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Abstract— State-of-the-art machine learning models have
achieved impressive feats of narrow intelligence, but have yet
to realize the computational generality, adaptability, and power
efficiency of biological brains. Thus, this work aims to improve
current neural network models by leveraging the principle
that the cortex consists of noisy and imprecise components in
order to realize an ultra-low-power stochastic spiking neural
circuit that resembles biological neuronal behavior. By utilizing
probabilistic spintronics to provide true stochasticity in a
compact CMOS-compatible device, an Adaptive Ring Oscillator
for as-needed discrete sampling, and a homeostasis mechanism
to reduce power consumption, provide additional biological
characteristics, and improve process variation resilience, this
subthreshold circuit is able to generate sub-nanosecond spik-
ing behavior with biological characteristics at 200mV, using
less than 80nW, along with behavioral robustness to process
variation.

I. INTRODUCTION

Research towards more brain-like spiking neural networks

have typically utilized Leaky-Integrate-and Fire (LIF) models

or more complex Hodgkin-Huxley models [1]–[3], which do

not intrinsically integrate the ubiquitous stochasticity found

in brains [4]–[6]. Although stochasticity can be worked into

such models, it comes at the cost of additional circuitry, such

as Pseudo-Random-Number Generators (PRNGs) [7]. Some

recent works have proposed intrinsically stochastic spiking

neuron circuits utilizing emerging devices, such as mem-

ristors [8]–[10], phase-change devices [11], or spintronic

devices [12]–[15]. However, these circuits typically utilize

the stochasticity of the switching behavior for such devices,

and thus, requires write-read-reset cycling with extraneous

power and delay overheads. Accordingly, the Subthreshold

Spintronic Stochastic Spiking Neuron (S4N) delineated herein

is designed to naturally generate stochastic spiking signals

in-situ, at ultra-low-power and high speed.

The organization of the remainder of this paper is as fol-

lows. Section II introduces background information relevant

to the design of the S4N. Section III describes the S4N

circuitry and operation, Section IV contains the results and

analysis of the S4N. Section V concludes the paper.

II. BACKGROUND

Neural Sampling is a concept from computational neu-

roscience that gives weight to the computational abilities

of stochastic neurons. Probabilistic spintronics utilizes the

thermally-driven stochastic behavior of low-energy-barrier

magnetic devices for in-circuit true randomness at high

speed. A brief discussion on previous stochastic spiking

circuits is provided in this section.

A. Neural Sampling

Neural Sampling is a theoretical framework in compu-

tational neuroscience which postulates that the stochastic

firing behavior of in-vivo cortical neurons corresponds to

samples of an underlying conditional distribution [16]. By

leveraging networks of such stochastically sampling neurons,

probabilistic inference can be carried out on variables of

interest. Furthermore, additional work has demonstrated that

stochastic spiking neurons within cortical network motifs

combined with Hebbian learning approximates an online

version of Expectation Maximization, an effective statistical

tool for realizing generative models, which is key for unsu-

pervised learning [17], [18]. Therefore, stochastically spiking

neurons implementing Neural Sampling can be a powerful

model for achieving unsupervised learning in neuromorphic

circuits and architectures, which is not compatible with LIF

neurons. Thus, this work aims to enable such neural motifs

at ultra-low-power.

B. Probabilistic Spintronics

The spintronic device utilized herein originates from a

novel probabilistic adaptation of the Magnetic Tunnel Junc-

tion (MTJ) first proposed as part of a 1-Transistor-with-1-

MTJ structure called an embedded probabilistic bit (p-bit)

[19]. The MTJ of the p-bit stochastically switches between

its Anti-Parallel (AP) and Parallel (P) states due to the very

low energy barrier (Λ) of the free layer, where the mean

retention time for an MTJ (τ ) is given by (1).

τ = τ0exp(Λ/kT ) (1)

Where τ0 is a material dependent parameter called the

attempt time, k is Boltzmann’s constant, and T is the

temperature in Kelvin [19]. The stochastic MTJ (sMTJ)

used herein is not the same as the p-bit device. The p-bit

device contains specific circuitry besides the sMTJ which is

different to what is used for the S4N.

C. Stochastic Spiking Neurons in Hardware

Stochastically spiking neural circuits have been realized

using digital CMOS approaches as well as emerging devices

of which we review a recent selection. Digital CMOS ap-

proaches, such as IBM’s TrueNorth chip [7], rely on PRNG

circuits for generating stochasticity, which have a large area

and energy cost, in addition to lacking true randomness.

The work developed in [15] leverages the tunably-stochastic

behavior of p-bits to realize a high-speed asynchronous

stochastically spiking neuron, but the power is still rather

large, and the requirement for nearly-zero energy barrier



MTJs is quite strict. Thus, the S4N is introduced herein,

which is capable of high-speed stochastic spiking behavior

at extremely low power.

