “6S191_MIT_DeepLearning_L1.pdf.” .
[11] J. Zhang, Z. Wang, and N. Verma, “A matrix-multiplying ADC implementing a

machine-learning classifier directly with data conversion,” Dig. Tech. Pap. - IEEE Int.

Solid-State Circuits Conf., vol. 58, pp. 332–333, 2015.
[12] E. H. Lee and S. S. Wong, “A 2.5GHz 7.7TOPS/W switched-capacitor matrix

multiplier with co-designed local memory in 40nm,” Dig. Tech. Pap. - IEEE Int. Solid-

State Circuits Conf., vol. 59, pp. 418–419, 2016.
[13] V. Sze, Y. H. Chen, T. J. Yang, and J. S. Emer, “Efficient Processing of Deep Neural

Networks: A Tutorial and Survey,” Proceedings of the IEEE. 2017.
[14] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized neural

networks,” in Advances in Neural Information Processing Systems, 2016.
[15] A. Karpathy, “CS231n Convolutional Neural Networks for Visual Recognition,”

Stanford University. 2016.
[16] Y. Le Cun et al., “Handwritten Digit Recognition: Applications of Neural Network

Chips and Automatic Learning,” IEEE Commun. Mag., 1989.
[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep

convolutional neural networks,” Commun. ACM, 2017.
[18] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Overfeat:

Integrated recognition, localization and detection using convolutional networks,” in
2nd International Conference on Learning Representations, ICLR 2014 - Conference

Track Proceedings, 2014.
[19] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc.,
pp. 141–142, 2015.

[20] C. Szegedy et al., “Going deeper with convolutions,” in Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, 2015.
[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in Proceedings of the IEEE Computer Society Conference on Computer Vision and

 70

Pattern Recognition, 2016.
[22] M. Courbariaux, Y. Bengio, and J. P. David, “Binaryconnect: Training deep neural

networks with binary weights during propagations,” in Advances in Neural

Information Processing Systems, 2015.
[23] M. Horowitz, “1.1 Computing’s energy problem (and what we can do about it),” Dig.

Tech. Pap. - IEEE Int. Solid-State Circuits Conf., vol. 57, pp. 10–14, 2014.
[24] W. A. Wulf and S. A. McKee, “Hitting the memory wall,” ACM SIGARCH Comput.

Archit. News, vol. 23, no. 1, pp. 20–24, 1995.
[25] A. Biswas, “Energy-efficient smart embedded memory design for IoT and AI,” 2018.
[26] A. Agrawal, A. Jaiswal, C. Lee, and K. Roy, “X-SRAM: Enabling in-memory boolean

computations in CMOS static random access memories,” IEEE Trans. Circuits Syst. I

Regul. Pap., vol. 65, no. 12, pp. 4219–4232, 2018.
[27] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou, “Memory

devices and applications for in-memory computing,” Nat. Nanotechnol., 2020.
[28] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, D. Glasco, and NVIDIA, “Gpus

and the Future of Parallel Computing Is Investigating an Architecture for a
Heterogeneous High - Performance,” pp. 7–17, 2011.

[29] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor processing unit,”
Proc. - Int. Symp. Comput. Archit., vol. Part F1286, pp. 1–12, 2017.

[30] L. Fick and D. Fick, “Introduction to Compute-in-Memory,” Proc. Cust. Integr.

Circuits Conf., vol. 2019-April, pp. 1–65, 2019.
[31] K. Zhang, Embedded Memories for Nano-Scale VLSIs. 2009.
[32] V. Sze, “How to Evaluate Efficient Deep Neural Network Approaches Book on

Efficient Processing of DNNs.” [Online]. Available: https://www.rle.mit.edu/eems/wp-
content/uploads/2020/06/2020_CVPR_evaluate_dnn.pdf.

[33] D. Keitel-Schulz and N. Wehn, “Embedded DRAM development: Technology,
physical design, and application issues,” IEEE Des. Test Comput., vol. 18, no. 3, pp.
7–15, 2001.

[34] Y. Chen et al., “DaDianNao: A Machine-Learning Supercomputer,” Proc. Annu. Int.

Symp. Microarchitecture, MICRO, vol. 2015-Janua, no. January, pp. 609–622, 2015.
[35] T. Chen, J. Wang, Y. Chen, and O. Temam, “Proceedings of the 1996 7th International

Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS-VII,” Comput. Archit. News, vol. 24, no. Special Issu, pp. 269–283,
1996.

[36] J. Jeddeloh and B. Keeth, “Hybrid memory cube new DRAM architecture increases
density and performance,” Dig. Tech. Pap. - Symp. VLSI Technol., pp. 87–88, 2012.

[37] H. Jun et al., “HBM (High bandwidth memory) DRAM technology and architecture,”
2017 IEEE 9th Int. Mem. Work. IMW 2017, pp. 2–5, 2017.

[38] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay, “Neurocube: A
Programmable Digital Neuromorphic Architecture with High-Density 3D Memory,”
Proc. - 2016 43rd Int. Symp. Comput. Archit. ISCA 2016, pp. 380–392, 2016.

