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[1] A general acoustic model for a frequency sweep rod-liquid-rod interferometer
applicable to high-temperature silicate liquids is presented. The wave propagations in the
acoustic model are solved according to the accurate elastic wave equation and the acoustic
wave equation. The solutions indicate that when a pulsed wave is sent down a buffer rod,
which is partially immersed in a silicate liquid, the return signal consists of a series of
plane waves (mirror reflections from the liquid) and two series of interfering pulses
(modes A and B), which are propagating disturbances guided by the cylindrical surface of
the upper rod. The acoustic model gives mathematical expressions for the time delays
between the various interfering pulses and between the mirror reflections, which are
predicted to vary according to the material and dimensions of the upper buffer rod and
liquid. These predictions are verified by experiments on molybdenum and aluminum rods
of varying dimensions in air, water, and silicate liquid. These results demonstrate that
mirror reflections from the liquid can be isolated from the interfering pulses in the return
signal by appropriate choice of the dimensions and material of the upper rod. This
theoretical model provides a critical foundation for construction of an acoustic
interferometer that is uniquely able to measure relaxed sound speeds in silicate liquids at
high temperature and high pressure by the frequency sweep method. INDEX TERMS: 3994

Mineral Physics: Instruments and techniques; 3919 Mineral Physics: Equations of state; 3939 Mineral Physics:

Physical thermodynamics; 3999 Mineral Physics: General or miscellaneous; 5102 Physical Properties of

Rocks: Acoustic properties; KEYWORDS: ultrasonic interferometer, sound speed, silicate liquids
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1. Introduction

[2] An equation of state (P-V-T relation) for magmatic
liquids is a prerequisite for quantitative models of partial
melting and subsequent melt transport in the Earth and other
planetary bodies. Although the systematics of silicate melt
density with composition and temperature are fairly well
established at one bar, the compressional properties are less
well known. An outstanding question is how melt com-
pressibility (b) or bulk modulus (K = 1/b) changes with
pressure, which is referred to as K0 (=dK/dP). Most of our
information on K0 is from sink/float and shock wave experi-
ments on a relatively narrow set of liquids [e.g., Agee and
Walker, 1993; Chen et al., 2002], and there is not yet a
predictive model for how K0 varies systematically with melt
composition. Moreover, there are not any compressibility
measurements on silicate liquids with dissolved volatiles,
despite the necessity of these data for accurate thermody-
namic calculations of volatile solubility in magmatic melts
at high pressure.
[3] One of the most direct methods for obtaining melt

compressibility is through measurements of sound speed

via acoustic interferometry. In theory, this technique can
be applied to silicate melts either by varying the path
length or the frequency of the acoustic wave through the
melt. The variable path length (VPL) interferometric
technique has long been applied to silicate melts of
geological relevance [Katahara et al., 1981; Rivers and
Carmichael, 1987; Kress et al., 1988; Secco et al., 1991;
Webb and Courtial, 1996], but all experiments to date
have been limited to atmospheric pressure. The primary
limitation of the VPL method for use at high pressure
(e.g., in an internally heated pressure vessel) is that it
requires mechanical movement of the buffer rod, which is
easily performed at 1 bar but is extremely difficult under
in situ high-pressure conditions.
[4] Katahara et al. [1981] used an acoustic ray model to

propose that sound speed measurements on silicate melts
could be performed alternatively by fixing path length and
varying the frequency of the acoustic wave. We refer to
this approach as frequency sweep (FS) acoustic interferom-
etry to distinguish it from the VPL method. Although
FS interferometry has been successfully applied to high-
pressure crystalline phases, the relatively high frequencies
and broad intervals employed (e.g., 10–70 MHz [Li et al.,
1996, 1998] and 300–1200 MHz [Shen et al., 1998]) cannot
be used for silicate melts. For liquids the timescale of the
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sound speed measurements must be longer than that for
structural relaxation. Practically, for most silicate liquid
compositions between 1000 and 1600�C this requires
measurements in the 3–12 MHz range. Additionally, in
order to test whether liquid sound velocity data are
relaxed, a series of measurements at different frequencies
must be performed to evaluate whether the sound speed
is frequency-independent. Therefore, in order to apply the
FS method to silicate liquids the frequency interval must
be relatively narrow (1–2 MHz instead of tens to
hundreds of megahertz) and the centered frequencies must
be low (<10 MHz). The best way to meet this require-
ment for liquids is not to vary the carrier frequency
transmitted down the rod (as done in the FS method
applied to minerals) but instead to send a fixed
frequency, wideband (1–2 MHz), short pulse (�1 ms)
down the buffer rod and then perform a Fourier transform
on the echo in order to analyze the frequency response.
However, this approach requires a rigorous understanding
of the entire return signal so that any interfering pulses
can be eliminated.
[5] To date, only an acoustic ray model has been devel-

oped to interpret high-temperature, acoustic interferometry
[Katahara et al., 1981; Rivers, 1985], which deals with
reflection and transmission in such a way that only propa-
gation of the plane waves are considered in the buffer rod
and in the liquid. Theoretically, the acoustic ray model is
only applicable to cases where the radius of the buffer rod is
much smaller than the wavelength of the longitudinal wave
[Graff, 1975; Billingham and King, 2000; Kingsler, 2000;
Mason, 1958; Soutas-Little, 1999; Achenbach, 1973]. Thus,
for ultrasonic frequencies from 3 to 12 MHz (the range
required for silicate liquids) the radius of a molybdenum
buffer rod, for example, must be much smaller than 0.3 mm,
which is too narrow to be used in a feasible design. Use of a
buffer rod with a significantly larger diameter leads to a
returned signal that consists of a train of echoes that are out
of phase.
[6] For example, Rivers [1985] reported that if a single

ultrasonic pulse is transmitted down a smooth buffer rod
of 1.3 cm diameter, then the returned signal includes a
series of interfering pulses that must be eliminated for
successful implementation of the VPL method. Rivers
[1985] interpreted these echoes as reflections off the
outside surface of the smooth rod, and he noted that if
the outside of the rod is knurled over its length, then the
extraneous echoes are eliminated, and a single sharp signal
is returned. However, it is important to point out that
knurling the rod only eliminates the interfering pulses at
select frequencies and not for all frequencies. Because a
continuum of frequencies is used for the FS method,
knurling the rod will offer no improvement and instead
may introduce scattering waves that complicate interpreta-
tion of the return signal.
[7] In this paper, we show that the interfering pulses

are not reflections but instead are nondispersive waves
with properties that are primarily determined by the
dimension and elastic properties of the buffer rod material;
only their bandwidths are restricted by the transmitted
signal. These interfering pulses are poorly correlated with
the transmitted signal and thus cannot be interpreted as
reflections of the excitation wave. They are best thought of

as propagating disturbances guided by the cylindrical
surface of the rod, which arise owing to a complicated
interaction of the body waves of an infinite medium with
the cylindrical surface. Therefore, before further progress
can be made on developing a FS interferometer adaptable
to silicate melts at high pressure, a complete theoretical
analysis of the general acoustic model of the FS interfer-
ometer and solutions to the wave equations generated in
this model must be performed and tested experimentally.
This is the primary goal of this study (part 1), which is
the first in a sequence of two related papers. In part 2 [Ai
and Lange, 2004] we describe the mechanical assembly
and signal-processing algorithm for the new FS interfer-
ometer that we have designed, and we illustrate its
precision and accuracy when applied to high-temperature
melts at 1 bar.

