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In nature symmetrical protein cages have evolved to fulfil diverse roles including 

compartmentalization and cargo delivery1 and have inspired synthetic biologists to create 

novel protein assemblies via precise manipulation of protein-protein interfaces. Despite 

the impressive array of protein cages produced in the lab, the design of inducible 

assemblies remains a great challenge2,3. Here we demonstrate an ultra-stable artificial 

protein cage whose assembly/disassembly can be controlled via metal coordination at the 

protein-protein interfaces. The addition of a gold(I)-triphenylphosphine compound to a 

cysteine-substituted, 11-mer protein ring triggers supramolecular self-assembly, to 

generate monodisperse cage structures with an unprecedented geometry based on the 

Archimedean snub cube, each containing 264 protein subunits (>2 MDa).  Cryo-EM 

confirms that the assemblies are held together via 120 S-AuI-S staples between the protein 

oligomers, and exist in two alternative chiral forms. The cage displays extreme chemical 

and thermal stability, yet readily disassembles upon exposure to reducing agents. 

Mercury(II) is also found capable of promoting protein cage formation. This work 

establishes an approach for linking protein components into robust, higher-order 

structures and expands the design space available for supramolecular assemblies to 

include previously unexplored geometries. 

 

Successful strategies for designing new protein cages make use of precisely oriented oligomeric 

protein fusions4 or the computational design of novel protein-protein interfaces via the 
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introduction of multiple hydrogen bond and hydrophobic interactions.5 One drawback of these 

methods, however, is that the resulting assemblies are static; i.e. assembly/disassembly cannot 

be modulated using external stimuli, an otherwise desirable trait for smart nanomaterials. 

Metal-directed protein assembly presents an attractive alternative in this regard: inspired by 

supramolecular coordination chemistry6, it offers the prospect for directional metal ion 

coordination between protein surfaces to substitute for protein-protein interactions, thus greatly 

simplifying the design problem7. Although a wide variety of inducible metal-mediated protein 

oligomers and arrays have successfully been generated in this manner7-10, the creation of novel 

3D cage-like assemblies remains elusive, the closest being an engineered ferritin that can 

recover the native cage architecture upon CuII binding at interfacial sites11. 

 Here we create a protein cage whose assembly and disassembly can be triggered via 

metal ion coordination. In our previous work on TRAP, a bacterial ring-shaped protein12,13 

amenable to genetic modification14-16, we showed that a Cys-substituted variant could form 

non-native shell architectures when reacted with triphenylphosphine-derivatized gold 

nanoparticles, via an unknown mechanism17,18. We hypothesized that metal ion-thiol 

interactions could be responsible for the formation of precise higher-order assemblies. To 

explore this idea, we engineered a TRAP variant bearing a K35C, which generates 11 regularly 

spaced thiol groups along the outer rim of the oligomeric ring, and a R64S, which neutralizes 

positive charges around the central cavity of the ring to prevent non-specific interactions with 

anionic groups18 (TRAPCS; Fig. 1a). A minimal reaction at pH 8 containing purified TRAPCS 

plus monosulfonated chloro(triphenylphosphine)gold(I) (Au-TPPMS; Fig. 1b), as a source of 

AuI ions, resulted in the efficient self-assembly of monodisperse spheres (“TRAP-cage”) 

measuring ~22 nm in diameter (Fig. 1c-d,  Extended Data Table 1), visible within a timescale 

of minutes with the reaction occurring optimally at pH 7-8 (Fig. 1e, Extended Data Fig. 1).  

Single molecule mass photometry19 enabled the kinetic tracking of TRAP-cage formation in 

situ after addition of Au-TPPMS (Fig. 1e, Supplementary Movies 1-9). In the absence of Au-

TPPMS, we found a homogeneous distribution of TRAP rings (Fig 1e: inset). Upon addition 

of Au-TPPMS, partially assembled TRAP-cages appeared with an average mass of 1080 kDa, 
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which transitioned towards fully assembled cages (2160 kDa) with a 351 ± 66 s exponential 

time constant. 

The structure of TRAP-cage was elucidated using cryo-EM single particle analysis 

(Extended Data Figs. 2-5). An initial map (4.7 Å) showed a cage structure that oddly lacked 

expected chiral features at the level of individual protein components (Extended Data Fig. 2). 

A second round of 3D classification using finer angular sampling was then carried out, which 

yielded two unambiguous maps at 3.7 Å displaying identical features but opposite chirality 

(Fig. 1f, Extended Data Figs. 2, 4-5), with the left-handed (LH) and right-handed (RH) forms 

found in roughly equal populations based on particle counts (46.5% and 53.5%, respectively). 

The maps revealed a spherical cage with unusual architecture featuring 24 uniform 

rings and 6 square apertures along 3 orthogonal axes (Fig. 1f-g). The overall arrangement 

corresponds to a snub cube, an Archimedean solid with underlying octahedral (432) symmetry, 

and an axial twist that imparts chirality (Fig. 1h). Each ring occupies an equivalent position on 

a snub cube vertex, bounded by 5 neighbouring rings, plus a gap that defines one side of a 

square aperture. Crucially, all 24 rings preserved the 11-fold rotational symmetry (C11) of native 

TRAP protein (Fig. 1i). Refinement of TRAPCS models against each map produced excellent 

results (Extended Data Table 2). Overall, each chiral assembly is composed of 264 identical 

TRAPCS subunits (Fig. 1j). 

Closer examination showed the ring densities to be interconnected via staple-like 

bridges, with two staples between each pair of neighbouring rings, totalling 120 staples per 

cage. In the refined models, 10 Cys35 side chains of each TRAPCS ring align with the staple 

positions, while the unlinked side chain of the 11th subunit points toward the 4-fold aperture 

(Fig. 1i, Fig. 2a). An enlargement at the midpoint of each staple density was observed, 

interpreted as an AuI ion coordinated between the two proximal thiol ligands, with the preferred 

linear geometry (Fig. 2a)20. No other ring-ring interactions were observed, aside from possible 

hydrogen bonding between Asn18 and Asp37 side chains.   

The presence of gold in the final structures was measured via electrothermal atomic 

absorption spectroscopy (ETAAS; Extended Data Table 3), to be 112 ± 8 Au per assembly, 
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in close agreement with the predicted value of 120. The presence of gold was corroborated by 

mass spectrometry (MS), which produced peaks that suggest stable S-AuI-S linkages (Fig. 2b-

d), proton-induced X-ray emission (PIXE) and X-ray photoelectron spectroscopy (XPS), 

whereas Raman spectroscopy showed no evidence of direct disulphide linkages (Extended 

Data Fig. 6). The interaction between AuI and Cys35 are expected to proceed via successive 

ligand displacement events involving Au-TPPMS, in agreement with AuI-phosphine ligand 

exchange hypotheses21,22 . 

The metal-directed protein assembly strategy predicts that a supramolecular complex 

of desired geometry can be generated by matching the inherent symmetry of a protein oligomer 

with the coordination geometry of an interacting metal ion7. To test this hypothesis in our 

context, we probed additional thiophilic transition metal ions (AuIII, CuI, HgII, ZnII) for their 

ability to induce cage assembly upon reaction with TRAPCS (Fig. 2e-f, Extended Data Fig. 7a-

c). Whereas addition of AuIII, CuI and ZnII showed little or no evidence of cage structures, HgII 

triggered the formation of uniform cages that were indistinguishable from the gold-derived 

structures, consistent with the linear 2-coordinate geometry of mercury(II).  

To test the robustness of the TRAP-cage architecture, the placement of thiol groups in 

the TRAP ring was varied by generating additional surface mutants, D15C and S33C. TRAP 

bearing S33C, but not D15C, could assemble into cages in the presence of Au-TPPMS, 

underscoring the importance of secondary interactions in influencing resultant architectures 

(Extended Data Fig. 7d-f).  

The stability of TRAP-cage was measured over a range of conditions (Fig. 3a-e, 

Extended Data Fig. 8). Remarkably high stability was observed upon exposure to high 

temperatures, chaotropic agents, and a wide range of pH conditions, consistent with the 

stabilizing effect of metal coordination23,24. Despite extreme stability, the cages were fully 

reversible, breaking apart in response to millimolar levels of reducing agents, likely via ligand 

displacement mechanisms21. We also observed that the reaction of TRAPCS with 

triphenylphosphine-derivatized gold clusters produced a cage with a similar structure and 

stability (Extended Data Figs. 9-10).  
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From a geometrical perspective the TRAP-cage architecture presents an apparent 

paradox, given that C11-symmetric polygons (hendecagons) are excluded from assembling into 

regular convex polyhedra (apart from prisms or antiprisms)25.  To understand this, it is helpful 

to consider the geometric dual of the snub cube, the pentagonal icositetrahedron (PI) 

polyhedron with 24 identical non-regular pentagonal faces, arranged with octahedral symmetry. 