III. CIRCUIT OVERVIEW

The S4N is motivated by the desire to realize a minimal-

complexity, ultra-low-power circuit that intrinsically behaves

similar to the noisy heterogeneous neurons in the cortex, such

that it can be relevant for implementing Neural Sampling.

This has lead to a circuit that appears rather different than

traditional rate-based spiking neuron schemes where the

output is purely a Poissonian spike rate yet, the S4N is still

relevant for cortically inspired computations in the following

ways:

1) The S4N generates samples (or spikes) where the

rate is somewhat deterministic and periodic, but the

’strength’ of the samples is determined by a sigmoidal

relationship with the input voltage and a random vari-

able.

2) The S4N output bears little resemblance to the spike

signals found in typical spiking neuron designs, but

they strongly resemble the double-exponential Post-

Synaptic-Potentials (PSPs) found in biology that result

from pre-synaptic spike trains.

3) A fast homeostasis mechanism not only modulates the

sample strength in a fashion that closely resembles

spike-frequency-adaptation found in biology [20], but

also assists in balancing the network to be reasonably

sensitive, even in the presence of process variation.

4) Process variation effects do not cause the circuit to fail,

but simply modify the sigmoidal relationship between

the input and output, such that the behavior of multiple

neurons is heterogeneous, which is found in cortical

neurons of the exact same type and region [21].

The S4N circuit shown in Figure 1 is implemented by

what is essentially a voltage divider between an sMTJ and

three transistors, M1 − M3, modulating the input to M4,

which acts like a voltage-controlled current source since it

is operating in the subthreshold region. The input voltage,

Vinput, modulates the resistance of M1 in an exponential

fashion, while also modulating the Adaptive Ring Oscillator

(ARO). The ARO, which is a five-inverter ring oscillator with

an additional nmos transistor in the second inverter controlled

by Vinput, as shown in Figure 1, oscillates at a frequency

depended upon Vinput, generating voltage pulses applied to

M2, which are considered to be samples. The ARO is used

in place of a standard ring oscillator in order to save energy

by sampling more frequently only when Vinput is significant,

and less when it is not. The resistance of M3 is related to

the homeostasis mechanism and modulated by Vb, which is a

leaky exponential inverted integration of the output activity.

During periods of high activity, Vout reduces the resistance

of Mb enough to pull down Vb, increasing the resistance of

M3, increasing Vstate, and lowering the current through M4

during samples, resulting in a negative feedback to balance

periods of high activity. By leveraging the high resistance

of subthreshold CMOS devices, which results in low current

Fig. 1. The S4N circuit developed herein.

operation, an ultra-low-power scheme is realized.

The stochasticity of the circuit arises from the stochas-

tic switching of the sMTJ between Anti-Parallel (Rhigh)

and Parallel (Rlow) resistance states due to thermal noise.

Although the ratio of (Rhigh − Rlow)/Rlow is typically

100-150% in MTJ devices, which is small compared to the

exponential resistance changes of subthreshold CMOS, when

the resistance of the lower branch is close to that of the sMTJ,

the state of the sMTJ becomes significant in determining the

strength of the output current through M4, where Rlow will

result in a significantly weaker signal than Rhigh. This results

in three primary operating regions of the S4N that resembles

the saturating and linear regions of a sigmoid:

1) When the resistance of the lower branch is >> Rhigh,

such as when the ARO output is low, Vinput is low,

or Vb is low, then the output is saturated at the lower

bound, providing little to no activity regardless of the

sMTJ state.

2) When the resistance of the lower branch is << Rlow,

such as when the ARO output is high, Vinput is high,

and Vb is high, then the output is saturated at the upper

bound, providing maximum output activity regardless

of the sMTJ state.

3) When the lower branch is ∼ [Rlow, Rhigh], such as

when the ARO output is high and Vinput, Vb take

intermediate values, the state of the sMTJ has a large

influence on the output signal, resulting in stochastic

spiking behavior.

An interesting observation detailed in the following section

is that when a large constant input voltage is applied for a

long enough time, the homeostasis mechanism balances Vb

so that the resistance of the lower branch remains sensitive

to the state of the sMTJ.

The output resistor RL is used to leak Vout over time, and



the output capacitor CL is a very small value used in place

of downstream CMOS devices in synaptic circuits that the

circuit may drive. The signals shown above Vinput and Vout

in Figure 1 give an example of a single sample whereby

a brief pulse equivalent to VDD is applied to the input for

enough time to elicit a single sample, and the resulting output

waveform is shown, resembling a PSP.