2. Acoustic Model of the Interferometer

[8] The general acoustic model is for a rod-liquid-rod
(RLR) configuration (as shown in Figure 1) in cylindrical
polar coordinates [Billingham and King, 2000]. Both the
upper and lower rods are ideal semi-infinite cylindrical bars
with radius a. In practice, because the transmitted pulse is
designed to be short relative to the length of the rod, the
acoustic reflections from the upper end of the upper rod and
the lower end of the lower rod are all separated far away in
time from the useful signal. As a result, the two boundaries
have no impact on the general results of the model. For
signal-processing purposes they can be neglected and con-
sidered to be at z = �1, z = +1 for simplicity. The
assumption of the same radius for the two buffer rods also
makes no difference in the final signal-processing proce-
dures. As for the liquid, because it is housed in a cylindrical
crucible, the model must be a finite circular waveguide
[Billingham and King, 2000] with a thickness S and solid
circumferential boundaries marked by the dark lines in
Figure 1. Here, because measurements are made on relaxed
liquids (and tested by making measurements at different
centered frequencies; see part 2), viscosity need not be
considered in the model.
[9] The response of the RLR to an acoustic load s(t) in

the upper rod (Figure 1) provides essential information on
the sound speed in the liquid. Instead of a ray model, wave
equations and their solutions are pursued here for theoretical
completeness. The vibrations or displacements of particles
in the rods and liquid are governed by Navier’s equation
and the general linear acoustic wave equation, respectively.
In the rods the three-dimensional wave is described in terms
of cylindrical polar coordinates by the displacement com-
ponents in the z axis direction, w(r, q, z, t), the radial
direction, u(r, q, z, t), and the circumferential direction,
v(r, q, z, t) [Billingham and King, 2000]. In the liquid the
displacement is obtained from the velocity potential, y(r, q,
z, t) [Billingham and King, 2000]. To solve for the entire
acoustic fields in the RLR model, boundary conditions are
applied. To avoid unnecessary complexity, it is assumed that
the acoustic field is symmetric about the z axis and that both
the rods and liquid are perfectly shaped; thus the acoustic
fields in the RLR model are not only independent of angle q,
but v(r, q, z, t) vanishes as well. In addition, the boundary
between the upper rod and liquid is coordinated at z = 0. In
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the text below, we first examine the propagation of a
continuous wave (CW) in both rods and the liquid so that
the acoustic fields in the FS interferometer can be solved.
Next, we discuss the propagation of a pulsed wave, upon
which our signal processing can be performed.

3. Propagation of a Continuous Wave in a
Semi-Infinite Rod

[10] In each rod, Navier’s equation in cylindrical polar
coordinates is employed [Billingham and King, 2000]. In
Figure 1, with Helmholtz representation, where H = (0, j(r,
z, t), 0) and f = f(r, z, t) [Aris, 1962; Graff, 1975;
Billingham and King, 2000; Chou, 1992; Farlow, 1993],
the displacements can be expressed as

u ¼ @f
@r

� @j
@z

;w ¼ @f
@z

þ 1

r

@

@r
rjð Þ; ð1Þ

where f and j represent two different potential functions.
Thus the Navier’s equations take the following simplified
forms [Billingham and King, 2000; Nagy, 1995]:

@2f
@r2

þ 1

r

@f
@r

þ @2f
@z2

¼ 1

c21

@2f
@t2

@2j
@r2

þ 1

r

@j
@r

þ @2j
@z2

� j
r2

¼ 1

c22

@2j
@t2

;

ð2Þ

where c1 and c2 are the speeds of the dilatational and
rotational waves, respectively, in an infinite elastic body.
Owing to the cross sections at z = 0 and z = S, reflections are
introduced in the upper rod, standing waves occur in the
liquid, and one-way propagation exists in the lower rod.
According to Graff [1975] and Billingham and King [2000]
the general solutions of equation (2) in the upper rod to a
CW load of s(t) = e jwt take the forms

f uð Þ r; z; tð Þ ¼ AJ0 prð Þ be jkz þ e�jkz
� �

e jwt

j uð Þ r; z; tð Þ ¼ BJ1 srð Þ ge jkz þ e�jkz
� �

e jwt;
ð3Þ

where w is angular frequency, j represents imaginary
number unit, and J1(x) and J0(x) are Bessel functions of
the first kind of order 1 and order 0, respectively
[Bronshtein and Semendyayev, 1998]; A and B are
constants; b and g are reflection coefficients; s and p are
coefficients, and the wave number k is determined by

k2 ¼ w2

c22
� s2

� �
¼ w2

c21
� p2

� �
: ð4Þ

In the lower rod, however, the general solutions are of one-
way propagation:

f lð Þ r; z; tð Þ ¼ CJ0 grð Þe�jh z�Sð Þe jwt

j lð Þ r; z; tð Þ ¼ DJ1 qrð Þe�jh z�Sð Þe jwt ;
ð5Þ

where g and q are coefficients and h is the wave number.
Here C and D are transmission coefficients, and the wave
number is determined by

h2 ¼ w2

c22
� q2

� �
¼ w2

c21
� g2

� �
: ð6Þ

From equations (1) and (3) the general solutions in the
upper rod are

u uð Þ ¼ �ApJ1 prð Þ þ jkBJ1 srð Þ½ 
e�jkz
�
þ �ApbJ1 prð Þ � jkBJ1 srð Þg½ 
e jkz

�
e jwt

w uð Þ ¼ �AjkJ0 prð Þ þ BsJ0 srð Þ½ 
e�jkz
� ð7Þ

þ AjkJ0 prð Þbþ BsJ0 srð Þg½ 
e jkz
�
e jwt:

In the lower rod they are

u lð Þ ¼ �CgJ1 grð Þ þ jhDJ1 qrð Þ½ 
e�jh z�Sð Þe jwt

w lð Þ ¼ �CjhJ0 grð Þ þ DqJ0 qrð Þ½ 
e�jh z�Sð Þe jwt:

ð8Þ

Figure 1. Schematic diagram illustrating the rod-liquid-rod (RLR) model in cylindrical polar coordinates.
This is a one-transducer configuration where the ultrasonic wave is transmitted and received by the same
transducer. Mathematically, the acoustic source (also the receiver) is located at negative infinity in z axis;
however, physically the transducer is mounted on the top of the upper buffer rod.
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To find p, s, g, and q, stress-free boundary conditions on the
circumferential surface and on the two cross sections are
applied. In the upper rod,

srr ¼ lDþ 2m
@u

@r

� �
r¼a

¼ 0; srz ¼ m
@u

@z
þ @w

@r

� �
r¼a

¼ 0; ð9Þ

szr ¼ m
@u

@z
þ @w

@r

� �
z¼0

¼ 0; ð10Þ

where srr is normal stress on the circumferential surface and
srz, szr are shear stresses,

D ¼ @u

@r
þ u

r
þ @w

@z

[Billingham and King, 2000], u = u(u), w = w(u) and l = l(u),
m = m(u) are the Lame constants of the upper rod. Therefore
solving equations (9) and (10) yields

p

a
J1 pað Þ � 1

2
s2 � k2
� �

J0 pað Þ
	 


A

þ � jk

a
J1 sað Þ þ jksJ0 sað Þ

	 

B ¼ 0;

p

a
J1 pað Þ � 1

2
s2 � k2
� �

J0 pað Þ
	 


Ab

þ jk

a
J1 sað Þ � jksJ0 sað Þ

	 

Bg ¼ 0;

2jkpJ1 pað ÞA� s2 � k2ð ÞJ1 sað ÞB ¼ 0;

�2jkpJ1 pað ÞAb� s2 � k2ð ÞJ1 sað ÞBg ¼ 0;

2jkpJ1 prð ÞA� s2 � k2ð ÞJ1 srð ÞB ¼ 0;

�2jkpJ1 prð ÞAb� s2 � k2ð ÞJ1 srð ÞBg ¼ 0:

ð11Þ

From equation (11) the boundary conditions can be reduced
to

b ¼ �g;

p

a
J1 pað Þ � 1

2
s2 � k2
� �

J0 pað Þ
	 


A

þ � jk

a
J1 sað Þ þ jksJ0 sað Þ

	 

B ¼ 0;

2jkpJ1 prð ÞA� s2 � k2ð ÞJ1 srð ÞB ¼ 0; 0 � r � a:

ð12Þ

Thus, in the upper rod,

u uð Þ ¼ �ApJ1 prð Þ þ jkBJ1 srð Þ½ 
 e�jkz þ be jkz
� �

e jwt

w uð Þ ¼ �AjkJ0 prð Þ þ BsJ0 srð Þ½ 
 e�jkz � be jkz
� �

e jwt:
ð13aÞ

Similarly, in the lower rod,

u lð Þ ¼ �CpJ1 prð Þ þ jkDJ1 srð Þ½ 
e�jk z�Sð Þe jwt

w lð Þ ¼ �CjkJ0 prð Þ þ DsJ0 srð Þ½ 
e�jk z�Sð Þe jwt:
ð13bÞ

Next, the values for s, p, and k and then A, B, C, and D must
be obtained. In both rods, in order to find s, p, and k, two
cases need to be considered without any loss of mathema-
tical generality.