We find that a regular hendecagon can be inscribed in each face so that five of its edges nearly 

perfectly coincide with that of the irregular pentagon (Fig. 4a), implying a solid formed from 

24 hendecagons, 56 triangles and 6 squares, which is mathematically impossible but plausibly 

constructible as a physical object. To understand this geometry further, we modelled 24 copies 

of TRAPCS oligomers as 11-pointed rings and optimized their positions in space to converge at 

a distance between two neighbouring points of 4.7 Å (the theoretical distance between two Cys-

sulphur ligands in a S-AuI-S linear complex). This simulation produced an arrangement 

reminiscent of the TRAP-cage architecture (Fig. 4b-c); strikingly, the optimised S-to-S 

distances converged to the target with vanishingly small error, well within the physical 

tolerances required to form uniform protein cages from C11 symmetric elements.  

Our study supports the finding that a tiny number of mutations can lead to profound 

changes in protein structural complexity via spontaneous self-assembly26,27. Intriguingly, the 

architecture described by TRAP-cage has, to our knowledge, never been observed in nature, 

although a similar arrangement of 11-pointed stars appears in Islamic art, in the Court of the 

Lions at the Alhambra28. Furthermore, our results suggest a possible avenue for building large 

capsid-like proteins using homomeric components. Viruses have achieved this by exploiting 

quasi-equivalent icosahedral symmetries to build shells of >60 subunits29, but this poses an 

immense challenge for computationally designed cage systems, as it requires controlled 

switching between different oligomeric forms30. In contrast, TRAP-cage is a large, shell 

structure built from a single type of protein homo-oligomer, something that has only rarely been 

reported27. The general stability of TRAP-cage and its controllable disassembly hints at 

potential applications as an intracellular delivery agent. We suggest, finally, that beyond the 

unusual architecture embodied by TRAP-cage there exists an entire domain of unexplored 
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"paradoxical geometries" (Fig. 4d-f) that could be constructed using proteins or other biological 

molecules with potentially unique properties. 
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Figures 

 

Figure 1. Formation of TRAP-cage. a, Structure of the TRAPCS building block, shown in two 

orthogonal views (based on PDB 4V4F). The substituted residues Cys35 and Ser64 are modelled 

as red and grey spheres, respectively. b, Chemical structure of Au-TPPMS. c, Results of size 

exclusion chromatography (SEC), with 1 mM (monomer concentration) TRAPCS before (blue) 

and 3 days after (red) reaction with Au-TPPMS. Unreacted TRAPCS shows heterogeneous size 

distribution, with a major peak corresponding to lower molecular weight TRAP ring assemblies 

and a smaller peak corresponding to larger aggregates likely resulting from disulphide bond 

formation. SEC is representative of two independent experiments giving similar results. d, 

TEM images of unreacted TRAPCS (left) showing heterogeneous aggregates with no evidence 

of cage structures and (right) cages purified via SEC after mixing 1 mM each of TRAPCS and 

Au-TPPMS. Scale bars = 100 nm. TEM was repeated twice, giving similar results. e, Top: 

Monitoring TRAP-cage assembly with single molecule mass photometry. Insets: representative 

single particle images of partially and fully assembled cages. Scale bar: 1 µm. Bottom: 

Extracted assembly kinetics. Horizontal error bars: 15 s, as dictated by the length of a single 

measurement. Vertical error bars: standard error on the area of Gaussian fit, calculated from 

the covariance matrix of the fit parameters. Inset: Results for TRAPCS without addition of Au-

TPPMS exhibiting mostly monomeric TRAP (11mer) rings (90 kDa), with weak signatures of 
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small oligomeric assemblies thereof. The experiment was run twice, giving similar results. f, 

Cryo-EM density maps of the LH and RH forms of TRAP-cage, refined to 3.7 Å resolution. g, 

Cutaway view of the LH map, showing a hollow interior with an internal diameter of 16 nm. 

h, Snub cube, showing LH and RH chiral forms, consisting of 32 regular triangles and 6 square 

faces. The 4-, 3- and 2-fold rotational axes are represented in blue, yellow, and red, respectively. 

i, Close-up of the LH map showing 11-fold rotational symmetry of ring elements and prominent 

density bridges connecting adjacent rings. Positions 1-10 make contacts with neighbouring 

rings while position 11 is unattached and defines the side of a square aperture. j, Refined LH 

cage model, consisting of 24 TRAPCS rings, with each ring positioned on the vertex of a snub 

cube (wire model). Three views are indicated, centred on the 2-, 3-, and 4-fold symmetry axes.  
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Figure 2. TRAP-cage is held together via Cys-AuI-Cys coordination. a, Left, view of LH 

TRAP-cage model and map, with arrows indicating density bridges connecting neighbouring 

TRAPCS rings. Right, close-up of the interface between two TRAPCS rings in the LH cage, 

where individual AuI ions are held in linear coordination between two Cys35 side chains from 

the neighbouring rings (magenta lines). No other intermolecular interactions are apparent 

between adjacent rings, apart from possible hydrogen bonding between Asn18 and Asp37 

sidechains (light blue lines). b, Denaturing LC-MS data reveal three forms of TRAP monomer: 

unliganded protein (dark blue), monomer bound to a single gold atom (blue), and monomer 

bound to a gold atom and TPPMS ligand (light blue). Only 10+ charge states are shown for 

clarity, and magnifications of the different peaks allows accurate mass determination for 

unambiguous assignment. The other, minor peaks correspond to salt adducts and/or other 

charge states. Inset table: list of TRAP masses, and the mass additions expected due to the 

different modifications. These correspond well to the masses measured, taking into account the 

10 protons responsible for the 10+ charge state. c, Native MS of intact TRAP-cages performed 
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at high collisional activation reveals a broad, unresolved region of signal at high m/z, and a 

series of peaks at low m/z, corresponding to dissociation of intact cages and release of cage 

fragments. For b and c, experiments were each repeated independently at least three times with 

representative results shown. d, Expansion of low-m/z region in c, showing assignment of the 

various charge state series. Monomeric TRAP, in both modified and unmodified forms (blues, 

same colouring as b), are the major fragments observed. Inset: notably, peaks that can be 

assigned unambiguously to a TRAP dimer containing a single gold atom are observed, 

validating the TRAP-AuI-TRAP linkage hypothesis. e, Hg(NO3)2 also facilitates cage 

formation, as shown by native PAGE.  Arrowhead indicates position of TRAP-cage formed 

with Au-TPPMS. Molar ratios of TRAPCS monomer:HgII are shown on top. Apparent molecular 

weights are indicated. Gel is representative of two independent experiments, each giving 

similar results. f, TEM image showing products of TRAPCS + Hg(NO3)2 reaction, without 

additional purification. TEM is representative of three independent experiments, each giving 

similar results.   Scale bar = 100 nm. For gel source data, see Supplementary Figure 1. 
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Figure 3. Extreme stability and controllable disassembly of TRAP-cage.  

a, Thermal stability of TRAP-cage. Native PAGE shows preservation of structural integrity at 

indicated incubation times and temperatures. The TEM image shows results after incubation at 

95 °C for 180 min. b, Stability as a function of pH. TRAP-cage samples were incubated 

overnight in buffer at pH 2-13. No visible loss of structure was detected from pH 3-12 using 

native PAGE. TEM images show the results after incubation at pH 3 and 12. c, Effects of urea 

(2-7 M), guanidine hydrochloride (1-4 M) and SDS (0.5-5%). d, Disassembly of TRAP-cage 

in the presence of reducing agents: DTT, TCEP, and reduced/oxidized glutathione (GSH and 

GSSG, respectively) at the indicated concentrations. All gels are representative of at least two 

independent experiments, each giving similar results. e, TEM images show structural integrity 

of TRAP-cage after treatment with 0.1 mM and 1 mM DTT. For all TEM, images are 
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representative of at least two independent experiments, each giving similar results and . Scale 

bars = 100 nm. For gels,  arrowheads indicate position of TRAP-cage and apparent molecular 

weights in kDa are indicated. For gel source data, see Supplementary Figure 1. 
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Figure 4: Unusual geometry of TRAP-cage. a, Top, pentagonal icositetrahedron (PI), with 