IV. RESULTS AND ANALYSIS

This Section analyzes the results of our simulations, which

were performed using HSPICE with high-performance 7nm

FinFET PTM Transistor models [22]. The sMTJ was mod-

eled using physically benchmarked spintronic modules from

the Modular Spintronic Library [23], [24]. The other circuit

parameters are listed in Table I.
TABLE I

CIRCUIT PARAMETERS

Parameter Value

VDD 200mV
Rlow , Rhigh 6MΩ, 15MΩ

RL 2MΩ

CL 0.5fF
Rb 5MΩ

Cb 2fF

A. Circuit Analysis
Figure 2 illustrates the S4N circuit behavior when applying

voltage pulses of 50mV, 100mV, 150mV, and 200mV to

Vinput for 20ns, 20ns, 50ns, and 50ns, respectively, with 15ns

periods of 0V in between. Since square voltage pulses are

not the typical input voltage signals that would be propagated

in networks of S4N circuits, the output of the S4N, Vout1,

is connected to another S4N, and the output of that S4N,

Vout2, is shown to illustrate how the circuit operates with

in-situ signals. This can be considered a 1-to-1 network

with a synaptic weight of 1. As shown, Vread, which is

the output of the ARO, oscillates with a rate proportional to

Vinput, and when the input is too low, such as for 50mV and

100mV, almost no output signal is generated at Vout1. For

the case where Vinput is 150mV, it takes a few samples from

Vread before Vout1 reaches its peak at just below 200mV,

which is when the homeostasis mechanism reduces Vb so

that Vout1 decreases and stochastically jitters from higher and

lower voltages due to the interplay between the homeostasis

mechanism and the sMTJ, which corresponds to operational

region 3 described in the previous Section; Vout2 appears

to only generate a single significant spike when Vout1 is at

its highest, although there are additional minor fluctuations.

For the case where Vinput is 200mV, only a single sample

is needed to elicit a maximum voltage at Vout1, which

subsequently reduces Vb such that the circuit operates in

region 3 as described in the Previous Section; Vout2 generates

a larger initial spike than the 150mV case, and has additional

minor stochastic fluctuations.
B. Variation Analysis

In order to analyze the effects of process variations on

the S4N circuit, we performed monte-carlo analysis with

50 samples for values of Vinput ranging from 0mV to

200mV with 10mV increments for 50ns, varying the thresh-

old voltage of each transistor with a standard deviation of

Fig. 2. The operational waveforms of the S4N circuit.

Fig. 3. The mean output voltage of the S4N versus input voltage under
process variation.

75mV and all resistances and capacitances listed in Table

I with a standard deviation of 20%. As shown in Figure

3, the mean output voltage follows a sigmoidal behavior,

which is commensurate with biological characteristics, and

the behavior is maintained even in the presence of process

variation. We argue that this does not constitute an issue for

biologically-inspired computational paradigms since neurons

of the exact same type and similar location in the brain have

similar heterogeneous sigmoidal spiking responses to inputs

[25].

C. Power Analysis
The S4N circuit, operating at 200mV, in the presence of

process variation, uses a maximum power of just 77nW,

as shown in Figure 4, which is incredibly efficient for a

spiking neuron design operating at the nanosecond time-

scale. Additionally, the power consumption scales in an

almost sigmoidal fashion to the input voltage, using up to

about an 8× reduction in power at low input voltages, which

would be the most likely operating region for most S4Ns in

a large network architecture.

D. Area Overhead

We compared the area overhead on the proposed neu-

ron with different CMOS spiking neurons including the



Fig. 4. The mean power consumption of the S4N versus input voltage
under process variation.

oscillatory models (Resonate-and-Fire type with 24-T and

Hindmarsh-Rose type with more than 40-T) [25], [26],

and conductance-based neuron model (Hodgkin-Huxley type

with more than 40-T) [27]. The S4N requires only 16

transistors and one sMTJ, which is more compact than the

aforementioned neurons. Since the bulk of the device count

is due to the ARO, further area reductions could be achieved

with novel sampling circuitry used to replace the ARO unit,

which is left for future work.

V. CONCLUSIONS

This work demonstrates that circuits of noisy and imprecise

components can realize biologically-inspired computational

primitives at ultra-low-power. The Subthreshold Spintronic

Stochastic Spiking Neuron circuit combines an Adaptive

Ring Oscillator for as-needed sampling, probabilistic spin-

tronics for thermally-driven stochasticity, and a homeostasis

mechanism in order to realize biologically-inspired signals

at nanosecond time scales using less than 80nW. Good

behavioral robustness to process variation in line with bi-

ological observations is also demonstrated. Additionally, the

presented neuron exhibits area improvements compared to

CMOS based neurons. The area and power efficiency of

this design is especially important since the neuron circuit is

intended to be used in a large-scale VLSI neural networks

consisting many thousands of neurons. Such circuit could

pave the way to realizing improved efficiency in neuromor-

phic circuits.
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