3.1. Case 1: A 6¼6¼6¼6¼6¼6¼6¼6¼6¼6¼6¼6¼6¼6¼6¼6¼6¼6¼6¼ 0 (Mode A)

[11] The waves corresponding to A 6¼ 0 are defined here
as waves of mode A. To find them, the boundary conditions
in equation (12) must be changed slightly to avoid unnec-
essary mathematical complexity [Davies, 1948; Mason,
1965; Thurston, 1978]. In equation (12), instead of setting
the boundary conditions identical to zero, they are set to be
close to zero. This adjustment leads to the most important
class of wave propagations that are observed in our experi-
ments, which are described below. Without this slight
adjustment of the boundary conditions the experimental
results (discussed in detail below) cannot otherwise be
explained mathematically. From equation (12), all possible
combinations of solutions can be included in the following
three cases:
[12] 1. Case for B 6¼ 0 and

� jk

a
J1 sað Þ þ jksJ0 sað Þ

	 

6¼ 0;

thus

p
J1 pað Þ

a
� jkJ1 pað ÞA

J1 sað ÞB J0 pað Þ
	 


A

þ � jk

a
J1 sað Þ þ jksJ0 sað Þ

	 

B  0 ð14aÞ

A2jkpJ1 prð Þ � s2 � k2
� �

J1 srð ÞB  0: ð14bÞ

Therefore the solution is

B  0 or A � B; p ¼ 0 ) k ¼ w
c1

; s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w
c2

� �2

� w
c1

� �2
s

: ð14cÞ

[13] 2. Case for B = 0; thus

p

a
J1 pað Þ � 1

2
s2 � k2
� �

J0 pað Þ
	 


A ¼ 0

2jkpJ1 prð ÞA ¼ 0:

ð15Þ

This requires that

p ¼ 0; s ¼ k ) k ¼ w
c1

; s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w
c2

� �2

� w
c1

� �2
s

;
w
c1

� �2

¼ 1

2

w
c2

� �2

:

ð16Þ
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However, since (w/c1)
2 < 1

2
(w/c2)

2 [Billingham and King,
2000], equation (16) cannot be satisfied, and this solution
must be eliminated.
[14] 3. Case for B 6¼ 0 and

� jk

a
J1 sað Þ þ jksJ0 sað Þ

	 

¼ 0;

thus

p
J1 pað Þ

a
� jkJ1 pað ÞA

J1 sað ÞB J0 pað Þ
	 


A ¼ 0: ð17Þ

A2 jkpJ1 prð Þ � s2 � k2
� �

J1 srð ÞB  0:

Since s cannot be zero, the solution is

A � B; B  0; p ¼ 0 ) k ¼ w
c1

; s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w
c2

� �2

� w
c1

� �2
s

;

J 01 sað Þ ¼ 0: ð18Þ

(Here s 6¼ k for the same reason as that in case 2.)
[15] To make J 0

1 (sa) = 0, it is required that

si ¼
ri

a
) wi ¼

c1ri

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q ; ki ¼
wi

c1
; i ¼ 0 . . .1; ð19Þ

where ri are the roots of J
0
1 (x) = 0 and wi are defined as the

eigenfrequencies of mode A.
[16] Equation (19) shows that if the transmitted fre-

quency is equal to one of the eigenfrequencies, besides
equation (14c), solution (19) should be added to the entire
solution. Thus the analytical expression of mode A is

u u;Að Þ ¼ j
w
c1

BJ1 r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w
c2

� �2

� w
c1

� �2
s0

@
1
A exp jw t � z

c1

� �� �	

þ bAexp jw t þ z

c1

� �� �


þ
X1
i¼0

d w� c1ri

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q
0
B@

1
CA jriB i;Að Þ

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q J1 r
ri

a

� �2
64

3
75

� exp j
c1ri

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q t � z

c1

� �2
64

3
75

8><
>:

þb i;Að Þ exp j
c1ri

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q t þ z

c1

� �2
64

3
75
9>=
>; ð20aÞ

w u;Að Þ ¼ �Aj
w
c1

þ B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w
c2

� �2

� w
c1

� �2
s8<

: �J0 r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w
c1

� �2

� w
c2

� �2
s0

@
1
A
9=
;

� e
jw t� z

c1

� �
� bAe

jw tþ z
c1

� �( )

þ
X1
i¼0

d w� c1ri

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q
0
B@

1
CA B i;Að Þri

a
J0 r

ri

a

� �� �

� exp j
c1ri

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q t � z

c1

� �2
64

3
75

8><
>:

� b i;Að Þ exp j
c1ri

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q t þ z

c1

� �2
64

3
75
9>=
>;; ð20bÞ

where A � B, A � B(i,A), B  0, B(i,A)  0. The
parameter b(i,A) are constants corresponding to wi in
equation (19), and

d w� wið Þ ¼ 0; w 6¼ wi

d w� wið Þ ¼ 1; w ¼ wi:

Solution (20) shows that mode A travels with group
velocity c1, the same as that of longitudinal wave, and is
thus nondispersive. This property will be used to
accomplish the measurement of sound speeds in silicate
melts (discussed in part 2).

3.2. Case 2: A == 0 (Mode B)

[17] The waves corresponding to A = 0 are defined here as
waves of mode B. From equation (12),

s2 � k2
� �

¼ 0; � jk

a
J1 sað Þ þ jksJ0 sað Þ

	 

¼ 0: ð21aÞ

Thus

k ¼ s ¼ wffiffiffi
2

p
c2

; � J1 sað Þ
a

þ sJ0 sað Þ
	 


¼ 0: ð21bÞ

Since k = s 6¼ 0 (otherwise, u = w = 0), it follows that

J 01
wffiffiffi
2

p
c2

a

� �
¼ 0 ) ki ¼ si ¼

ri

a
; wi ¼

ri
ffiffiffi
2

p
c2

a
; i ¼ 0; . . .1;

ð22Þ

where wi are defined as the eigenfrequencies of mode B.
Equations (21)– (22) show that if the transmitted
frequency is equal to one of the eigenfrequencies of
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mode B, mode B will be excited. The expression of mode
B is

u u;Bð Þ ¼
X1
i¼0

d w� ri
ffiffiffi
2

p
c2

a

� �
jB i;Bð Þ

ri

a
J1

ri

a
r

� �h i

� exp j
ri

a

ffiffiffi
2

p
c2t � z

� �h in
þ b i;Bð Þ exp j

ri

a

ffiffiffi
2

p
c2t þ z

� �h io
ð23aÞ

w u;Bð Þ ¼
X1
i¼0

d w� ri
ffiffiffi
2

p
c2

a

� �
B i;Bð Þ

ri

a
J0

ri

a
r

� �h i

� exp j
ri

a

ffiffiffi
2

p
c2t � z

� �h in
� b i;Bð Þ exp j

ri

a

ffiffiffi
2

p
c2t þ z

� �h io
;

ð23bÞ

where b(i,B) are constants corresponding towi in equation (22).
Examination of equation (23) shows that waves of mode B
are nondispersive and have a group velocity of

ffiffiffi
2

p
c2. Sinceffiffiffi

2
p

c2 < c1, in most pulse cases, waves of mode B can be
separated in time from those of mode A, which reduces the
complexity of signal processing.

3.3. Entire Solution (Cases 1 and 2)

[18] The entire solution is the addition of waves of mode
A and those of mode B. Therefore, in the upper rod,

u uð Þ ¼ u u;Að Þ þ u u;Bð Þ ð24aÞ

w uð Þ ¼ w u;Að Þ þ w u;Bð Þ: ð24bÞ

Similarly, in the lower rod,

u lð Þ ¼ exp jw t � z� S

c1

� �� � "
j
w
c1

DJ1

8<
:  r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w
c2

� �2

� w
c1

� �2
s0

@
1
A
3
5

þ
X1
i¼0

d w� c1ri

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q
0
B@

1
CA j

ri

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q D i;Að ÞJ1 r
ri

a

� �2
64

3
75
9>=
>;

þ
Xi¼1

i¼0

d w� ri
ffiffiffi
2

p
c2

a

� �
j
ri

a
D i;Bð ÞJ1

ri

a
r

� �h i
exp j

ri

a

ffiffiffi
2

p
c2t � zþ S

� �h i

w lð Þ ¼
(

� Cj
w
c1

þ D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w
c2

� �2

� w
c1

� �2
s

J0 r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w
c1

� �2

� w
c2

� �2
s0

@
1
A

þ
X1
i¼0

d

 
w� c1ri

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q !
D i;Að Þ

ri

a
J0 r

ri

a

� �)
exp jw t � z� S

c1

� �� �

þ
X1
i¼0

d w� ri
ffiffiffi
2

p
c2

a

� �
D i;Bð Þ

ri

a
J0

ri

a
r

� �h i
e j

ri
a

ffiffi
2

p
c2 t�zþSð Þ;

where C � D, C � D(i,A), D  0, D(i,A)  0.
[19] In summary, from equations (24)–(25), only two

kinds of nondispersive wave propagations exist in each
rod with group velocities c1 and

ffiffiffi
2

p
c2, respectively. The

plane wave portions, related to coefficients A and C in

equations (20) and (25), constitute most of the wave energy
within the rods.

4. Propagation of a Continuous Wave
in the Liquid

[20] In a circular waveguide the velocity potential in the
liquid [Billingham and King, 2000] is

y r; z; tð Þ ¼ e jwt
X1
i¼0

J0
li

a
r

� �
Eie

�jniz þ Fie
jniz

� �� �
; ð26aÞ

where

J1 lið Þ ¼ 0; i ¼ 0 � � �1;

if
w
c

� �2
� li

a

� �2

> 0 ) ni ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w
c

� �2
� li

a

� �2
s

; i ¼ 0 . . . n l0 ¼ 0;

if
w
c

� �2
� li

a

� �2

< 0 ) ni ¼ �j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w
c

� �2
� li

a

� �2
-----

-----
vuut ;

Fi ¼ 0; i ¼ nþ 1 . . .1;

Ei, Fi are constants, and c is the sound speed of the liquid.
The displacement solutions can be obtained from equation
(26a):

u mð Þ ¼
Z

@y
@r

dt w mð Þ ¼
Z

@y
@z

dt ð26bÞ

so that

u mð Þ ¼ e jwt
X1
i¼0

li

jw � a �Eie
�jniz � Fie

jniz
� ��

J1
li

a
r

� ��

w mð Þ ¼ e jwt
X1
i¼0

ni
w

�Eie
�jniz þ Fie

jniz
� �h

J0
li

a
r

� ��
:

ð26cÞ

Using Fourier-Bessel series [Kovach, 1982], equation (26c)
can be projected over the orthogonal function sets J0[(ri/a)r]
and J1[(ri/a)r] so that

J0
li

a
r

� �
¼
X1
n¼0

b i;nð ÞJ0
rn

a
r

� �
; J1

li

a
r

� �
¼
X1
n¼0

d i;nð ÞJ1
rn

a
r

� �
i ¼ 0 . . .1;

where

b i;nð Þ ¼
1

a2J 20 rnð Þ

Za
0

rJ0
li

a
r

� �
J0

rn

a
r

� �
dr;

d i;nð Þ ¼
2r2n

a2J1 r2n
� �

r2n � 1
� � Za

0

rJ1
li

a
r

� �
J1

rn

a
r

� �
dr:

(25a)

(25b)
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Thus

u mð Þ ¼ e jwt
X1
n¼0

X1
i¼0

lid i;nð Þ

jwa

"
�Eie

�jni�z � Fie
jniz

� �#
J1

rn

a
r

� �
ð26dÞ

w mð Þ ¼ e jwt
X1
n¼0

X1
i¼0

nib i;nð Þ

w

"
�Eie

�jni�z þ Fie
jniz

� �#
J0

rn

a
r

� �
:

5. Propagation of a Continuous Wave in the
RLR Model

[21] In order to understand the echo signal in the upper
rod the reflection coefficients bA, b(i,A), and b(i,B) must be
determined. To do so, the continuities of stress and dis-
placement on the boundaries of the cross sections at z = 0
and z = S are applied:

s zz;uð Þ ¼ s zz;mð Þ
--
z¼0

s zz;lð Þ ¼ s zz;mð Þ
--
z¼S

w uð Þ ¼ w mð Þ
--
z¼0

w lð Þ ¼ w mð Þjz¼S ; ð27aÞ

where s(zz,u), s(zz,m), s(zz,l) are z direction normal stress in the
upper rod, liquid, and lower rod, respectively. In both rods
and in the liquid the stress along the z direction [Billingham
and King, 2000] is

s zzð Þ ¼ l
@u

@r
þ u

r
þ @w

@z

� �
þ 2m

@w

@z
; ð27bÞ

and l, m are Lame constants. The superposition of
Navier’s equation and the wave equation allows one
to find bA and b(i,A) in equation (20) and b(i,B) in
equation (23), separately.
[22] In the upper rod, since B  0 and B � A, the part of

mode A that is related to bA in equation (20) can be
simplified to

u uð Þ  0;w uð Þ  � Aj
w
c1

exp jw t � z

c1

� �� �	

� bA exp jw t þ z

c1

� �� �

: ð28aÞ

In the lower rod, with D  0 and D � C in equation (25):

u lð Þ  0; w lð Þ  �Cj
w
c1

exp jw t � z� S

c1

� �� �
: ð28bÞ

In the liquid, because of equations (28a) and (28b), only
the plane wave is considered with l0 = 0 in equation (26c);
thus

u mð Þ ¼ 0 w mð Þ ¼ e jw�t 1

c
�E0 exp �j

w
c
z

� �h
þ F0 exp j

w
c
z

� �i
:

ð28cÞ

From equations (27) and (28) and considering that

c21 ¼
l uð Þ þ 2m uð Þ

r uð Þ
; c2 ¼

l mð Þ

r mð Þ
; Z uð Þ ¼ r uð Þc1; Z mð Þ ¼ r mð Þc;

four equations are obtained:

Z uð Þ
Aw
c1

�1� bA½ 
 ¼ Z mð Þ
j

c
E0 þ F0½ 
; ð29aÞ

�Z uð Þ
Cw
c1

¼ Z mð Þ
j

c
E0 exp �j

w
c
S

� �h
þ F0 exp j

w
c
S

� �i
; ð29bÞ

�Aj
w
c1

1� bAð Þ ¼ 1

c
�E0 þ F0ð Þ; ð29cÞ

�j
Cw
c1

¼ 1

c
�E0 exp �j

w
c
S

� �h
þ F0 exp j

w
c
S

� �i
; ð29dÞ

where Z(u), r(u), l(u), m(u) and Z(m), r(m), l(m) are the
acoustic impedances, densities, and Lame constants of the
rod and liquid correspondingly. Solving equation (29)
yields

bA ¼
1� exp 2j

w
c
S

� �
Z mð Þ � Z uð Þ

Z mð Þ þ Z uð Þ
�
Z mð Þ þ Z uð Þ

Z mð Þ � Z uð Þ
exp 2j

w
c
S

� � : ð30Þ

For the waves related to b(i,A) it is established that

s zz;uð Þ ¼ �2m uð Þ
B i;Að Þri

a

jwi

c1
J0 r

ri

a

� �� �
exp jwi t � z

c1

� �� �
þ b i;Að Þ

	

�exp jwi t þ z

c1

� �� �

;

s zz;mð Þ ¼ e jwi tl mð Þ
X1
i¼0

rnlid i;nð Þ

jwia2

�
�Eie

�jniz � Fie
jniz

� �
þ
jn2i b i;nð Þ

wi

� Eie
�jniz þ Fie

jnizð Þ
J0
rn

a
r

� �
;

ð31Þ

s zz;lð Þ ¼ �2m uð Þ
D i;Að Þri

a

jwi

c1
J0 r

ri

a

� �� �
exp jwi t � z� S

c1

� �� �
;

n ¼ 0 . . .1;

where

wi ¼
c1ri

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q ; i ¼ 0 . . .1:

Applying the same boundary conditions of equation (27),
it follows that

B12203 AI AND LANGE: ACOUSTIC MODEL

7 of 18

B12203



� 2m uð Þ
B i;Að Þrn

a

jwi

c1
1þ b i;Að Þ

n o
¼ l mð Þ

�
X1
i¼0

�
rnlid i;nð Þ

jwia2
�Ei � Fið Þ þ

jn2i b i;nð Þ

wi

Ei þ Fið Þ
�

ð32aÞ

� 2m uð Þ
D i;Að Þrn

a

jwi

c1
¼ l mð Þ

�
X1
i¼0

rnlid i;nð Þ

jwia2
�Eie

�jniS � Fie
jniS

� ��

þ
jn2i b i;nð Þ

wi

Eie
�jniS þ Fie

jniS
� ��

ð32bÞ

B i;Að Þrn

a
1� b i;Að Þ

n o
¼
X1
i¼0

nib i;nð Þ

wi

�Ei þ Fið Þ ð32cÞ

D i;Að Þ
rn

a
¼
X1
i¼0

nib i;nð Þ

wi

�Eie
�jniS þ Fie

jniS
� �

; n ¼ 0 . . .1:

ð32dÞ

Equations (32) are of infinite dimension. Since B(i,A), i =
1. . .1, depend on the acoustic source, they are considered
to be known and D(i,A), Ei, Fi, b(i,A) must uniquely exist.
Although the analytical solution to equation (32) is
difficult to obtain, the following relation holds:

b i;Að Þ ¼ b i;Að Þ

�
l mð Þ; u uð Þ; c1; c2; c; a;exp 2j

wi

c
S

� �
; exp �2j

wi

c
S

� ��
;

ð33Þ

where

wi ¼
c1ri

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q ; i ¼ 0 . . .1:

Similarly, for b(i,B),

b i;Bð Þ ¼ b i;Bð Þ

�
l mð Þ; u uð Þ; c2; c; a;exp 2j

wi

c
S

� �
; exp �2j

wi

c
S

� ��
;

ð34Þ

where

wi ¼
ri
ffiffiffi
2

p
c2

a
; i ¼ 0; . . .1:

[23] It is thus clear that each of the reflection coefficients,
b(i,A), b(i,B), and bA, is a periodic function of S (the thickness
of the liquid), and all have the identical period

DS ¼ c

2f
; ð35Þ

where f is the transmitted frequency from the acoustic
source and c is the sound speed in the liquid. This result
indicates that a change in path length S will lead to a
periodic change in the echo amplitude with maxima/minima
that are spaced with the same interval DS. Therefore, as
described in the literature, the VPL method can be used to

obtain c. In contrast, the FS method will not generate a
periodic change in the echo amplitude except for bA, which
will be a periodic function of frequency with Df = c/2S.
Therefore the FS method is only applicable to bA for the
measurement of c.

6. Propagation of a Pulsed Wave in the
RLR Model

[24] In practice, rather than a CW signal, short acoustic
pulses are transmitted in the FS interferometer. The solu-
tions for the RLR model to a pulse are obtained by
superposing equation (24) over the bandwidth of the trans-
mitted pulse. Thus, in the upper rod, with B � A and B  0
in equation (20), the solutions of interest are

u pð Þ  u
f

p;Að Þ þ ubp;Að Þ þ u
f

p;Bð Þ þ ubp;Bð Þ ð36aÞ

w pð Þ  s t � z

c1

� �
þ h tð Þ * s t þ z

c1

� �
þ w

f

p;Að Þ þ wb
p;Að Þ

þ w
f

p;Bð Þ þ wb
p;Bð Þ; ð36bÞ

where asterisk represents convolution; h(t)is the inverse
Fourier transform [Kovach, 1982] of bA, and

u
f

p;Að Þ c1t � z; rð Þ ¼
X1
i¼m

jriB i;Að Þ

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q J1 r
ri

a

� �

� exp j
ri

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q c1t � zð Þ

0
B@

1
CA;

ubp;Að Þ c1t þ z; rð Þ ¼
X1
i¼m

jriB i;Að Þ

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q J1 r
ri

a

� �
b i;Að Þ

� exp j
ri

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q c1t þ zð Þ

0
B@

1
CA;

u
f

p;Bð Þ

ffiffiffi
2

p
c2t � z; r

� �
¼
X1
i¼n

jB i;Bð Þ
ri

a
J1

ri

a
r

� �

� exp j
ri

a

ffiffiffi
2

p
c2t � z

� �� �
;

ubp;Bð Þ
ffiffiffi
2

p
c2t þ z; r

� �
¼
X1
i¼n

jB i;Bð Þ
ri

a
J1

ri

a
r

� �
b i;Bð Þ

� exp j
ri

a

ffiffiffi
2

p
c2t þ z

� �� �
; ð37Þ

w
f

p;Að Þ c1t � z; rð Þ ¼
X1
i¼m

B i;Að Þ
ri

a
J0 r

ri

a

� �

� exp j
ri

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q c1t � zð Þ

0
B@

1
CA;
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wb
p;Að Þ c1t þ z; rð Þ ¼ �

X1
i¼m

B i;Að Þ
ri

a
J0 r

ri

a

� �
b i;Að Þ

� exp j
ri

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q c1t þ zð Þ

0
B@

1
CA;

w
f

p;Bð Þ

ffiffiffi
2

p
c2t � z; r

� �
¼
X1
i¼n

B i;Bð Þ
ri

a
J0

ri

a
r

� �

� exp j
ri

a

ffiffiffi
2

p
c2t � z

� �� �
;

wb
p;Bð Þ

ffiffiffi
2

p
c2t þ z; r

� �
¼ �

X1
i¼n

B i;Bð Þ
ri

a
J0

ri

a
r

� �
b i;Bð Þ

� exp j
ri

a

ffiffiffi
2

p
c2t þ z

� �� �
:

Here the superscript f represents the forward wave, and the
superscript b represents the backward wave; m and n are
associated with the lowest frequencies excited within the
rod and are thus determined by the lower cutoff frequency
of the transmitted pulse. If the pulse covers a frequency
range [wl, 1], then m and n are the minimal numbers that
make

c1rm a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1

c2

� �2

�1

s0
@

1
A�1

� wl ð38Þ

ffiffiffi
2

p
c2rn

a
� wl: ð39Þ

Since mathematically [Bronshtein and Semendyayev,
1998]

ri  rm þ i� mð Þp; i ¼ m . . .1; m � 5; ð40Þ

it follows that in equation (37), ri can be substituted by
rm + (i � m)p for waves of mode A and by rn + (i �
n)p for waves of mode B, as long as wl or a is large

enough to make m � 5 and n � 5 in equations (38)–
(39).

6.1. Molybdenum Buffer Rods

[25] In most acoustic interferometry experiments
applied to high-temperature silicate melts [e.g., Katahara
et al., 1981; Rivers and Carmichael, 1987; Webb and
Courtial, 1996] the buffer rods are made of molybdenum
metal, owing to its refractory and nonreactive properties.
In our experimental apparatus (discussed in detail in part 2), a
molybdenum upper buffer rod (c1 = 6250 m/s, c2 = 3350 m/s)
of 1.91 cm diameter is employed. For a molybdenum rod
of this dimension, the first nine roots of J 0

1 (r) and the
corresponding eigenfrequencies of mode A and mode B
are given in Table 1. The entire eigenfrequencies

Figure 2. Set of roots of J 0
1 (r), r � 130 for a

molybdenum buffer rod of 1.91 cm diameter and longi-
tudinal and shear wave speeds of 6250 and 3350 m/s,
respectively, corresponding to eigenfrequencies of mode A
from 0 to 8.6 MHz and those of mode B from 0 to
10 MHz. For index numbers greater than 4, the difference
in dr between two adjacent roots is p. The difference
between two adjacent eigenfrequencies of mode A is
0.208 MHz, whereas the difference between those of mode
B is 0.248 MHz.

Table 1. Eigenfrequencies of Modes A and B With Respect to the Roots of J 0
1 (r) for a Molybdenum Buffer Rod of 1.91 cm Diameter

and Longitudinal and Shear Wave Speeds 6250 and 3350 m/s, Respectivelya

ri, roots

Index

0 1 2 3 4 5 6 7 8
1.841 5.331 8.536 11.706 14.864 18.016 21.164 24.311 27.457

Dr = ri+1 � ri 3.490 3.205 3.170 3.158 3.152 3.148 3.147 3.146 3.145
fi
(A), MHz 0.122 0.353 0.565 0.774 0.983 1.191 1.399 1.607 1.815
Df (A) = fi+1

(A) � fi
(A) 0.231 0.212 0.209 0.209 0.208 0.208 0.208 0.208 0.208

fi
(B), MHz 0.145 0.421 0.674 0.924 1.174 1.422 1.671 1.919 2.167
Df (B) = fi+1

(B) � fi
(B) 0.276 0.253 0.250 0.250 0.248 0.249 0.248 0.248 0.248

aThe first nine roots of J 0
1 (r) and the corresponding eigenfrequencies fi

(A) and fi
(B) are related to modes A and B, respectively. The difference between two

adjacent roots is p with index number greater than 4. The difference of two adjacent eigenfrequencies of mode A is 0.208 MHz, whereas that of mode B is
0.248 MHz. The data indicate that the interfering pulses are of discrete spectrum structure.
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corresponding to ri < 130 are plotted in Figure 2. From the
former it is shown that the interfering pulses have a
discrete spectrum structure. From the latter, if the
employed signal frequency is greater than 2 MHz, then
m and n are both greater than 8. In this case, equation (37)
can be rearranged in such a way that periodic solutions are
revealed:

u
f

p;Að Þ c1t � z; rð Þ ¼ exp j
rm

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q c1t � zð Þ

0
B@

1
CA

�
X1
i¼m

jriB i;Að Þ

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q J1 r
ri

a

� �
exp j

i� mð Þp

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q c1t � zð Þ

0
B@

1
CA

¼ exp j
rm

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q c1t � zð Þ

0
B@

1
CAu

f

Að Þ c1t � z; rð Þ

¼ exp j
rm

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q c1t � zð Þ

0
B@

1
CA

� u f

Að Þ c1 t þ
2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q
c1

0
@

1
A� z; r

0
@

1
A

u
f

p;Bð Þ
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Thus the final solutions to a pulsed signal in a molybdenum
upper rod are
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Here, u(A)
f , u(A)

b , w(A)
f , and w(A)

b from mode A are four
periodic pulse series with an identical time interval of
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mode B are four periodic pulse series with an identical time
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p
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[26] At this juncture, it is possible to know the format of
the signal that is received by the transducer. With respect to
the echo in the upper rod, for a short pulse, s(t), the return
signal only consists of backward waves that can be
expressed as
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Since bA changes periodically with a frequency interval of
Df = c/2S in equation (30), the frequency response function
of h(t) must have maxima/minima at the same frequency
interval. If the positions of these maxima/minima can be
determined, then the sound speed in the liquid (c) can be
inferred from them. For h(t), since the reflection coefficient
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can be expanded to
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by the inverse Fourier transform of bA,
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it follows that
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In equations (44a), (44b), and (45),

R ¼
Z mð Þ � Z uð Þ

Z mð Þ þ Z uð Þ

and d(t) is the impulse function.
[27] Physically, the right-hand side of equation (45)

represents a series of mirror reflections of the transmitted
pulse with a time gap of 2S/c between two adjacent
reflections. This time gap is the critical feature of the
frequency-sweep interferometer; it provides the foundation
for a signal-processing algorithm from which c can be
deduced from spectrum analysis (part 2).
[28] For the rest of the received signal, w(e), parts
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pulses that are expected to be observed in experiments.
Since w(A)

b and w(B)
b are two series of periodic pulses that

Figure 3. Visual summary of the format and pattern of the entire received longitudinal wave w(e).
(a) Mirror reflections with periodic pulse interval t1 = 2Sc�1, velocity c1 and reflection coefficients a0 = R,

an = R2n+1� R2n�1, n = 1. . .1. (b) Interfering pulses of mode A, exp { j[rm/a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q
](c1t + z)}w(A)

b ,

with periodic pulse interval t2 = 2ac1
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q
and velocity c1. (c) Interfering pulses of mode
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b , with periodic pulse interval t3 =
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�1, relative arrival time delay
t4 = 2Ljc1�1 � (

ffiffiffi
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p
c2)

�1j (compared to the arrival of the first mirror reflection wave) and velocityffiffiffi
2

p
c2. (d) Entire echo (longitudinal part) w(e), the sum of all the waves in Figures 3a–3c.
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are modulated by different sinusoid waves as shown in
equation (42), the interfering signal is the addition of two

pulse series, one with time interval 2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q
=c1

and group velocity c1, the other with time interval
ffiffiffi
2
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and group velocity
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p
c2. The same conclusion is also

applicable to exp
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q �
(c1t + z)

i
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2

p
c2t + z

�4
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b .

6.2. Visual Summary

[29] The results of the above discussion are illustrated in
Figures 3a–3d, where the received signal w(e) in Figure 3d
is the sum of those in Figures 3a–3c; u(e) is neglected in this
study because of the very narrow beam angle of the
transducer about the z axis (a longitudinal transducer was
employed in the following experiments). In Figure 3a the
mirror reflections of the transmitted pulse contribute most of
the acoustic energy to the echo signal, which is the case for
rods made of molybdenum metal. In the first arrival the ratio
of the amplitude of the mirror reflection to that of the
interfering pulse in Figure 3b may be up to 20–30 dB,
which is large enough to allow the first interfering pulse to
be neglected in signal processing.
[30] The time interval t1between two adjacent reflec-

tions is related to the path length (S) and the sound speed
of the liquid (c). Mirror reflections travel with speed c in
the liquid and have the same waveform except for the
first arrival, which has an opposite polarization to those
of the rest. In Figures 3b and 3c, however, the pulses are
not reflections of the transmitted signal but are interfering
waves that are determined by the diameter and material

of the rod and the transmitted pulse itself. Importantly,
the time intervals between the adjacent two pulses in both
Figures 3b and 3c are dependent only on the material and
diameter of the rod and have nothing to do with the
transmitted waveform or the employed frequency. One
can benefit from this result by choosing a suitable
material and diameter for the rod in order to adjust the
time intervals and thus separate the mirror reflection from
those of the interfering pulses. In addition, because the
pulses of mode B in Figure 3c have a smaller group
speed than those in Figures 3a and 3b and are far behind
the mirror reflections by t4, where L is the length of the
upper rod, they are easily removed from the echo, which
enhances signal processing.
[31] It can also be seen in Figure 3 that the acoustic ray

model only deals with mirror reflections and thus cannot
explain the interfering portion of the signal. From this
viewpoint, the ray model is only an approximation of
equation (43), which is the entire received signal. For the
VPL method the ray model approximation makes no
difference for the measurement of liquid sound speed (c)
because the amplitude of the interfering signal obeys
the same periodical change with path length S, as do the
mirror reflections. However, this is not the case for the FS
method unless the interfering pulses can be removed from
the echo so that the mirror reflection signal can be obtained.
Fortunately, it is feasible to achieve this through system
design, which is treated and demonstrated by experimental
examination in part 2 of this series of papers. Although the
interfering pulses of modes A and B can be removed from
the echo by system design, it is nonetheless important to
understand the physical interpretation of these waves, which
is discussed in Appendix A.

7. Experimental Test of the Acoustic Model

[32] In order to test the conclusions drawn above from our
theoretical analysis of the general acoustic model and the

Table 2. Material Parameters

Material c1, m/s c2, m/s P Wave Impedance, kg/m2 s � 106

Aluminum 6320 3130 17.06
Molybdenum 6250 3350 63.75
Air 340 NAa 0.413

aNA, not available.

Figure 4. Experimental results from the aluminum rod (25 cm long) in air at room temperature.
(a) Entire echo, which is a series of pulses. The first pulse consists of the first mirror reflection (M) and
the first interfering pulse of mode A (A). The rest are interfering pulses of mode A. After time e, pulses of
mode B arrive and are merged with pulses of mode A. The times at a, b, c, d, e are 2.60, 8.00, 13.40,
18.80, 36.60 ms, respectively. The times do not reflect the arrival time delay relative to the trigger pulse
and thus only have relative meaning. (b) Magnification of the first part of the echo in Figure 4a, where the
first (and only) mirror reflection (M) and the first and second interfering pulses of mode A are shown. See
text for discussion.
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resultant wave equations, experiments were conducted on
both aluminum and molybdenum buffer rods at room
temperature, with air substituting for liquid in the RLR
model, and on a molybdenum rod in a silicate liquid at
1436�C. The longitudinal (dilatational) and transversal
(rotational) sound velocities in aluminum, molybdenum,
and air are listed in Table 2 along with their acoustic
impedances.

7.1. Aluminum Buffer Rod in Air

[33] A 5 MHz 5cycle long CW pulse (1 ms duration) was
sent down an aluminum rod (c1= 6320 m/s, c2 = 3130 m/s)
of 1.906 cm diameter and 25 cm length. The echo was
collected at a 50 MHz sample rate and is shown in Figure 4.
Owing to the severely unmatched impedances between air
and metal, no mirror reflections other than the first were
observed in these experiments. This is an ideal configura-
tion for isolating the features in the echo train associated

with wave propagation in the buffer rod only. In Figure 4a
the entire echo is shown and is a series of pulses. Figure 4b
is a magnification of the first part of the echo in Figure 4a,
where the first (and only) mirror reflection and the first and
second interfering pulses of mode A are shown; note that
the first interfering pulse is merged with the first mirror
reflection. The spreading tail portion of the first pulse in
Figure 4b suggests that this pulse is not entirely composed
of the single frequency that was transmitted and is likely
corrupted by an interfering portion, which is undoubtedly
the first interfering pulse of mode A. The second pulse in
Figure 4b is the second interfering pulse of mode A, which
has a totally different waveform from that of the first pulse
and is thus not the reflection of the first pulse.
[34] In Figure 4a the relative arrival times of the mirror

reflection and the interfering pulses of mode A are roughly
estimated and marked by a, b, c, and d, respectively, from
which one can estimate the time delays between adjacent

Figure 5. Experimental results from the molybdenum rod (40 cm long) in air at room temperature.
(a) Entire echo, which is a series of pulses. The first pulse consists of the first mirror reflection (M) and the
first interfering pulse of mode A (A). The rest are interfering pulses of mode A. The times at a, b, c, d, e, f, g
are 2.54, 7.20, 11.96, 16.84, 21.80, 27.60, 32.50 ms, respectively. The times do not reflect the arrival time
delay relative to the trigger pulse and thus only have relative meaning. (b) Horizontally enlarged version of
the first part of the echo in Figure 5a, where the first (and only) mirror reflection and the first and second
interfering pulses of mode A are shown. The time axis is a window extracted from that in Figure 5a; thus the
timescale only has relative meaning. In contrast to Figure 4b, the amplitude of the interfering pulses is
significantly smaller than that of the mirror reflection, owing to the higher acoustic impedance of
molybdenum versus aluminum metal. (c) Vertically enlarged version of Figure 5a. After time h, pulses of
mode B arrive and are merged with pulses of mode A. The first pulse of mode B arrives at h = 42.54 ms.
Compared to the first mirror reflection, it is delayed by (42.54–2.54) = �40 ms.
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pulses. For example, the first two pulses are separated by
the distance between a and b, which is equal to �5.4 ms.
This result is in good agreement with the time delay derived
from the theoretical model in Figure 2. In the theoretical
case, the time delay is t2 = 5.29 ms.
[35] To gain further insight into the nature of the pulses

illustrated in Figure 4, a second experiment was performed
to test whether the time gaps between adjacent pulses were
dependent on the length of the buffer rod. In this second
experiment the aluminum rod was 70 cm length (and the
same diameter), and the first four pulses in the echo showed
almost the same time gaps as those in Figure 4a. This result
verifies that the interfering pulses of mode A are traveling at
the same group velocities (otherwise, the time delays should
increase with rod length), which in turn indicates that they
are not waves of different modes. From the length of the rod
and the measurement of the time delay between the trans-
mitted signal and the first returning pulse, the wave speed
of the first pulse was determined; it is identical to the speed
of the longitudinal wave, 6320 m/s. Thus it is further
concluded that the interfering pulses of mode A have the
same group velocity as that of the longitudinal wave, which
is predicted from the theoretical model discussed above.
With respect to the interfering pulses of mode B, it is hard
to distinguish them in Figure 4a from those of mode A.
However, from the acoustic model one can estimate their
delay time t4 = 34 ms, which places their arrival at time e in
Figure 4a.
[36] A key point to emphasize is that the above experi-

mental observations could not be completely explained by
the solutions of the accurate wave equation without the
derivations in equations (14)–(19), where the boundary
conditions were set to be close to but not identical to zero.
It was the adoption of these boundary conditions that
avoided the mathematical difficulties in finding the wave
solutions and, most importantly, introduced the interfering
pulses of mode A, which reasonably represent the propa-
gation phenomena observed in experiments described
above. This conclusion is made stronger by the experimen-
tal results on the molybdenum rod, discussed below.

7.2. Molybdenum Buffer Rod in Air

[37] For the experiment on the molybdenum rod (c1 =
6250 m/s, c2 = 3350 m/s) in air at 20�C, the transmitted
pulse was adjusted to a 5.8 MHz 5 cycle CW signal
(0.862 ms duration). The rod was 1.910 cm diameter and
40 cm length. The entire echo is shown in Figure 5a, and the
magnification of its first two pulses is shown in Figure 5b.
A significant difference between Figures 4 and 5 (aluminum
versus molybdenum rods) is that the amplitudes of the
interfering pulses of mode A drop dramatically in Figure 5
(the molybdenum rod) compared with the amplitude of the
first (and only) mirror reflection. Generally speaking, this is
because molybdenum is much denser than aluminum and
thus has a larger acoustic impedance; therefore more acous-
tic energy is confined and reflected in the molybdenum rod.
As such, the first mirror reflection in Figure 5 is stronger. As
shown in Figure 5b, the peak value 84 of the first pulse is
25 dB higher than that of the second interfering pulse. If the
first interfering pulse has the same peak value as the second
interfering pulse, then such a big difference in the amplitude
between the mirror reflection (large) and the first interfering

pulse (small) allows the first pulse to be considered a pure
mirror reflection. This conclusion is supported by the
observation that the first arrival in Figure 5b is very close
to a 5.8 MHz CW pulse. In addition, because its velocity
was measured and found to be identical to that of the
longitudinal wave, one can conclude that it is a nondisper-
sive wave, which supports the existence of the plane wave
derived in the model.
[38] Moreover, both the format and pattern of the exper-

imentally observed echo within the molybdenum rod are
fully consistent with that predicted from the model. For
example, from the experimental data in Figures 5a and 5c
the delay between the first two pulses is approximately, t2 =
7.20 – 2.54 = 4.66 ms, whereas the delay time calculated
from the theoretical model is t2 = 4.81 ms. Similarly, the
arrival time of the first interfering pulse of mode B is
estimated from the experimental graph in Figure 5c to be
at position h = 42.54 ms, such that t4 = 42.54 – 2.54 = 40 ms.
This experimentally observed time delay is in agreement
with that derived from the theoretical acoustic model, t4 =
40 ms.

7.3. Molybdenum Rod in Silicate Liquid at High
Temperature

[39] In this final experiment the same molybdenum rod as
used in air was placed in contact with a silicate melt (sample
NAS-8 from Kress et al. [1988]) at 1436�C in a reducing
atmosphere (99% Ar, 1% CO). The same 5.8 MHz 5 cycle
CW signal was transmitted down the rod. Because the
acoustic impedances between silicate liquid and metal are
not as severely unmatched as those between air and metal,
three mirror reflections are observed in the return signal
before the second interfering pulse of mode A; these
reflections have peak values of 100, 11, and 3, respectively
(Figure 6). The second and third reflections differ in phase

Figure 6. Experimental result from the molybdenum rod
(40 cm long) in contact with a silicate melt (NAS-8) at
1436�C. Three mirror reflections are well resolved in the
return signal before the second interfering pulse of mode A.
The time delay between the first two mirror reflections is
measured by t2 � t1 = 2.98 – 1.48 = 1.5 ms (t3 = 4.48 ms, a =
0.60 ms, b = 5.40 ms). The phase of the first mirror reflection
is different from those of the rest by 180�.
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from the first by 180�; their waveforms are the upside down
version of the first. The results in Figure 6 illustrate two
critical points. First, they show that the use of a molybde-
num buffer rod with a diameter �1.9 cm is ideal for
application of the FS method to the measurement of silicate
melt sound speeds, owing to the excellent resolution
of three mirror reflections before an interfering pulse is
observed. Second, because this experiment was performed
at a temperature more than 1400� higher than that per-
formed in air, it allows a test of whether the delay time
between interfering pulses of mode A is dependent on
temperature. The echo shown in Figure 6 indicates a delay
time between the first two interfering pulses of t2 = 5.40 �
0.60 = 4.80 ms, which is nearly identical to the theoretical
value (4.81 ms) calculated above. Therefore the period of the
interfering series of mode A is independent of temperature
within experimental resolution.

7.4. Pressure Dependence of the Echo Format and
Pattern in the Upper Rod

[40] A primary motivation for the development of FS
interferometry is to extend relaxed sound speed measure-
ments on silicate liquids to high pressure in an internally

heated pressure vessel (IHPV). In the theoretical acoustic
model presented above, nearly stress-free boundary condi-
tions were applied to the cylindrical surfaces of the buffer
rods. This is an excellent approximation for the interface
between the molybdenum rods and the gas at 1 bar owing to
the poorly matched acoustic impedances between the rod
and the enclosing gas (99% Ar, 1% CO). Additionally, since
the circumference area of the upper rod immersed in the
melt is only a small fraction of the entire rod length, no
significant differences are observed between an echo from a
rod completely enclosed in gas and that from a rod partially
immersed (2–3 mm) into the melt. However, the high
density of the gas medium in an IHPV at high pressure
may lead to acoustic energy coupling between the buffer
rods and gas.
[41] An experimental evaluation of this effect is presented

in Figure 7 by comparing the waveforms of echo signals
obtained in two experiments where a molybdenum rod
(1.91 cm diameter and 40 cm length) was immersed in
air versus liquid water at 1 bar and room temperature.
Liquid water at these conditions mimics the conditions of
immersing a rod in a high-density gas in an IHPV. The
echoes of a frequency modulated (FM) chirp pulse, with

Figure 7. Echo signal from a FM pulse with duration 2 ms and frequency range from 4 to 6 MHz.
(a) Echo from an air-loaded molybdenum rod. (b) Horizontally enlarged version of the first two pulses in
Figure 7a. (c) Echo from a water-loaded molybdenum rod. (d) Horizontally enlarged version of the first
two pulses in Figure 7c.
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2 ms duration and a frequency range of 4–6 MHz, in both air-
loaded and water-loaded cases, were sampled at 50 MHz and
are shown in Figures 7a and 7c, respectively. The relative
starting positions of the first four pulses in each echo are
marked by a, b, c, d, which are marked as 300, 533, 766,
999 on the 20 ns scale; they correlate to 6, 10.66, 15.32,
and 19.98 ms, respectively. These data show that the
relative positions of the first four pulses do not vary
with the density of the medium surrounding the rod. In
addition, the waveform of the entire echo is very similar.
Table 3 shows the correlation coefficients between
corresponding segments of the two waveforms extracted
from Figures 7a and 7c. For the segment between points
1 and 500, which contains the first pulse, the correlation
coefficient is 0.9972. This illustrates that the first pulse in
Figure 7a and the first pulse in Figure 7c are almost
identical and differ only in amplitude. Figures 7b and 7d
show enlarged versions of the first pulse in the air-loaded
and water-loaded cases, respectively. With the increase of
the length of the examined echo segment the correlation
coefficient drops to 0.9879. However, the major part of
the entire waveform in Figure 7a is well correlated with
and almost identical to that in Figure 7c.
[42] To gain further insight into the correlation of the

interfering pulses of modes A and B, signal segments
between 500 and 3000 were examined. The correlation
coefficients between these segments are shown in Table 3.
With a window width of 1000 points the coefficient changes
from 0.9515 to 0.7407 as the window shifts from left to
right. This indicates that the interfering pulses of mode A,
which arrive first, are almost independent of the density of
the medium surrounding the rod, whereas with the arrival of
the pulses from mode B, the combined signals of modes A
and B are dependent on the density of the surrounding
medium. However, this dependence does not make any
difference in the performance of the FS interferometer
because the echo is truncated and the interfering pulses
are not used for signal processing (see part 2).
[43] In summary, for the portion of the signal that is

used for FS interferometry the two waveforms in
Figures 7a and 7c are nearly identical with a correlation
coefficient of 0.9972. This result strongly indicates that
the basic format and pattern of the echo segment used to
obtain sound speed by the FS method will not be altered
by immersion of the interferometer in a gas medium at
high pressure. In the meantime, we have completed a full
theoretical analysis of acoustic propagation in a gas-

loaded rod according to the accurate elastic wave equa-
tion that confirms these experimental results; it will be
presented in a future contribution.

8. Conclusions

[44] A general acoustic model of the RLR interferometer
and solutions to the resultant wave equations are presented
and confirmed by experiment. The model is successful in
explaining the mirror reflections and the interfering pulses
observed in experiments of the interferometer system. From
the solutions the format of the echo signal is precisely
quantified. According to the model a series of plane waves
(mirror reflections from the liquid) and two series of
interfering pulses (modes A and B) exist in the return
signal, in which pulses of mode A and the plane waves
have the same group velocity, whereas pulses of mode B
travel at a slower speed. Both mode A and mode B waves
are nondispersive. The first return pulse consists of both the
plane wave and the first pulse of mode A, and thus it is not
exactly a mirror copy of the transmitted wave. However, the
amplitude of the interfering portion from mode A is much
smaller than that of the mirror reflection when a suitable
buffer rod material is selected (e.g., a molybdenum buffer
rod), and thus it can be neglected. Experiments on molyb-
denum and aluminum rods with different dimensions pro-
vide data that confirm the acoustic model. The results
indicate that a molybdenum buffer rod of �1.9 cm diameter
is effective for the measurement of relaxed sound speeds in
silicate melts with a frequency sweep interferometer. In
addition to guiding the choice of rod material and dimen-
sions the theoretical model further guides the format design
of the transmitted pulse and implementation of the signal-
processing algorithm, all of which are discussed and
described in part 2 of this series of papers, where the
successful application of frequency sweep interferometry
to high-temperature silicate liquids is demonstrated.

Appendix A: Physical Interpretation of Waves of
Modes A and B

[45] Although the interfering pulses of modes A and B
can be removed from the echo through system design, it is
nonetheless important to understand the physical interpre-
tation of these waves. The mirror reflections used to
measure liquid sound speed are longitudinal waves identical
to those interpreted by the simplified acoustic ray model
[Katahara et al., 1981; Rivers, 1985]. The reflection coef-
ficients in equations (30) and (45) are the same as those
presented in the same reference above. In contrast, the
interfering waves of both modes A and B are composed
of both longitudinal (w) and shear (u) components, the latter
of which accounts for the necessary radial variation in
displacement in order for the former to propagate down
and up the rod. These waves result from the interaction of
vibration with the circumferential boundary of the rod; they
are characterized by a series of eigenfrequencies that are
independent of the excitation but instead are determined by
the dimension and material of the rod.
[46] An example of some radial variations of the particle

displacement associated with some representative eigenfre-
quencies is given in Figure A1 for both modes, where the

Table 3. Comparison of Air-Loaded Versus Water-Loaded Cases

Data Segment
(From Point to Point) Correlation Coefficient

1–500 0.9972
1–1000 0.9937
1–1500 0.9919
1–2000 0.9909
1–2500 0.9892
1–3000 0.9879
500–1500 0.9515
1000–2000 0.9263
1500–2500 0.8165
2000–3000 0.7407

B12203 AI AND LANGE: ACOUSTIC MODEL

16 of 18

B12203



lower cutoff frequency of the incident signal is 4 MHz.
In this case, the lowest eigenfrequency of mode A is
4.1023 MHz, while that of mode B is 4.1530 MHz, with
respect to root index numbers 19 and 16, respectively, in
Figure 2 for a 1.91 cm diameter molybdenum buffer rod.
In general, a subset of all the eigenfrequencies will be
excited by the incident wave and will always constitute
two kinds of pulse chains (modes A and B) with both
longitudinal and shear components in each kind. In mode
A both the longitudinal and shear waves contain the
same eigenfrequencies, have the identical pulse interval
2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q
/c1, and are modulated by the smallest eigen-

frequency c1rm(a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2ð Þ2�1

q
)�1 that is greater than or equal

to the lower cutoff frequency, wl, of the excitation.
Similarly in mode B, the interval and modulation fre-
quency are

ffiffiffi
2

p
a/c2 and

ffiffiffi
2

p
c2rn/a, respectively. Here m

and n are the index numbers of roots of J 0 (x),
corresponding to the two modulation frequencies.
[47] The major difference between modes A and B,

except for the waveforms and frequency compositions, is
that they travel at different speeds, c1 and

ffiffiffi
2

p
c2, respec-

tively. Since both the longitudinal and shear waves of the
same mode have the same speed, it is possible that the shear
waves can be detected at the arrival time of the associated
longitudinal waves. It is interesting to observe from exper-
iment (not presented in this paper) that when a 5 MHz 5
cycle CW pulse is sent down a molybdenum rod of length L
though a shear wave transducer, the first return (an inter-
fering shear wave pulse of mode A without the longitudinal
mirror reflection included) is received by the same trans-
ducer right after a time delay of 2L/c1, and the whole shear
wave chain has the same format as that of the interfering
longitudinal wave chain.
[48] The detection of waves of mode B (both longitu-

dinal and shear components) is more difficult because
they are merged with those of mode A in the case of

pulse excitation. One way to detect them, however, is to
transmit a long CW pulse at a frequency close to an
eigenfrequency of mode B but different from any of
mode A so that the energy of mode B will be relatively
enhanced. Another method for detection of mode B
waves is to adjust (if possible) the diameter of the rod
to gain ideal eigenfrequency distributions of both modes
A and B in order that the response of mode B can be
enhanced at certain frequencies for its detection through
signal processing, like a Notch filter. In conducting
experiments to detect waves of mode B, use of a shear
wave transducer is recommended because of better detec-
tion when mirror reflections are eliminated.
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