24 non-regular pentagonal faces. Bottom, a regular hendecagon can be placed at each PI face 

such that 5 of the hendecagon’s edges align almost perfectly with those of the PI. A close-up 

view shows that some hendecagon vertices lie very slightly outside of the PI face (others lie 

slightly inside). The near-coincidence arises because the obtuse angle A ≈ 114.81° of the PI 

face is almost equal to B ≈ 114.55° between non-consecutive hendecagon edges. b, Graphical 

representation showing the optimization of distances linking 24 regular 11-pointed rings (in 

yellow). Translated to the scale of TRAP-cage, the results converge almost exactly to the ideal 

sulphur-to-sulphur distance of 4.7 Å. c, The 24 rings can be divided into two groups of 12, 

centred on opposite ends of a fourfold rotational axis of the TRAP-cage. One such group is 

shown in c, coloured blue with the other group shown in red, faded in the background. Like the 
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PI, the TRAP-cage as a whole is chiral. d-f, Examples of paradoxical cages that can be 

constructed from 7, 10 and 16-sided polygons. Deviations from ideality are expressed as 

relative deformation, the relative difference between the largest and smallest edge lengths (rdl) 

or angles (rda). For comparison, rdl and rda for TRAP-cage are 0.50% and 0.27% respectively.  

d, A cage made out of 16 heptagons with 222 dihedral symmetry, derived by minimizing the 

energy of a mechanical model. rdl = 0.51% rda = 0.47%. e, A cage made out 12 decagons 

obtained by dressing a cuboctahedron; rdl = 0.00% rda = 0.51%. f, A cage made out of 12 

hexadecagons obtained by dressing a cuboctahedron; rdl = 0.00% rda = 0.64%. 
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METHODS 
 

Gold compounds 

Chloro[diphenyl(3-sulfonatophenyl)phosphine]gold(I) sodium salt hydrate (Au-TPPMS) was 

purchased from STREM Chemicals UK and reconstituted in water to 5 mM stock concentration 

or in 50 mM Tris-HCl, pH 7.9, 0.15 M NaCl to 10 mM stock concentration prior to use. The 

gold nanoparticle (GNP) used was a diphenyl(m-sulfonatophenyl)phosphine-gold nanocluster 

with a 1-3 nm core diameter (MDL number MFCD17018839) from STREM Chemicals UK. 

 

Protein expression and purification 

In a typical purification, E. coli BL21(DE3) cells (Novagen) transformed with pET21b plasmid 

harboring the TRAPCS gene or pET151/D-TOPO for genes encoding TRAPs having alternative 

cysteines S33C and D15C, were grown at 37 °C with shaking in 3 L of LB medium with 100 

μg/ml ampicillin until OD600 = 0.6, induced with 0.5 mM IPTG then further shaken for 4-5 h. 

Cells were harvested by centrifugation and the pellet kept at -80 °C until use. Cells were lysed 

by sonication at 4 °C in 50 ml of 50 mM Tris-HCl, pH 7.9 or 8.5, 0.05 M NaCl in presence of 

proteinase inhibitors (Thermo Scientific) and presence or absence of 2 mM DTT, and lysates 

were centrifuged at 66,063 g for 0.5 h at 4 °C. The supernatant fraction was heated at 70 °C for 

10 min, cooled to 4 °C, and centrifuged again at 66,063 g for 0.5 h at 4 °C. The supernatant 

fraction was purified by ion exchange chromatography on an ÄKTA purifier (GE Healthcare 

Life Sciences) using 4 × 5 ml HiTrap QFF columns with binding in 50 mM Tris-HCl, pH 7.9 

or 8.5, 0.05 M NaCl, +/-2 mM DTT buffer and eluting with a 0.05 -1 M NaCl gradient. Fractions 

containing TRAP were pooled and concentrated using Amicon Ultra 10 kDa MWCO 

centrifugal filter units (Millipore) and the sample subjected to size exclusion chromatography 

on a HiLoad 26/600 Superdex 200pg column in 50 mM Tris-HCl, pH 7.9, 0.15 M NaCl (“cage 

buffer”) at room temperature. Protein concentrations were calculated using the BCA protein 

assay kit (Pierce Biotechnology). 
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Cage assembly 

Formation of TRAP-cage was carried out by mixing purified TRAPCS and Au-TPPMS in 

aqueous solution. The typical “standard cage formation conditions” consisted of equimolar 

amounts of TRAPCS monomer and Au-TPPMS  in cage buffer. The exact concentrations of 

reactants were tailored for each reaction but were typically as follows: 1 mM TRAPCS (8.3 

mg/ml) and 1 mM Au-TPPMS. Reactions were incubated for at least 3 days at room 

temperature, reaction times of up to three months were also found to give similar results. 

Formation of TRAP-cage was confirmed using TEM and native PAGE. Any precipitated 

material (aggregated protein, present in older samples) was removed by centrifugation at 

12 045 g for 5 min, and TRAP-cage was purified by size exclusion chromatography on either 

Superose 6 Increase 10/300 GL or HiPrep 16/60 Sephacryl S-500 HR columns or HiLoad 

16/600 Superdex 200pg column (GE Healthcare). Fractions containing the cage protein were 

pooled, concentrated using Amicon Ultra 0.5 100 kDa MWCO centrifugal filter units, and 

protein concentration was measured using the BCA protein assay (Pierce Biotechnology). Yield 

was calculated by passing TRAPCS after the cage-forming reaction with Au-TPPMS, down a 

Superose 6 Increase column (GE Healthcare). Fractions containing TRAP-cage were collected 

and purity confirmed by native PAGE. Concentration of purified cage was determined by 

measuring absorption at 280 nm compared to total protein concentration in the starting solution. 

For formation of TRAP-cage using gold nanoparticles (GNP) in place of Au-TPPMS, 

conditions used were similar to the conditions described above: in brief, purified TRAPCS (final 

concentration of ~ 500 µM TRAP monomer) was mixed with GNP (final concentration ~ 500 

µM) at room temperature in buffer containing 20 mM Tris-HCl, pH 8.0 and 0.15 M NaCl.   

 For testing the ability of other metals to support cage formation, mercury(II) nitrate 

(Merck), copper(I) iodide (Sigma-Aldrich), zinc chloride (VWR Chemicals) and gold(III) 

chloride trihydrate (Sigma-Aldrich) were reconstituted in cage buffer to 5 mM stock 

concentration prior to use. TRAPCS samples (0.8 mg/ml final concentration) were incubated for 

3 days with varying metal ion concentrations. Results were monitored using native PAGE. 

Cages made using mercury(II) nitrate were imaged in TEM without further purification. 
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 For testing the effect of pH on cage assembly, Au-TPPMS stocks were prepared as 

described above. Samples were incubated for 3 days with varying concentrations of Au(I) ions 

concentration in 50 mM sodium acetate at pH 5.0, 50 mM potassium phosphate at pH 6.0 or 

7.0, 50 mM Tris-HCl at pH 8.0, 50 mM glycine-NaOH at pH 9.0. 

 For testing TRAP-cage formation at different pHs at different time points, reactions 

were carried out as described above for testing pH at a single time point with samples being 

removed at the indicated times before being mixed with 4x Native-PAGE sample buffer. 

 

Cage stability 

 All agents used for cage stability tests (DTT, TCEP, GSH, GSSG, SDS, Gdn-HCl, 

Urea) were reconstituted in water or cage buffer and pH adjusted when needed. Buffers used 

for pH stability tests were: 50 mM glycine-HCl at pH 2.0 or 3.0, 50 mM sodium acetate at pH 

4.0, 50 mM potassium phosphate at pH 6.0, 50 mM Tris-HCl at pH 8.0, 50 mM glycine-NaOH 

at pH 10, 50 mM potassium phosphate at pH 12, 50 mM potassium chloride-NaOH at pH 13. 

Each sample was briefly centrifuged in a desk-top centrifuge and a portion of supernatant 

removed and mixed with 4x native PAGE sample buffer and subjected to blue native PAGE. 

 

Dynamic light scattering 

Dynamic light scattering (DLS) was carried out using a Zetasizer Nano ZS (Malvern). TRAP-

cage samples were diluted to 0.2 – 0.4 µM cage in 50 mM Tris-HCl, 150 mM NaCl, pH 7.9 

and centrifuged for 2 min. at 12045 g. 50 µl of each sample were analysed in a quartz cuvette 

(ZEN 2112) and preincubated for 120 s at 25 °C. The samples were measured with standard 

settings for 50 mM Tris-HCl, 150 mM NaCl buffer. Results were given as volume distributions. 

Three TRAP-cage samples were measured with each measurement being repeated at least three 

times. All measurements gave highly similar results. 

 

Surface charge models 
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Surface charges of proteins TRAPCS (based on pdb 4v4f1) and -21GFP (based on pdb 1gfl2) 

were calculated using Coulombic Surface software in USCF Chimera with settings of dielectric 

constant 4.0, distance from surface 1.4 and distance-dependent dielectric. The mutations in 

TRAPCS, namely R64S and K35C were placed into the structure using USCF Chimera 

 

 

Single molecule mass photometry  

Experimental Setup: The experimental setup is identical to that described in Young et al.3 

except for the use of a 633 nm laser diode (Lasertack). Briefly, the collimated laser output is 

passed through two acousto-optic deflectors (AODs; AA Opto Electronic, DT SXY-400) 

mounted orthogonally to each other. The beam deflection is imaged into the back focal plane 

of a microscope objective (Olympus, 1.45 NA, 60×) by a 4f telecentric lens system after first 

passing through a polarising beam splitter (PBS) and a quarter-wave-plate (QWP). The light 

reflected at the glass-water interface together with that backscattered by the sample is collected 

by the objective, and this is separated from the incident light by the combination of the PBS 

and QWP. The reflected light is then selectively attenuated with respect to the scattering signal, 

by reimaging the back focal place of the microscope objective onto a partially reflective mirror, 

as described in Cole, et al.4 The sample is then imaged onto a CMOS camera (Point Grey GS3-

U3-23S6M-C) with 291.7× magnification, giving a pixel size of 20 nm/pixel. The focus 

position is maintained throughout the experiment by an active feedback loop using a total 

internally reflected beam. 

Data Acquisition and Analysis: The camera was run at 1 kHz and the recorded images were 

time-averaged 2-fold and pixel-binned 5x5 before saving. This gives an effective frame rate of 

500 Hz and pixel size of 100 nm. At this imaging speed, the sensitivity was insufficient to detect 

individual 90 kDa subunits, producing a cut off at 200 kDa for the smallest detectable objects. 

For control experiments to detect individual TRAP rings, data was recorded in a similar manner 

but was time averaged down to 10 Hz in order to increase sensitivity and detect the 90 kDa 
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rings. In order to reduce the number of binding events per second, the control data was 

measured at 100 nM. 

A sample of TRAPCS protein in cage buffer and Au-TPPMS were incubated at room 

temperature in a 1:1 ratio at 100 µM each. At various time points beginning 30 s after mixing 

the two components, 5 µL of the mixture was diluted to 10 µM and immediately added to a 

well of a silicon gasket (3 mm diameter, 1 mm thickness) fixed to a microscope coverslip (#1.5, 

24 mm x 52 mm, Menzel Glazer) already containing 15 uL of cage buffer and mixed with the 

volume of the 5 µl micro-pipette. 15 s after addition of sample to the well, the acquisition 

software was triggered and the sample was measured for 30s. 

Image analysis was performed using the method described in Young et al.3 to extract 

the masses of the observed particles. Kernel density estimates for each time point were 

generated using a Gaussian kernel with bandwidth of 40 kDa. To determine the proportion of 

formed cage with time, a Gaussian constrained to the expected mass of the cage and width for 

a single species of that mass (µ = 2160 kDa, σ = 110 kDa) was fit to a normalised histogram of 

each time point and the area taken. The σ value was chosen through extrapolation of values for 

known calibrants. 

The resulting plot of proportion of cage vs. time was fit to a global association rate fit: 𝑓(𝑥) = 𝑘(1 − 𝑒−𝑥/τ) 
where k is the maximum proportion of cage, τ is the formation time. 

 

3D reconstruction of initial cryo-EM structure of TRAP-cage 

A few microliters of purified TRAP-cage formed using GNPs in 20 mM Tris-HCl, pH 8.0, 0.15 

M NaCl were applied onto glow-discharged C-flat grids (1 µm hole, 1 µm space, 400 mesh 

copper grids) in the humidity-controlled chamber of an EM GP (Leica Microsystems, Vienna, 

Austria) followed by blotting and plunge freezing. Cryo-EM images were collected at liquid 

nitrogen temperature on a JEM-2200FS transmission electron microscope (JEOL, Tokyo, 

Japan) operated at 200 kV using a CT3500 cryo-transfer holder (Gatan, Pleasanton, CA). 

Images were recorded using a K2 summit direct electron camera (Gatan, Pleasanton, CA) using 
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super-resolution counting mode. A nominal magnification of 20,000× reading in the electron 

microscope used for image recording corresponds to a calibrated super resolution pixel size of 

1.01 Å per pixel on the specimen. Dose fractionation mode was used, setting frame exposure 

time to 0.2 s and total exposure time to 5 s. The dose rate on the camera was set to be less than 

2 counts per sub-pixel per second. Stacked images obtained by dose fractionation mode 

underwent motion correction using software as described by Li et al.5 All of the 25 frames in 

each stacked image were used to calculate a sum of frames after motion correction. Each 

summed image was 2×2 binned, which were used for the following image processing. The 

phase of the cryo-EM images was corrected using ctfDisplay and mrcImageCTFCompensation 

implemented under EOS.6 Boxing 4472 particles from the phase-corrected images was done 

using EMAN2.7 A first 3-D model was obtained at 18 Å (fsc = 0.5) using EMAN1.9.8 This was 

used as a reference model for the image analysis by RELION1.3 and 1.4.9 The 3D map of 16.5 

Å resolution obtained without any symmetrical operation after 3D auto-refine of RELION, was 

used for the following high resolution work as an initial model. 

 

Cryo-EM single particle reconstruction of TRAP-cage formed using GNPs at higher resolution 

Purified sample formed using GNPs (3 μl of 0.13 mg/ml) was applied to glow-discharged holey 

carbon grids (Quantifoil R 1.2/1.3, Mo 200 mesh) with a thin amorphous carbon film of ~10 

nm thickness over the holes and incubated for 30 s at 4 °C and 100% humidity. Grids were then 

blotted for 3.0 s and plunged into liquid ethane using a Vitrobot Mark IV (FEI). Data were 

recorded semi-automatically using the EPU software on a transmission electron cryo-

microscope (FEI Titan Krios) operated at an accelerating voltage of 300 kV and at a nominal 

magnification of 75,000 ×. Images (0.91 Å/pixel) were recorded at applied underfocus values 

ranging from approximately -1.0 to -3.0 μm on a Falcon II direct electron detector (FEI) as 16 

frames in 1.0 s exposure with a total electron dose of 20 electrons/Å2. Data were subsequently 

aligned and summed using MotionCor210 to obtain a final dose weighted image and then 2× 

binning was performed using the Bsoft program package,11 resulting in a pixel size of 1.82 Å 

for further image processing. Estimation of the contrast transfer function was performed using 
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CTFFIND4.12 Micrographs exhibiting poor power spectra based on the extent and regularity of 

the Thon rings were rejected. Initially, approximately 2,000 particles were manually picked 

from 43 micrographs and subjected to reference-free two-dimensional (2D) classification using 

EMAN 2.1.7 Ten representative 2D class averages were selected as templates for automated 

particle picking using Gautomatch (http://www.mrc-lmb.cam.ac.uk/kzhang/). All subsequent 

processing steps were performed in RELION 2.0.9 A total of 131,812 auto-picked particles 

from 2,637 micrographs were subjected to reference-free 2D classification to remove aberrant 

particles. Particles in 22 representative classes showing spherical shapes were selected (58,157 

particles) for the following processes. The selected particles were subjected to three-

dimensional (3D) structure refinement and post-processing without any symmetry (C1 

symmetry), where the initial low-resolution structure as described above was used for the 

reference in the 3D classification after low-pass filtered to 60 Å. The resolution was estimated 

to 5.6 Å by the gold-standard Fourier shell correlation (SCF = 0.143 criterion), after applying 

a soft spherical mask on the two reconstructions refined from the half of the data sets 

independently. The resultant map clearly showed the overall TRAP-cage structure having 24 

11-membered rings with D4 symmetry. However, the individual ring structure showed mixed 

features of two mirrored protein structures described below. Further structure analysis was 

carried out using TRAP-cage formed using Au-TPPMS rather than GNPs. 

 

Cryo-EM single particle reconstruction of TRAP-cage formed using Au-TPPMS at higher 

resolution 

A purified sample (3 μl of 0.89 mg/ml) formed using Au-TPPMS was applied to glow-

discharged holey carbon grids (Quantifoil R 1.2/1.3, Mo 200 mesh) with a thin amorphous 

carbon film of ~10 nm thickness over the holes and incubated for 30 s at 4 °C and 100% 

humidity. Grids were then blotted for 3.0 s and plunged into liquid ethane using a Vitrobot 

Mark IV (FEI). Data were recorded semi-automatically using the EPU software on a 

transmission electron cryo-microscope (FEI Titan Krios) operated at an accelerating voltage of 

300 kV and at a nominal magnification of 75,000 ×. Images (0.91 Å/pixel) were recorded at 
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applied underfocus values ranging from approximately -0.9 to -3.4 μm on a Falcon II direct 

electron detector (FEI) as 32 frames in 2.0 s exposure with a total electron dose of 40 

electrons/Å2. Data were subsequently aligned and summed using MotionCor210 to obtain a final 

dose weighted image and then 2× binning was performed using the Bsoft program package,11 

resulting in a pixel size of 1.82 Å for further image processing. Estimation of the contrast 

transfer function was performed using CTFFIND4.12 Micrographs exhibiting poor power 

spectra based on the extent and regularity of the Thon rings were rejected (96 micrographs). 

Initially, approximately 2,000 particles were manually picked and subjected to reference-free 

two-dimensional (2D) classification using EMAN 2.1.7 Ten representative 2D class averages 

were selected as templates for automated particle picking using Gautomatch (http://www.mrc-

lmb.cam.ac.uk/kzhang/). All subsequent processing steps were performed in RELION 2.0.9 A 

total of 1,085,623 auto-picked particles from 10,290 micrographs were subjected to reference-

free 2D classification to remove aberrant particles. Particles in 5 representative classes showing 

spherical shapes were selected (578,865 particles) for the following processes. The selected 

particles were subjected to three-dimensional (3D) classification into three classes using an 

angular sampling of 3.7° for 25 iterations without any symmetry (C1 symmetry), where the 

initial low-resolution structure as described above was used for the reference in the 3D 

classification after low-pass filtered to 60 Å. The particles (176,463 particles) in a class showing 

the most symmetrical cage structure with regular density distribution were selected for the 

following processes. However, although the density map clearly showed the overall TRAP-

cage structure as a sphere with 24 11-membered rings, the structure at the level of the individual 

rings was curiously devoid of protein chiral features and showed mixed features of two mirrored 

protein structures, contrary to expectations from the protein structure previously determined by 

x-ray crystallography,1 which is suggestive of the existence of chiral cage structures. Therefore, 

to separate the two chiral cage particles, we performed a second round of 3D classification into 

two classes using a finer angular sampling of 1.8° for 25 iterations without any symmetry (C1 

symmetry). The resultant two maps clearly showed left-handed and right-handed structures at 

the level of the individual protein rings, respectively. Each structure (class I: 94,338 particles 
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and class II: 82,125 particles) was refined individually with the C1 (asymmetric 

reconstruction), C4 and D4 symmetries. The resolutions of the class I were estimated as 3.7 

(octahedral symmetry), 3.9 (D4), 4.1 (C4), and 4.4 Å (C1) and the resolutions of the class II 

were estimated to 3.9 (D4 sym.), 4.2 (C4 sym.), and 4.5 Å (C1 sym.) by the gold-standard 

Fourier shell correlation (FSC = 0.143 criterion), after applying a soft spherical mask on the 

two reconstructions refined from the half of the data sets independently. According to the 

individual protein structures, the handedness of the class I map was corrected to the opposite 

one (resulting in class I: right-handed cage structures and class II: left-handed cage structures). 

The maps of the class I and II with octahedral symmetry were sharpened with B-factors of -236 

and -244 Å2, respectively. Local resolution was estimated using ResMap.13 Figures were 

prepared using UCSF Chimera.14  

  

Structural refinement 

The initial atomic coordinate model was based on the TRAP crystal structure (PDB accession 

4V4F9), with the Cys35 and Ser64 substitutions modelled in Coot15 to generate TRAPCS ring 

structures. Note that residue positions have been renumbered from the initial deposited PDB to 

reflect the actual positions in the coding sequence of TRAP from G. stearothermophilus (e.g. 

the mutated Lys->Cys residue was assigned to residue number 37 in the original PDB file 4V4F 

but corresponds to residue number 35 in our analyses). Initial inspection of the density maps 

revealed areas of weak or missing density, and thus the structure of each TRAP subunit was 

truncated to residues 6-72; in addition residues 22-32 (corresponding to a loop that exhibits 

high flexibility in the apo-form of TRAP16) were omitted from the model to reflect this. 

Refinement of the LH and RH structures followed a similar regime. Twenty-four copies of 

TRAPCS rings were initially fit into the cage density by rigid body refinement using Phenix 

real-space refinement.17 Optimization of the original cryo-EM map voxel size using the high-

resolution TRAP crystal structure1 as a reference was performed as follows, in a manner 

analogous to previous reports.18,19 Comparison of cross-correlation scores of the fits between a 

simulated map of the TRAPCS ring atomic model and the cryo-EM map at varying voxel scales 



28 

 

(starting from the original 1.82 Å voxel-1 and varying by 0.01 increments) was performed using 

Chimera, with the optimal results corresponding to a map scale of 1.74 Å voxel-1. Similar results 

were obtained by performing rigid body refinement of individual subunits of 24 TRAPCS rings 

onto the cryo-EM density at varying scales using Phenix.17 AuI atoms (120 in total) were docked 

manually into the prominent blobs of density between the Cys35 side chains from neighbouring 

rings of the rigid-body fitted model, and subsequently 15 macro cycles of Phenix real-space 

refinement were run using the 1.74 Å voxel-1 map, including rigid-body refinement, global 

minimization, a single round of simulated annealing, and adp refinement; restraints on the Au-

S bond lengths and S-Au-S bond angles were applied during the later stages of refinement. 

Validation of the refined models was carried out using MolProbity.20  Analysis of interfacial 

contacts in the TRAP-cage models was performed using PDBePISA 

(http://www.ebi.ac.uk/pdbe/pisa/).21 

 

Transmission electron microscopy (TEM) 

Samples were typically diluted to a final protein concentration of 0.025 mg/ml, centrifuged 

briefly in a desktop centrifuge and the supernatant applied onto hydrophilized carbon-coated 

copper grids (STEM Co.), negatively stained with 3 % phosphotungstic acid, pH 8, and 

visualized using a JEOL JEM-1230 80 kV instrument. 

 

Native PAGE 

Samples were run on 3-12% native Bis-Tris gels following the manufacturer's 

recommendations (Life Technologies). Samples were mixed with 4x native PAGE sample 

buffer (200 mM BisTris, pH 7.2, 40% w/v Glycerol, 0.015% w/v Bromophenol Blue). As a 

qualitative guide to molecular weights of migrated bands, NativeMark unstained protein 

standard (Life Technologies) was used. Where blue native PAGE was performed, protein bands 

were visualized according to the manufacturer's protocol (Life Technologies), otherwise 

InstantBlueTM protein stain (Expedeon) was used. 
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Electrothermal atomic absorption spectrometry (ETAAS) 

A sample mass of 2 mg was dissolved in 25 ml with 0.2 % HCl. The solution was then diluted 

25 × before determination of total Au performed by an ETAAS spectrometer (PinAAcle 900Z, 

Perkin Elmer, Waltham, MA), with Zeeman background correction, at a wavelength of 242.80 

nm (slit width of 0.7 nm). The measured volume of the sample solution was 10 µl and to each 

sample a mixture of matrix modifiers: 5 µg of Pd(NO3)2 and 3 µg of Mg(NO3)2 was added. Five 

sets of measurements were carried out with each set consisting of three repeats. 

 

Proton-induced X-ray emission (PIXE) 

The TRAP-cage structural model has a bridging gold atom between 10 of the 11 Cys35 residues 

of each TRAP ring. Given the presence of an additional sulphur atom per TRAP monomer 

(from methionine) this would give a ratio of S:Au of 4.4:1 assuming that the Cys35 at the 11th 

monomer of each ring did not bind a gold or 3.7:1 assuming that it did. The S:Au ratio was 

determined using Micro-PIXE measurements performed with a high energy focused proton 

beam (nuclear microprobe) in the tandem accelerator laboratory of the Jožef Stefan Institute.22 

The beam is focused by a magnetic quadrupole triplet lens and scanned over the square-shaped 

area of interest by magnetic deflectors. The micro-PIXE setup is described in detail by Vavpetič 

et al.23 X-ray analysis was carried out by a Peltier-cooled silicon drift detector (SDD), equipped 

with ultra-thin vacuum window and aluminum-coated 1 micrometer thick mylar foil to block 

visible light photons. 

Standard sample substrate for micro-PIXE analysis was used for the protein analysis, 

consisting of a 100 nm thick pioloform foil spanned over 0.5 mm thick aluminium frame with 

8 mm aperture.  TRAP (approx. 0.5 mg/ml) was applied to the centre of the aperture as two 

consecutive depositions of 0.5 µl and dried. The second deposition took place after complete 

drying of the first. Sample was mounted on the sample holder and inserted into the high vacuum 

system with a vacuum of 2 × 10-7 mbar. We applied a 3 MeV beam with a diameter of 1.0 

micrometre and beam current of 200 pA. The transmitted proton beam was detected with a 

dedicated beam stopper incorporating on-off axis detector for Scanning Transmission  Ion 
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Microscopy (on-off axis STIM24) providing the sample thickness information. The beam was 

scanned across the selected field of interest, varying from maximum scanning field of 2000 × 

2000 µm2 down to 400 × 400 µm2. All the measurements were taken in the listmode, which 

enables data sequence recovery and monitoring of eventual sample evolution during the 

measurements. The methodology of the micro-PIXE protein analysis was adopted according to 

published methods.25 For the quantification, the samples were treated as samples of finite 

thickness, and proton beam stopping as well as X-ray attenuation in the sample were taken into 

account within the Gupixwin program.26 The precision of the method was validated during each 

set of experiments by measurement of reference pure metals of Al, Ti, Cu and Au, Standard 

Reference Material of the  National Institute for Standards and Technology (NIST) Naval Brass 

(C1107) and a set of thin evaporated XRF reference samples of Au and  CuSx produced by the 

Micromatter company (Canada). 

 

X-ray photoelectron spectroscopy (XPS) 

XPS analysis was performed on a VersaProbeII PHI scanning XPS spectrometer with Al Kα 

monochromatic X-ray (1486.6 eV) excitation with a beam diameter of 100 μm on a 400 μm x 

400 μm surface. The angle of the photoelectron analysis was 45° and the energy of electrons in 

the analyzer was equal to 46.95 eV. A dual neutralizer was applied on the test surface with the 

help of an Ar+ ion beam with energy 7 eV and electrons with energy 1 eV. The XPS binding 

energies were calibrated using the carbon 284.80 eV 1s peak. The Pressure inside the chamber 

was 4x10-9 mbar. Deconvolution and spectra analysis was done in the PHI MultiPak program 

(version 9.8.0.19). 

 

Liquid-chromatography mass spectrometry 

Purified TRAP-cage was denatured in 50 mM Tris·HCl buffer (pH 8.0) with 8 M urea at 56 °C 

for 30 min, then buffer-exchanged to 50 mM Tris·HCl buffer (pH 8.0) using a centrifugal 

filtration device (Amicon 3 kDa MWCO, Millipore). For denaturing LC-MS analysis, the 

TRAP protein was desalted on a C18 pre-column (Acclaim PepMap100, C18, 300 µm × 1 cm; 
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Thermo Scientific), then separated on a C18 column (Acclaim PepMap100, C18, 75 µm × 15 

cm; Thermo Scientific) by a Dionex UltiMate 3000 RSLCnano System connected to a hybrid 

LTQ Orbitrap XL mass spectrometer (Thermo Scientific) via a dynamic nanospray source. A 

binary buffer system was used, with buffer A 0.1% formic acid in H2O, and buffer B 0.1% 

formic acid in acetonitrile. The proteins were separated at 25 °C with a gradient of 1 % to 90 

% buffer B at a flow rate of 300 nL min-1 over 60 min. The LTQ-Orbitrap XL was operated in 

positive ion mode with a nanoelectrospray voltage of 1.6 kV and capillary temperature of 275 

°C. Survey full-scan MS spectra were acquired in the orbitrap (m/z 300−4000) with a resolution 

of 60000. The data were processed using Xcalibur 2.2 (Thermo Scientific). 

 

Native mass spectrometry 

TRAP-cage samples at 0.8 mg/ml were prepared for native MS by buffer-exchanging into 

ammonium acetate (pH 6.9) using miniature spin columns (Micro Bio-Spin P-6, BioRad). This 

was performed in two steps: the first exchanged into 2.5 M ammonium acetate, the second into 

200 mM ammonium acetate. Native MS experiments were performed using methods described 

previously,27 employing a Q-ToF2 instruments (Waters Corp.), modified for the analysis of 

large protein ions.28 Relevant instrument parameters were: nanoelectrospray capillary voltage: 

1.9 kV; sample cone: 200 V; extractor cone: 10 V, acceleration into collision cell: 200 V. The 

collision cell was pressurized with argon at ≈35 μbar. Data was calibrated externally using 

MassLynx software (Waters Corp.) and are shown without background subtraction and 

minimal smoothing. 

 

Raman spectroscopy 

Raman spectra were collected for TRAP-cage proteins in powder form and oxidized and 

reduced glutathione (Sigma) and for oxidised and reduced TRAPCS rings.  Spectra were 

collected using a Renishaw InVia Raman spectrometer equipped with a confocal microscope 

and CCD camera (1024 × 256 pixels). The excitation wavelength was provided by a diode laser 

emitting at 532.0 nm. All spectra were acquired with a spectral resolution of 4 cm−1 in the 
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spectral range of 100–3200 cm−1 using 20 × objective. The exposure time was 30 s with four 

acquisitions averaged to a single spectrum. The spectra were smoothed using 13 points 

Savitzky-Golay filter, baselined using a rubber band algorithm and normalized to maximal 

intensity.  

 

Mathematical modelling of TRAP-cage 

We modelled the TRAP ring as a unit circle with 11 evenly spaced vertices on its perimeter. 

Assuming that the TRAP-cage has octahedral symmetry, then the complete cage can be 

assembled from this canonical ring by transformations about the 24 rotations in the octahedral 

group. The paradoxical cage in Fig. 4b suggests a set of 120 pairs of simulated S-Au-S bonds, 

one for each location where two hendecagonal vertices meet. For any given position and 

orientation of the canonical ring, the 24 rotated images in the simulated TRAP-cage will yield 

a set of 120 bond lengths. Our goal was to derive the six numbers defining the position and 

orientation of the canonical ring so that these 120 bonds are as close as possible in length to the 

ideal value of 4.7 Å. We can find a near-optimal position and orientation using numerical 

optimization, resulting in a configuration of TRAP rings, where the ideal value is matched to 

within an error of 5×10-9 Å, i.e. essentially to within numerical accuracy and which is well 

within the physical tolerances for actual S-Au-S coordination bonds.   

The optimal arrangement of TRAP rings was computed using a custom-written C++ 

program of about 1000 lines of code.  The core of the program uses the code for the "downhill 

simplex" method of continuous simulated annealing, as provided in Press et al.29 The program 

also uses the Boost library (www.boost.org) for quaternions and random number 

generation.  3D visualizations were modelled and rendered in Rhinoceros 3D by Robert 

McNeel and Associates (www.rhino3d.com); the output from the optimizer was used to 

transform TRAP rings into position using a custom Python script 

 

Prediction of other paradoxical cages  

http://www.boost.org/
http://www.boost.org/
http://www.rhino3d.com/
http://www.rhino3d.com/
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To predict the geometry of other nearly regular cages, assemblies made of identical regular n-

gons, for n = 7, 8, … 17 were considered. These polygonal faces were placed on the vertices of 

regular polyhedra so that the faces of the polyhedron correspond to the holes of the cage and 

the edges of the polyhedron, to the links between adjacent faces of the cage. The polyhedra 

used for this “dressing” method included all Platonic and Archimedean solids, prisms and anti-

prisms, ignoring those with faces having more than 6 edges.  We wrote a computer program to 

construct many of the possible convex geometries from the method described above. The C++ 

program (of around 3000 lines of code) outputs a file describing the topology, i.e. the links 

between all the faces, for each potential cage thus found. 

A second C++ program (about 8400 lines of code) was then used to derive the 

geometric properties of the prospective cages.  First the polygonal faces were modelled as rigid 

bodies, with adjacent faces linked by two Hookean springs with a rest position set to 5% of the 

edge length. The energy of the system was then minimised using a Monte Carlo algorithm. The 

coordinates of the resulting polyhedron were then used by the program to model the cage as a 

set of rigid rods using an energy functional consisting of three terms: edge length deviations, 

face edge angular deviations, and degree of non-planarity. The first one measured by how much 

the edge lengths deviated for a chosen reference length. The second one measured by how much 

the angle between the face edges deviated from the angle of the regular polygon. The third term 

was measuring the level of non-planarity of the faces. Each term was multiplied by a weight 

factor, with the planarity weight set to three orders of magnitude larger than for the lengths and 

the angles. This allowed us to obtain structures with planar faces (with zero planarity distortions 

modulo numerical error). The energy functional was minimised using a Monte Carlo method, 

with the program generating a file containing the coordinates of each vertex, the topology of 

the cage, as well as the range of deformations obtained for the angles and edge lengths. A 

detailed description of the algorithm will be given in a future publication.  

Of the thousands of cages generated by the method described above, we selected 

candidates for which the level of deformation for both angles and edge lengths was smaller than 

1%.  In some cases, e.g. the cage shown in Fig. 4d, the basic structure was obtained by manual 
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construction of a physical model, with the topology then being fed into the second program for 

optimisation. 

 

Code Availability 

Custom codes used to compute the optimal arrangement of TRAP rings and to predict 

paradoxical cages are available from the authors on reasonable request 

 

Data Availability 

The data that support the findings of this study are available via the corresponding author on 

reasonable request. The cryo-EM density maps have been deposited in the Electron Microscopy 

Data Bank under accession codes EMD-6966 (GNP-produced TRAP-cage), EMD-4443 (Left-

handed TRAP-cage) and EMD-4444 (right-handed TRAP-cage) the coordinates have been 

deposited in the Protein Data Bank under accession numbers 6IB3 (left-handed TRAP-cage) 

and 6IB4 (right-handed TRAP-cage). 

 

Methods References 

 

1 Hopcroft, N. H. et al. The interaction of RNA with TRAP: the role of triplet repeats 

and separating spacer nucleotides. J. Mol. Biol. 338, 43-53, (2004). 

2 Yang, F., Moss, L. G. & Phillips, G. N., Jr. The molecular structure of green 

fluorescent protein. Nat. Biotechnol. 14, 1246-1251, (1996). 

3 Young, G. et al. Quantitative mass imaging of single biological macromolecules. 

Science 360, 423-427, (2018). 

4 Cole, D., Young, G., Weigel, A., Sebesta, A. & Kukura, P. Label-Free Single-

Molecule Imaging with Numerical-Aperture-Shaped Interferometric Scattering 

Microscopy. ACS Photonics 4, 211-216, (2017). 

5 Li, X. et al. Electron counting and beam-induced motion correction enable near-

atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584-590, (2013). 



35 

 

6 Yasunaga, T. & Wakabayashi, T. Extensible and object-oriented system Eos supplies 

a new environment for image analysis of electron micrographs of macromolecules. J. 

Struct. Biol. 116, 155-160, (1996). 

7 Tang, G. et al. EMAN2: an extensible image processing suite for electron 

microscopy. J. Struct. Biol. 157, 38-46, (2007). 

8 Ludtke, S. J., Baldwin, P. R. & Chiu, W. EMAN: semiautomated software for high-

resolution single-particle reconstructions. J. Struct. Biol. 128, 82-97,  (1999). 

9 Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM 

structure determination. J. Struct. Biol. 180, (2012). 

10 Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for 

improved cryo-electron microscopy. Nat. Methods 14, 331-332, (2017). 

11 Heymann, J. B. Bsoft: image and molecular processing in electron microscopy. J. 

Struct. Biol. 133, 156-169, (2001). 

12 Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from 

electron micrographs. J. Struct. Biol. 192, 216-221, (2015). 

13 Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of 

cryo-EM density maps. Nat. Methods 11, 63-65, (2014). 

14 Pettersen, E. F. et al. UCSF Chimera--a visualization system for exploratory research 

and analysis. J. Comput. Chem. 25, 1605-1612, (2004). 

15 Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of 

Coot. Acta. Cryst. D 66, 486-501, (2010). 

16 Malay, A. D., Watanabe, M., Heddle, J. G. & Tame, J. R. H. Crystal structure of 

unliganded TRAP: implications for dynamic allostery. Biochem. J. 434, 429-434, 

(2011). 

17 Adams, P. D. et al. PHENIX: a comprehensive Python-based system for 

macromolecular structure solution. Acta. Cryst. D 66, 213-221, (2010). 

18 Wang, Z. et al. An atomic model of brome mosaic virus using direct electron 

detection and real-space optimization. Nat. Commun. 5, 4808, (2014). 



36 

 

19 Natchiar, S. K., Myasnikov, A. G., Kratzat, H., Hazemann, I. & Klaholz, B. P. 

Visualization of chemical modifications in the human 80S ribosome structure. Nature 

551, 472-477, (2017). 

20 Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular 

crystallography. Acta. Cryst. D 66, 12-21, (2010). 

21 Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline 

state. J. Mol. Biol. 372, 774-797, (2007). 

22 Pelicon, P. et al. A high brightness proton injector for the Tandetron accelerator at 

Jožef Stefan Institute. Nucl. Instrum. Meth. B 332, 229-233, (2014). 

23 Vavpetič, P., Kelemen, M., Jenčič, B. & Pelicon, P. Nuclear microprobe performance 

in high-current proton beam mode for micro-PIXE. Nucl. Instrum. Meth. B 404, 69-

73, (2017). 

24 Pallon, J. et al. An off-axis STIM procedure for precise mass determination and 

imaging. Nucl. Instrum. Meth. B 219, 988-993, (2004). 

25 Garman, E. F. & Grime, G. W. Elemental analysis of proteins by microPIXE. Prog. 

Biophys. Mol. Bio. 89, 173-205, (2005). 

26 Campbell, J. L., Hopman, T. L., Maxwell, J. A. & Nejedly, Z. The Guelph PIXE 

software package III: alternative proton database. Nucl. Instrum. Meth. B 170, 193-

204, (2000). 

27 Kondrat, F. D., Struwe, W. B. & Benesch, J. L. Native mass spectrometry: towards 

high-throughput structural proteomics. Methods Mol. Biol. 1261, 349-371, (2015). 

28 Sobott, F., Hernandez, H., McCammon, M. G., Tito, M. A. & Robinson, C. V. A 

tandem mass spectrometer for improved transmission and analysis of large 

macromolecular assemblies. Anal. Chem. 74, 1402-1407 (2002). 

29 Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical 

recipes in C (2nd ed.): the art of scientific computing.  (Cambridge University Press, 

1992). 

 



37 

 

 
 
Extended Data Figure 1. Optimization of conditions for TRAP-cage formation. a-e, Effect 

of pH on cage formation. Reactions containing 0.8 mg/ml TRAPCS were incubated with Au-

TPPMS at the indicated pH values for 3 days, spun down on a desktop centrifuge and subjected 

to blue native PAGE. The ratios denote TRAPCS monomer : Au(I) molar ratios. Formation of 

white precipitate was detected in the reactions marked with an asterisk, and correlates with a 

decrease in band intensity.  f-i, Time course of TRAP-cage formation at pH 7, 8, and 9, 

visualized by blue native PAGE. Each reaction contains Au-TPPMS and 0.8 mg/ml TRAPCS at 

a 1:1 molar ratio. Total incubation times are indicated above each gel. Gels a-i were repeated 

once, giving similar results. j, Left, product of reaction containing 8.15 mg TRAPCS and Au-

TPPMS under standard cage-formation conditions was subjected to SEC using a Superose 6 

Increase 10/300 GL column and fractions collected as indicated. Right, native PAGE of 
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fractions 1-13 demonstrates they contain almost exclusively cage structures. Inset table 

demonstrates high recovery yields of TRAP-cage based on A280 measurements of initial and 

purified samples. SEC is representative of two independent experiments, giving similar results. 

Positions of molecular weight marker bands are indicated to the left of gels and arrowheads 

indicate the position of bands corresponding to TRAP-cage. For gel source data, see 

Supplementary Figure 1. 

 

 

Extended Data Figure 2. Procedure for cryo-EM single-particle reconstruction for 

TRAP-cage formed with Au-TPPMS. a, Representative micrograph of the TRAP-cage. 
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Scale bar = 50 nm. b, Summary of the image processing procedure (see Methods). c, 2D class 

averages from reference-free 2D classification by RELION 2.0. The selected 2D class 

averaged images (5 classes including 578,865 particles) for further image processing are 

highlighted with red squares. d, The selected five 2D classes (box size: 220 × 220 pixels, 

382.8 × 382.8 Å). 

 

 

Extended Data Figure 3. Initial density map of TRAP-cage displaying aberrant features. 

a-b, the initial cryo-EM map, refined to 5.6 Å resolution, showing a distinct lack of chirality at 

the level of the individual rings. a, Overall map depicted in transparency, shows ring densities 

resembling radial wheel spokes. b, Close-up on a ring density at low contour level, viewed from 

the interior of the cage, showing exclusively radial features (densities and gaps). c, For 

comparison, the atomic model of TRAPCS (based on PDB ID 4V4F), is simulated to a resolution 

of 5.9 Å, showing that chiral properties (e.g. curved propeller-like features, slanted grooves) 

should be readily visible on the rings at this resolution.  



40 

 

 

Extended Data Figure 4. Map quality and resolution for TRAP-cage formed with Au-

TPPMS. LH and RH cages are shown on the left and right, respectively. a, Surface 

representations coloured according to the distance from the centre of the particle. b, Gold-

standard FSC curve for the cryo-EM map of LH and RH cages with C1, C4, D4, and Octahedral 

(Oct) symmetries from 94,338 and 82,125 particles, respectively. The estimated resolutions at 

0.143 criterion for the maps with octahedral symmetry were 3.7 Å. c, The refined density maps 

coloured by local resolution in surface view. 
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Extended Data Figure 5. Details of the refined TRAP-cage structure. a-b, Overall fits of 

the final TRAP-cage models onto their respective density maps: (a) LH and (b) RH structures. 

Cysteine residues are rendered as ball and stick while gold atoms are shown as spheres. c, 

Close-up of the LH cage, to show fitting of TRAPCS structural elements into the density. d, 

Close-up of the interior of the LH cage, showing flexible loop (residues 23-32) with missing 

density, consistent with non-tryptophan-bound TRAP structure1. e, Slightly unequal dihedral 

angles are formed between neighbouring TRAPCS rings in the final TRAP-cage model, 
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averaging 135.8°, 135.3°, and 137.25° around the 2-, 3-, and 4-fold rotational axes, 

respectively, with a mean value of 136.2° across the entire cage. It is notable that in the 

canonical pentagonal icositetrahedron, a constant dihedral angle of 136.3° is formed between 

any two adjacent faces. f, The equivalence of the two chiral forms of TRAP-cage may explain 

their roughly equal proportions and is clear if the cage assemblies are decomposed into two 

congruent hemispheres of 12 rings each. The hemispheres are themselves achiral, but together 

two can take either chiral form depending on their relative orientations when assembled. The 

two chiral forms can be interconverted through the relative rotation of hemispheres by about 

24.1°. In the figure, each achiral half of the cage coloured in red and blue, and the relative 

rotation can be tracked as the change in position of the highlighted ring in the direction of the 

arrow. 
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Extended Data Figure 6. Confirmation and quantitation of Au in the TRAP-cage. a, 

Micro-PIXE measurements of purified TRAP-cage showing X-ray spectrum. Au L peaks and 

the S K peak were used to estimate the S:Au molar ratio in the sample, which was calculated 

to a range of approximately 5.1 - 6.9 Au per sulphur. The dots represent the measured data, 

while the continuous line represents the fit with the Gupixwin program.2 Results are 

representative of two independent experiments, each giving similar results. b, Au 4f XPS 

spectra (black line) of the TRAP-cage with the expected spectra for Au0 and AuI shown in blue 

and orange, respectively. The cumulative fit (red) and residuals (red squares) are also shown. 

The shift in binding energy from 84.19 to 84.99 of (i.e. 0.85 80) eV matches well with Au-S 

reported previously3,4. The presence of signal in the Au0 binding energy range can be attributed 
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to a weakly interacting Au coordination bond  with the second S in the bridge, since repeated 

measurements of different purification methods excluded the chance of X-ray degradation or 

unreacted substrates giving Au0 signal. c-h, Raman spectroscopy suggests the absence/low 

abundance of S-S and S-H bonds in TRAP-cage. c, Raman spectra of TRAP-cage, oxidised and 

reduced TRAP-rings (TRAP-SS and TRAP-SH respectively), with oxidized and reduced 

glutathione (GSSG and GSH, respectively),  showing the full spectral range. d and e show 

enlargements of the S-H vibration and S-S vibration regions, respectively. Locations of peaks 

corresponding to S-S and S-H vibrations are labelled with asterisks. Since the exact positions 

depend on the molecular species and its conformation, the peak maxima for glutathione are 

shifted relative to cysteine-based signals (e.g. 509-540 cm-1 range for S-S vibrations).5 As some 

peaks corresponding to S-H and S-S bonds were small, their absence from the TRAP-cage 

spectra were assessed by subtracting relevant spectra (i.e. TRAP-SS or TRAP-SH) for TRAP-

rings from the TRAP-cage data. f, the resulting spectra shown in the full spectral range. g and 

h, enlargements of the relevant regions.  Spectra after normalization were offset for clarity. For 

XPS and Raman spectra, experiments were independently  repeated at least  once, each giving 

similar results.  
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Extended Data Figure 7. Further probing TRAP-cage assembly. a-c, Testing the ability of 

different metal ions to trigger protein cage formation. Reactions containing 0.8 mg/ml TRAPCS 

were incubated under standard cage-formation conditions except Au-TPPMS was replaced with 

the indicated metal ions, then spun down on a desktop centrifuge and subjected to blue native 

PAGE. TRAPCS monomer : metal ion molar ratios are indicated above each lane. TRAPCS was 

incubated with (a) CuI, (b) ZnII, and (c) AuIII. White precipitate was detected in the reactions 

marked with an asterisk, and correlates with a decrease in band intensity . d, Modelling 

alternative locations for placement of Cys residues on the surface of the TRAP ring, based on 

PDB 4V4F, and shown in orthogonal views: K35C, S33C, and D15C, with the location of the 

substituted residues rendered in red, cyan, and purple, respectively. e, Reaction of 

TRAPS33C,R64S with Au-TPPMS produces uniform cage structures, as shown by native PAGE 

(left) and TEM (right). Scale bar = 100 nm. f, Reaction of TRAPD15C,R64S with Au-TPPMS fails 
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to produce higher-order structures, as shown by native PAGE. Gels a-e and TEM were repeated 

independently, twice, each giving similar results. Positions of molecular weight markers on 

gels are indicated and arrowheads indicate position of TRAP-cage produced using Au-TPPMS. 

For gel source data, see Supplementary Figure 1. 

 

Extended Data Figure 8. Additional tests of TRAP-cage stability. TRAP-cage was prepared 

as for cages in Fig. 1d. Purified TRAP-cage samples were incubated at room temperature 

overnight in a, 2 M guanidinium-HCl, b, 5 % SDS, c, 7 M urea, d, 0.01 and 0.1 mM TCEP, e, 

0.1 and 10 mM GSH, f, 10 mM GSSG, and subsequently imaged under TEM.  All TEM  images 

shown are representative of data that was repeated once, each giving similar results, Scale bar 

= 100 nm. 
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Extended Data Figure 9. Procedure for cryo-EM single-particle reconstruction, map 

quality and resolution for TRAP-cage formed with GNP. a, A representative micrograph of 

the TRAP-cage formed using GNP. Scale bar = 50 nm. b, Images of selected 2D classes from 

reference-free 2D classification by EMAN 2.1, used for automated particle picking with 

Gautomatch (box size: 220 × 220 pixels, 400.4 × 400.4 Å). c, Summary of the image processing 

procedure (see Methods). d, 2D class averages from reference-free 2D classification by 

RELION 2.0. The selected 2D class averages (22 images) for further image processing are 

highlighted with red squares. It is notable that in some cases (e.g. row 1 panel 9) structures 
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inside the TRAP-cage are visible likely reflecting stochastic capture of TRAP rings as cargo in 

the cage interior. e, Initial structure used for the high-resolution analysis. The surface 

representations are coloured according to the distance from the centre of the particle. f, Gold-

standard FSC curve for the cryo-EM map from 58,157 particles. The calculated spatial 

frequency at 0.143 criterion was 5.6 Å. g, The refined density map coloured by local resolution 

in surface and slice views. 
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Extended Data Figure 10. Formation and stability of TRAP-cage formed with GNPs 

(TRAP-cageGNP). TRAP-cages were formed in GNP-cage formation conditions (see Methods). 

a, TEM image of purified TRAP-cageGNP , with a close-up view on the right. b, Thermal 
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stability of TRAP-cageGNP upon incubation at the indicated temperatures and times. TEM image 

shows that structural integrity is maintained after incubation at 95 °C for 180 min. c, Stability 

of TRAP-cageGNP as a function of pH. d, Stability of TRAP-cageGNP under different chaotropic 

agents: SDS (1-3%), urea (2-7 M) and guanindine-HCl (1-4 M). e-f, Reducing agents trigger 

disassembly of TRAP-cageGNP, as shown by (e) native PAGE and (f) TEM. Assay conditions 

are indicated above each lane on the gel. Positions of molecular weight markers are indicated 

and arrowheads show position of TRAP-cage.  For TEM, scale bars = 100 nm. All gels and 

TEM images shown are representative of experiments repeated independently at least once, 

each giving similar results. For gel source data, see Supplementary Figure 1. 
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Extended Data Table 1: Average size of TRAP-cage determined by dynamic 

light scattering. 

 

Results of DLS measurements based on three separate preparations of purified TRAP-cage, 

each measured in triplicate..   

(a) PDI = Polydispersity index.  

(b) Mean diameter based on volume distribution.  
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Extended Data Table 2: Cryo-EM data collection, refinement and validation statistics 
 

 

 

Extended Data Table 3: Determination of Au content of TRAP cages using 

ETAAS.Results of 5 ETAAS measurements of TRAP-cage, each performed in triplicate, 

showing the measured mass of gold and its translation into number of gold atoms per TRAP-
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cage. Measurement 3 was discarded in calculation of overall averages due to the large observed 

error.  
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Supplementary Information 

Supplementary Figure: Uncropped photographs of gels with molecular weight marker 

indications 

 
 
Supplementary Movies: Supplementary movies show data obtained using single molecule 

mass photometry as described in the methods section. Movies 1-8 are of TRAPCS at various 

time points (30 s, 270 s, 510 s, 750 s, 990 s, 1110 s, 1230 s, and 1350 s respectively) after 

addition of Au-TPPMS. Movie 9 is a control of the same but in the absence of Au-TPPMS. 

All scale bars are 1 µm. Each movie shows the first 0.6 s of the video only (due to size 

constraints on host website). Contrast is scaled to +/- 2.5 MDa. Experiments were run twice, 

giving similar results with representative results shown. 

 
Source Data 

 

Main Fig. 1c 

Extended Data Fig. 1j 

Extended Data Fig. 6a 

 