[39] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “TETRIS: Scalable and
Efficient Neural Network Acceleration with 3D Memory,” ASPLOS ’17 Proc. Twenty-

Second Int. Conf. Archit. Support Program. Lang. Oper. Syst., pp. 751–764, 2017.
[40] K. Ueyoshi et al., “QUEST: Multi-purpose log-quantized DNN inference engine

stacked on 96-MB 3-D SRAM using inductive coupling technology in 40-nm CMOS,”
IEEE J. Solid-State Circuits, vol. 54, no. 1, pp. 186–196, 2019.

[41] M. M. Sabry Aly et al., “The N3XT Approach to Energy-Efficient Abundant-Data
Computing,” Proc. IEEE, vol. 107, no. 1, pp. 19–48, 2019.

[42] J. Zhang, Z. Wang, and N. Verma, “In-Memory Computation of a Machine-Learning

 71

Classifier in a Standard 6T SRAM Array,” IEEE J. Solid-State Circuits, vol. 52, no. 4,
pp. 915–924, 2017.

[43] A. Biswas and A. P. Chandrakasan, “CONV-SRAM: An energy-efficient SRAM with
in-memory dot-product computation for low-power convolutional neural networks,”
IEEE J. Solid-State Circuits, vol. 54, no. 1, pp. 217–230, 2019.

[44] M. Ali, A. Jaiswal, S. Kodge, A. Agrawal, I. Chakraborty, and K. Roy, “IMAC: In-
Memory Multi-Bit Multiplication and ACcumulation in 6T SRAM Array,” IEEE

Trans. Circuits Syst. I Regul. Pap., pp. 1–11, 2020.
[45] A. Jaiswal, I. Chakraborty, A. Agrawal, and K. Roy, “8T SRAM Cell as a Multibit

Dot-Product Engine for beyond Von Neumann Computing,” IEEE Trans. Very Large

Scale Integr. Syst., vol. 27, no. 11, pp. 2556–2567, 2019.
[46] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A 64-Tile 2.4-Mb In-Memory-

Computing CNN Accelerator Employing Charge-Domain Compute,” IEEE J. Solid-

State Circuits, vol. PP, pp. 1–11, 2019.
[47] A. Agrawal et al., “Xcel-RAM: Accelerating Binary Neural Networks in High-

Throughput SRAM Compute Arrays,” IEEE Trans. Circuits Syst. I Regul. Pap., vol.
PP, pp. 1–13, 2018.

[48] M. Kang, S. K. Gonugondla, A. Patil, and N. R. Shanbhag, “A Multi-Functional In-
Memory Inference Processor Using a Standard 6T SRAM Array,” IEEE J. Solid-State

Circuits, vol. 53, no. 2, pp. 642–655, 2018.
[49] M. Kang, S. Lim, S. Gonugondla, and N. R. Shanbhag, “An In-Memory VLSI

Architecture for Convolutional Neural Networks,” IEEE J. Emerg. Sel. Top. Circuits

Syst., vol. 8, no. 3, pp. 494–505, 2018.
[50] H. Kim, Q. Chen, and B. Kim, “A 16K SRAM-Based Mixed-Signal In-Memory

Computing Macro Featuring Voltage-Mode Accumulator and Row-by-Row ADC,”
Proc. - 2019 IEEE Asian Solid-State Circuits Conf. A-SSCC 2019, pp. 35–36, 2019.

[51] B. Razavi, Fundamentals of Microelectronics. 2008.

	List of Contents
	List of Figures
	List of Tables
	Abstract
	Acknowledgement
	Statement of Authentication
	Chapter 1 : Introduction
	1.1 : Background of DNNs
	1.2 : Deep Neural Networks (DNNs)
	1.2.1 : Activation Functions

	1.3 : Building Deep-Neural Networks (DNN’s) from Perceptron’s
	1.3.1 : Computational Complexity of DNNs

	1.4 : Binarized Neural Networks (BNNs)
	1.5 : Research Questions
	1.6 : Objectives of the thesis:
	1.7 : Thesis Organisation

	Chapter 2 : Theoretical Background of Compute In-Memory
	2.1 : Compute In-Memory
	2.2 : What is Compute in-Memory?
	2.3 : In-Memory computing for DNN’s

	Chapter 3 : Literature Survey
	3.1 : Near Memory Computing
	3.1.1 : High-Density Memories
	3.1.2 : 3-D Memory (Stacked Memory)

	3.2 : In-Memory Computing (Processing In-Memory)
	3.2.1 : Static Random-Access Memory (SRAM)

	Chapter 4 : Proposed In-Memory Computing Cell
	4.1 : The proposed In-Memory architecture for BNN’s
	4.2 : Overview of 6T-SRAM Cell
	4.2.1 : 6T-SRAM bit cell write operation
	4.2.2 : 6T-SRAM cell read operation

	4.3 : Digital to Analog Converter (DAC) Design
	4.3.1 : MOSFET as a current source
	4.3.2 : 4-Bit DAC Circuit Design

	4.4 : Results and Analysis

	Chapter 5 : Conclusion and Future Works
	5.1 : Conclusion
	5.2 : Future Works
	References:

