
An extended abstract of this paper appears in Advances in Cryptology – EUROCRYPT ’04, Lecture
Notes in Computer Science Vol. , C. Cachin and J. Camenisch ed., Springer-Verlag, 2004. This is
the full version.

An Uninstantiable Random-Oracle-Model Scheme

for a Hybrid-Encryption Problem

Mihir Bellare∗ Alexandra Boldyreva † Adriana Palacio ‡

Abstract

We present a simple, natural random-oracle (RO) model scheme, for a practical goal, that
is uninstantiable, meaning is proven in the RO model to meet its goal yet admits no standard-
model instantiation that meets this goal. The goal in question is IND-CCA-preserving asym-

metric encryption which formally captures security of the most common practical usage of
asymmetric encryption, namely to transport a symmetric key in such a way that symmetric
encryption under the latter remains secure. The scheme is an ElGamal variant, called Hash
ElGamal, that resembles numerous existing RO-model schemes, and on the surface shows no
evidence of its anomalous properties.

More generally, we show that a certain goal, that we call key-verifiable, ciphertext-verifiable
IND-CCA-preserving asymmetric encryption, is achievable in the RO model (by Hash ElGamal
in particular) but unachievable in the standard model. This helps us better understand the
source of the anomalies in Hash ElGamal and also lifts our uninstantiability result from being
about a specific scheme to being about a primitive or goal.

These results extend our understanding of the gap between the standard and RO models,
and bring concerns raised by previous work closer to practice by indicating that the problem of
RO-model schemes admitting no secure instantiation can arise in domains where RO schemes
are commonly designed.

∗Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. E-Mail: mihir@cs.ucsd.edu. URL: http://www.cse.ucsd.edu/users/mihir. Supported in
part by NSF grant CCR-0098123, NSF grant ANR-0129617 and an IBM Faculty Partnership Development Award.

†Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La
Jolla, California 92093, USA. E-Mail: aboldyre@cs.ucsd.edu. URL: http://www.cse.ucsd.edu/users/aboldyre.
Supported in part by above-mentioned grants of first author.

‡Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La
Jolla, California 92093, USA. E-Mail: apalacio@cs.ucsd.edu. URL: http://www.cse.ucsd.edu/users/apalacio.
Supported by a National Science Foundation Graduate Research Fellowship.

1

Contents

1 Introduction 3

1.1 Previous work . 3
1.2 IND-CCA-preserving asymmetric encryption . 3
1.3 The Hash ElGamal scheme and its security . 4
1.4 A closer look . 5
1.5 Generalizations . 5
1.6 Related work . 6

2 Definitions 6

3 The HEG scheme and its security in the RO model 8

3.1 Scheme and result statement . 9
3.2 Proof overview . 9

4 Uninstantiability of the Hash ElGamal scheme 11

5 A generalization 16

References 19

A Proof of Theorem 3.1 20

B Any IND-CCA-secure scheme is IND-CCA preserving 25

2

1 Introduction

A random-oracle (RO) model scheme is one whose algorithms have oracle access to a random
function. Its security is evaluated with respect to an adversary with oracle access to the same
function. An “instantiation” of such a scheme is the standard-model scheme obtained by replacing
this function with a member of a polynomial-time computable family of functions, described by a
short key. The security of the scheme is evaluated with respect to an adversary given the same key.
In the random-oracle paradigm, as enunciated by Bellare and Rogaway [5], one first designs and
proves secure a scheme in the RO model, and then instantiates it to get a (hopefully still secure)
standard-model scheme.

The RO model has proven quite popular and there are now numerous practical schemes designed
and proven secure in this model. But the important issue of whether such schemes can be securely
instantiated, and, if so, how, remains less clear. This paper adds to existing concerns in this regard.
Let us begin by reviewing previous work and then explain our results.

1.1 Previous work

Let us call a RO-model scheme uninstantiable, with respect to some underlying cryptographic goal,
if the scheme can be proven to meet this goal in the random-oracle model, but no instantiation of
the scheme meets the goal in question.

Canetti, Goldreich and Halevi [7] provided the first examples of uninstantiable schemes, the goals
in question being IND-CPA-secure asymmetric encryption and digital signatures secure against
chosen-message attacks. Further examples followed: Nielsen [18] presented an uninstantiable RO-
model scheme for the goal of non-interactive, non-committing encryption [6], and Goldwasser and
Taumann [16] showed the existence of a 3-move protocol which, when collapsed via a RO as per
the Fiat-Shamir heuristic [13], yields an uninstantiable RO-model signature scheme.

The results of [7] indicate that it is possible for the RO paradigm to fail to yield secure “real-
world” schemes. The example schemes provided by [7], however, are complex and contrived ones
that do not resemble the kinds of RO schemes typically being designed. (Their schemes are designed
to return the secret key depending on the result of some test applied to an output of the oracle, and
they use diagonalization and CS proofs [17].) The same is true of the scheme of [16]. In contrast,
the scheme of [18] is simple, but the goal, namely non-interactive, non-committing encryption, is
somewhat distant from ones that are common practical targets of RO-model designs. Accordingly,
based on existing work, one might be tempted to think that “in practice,” or when confined to
“natural” schemes for practical problems commonly being targeted by RO-scheme designers, the
RO paradigm is sound.

This paper suggests that even this might not always be true. For a practical cryptographic
goal, we present an uninstantiable RO-model scheme that is simple and natural, closely resembling
the types of schemes being designed in this domain. We begin below by discussing the goal, which
we call IND-CCA-preserving asymmetric encryption and which arises in the domain of hybrid
encryption.

1.2 IND-CCA-preserving asymmetric encryption

In practice, the most common usage of asymmetric encryption is to transport a symmetric key that
is later used for symmetric encryption of the actual data. The notion of an asymmetric encryption
scheme AS being IND-CCA-preserving, that we introduce, captures the security attribute that AS

must possess in order to render this usage of AS secure. We now elaborate.

3

Encryption, in practice, largely employs the “hybrid” paradigm. The version of this paradigm
that we consider here is quite general. In a first phase, the sender picks at random a “session” key
K for a symmetric encryption scheme, encrypts K asymmetrically under the receiver’s public key
to get a ciphertext Ca, and transfers Ca to the receiver. In a second phase, it can encrypt messages
of its choice symmetrically under K and transfer the corresponding ciphertexts to the receiver. We
call this multi-message (mm) hybrid encryption.1

A choice of an asymmetric encryption scheme AS and a symmetric encryption scheme SS gives
rise to a particular mm-hybrid scheme. We introduce in Section 2 a definition of the IND-CCA
security of this mm-hybrid scheme which captures the privacy of the encrypted messages even in
the presence of an adversary allowed chosen-ciphertext attacks on both component schemes and
allowed to choose the messages to be encrypted adaptively and as a function of the asymmetric
ciphertext, denoted Ca above, that transports the symmetric key.

Now let us say that an asymmetric encryption scheme AS is IND-CCA preserving if the mm-
hybrid associated to AS and symmetric encryption scheme SS is IND-CCA secure for every IND-
CCA secure SS. This notion of security for an asymmetric encryption scheme captures the security
attribute of its being able to securely transport a session key for the purpose of mm-hybrid encryp-
tion. The goal we consider is IND-CCA-preserving asymmetric encryption.

It is easy to see that any IND-CCA-secure asymmetric encryption scheme is IND-CCA pre-
serving. (For completeness, this is proved in Appendix B.1.) IND-CCA preservation, however,
is actually a weaker requirement on an asymmetric encryption scheme than IND-CCA security
itself. In fact, since the messages to be encrypted using the asymmetric scheme are randomly-
chosen symmetric keys, the encryption itself need not even be randomized. Hence there might
be IND-CCA-preserving asymmetric encryption schemes that are simpler and more efficient than
IND-CCA-secure ones. In particular, it is natural to seek an efficient IND-CCA-preserving scheme
in the RO model along the lines of existing hybrid encryption schemes such as those of [8, 9, 14, 19].

1.3 The Hash ElGamal scheme and its security

It is easy to see that the ElGamal encryption scheme [12] is not IND-CCA preserving. An effort
to strengthen it to be IND-CCA preserving lead us to a variant that we call the Hash ElGamal
scheme. It uses the idea underlying the Fujisaki-Okamoto [14] transformation, namely to encrypt
under the original (ElGamal) scheme using coins obtained by applying a random oracle H to the
message. Specifically, encryption of a message K under public key (q, g, X) in the Hash ElGamal
scheme is given by

AEG,H((q, g, X), K) = (gH(K) , G(XH(K)) ⊕ K) , (1)

where G, H are random oracles, q, 2q +1 are primes, g is a generator of the order q cyclic subgroup
of Z

∗
2q+1, and the secret key is (q, g, x) where gx = X. Decryption is performed in the natural way

as detailed in Figure 1.
The Hash ElGamal scheme is very much like practical RO-model schemes presented in the

literature. In fact, it is a particular case of an asymmetric encryption scheme proposed by Baek,
Lee and Kim [2, 3].

We note that the Hash ElGamal asymmetric encryption scheme is not IND-CCA secure, or even

1 The term multi-message refers to the fact that multiple messages may be encrypted, in the second phase, under
the same session key. The main reason for using such a hybrid paradigm, as opposed to directly encrypting the
data asymmetrically under the receiver’s public key, is that the number-theoretic operations underlying popular
asymmetric encryption schemes are computationally more expensive than the block-cipher operations underlying
symmetric encryption schemes, so hybrid encryption brings significant performance gains.

4

IND-CPA secure, in particular because the encryption algorithm is deterministic. But Theorem 3.1
guarantees that the Hash ElGamal asymmetric encryption scheme is IND-CCA-preserving in the
RO model, if the Computational Diffie-Hellman (CDH) problem is hard in the underlying group.

We follow this with Theorem 4.1, however, which says that the Hash ElGamal scheme is unin-
stantiable. In other words, the standard-model asymmetric encryption scheme obtained by in-
stantiating the RO-model Hash ElGamal scheme is not IND-CCA preserving, regardless of the
choice of instantiating functions.2 (We allow these to be drawn from any family of polynomial-time
computable functions.)

1.4 A closer look

As noted above, we show that no instantiation of the Hash ElGamal scheme is IND-CCA-preserving.
The way we establish this is the following. We let AS be some (any) instantiation of the Hash
ElGamal scheme. Then, we construct a particular IND-CCA-secure symmetric encryption scheme
SS such that the mm-hybrid associated to AS and SS is not IND-CCA secure. The latter is proven
by presenting an explicit attack on the mm-hybrid. We clarify that the symmetric scheme SS

constructed in this proof is not a natural one. It is contrived, but not particularly complex. We do
not view this as subtracting much from the value of our result, which lies rather in the nature of
the Hash ElGamal scheme itself and the practicality of the underlying goal.

What we suggest is interesting about the result is that the Hash ElGamal scheme, on the
surface, seems innocuous enough. It does not seem to be making any “peculiar” use of its random
oracle that would lead us to think it is “wrong.” (Indeed, it uses random oracles in ways they
have been used previously, in particular by [14, 2, 3].) The scheme is simple, efficient, and similar
to other RO-model schemes out there. In addition, we contend that the definition of IND-CCA-
preserving asymmetric encryption is natural and captures a practical requirement. The fact that
the Hash ElGamal scheme is uninstantiable thus points to the difficulty of being able to distinguish
uninstantiable RO-model schemes from ones that at least may be securely instantiable, even in the
context of natural and practical goals.

1.5 Generalizations

Next we provide some results that generalize the above. We consider the class of IND-CCA-
preserving asymmetric encryption schemes that possess a pair of properties that we call key verifi-
ability and ciphertext verifiability. Key verifiability means there is a way to recognize valid public
keys in polynomial time. Ciphertext verifiability means there is a polynomial-time procedure to
determine whether a given ciphertext is an encryption of a given message under a given valid pub-
lic key. Note that ciphertext verifiability contradicts IND-CPA security, but it need not prevent a
scheme from being IND-CCA preserving, since the latter notion considers the use of the asymmetric
scheme only for the encryption of messages that are chosen at random.

Theorem 5.2 points out that the goal of key-verifiable, ciphertext-verifiable IND-CCA-preserving
asymmetric encryption is achievable in the RO model, by the Hash El Gamal scheme in partic-
ular, assuming the CDH problem is hard in the underlying group. Theorem 5.3, however, says
that this goal is not achievable in the standard model. In other words, there exist RO-model
schemes meeting this goal, but there exist no standard-model schemes meeting it. Theorem 5.3

2 This result is based on the assumption that one-way functions exist (equivalently, IND-CCA-secure symmetric
encryption schemes exist), since, otherwise, by default, any asymmetric encryption scheme is IND-CCA preserving,
and, indeed, the entire mm-hybrid encryption problem we are considering is vacuous. This assumption is made
implicitly in all results in this paper.

5

generalizes Theorem 4.1 because any instantiation of the Hash ElGamal scheme is key-verifiable
and ciphertext-verifiable, and hence cannot be IND-CCA-preserving.

Theorem 5.3 lifts our results from being about a particular scheme to being about a primitive,
or class of schemes. The generalization also helps better understand what aspects of the Hash
ElGamal scheme lead to its admitting no IND-CCA-preserving instantiation. In particular, we see
that this is not due to some “peculiar” use of random oracles but rather due to some simply stated
properties of the resulting asymmetric encryption scheme itself.

1.6 Related work

In the cryptographic community, the term “hybrid encryption” seems to be used quite broadly, to
refer to a variety of goals or methods in which symmetric and asymmetric primitives are combined
to achieve privacy. We have considered one goal in this domain, namely mm-hybrid encryption.
We now discuss related work that has considered other goals or problems in this domain.

Works such as [8, 9, 14, 19, 11, 20] provide designs of IND-CCA-secure asymmetric encryption
schemes that are referred to as “hybrid encryption schemes” because they combine the use of
asymmetric and symmetric primitives. (Possible goals of such designs include gaining efficiency,
increasing the size of the message space, or reducing the assumptions that must be made on the
asymmetric component in order to guarantee the IND-CCA security of the construction.) The
schemes of [8, 9, 14, 19] are in the RO model and, although addressing a different goal, form an
important backdrop for our work because the Hash ElGamal scheme is based on similar techniques
and usage of random oracles. We stress, however, that we have no reason to believe that any of
these schemes, or that of [2, 3] of which Hash ElGamal is a special case, are uninstantiable.

2 Definitions

Notation and conventions. If S is a randomized algorithm, then [S(x, y, . . .)] denotes the set
of all points having positive probability of being output by S on inputs x, y, If x is a binary
string, then |x| denotes its length, and if n ≥ 1 is an integer, then |n| denotes the length of its
binary encoding, meaning the unique integer ℓ such that 2ℓ−1 ≤ n < 2ℓ. The string-concatenation
operator is denoted “‖”.

Formal definitions in the RO model provide as an oracle, to the algorithms and the adversary,
a single random function R mapping {0, 1}∗ to {0, 1}. Schemes might, however, use and refer
to multiple random functions of different domains and ranges. These can be derived from R via
standard means [5].

Symmetric encryption. A symmetric encryption scheme SS = (SK, SE, SD) is specified by three

polynomial-time algorithms: via K
$

← SK(1k) one can generate a key; via C
$

← SE(K, M) one can
encrypt a message M ∈ {0, 1}∗; and via M ← SD(K, C) one can decrypt a ciphertext C. It is
required that SD(K, SE(K, M)) = M for all K ∈ [SK(1k)] and all M ∈ {0, 1}∗. We assume (without
loss of generality) that [SK(1k)] ⊆ {0, 1}k. In the RO model, all algorithms have access to the RO.

We define security following [4] and addressing the possibility of the symmetric scheme being
in the RO model. Let LR(M0, M1, b) = Mb if M0, M1 are strings of equal length, and ⊥ otherwise.
Associate to SS, an adversary S, and k ∈ N, the following experiment.

Experiment Expind-cca
SS,S (k)

Randomly choose RO Rs : {0, 1}∗ → {0, 1}

K
$

← SKRs(1k) ; b
$

← {0, 1}

6

Run S with input 1k and oracles SERs(K, LR(·, ·, b)), SDRs(K, ·), Rs

Let d denote the output of S

If d = b then return 1 else return 0.

We say that adversary S is legitimate if it never queries SDRs(K, ·) with a ciphertext previously
returned by SERs(K, LR(·, ·, b)). Symmetric encryption scheme SS is said to be IND-CCA secure
if the function

Advind-cca
SS,S (k) = 2 · Pr

[

Expind-cca
SS,S (k) = 1

]

− 1

is negligible for all legitimate polynomial-time adversaries S.

Asymmetric encryption. An asymmetric encryption scheme AS = (AK, AE, AD) is specified

by three polynomial-time algorithms: via (pk, sk)
$

← AK(1k) one can generate keys; via C
$

←
AE(pk, K) one can encrypt a message K ∈ {0, 1}k; and via K ← AD(sk, C) one can decrypt a
ciphertext C. (We denote the message by K because we will set it to a key for a symmetric
encryption scheme.) It is required that AD(sk, AE(pk, K)) = K for all (pk, sk) ∈ [AK(1k)] and all
K ∈ {0, 1}k. In the RO model, all algorithms have access to the RO.

Discussions and peripheral results in this paper sometimes refer to standard notions of security
for such schemes like IND-CPA and IND-CCA, but these are not required for the main results and,
accordingly, are not defined here but recalled in Appendix B.1.

IND-CCA-preserving asymmetric encryption. We provide the formal definitions first and ex-
planations later. A multi-message hybrid (mm-hybrid) encryption scheme is simply a pair (AS, SS)
consisting of an asymmetric encryption scheme AS = (AK, AE, AD) and a symmetric encryption
scheme SS = (SK, SE, SD). We associate to (AS, SS), a hybrid adversary H , and k ∈ N, the
following experiment.

Experiment Expind-cca
AS,SS,H (k)

Randomly choose RO R: {0, 1}∗ → {0, 1}

Define ROs Rs(·) = R(0‖·) and Ra(·) = R(1‖·)

(pk, sk)
$

← AKRa(1k) ; K
$

← SKRs(1k) ; b
$

← {0, 1}

Ca
$

← AERa(pk, K)

Run H with inputs pk, Ca and oracles SERs(K, LR(·, ·, b)), SDRs(K, ·), ADRa(sk, ·), R

Let d denote the output of H

If d = b then return 1 else return 0.

We say that adversary H is legitimate if it does not query SDRs(K, ·) on a ciphertext previously
returned by SERs(K, LR(·, ·, b)), and it does not query ADRa(sk, ·) on Ca. Mm-hybrid encryption
scheme (AS, SS) is said to be IND-CCA secure if the function

Advind-cca
AS,SS,H (k) = 2 · Pr

[

Expind-cca
AS,SS,H (k) = 1

]

− 1

is negligible for all legitimate polynomial-time adversaries H .
Finally, we say that an asymmetric encryption scheme AS is IND-CCA preserving if the mm-

hybrid encryption scheme (AS, SS) is IND-CCA secure for all IND-CCA-secure symmetric encryp-
tion schemes SS. Here, the set of symmetric encryption schemes over which we quantify includes
RO-model ones if AS is a RO-model scheme, and includes only standard-model ones if AS is a
standard-model scheme.

Let us now explain the ideas behind these formalisms. Recall that we are modelling the security
of the following two-phase scenario: in phase one, the sender picks a key K for symmetric encryp-

7

tion, asymmetrically encrypts it under the receiver’s public key to get a ciphertext Ca, and sends Ca

to the receiver; in phase two, the sender symmetrically encrypts messages of its choice under K and
transmits the resulting ciphertexts to the receiver. The definition above captures the requirement
of privacy of the symmetrically encrypted data under a chosen-ciphertext attack. Privacy is for-
malized in terms of indistinguishability via left-or-right oracles, and the chosen-ciphertext attack is
formalized via the adversary’s access to decryption oracles for both the symmetric and asymmetric
schemes. The legitimacy requirement, as usual, disallows decryption queries on challenge cipher-
texts since they would lead to trivial adversary victory. The experiment reflects the possibility that
SS and AS are RO-model schemes by picking random oracles for their encryption and decryption
algorithms. The standard model is the special case where the algorithms of the schemes do not
refer to any oracles, and thus the definition above covers security in both models. The notion of
AS being IND-CCA preserving reflects a valuable pragmatic requirement, namely that one may
use, in conjunction with AS, any symmetric encryption scheme and be guaranteed security of the
mm-hybrid under the minimal assumption that the symmetric scheme itself is secure.

Remark 2.1 Suppose we have two RO-model schemes, and are composing them, or executing
them in a common context. (Above, this is happening with the asymmetric encryption scheme and
the symmetric encryption scheme.) We claim that, in this case, the ROs of the two schemes should
be chosen independently. (This does not mean that we need to assume two RO oracles are given.
The formal model always provides just one RO. But one can easily derive several independent ROs
from a single one, as we did above.) The correctness of this principle of independent instantiation
of ROs in a common context can be seen in many ways. First, it is easy to come up with an
example of a pair of secure RO-model schemes that, when composed, yield an insecure one if
the ROs in the two schemes are defined to be the same. Second, one can reason by analogy
with the way we need to choose keys in composing primitives. For example, suppose we have a
MAC and symmetric encryption scheme, each individually secure. If we use them to construct
an authenticated-encryption scheme, we should use different keys for the MAC and the symmetric
encryption scheme. (There is no reason to think otherwise that the composition will be secure.)
The principle, for ROs, is exactly the same. They are just like keys provided to primitives.

The existence of IND-CCA-preserving asymmetric encryption schemes is easy to establish since, as
Theorem B.1 indicates, any IND-CCA-secure asymmetric encryption scheme is IND-CCA preserv-
ing. The interesting question is to find IND-CCA-preserving asymmetric encryption schemes that
are more efficient than existing IND-CCA-secure asymmetric encryption schemes. Hash El Gamal
is one such scheme.

3 The HEG scheme and its security in the RO model

In this section we introduce a variant of the ElGamal encryption scheme [12] that, although not
IND-CCA secure, is IND-CCA preserving in the RO model under a standard assumption. In
Section 4, we will show that this scheme admits no IND-CCA-preserving instantiation.

Preliminaries. A cyclic-group generator is a randomized, polynomial-time algorithm CG which
on input 1k outputs a pair (q, g), where q is a prime such that p = 2q + 1 is also a prime, g is a
generator of the cyclic, order q subgroup 〈g〉 of Z

∗
p, and |p| = k. Recall that the Computational

Diffie-Hellman (CDH) problem is said to be hard for CG if the function

Advcdh
CG,C(k) = Pr

[

(q, g)
$

← CG(1k) ; x, y
$

← Zq : C(q, g, gx, gy) = gxy
]

is negligible for all polynomial-time cdh adversaries C.

8

AK(1k)

(q, g)
$

← CG(1k)

x
$

← Zq

X ← gx

Return ((q, g,X), (q, g, x))

AEG,H((q, g,X),K)

y ← H(K)

Y ← gy

T ← G(Xy)

W ← T ⊕ K

Return (Y,W)

ADG,H((q, g, x), (Y,W))

T ← G(Y x)

K ← T ⊕ W

If gH(K) = Y then

Return K

else Return ⊥ EndIf

Figure 1: Algorithms of the RO-model asymmetric encryption scheme HEG[CG] = (AK, AE, AD)
associated to cyclic-group generator CG. Here G: 〈g〉 → {0, 1}k and H : {0, 1}k → Zq are random
oracles.

3.1 Scheme and result statement

To any cyclic-group generator CG we associate the RO-model asymmetric encryption scheme
HEG[CG] = (AK, AE, AD) whose constituent algorithms are depicted in Figure 1. (The scheme
makes reference to two ROs, namely G: 〈g〉 → {0, 1}k and H : {0, 1}k → Zq, while the formal
definition of an asymmetric encryption scheme provides a single RO R: {0, 1}∗ → {0, 1}, but G, H
may be implemented via R in standard ways [5].) We call this variant of the ElGamal encryption
scheme the Hash ElGamal encryption scheme associated to CG. Our result about its security in
the RO model is the following.

Theorem 3.1 If the CDH problem is hard for cyclic-group generator CG, then the associated Hash
ElGamal asymmetric encryption scheme HEG[CG] is IND-CCA preserving in the RO model.

For the definition of what it means to be IND-CCA preserving, we refer the reader to Section 2.

Remarks. We note that the encryption algorithm AE of HEG[CG] is deterministic. For this
reason alone, HEG[CG] is not an IND-CCA secure, or even IND-CPA secure, asymmetric encryption
scheme. Nonetheless, Theorem 3.1 says that it is IND-CCA preserving as long as the CDH problem
is hard for CG. This is not a contradiction. Very roughly, the reason HEG[CG] can preserve IND-
CCA while not itself being even IND-CPA is that the former notion considers the use of the scheme
only for the encryption of messages that are symmetric keys, which (as long as the associated
symmetric encryption scheme is secure) have relatively high entropy, and the entropy in these
messages compensates for the lack of any introduced by AE. We add that previous work [8, 9, 14, 19]
has shown that in the RO model, relatively weak asymmetric components suffice to ensure strong
security properties of the hybrid based on them. Thus, it is not surprising that, although HEG[CG]
is not secure with respect to standard measures like IND-CPA and IND-CCA, it is secure enough
to permit its use for transport of a symmetric encryption key as indicated by Theorem 3.1.

3.2 Proof overview

The full proof of Theorem 3.1 is in Appendix A. Here we provide an overview that highlights the
main areas of novelty.

Proof setup. Let AS = HEG[CG] and let AK, AE, AD denote its constituent algorithms. Let
SS = (SK, SE, SD) be any IND-CCA-secure symmetric encryption scheme. We need to show that
(AS, SS) is an IND-CCA-secure mm-hybrid encryption scheme.

9

Let H be a polynomial-time hybrid adversary attacking (AS, SS). We will construct polynomial-
time adversaries S and C such that

Advind-cca
AS,SS,H (k) ≤ poly(k) · poly

(

Advind-cca
SS,S (k) , Advcdh

CG,C(k)
)

+
poly(k)

2k
. (2)

Since SS is assumed IND-CCA secure and the CDH problem is hard for CG, the advantage functions
related to S and C above are negligible, and thus so is the advantage function related to H . To
complete the proof, we need to specify adversaries S,C for which Equation (2) is true.

Consider Expind-cca
AS,SS,H (k). Let (q, g, X) be the public key and (q, g, x) the secret key chosen,

where X = gx. Let Ca = (Y, W) where Y = gy. Let K denote the symmetric encryption key
chosen. Let GH be the event that there is a time at which gxy is queried to G but K has not been
queried to H; HG the event that there is a time at which K is queried to H but gxy has not been
queried to G; and Succ(H) the event that H is successful at guessing the value of its challenge bit
b. We will construct C so that

Pr [GH] ≤ poly(k) · Advcdh
CG,C(k) +

poly(k)

2k
,

and we will construct S so that

Pr [HG ∨ (Succ(H) ∧ ¬GH ∧ ¬HG)] ≤ Advind-cca
SS,S (k) +

poly(k)

2k
. (3)

Equation (2) follows.

The adversaries. The design of C relies mostly on standard techniques, and so we leave it to
Appendix A. We turn to S. The latter gets input 1k and oracles SERs(K, LR(·, ·, b)), SDRs(K, ·),
Rs, and begins with the initializations

((q, g, X), (q, g, x))
$

← AK(1k) ; y
$

← Zq ; Y ← gy ; W
$

← {0, 1}k ; Ca ← (Y, W) . (4)

It then runs H on inputs (q, g, X), Ca, itself responding to the oracle queries of the latter. Its aim
is to do this in such a way that the key K underlying S’s oracles plays the role of the quantity
of the same name for H . Eventually, it will output what H outputs. The difficulty faced by this
adversary is that H might query K to H. (Other oracle queries are dealt with in standard ways.)
In that case, H expects to be returned y. (And it cannot be fooled since, knowing Y = gy, it can
verify whether or not the value returned is y.) The difficulty for S is not that it does not know the
right answer —via Equation (4), it actually knows y— but rather that it is not clear how it would
know that a query being made to H equals the key K underlying its oracles, so that it would know
when to return y as the answer to a query to H.

In order to “detect” when query K is made, we would, ideally, like a test that can be performed
on a value L, accepting if L = K and rejecting otherwise. However, it is not hard to see that, in
general, such a test does not exist.3 Instead, we introduce a test that has a weaker property and
show that it suffices for us.

Our test KeyTest takes input L and has access to S’s SERs(K, LR(·, ·, b)) oracle. It returns a pair
(dec, gs) such that: (1) If L = K then (dec, gs) = (1, b), meaning in this case it correctly computes
the challenge bit b, and (2) If L 6= K then, with overwhelming probability, either dec = 0 (the test
is saying L 6= K) or (dec, gs) = (1, b) (the test is saying it does not know whether or not L = K,
but it has successfully calculated the challenge bit anyway). With KeyTest in hand, S can answer

a query L made to H as follows. It runs (dec, gs)
$

← KeyTest(L). If dec = 0, it can safely assume

3 Suppose, for example, that algorithms SE, SD only depend on the first half of the bits of their k-bit key. This
is consistent with their being IND-CCA secure (in the sense that, if there exists an IND-CCA-secure symmetric
encryption scheme, there also exists one with this property), but now, any test has probability at most 2−k/2 of being
able to differentiate between K and a key L 6= K that agrees with K in its first half.

10

L 6= K and return a random answer, while if dec = 1, it can output gs as its guess to challenge bit
b and halt.

A precise description and analysis of KeyTest are in Appendix A, but we briefly sketch the ideas
here. The algorithm has two phases. In the first phase, it repeatedly tests whether or not

SDRs(L,SERs(K, LR(T0, T0, b))) = T0 and SDRs(L,SERs(K, LR(T1, T1, b))) = T1 ,

where T0, T1 are some distinct “test” messages. If any of these checks fails, it knows that L 6= K
and returns (0, 0). (However, the checks can succeed with high probability even if L 6= K.) In the
next phase, it repeatedly computes SDRs(L,SERs(K, LR(T0, T1, b))) and, if all these computations
yield Tgs for some bit gs, it returns (1, gs). The analysis shows that, conditional on the first phase
not returning (0, 0), the bit gs from the second stage equals b with overwhelming probability.

A subtle point arises with relation to the test. Recall that H is making queries to SDRs(K, ·).
S will answer these via its own oracle of the same name. Now, consider the event that H queries to
SDRs(K, ·) a ciphertext C generated in some execution of KeyTest. If S calls SDRs(K, C) to obtain
the answer, it would immediately become an illegitimate adversary and thus forgo its advantage,
since C is a result of a call to SERs(K, LR(·, ·, b)) made by S via subroutine KeyTest. There are
a few ways around this, and the one we use is to choose the initial “test” messages randomly so
that H has low probability of being able to query a ciphertext C generated in some execution of
KeyTest.

We note that one might consider an alternative solution to S’s problem of wanting to “detect”
query K to H. Namely, reply to queries to H at random, then, after H terminates, pick one such
query L at random, decrypt a challenge ciphertext via L, and use that to predict the challenge
bit. Unfortunately, even though L = K with probability 1/poly(k), the advantage over one-half
obtained by S via the strategy just outlined could be negligible because the wrong answers from
the wrong random choices could overwhelm the right answer that arises when K is chosen.

We provide all the details and justify Equation (2) in Appendix A.

4 Uninstantiability of the Hash ElGamal scheme

In this section we show (cf. Theorem 4.1) that the RO-model Hash ElGamal scheme admits no
IND-CCA-preserving instantiation. Below we begin by detailing what we mean by instantiation of
a RO-model asymmetric encryption scheme. This will refer to a RO-model scheme which, as per
the formal definitions in Section 2, uses a single random oracle mapping {0, 1}∗ to {0, 1}.

Instantiating RO-model asymmetric encryption schemes. A poly-time family of functions

F associates to security parameter k ∈ N and key fk ∈ {0, 1}fkl(k) a map F
k
(fk, ·): {0, 1}∗ → {0, 1}.

The key length fkl of the family of functions is a polynomial in k. We require that there exist a

polynomial t such that F
k
(fk, x) is computable in t(k + |x|) time for all k ∈ N, fk ∈ {0, 1}fkl(k) and

x ∈ {0, 1}∗.
An instantiation of a RO-model asymmetric encryption scheme AS = (AK, AE, AD) via family

F is the standard-model asymmetric encryption scheme AS = (AK, AE, AD) whose constituent
algorithms are illustrated in Figure 2. As these indicate, the public and secret keys of the original

scheme are enhanced to also include a key fk specifying the function F
k
(fk, ·), and calls to the

random oracle are then replaced by evaluations of this function in all algorithms.

The uninstantiability result. The formal statement of the result is the following.

11

AK(1k)

fk
$

← {0, 1}fkl(k)

(pk, sk)
$

← AKF
k
(fk,·)(1k)

Return ((pk, fk), (sk, fk))

AE(pk,K)

Parse pk as (pk, fk)

C
$

← AEF
k
(fk,·)(pk,K)

Return C

AD(sk, C)

Parse sk as (sk, fk)

K ← ADF
k
(fk,·)(sk, C)

Return K

Figure 2: Algorithms of the standard-model asymmetric encryption scheme AS = (AK, AE, AD)
obtained by instantiating RO-model asymmetric encryption scheme AS = (AK, AE, AD) via poly-
time family of functions F .

Theorem 4.1 Let HEG[CG] = (AK, AE, AD) be the RO-model Hash ElGamal scheme associated
to a cyclic-group generator CG. Let HEG[CG] = (AK, AE, AD) be any instantiation of HEG[CG] via
a poly-time family of functions. Then HEG[CG] is not IND-CCA preserving.

Proof of Theorem 4.1. Let F be the poly-time family of functions used in HEG[CG] to replace
the random oracle. We will construct an IND-CCA-secure symmetric encryption scheme SS such
that the mm-hybrid encryption scheme (HEG[CG], SS) is not IND-CCA secure. This proves the
theorem.

Let us say that a value pk is a (HEG[CG], k)-valid public key if there exists a value sk such that
(pk, sk) ∈ [AK(1k)]. We first define two polynomial-time algorithms VfPK and VfCtxtF which are
used by SS.

Algorithm VfPK, which we call a key verifier, takes inputs 1k and pk, and outputs 1 if and
only if pk is a (HEG[CG], k)-valid public key. The algorithm works by parsing pk as ((q, g, X), fk),
where fk ∈ {0, 1}fkl, and then returning 1 if and only if q and 2q + 1 are primes, g is a generator
of the order q cyclic subgroup 〈g〉 of Z

∗
2q+1, |2q + 1| = k, and X ∈ 〈g〉. This algorithm can be

implemented in polynomial-time based on standard facts from computational number theory, and
even deterministically, given the existence of polynomial-time primality tests [1]. We omit the
details.

Algorithm VfCtxtF , which we call a ciphertext verifier, takes inputs 1k, pk, K, C, where pk is a
(HEG[CG], k)-valid public key and K ∈ {0, 1}k. It runs AE(pk, K) and outputs 1 if the result is C,
and 0 otherwise. In other words, VfCtxtF verifies whether C is indeed an encryption of message K
under the given public key pk. This is possible because the encryption algorithm AE of HEG[CG]
(cf. Figure 1), and hence the encryption algorithm AE of HEG[CG], is deterministic.

Let SS′ = (SK′, SE′, SD′) be any standard-model IND-CCA-secure symmetric encryption
scheme. (Recall an implicit assumption is that some such scheme exists, since otherwise all asym-
metric encryptions schemes are by default IND-CCA preserving and the entire problem we are
considering is moot.) The construction of SS is in terms of SS′ and algorithms VfPK and VfCtxtF .
We use the notation 〈(·, ·)〉 to denote an injective, polynomial-time computable encoding of pairs
of strings as strings such that given 〈(M1, M2)〉, M1 and M2 can be recovered in polynomial time.
If s is a string and a ≤ b are integers then s[a . . . b] denotes the string consisting of bit positions
a through b of s. The algorithms constituting SS = (SK, SE, SD) are depicted in Figure 3. To
conclude the proof, we need only establish the following propositions.

Proposition 4.2 Symmetric encryption scheme SS is IND-CCA secure.

Proposition 4.3 Multi-message hybrid encryption scheme (HEG[CG], SS) is not IND-CCA secure.

12

SK(1k)

K ′ $

← SK′(1⌈k/2⌉)

K2
$

← {0, 1}⌊k/2⌋

Return K ′||K2

SE(K,M)
k ← |K|
K ′ ← K[1 . . . ⌈k/2⌉]
K2 ← K[1 + ⌈k/2⌉ . . . k]
C ′ ← SE′(K ′,M)
Parse M as 〈(M1,M2)〉
If the parsing fails then

Return C ′||1 EndIf
p ← VfPK(1k,M1)
c ← VfCtxtF (1k,M1,K,M2)
If (p = 1 and c = 1) then

Return C ′||0
else Return C ′||1 EndIf

SD(K,C)
k ← |K|
K ′ ← K[1 . . . ⌈k/2⌉]
K2 ← K[1 + ⌈k/2⌉ . . . k]
Parse C as C ′||d, where d ∈ {0, 1}
M ′ ← SD′(K ′, C ′)
Parse M ′ as 〈(M1,M2)〉
If the parsing fails then

If d = 1 then Return M ′

else Return ⊥ EndIf
p ← VfPK(1k,M1)
c ← VfCtxtF (1k,M1,K,M2)
If (d = 0 and p = 1 and c = 1) then

Return M ′ EndIf
If (d = 1 and (p 6= 1 or c 6= 1)) then

Return M ′ EndIf
Return ⊥

Figure 3: Algorithms of the symmetric encryption scheme SS = (SK, SE, SD) for the proof of
Theorem 4.1. Above, 〈(M1, M2)〉 denotes an encoding of the pair of strings (M1, M2) as a string.

Proof of Proposition 4.2: Let us first provide some intuition. Note that on input M , encryp-
tion algorithm SE(K ′

1||K2, ·) uses the encryption algorithm SE′ of an IND-CCA-secure scheme to

compute C ′ $

← SE′(K ′
1, M) and outputs C ′||0 or C ′||1, depending on whether M has some “spe-

cial” form or not. The ciphertext ends with 0 if M parses as a pair (M1, M2) such that algorithms
VfPK, VfCtxtF indicate that M1 is a (HEG[CG], k)-valid public key and M2 ∈ [AE(M1, K

′
1||K2)]. The

decryption algorithm SD(K ′
1||K2, ·) on input C ′||d, where d is a bit, computes M ′ ← SD′(K ′

1, C
′)

and returns M ′ only if either M ′ is of the special form and d = 0, or M ′ is not of this form and d = 1.
Therefore, an obvious strategy for an adversary against SS is to query its oracle SE(K, LR(·, ·, b))
on a pair of messages such that one of them is of this special form and the other is not. Using
the unique decryptability of AE and the fact that K2 is chosen at random, independently from
the adversary’s view, we show that it cannot find such queries except with negligible probability.
Moreover, we show that any strategy for the adversary can be employed by an attacker against
scheme SS′ to win its game. Details follow.

Let S be a legitimate polynomial-time adversary attacking SS. We will construct a legitimate
polynomial-time adversary S

′ such that

Advind-cca
SS,S (k) ≤ Advind-cca

SS
′,S′ (⌈k/2⌉) +

O(Q(k))

2⌊k/2⌋
, (5)

where Q is a polynomial upper bounding the total number of queries made by S to its different
oracles. Since SS′ is assumed IND-CCA secure, the advantage function associated to S

′ above is
negligible, and thus so is the advantage function associated to S. To complete the proof, we need
to specify adversary S

′ and prove Equation (5).

Adversary S
′ is given input 1⌈k/2⌉ and has access to oracles SE′(K ′

1, LR(·, ·, b)) and SD′(K ′
1, ·). Its

goal is to guess the bit b. It runs S on input 1k. In this process, S will query its two oracles
SE(K, LR(·, ·, b)) and SD(K, ·). To answer a query to the first of these oracles, S

′ forwards the
query to its oracle SE′(K ′

1, LR(·, ·, b)), appends 1 to the oracle’s reply and returns the result to S.

13

To answer a query to the second oracle, S
′ checks the last bit of the query. If it is 0, S

′ returns ⊥
to S. Otherwise, it removes the last bit, forwards the result to its oracle SD′(K ′

1, ·), and returns
the answer to S. When S outputs its guess b′, S

′ returns b′.

We now analyze S
′. Consider the experiment in which S

′ attacks SS′. We define the following
events.

Succ(S′) : S
′ is successful, meaning its output equals the challenge bit b

BadE : S makes a query to oracle SE(K, LR(·, ·, b)) in which one of the messages can be

parsed as 〈(M1, M2)〉 such that M1 is a (HEG[CG], k)-valid public key and

M2 ∈ [AE(M1, K)]
BadD : S makes a query to oracle SD(K, ·) that can be parsed as C ′||d, where d is a bit,

such that SD′(K ′
1, C

′) = 〈(M1, M2)〉, where M1 is a (HEG[CG], k)-valid public key

and M2 ∈ [AE(M1, K)]

For the experiment in which S attacks SS, we define the following event.

Succ(S) : S is successful, meaning its output equals the challenge bit b

We claim that if events BadE and BadD do not occur, then S
′ simulates perfectly the environment

provided to S in its attack against SS. First, note that answers to queries to oracle SE(K, LR(·, ·, b))
can only be off by the last bit. In the absence of the “bad” events, each ciphertext returned to S

as a reply to a query to oracle SE(K, LR(·, ·, b)) has 1 as the last bit. This is also the case in S’s
real attack. If S queries SD(K, ·) with a ciphertext C ′||0, assuming events BadE and BadD do not
occur, S

′ gives S the response it would get in the real attack, namely ⊥. Since S is legitimate, if
it queries oracle SD(K, ·) with a ciphertext C ′||1, then C ′ must not have previously been returned
by oracle SE′(K ′

1, LR(·, ·, b)). Thus S
′ can legitimately make query C ′ to its oracle SD′(K ′

1, ·). If
M is the response, then, assuming that events BadE and BadD do not occur, the answer S expects
is exactly M . Therefore,

Pr
[

Succ(S′)
]

≥ Pr
[

Succ(S′) | ¬BadE ∧ ¬BadD
]

− Pr [BadE ∨ BadD]

≥ Pr [Succ(S)] − Pr [BadE ∨ BadD] .

We now provide an upper bound for the probability of event BadE∨BadD. Let qe(k) and qd(k) be the
number of queries S makes to oracles SE(K, LR(·, ·, b)) and SD(K, ·), respectively, on input 1k. We
observe that if M1 is a (HEG[CG], k)-valid public key, then for any M2 ∈ {0, 1}∗, there exists a unique
K ′ ∈ [SK(1k)] such that M2 ∈ [AE(M1, K

′)]. Recall that the key for oracles SE(K, LR(·, ·, b)) and
SD(K, ·) is K = K ′

1||K2, where K2 is chosen uniformly at random from {0, 1}⌊k/2⌋ and is indepen-
dent from S’s view. Therefore, for any query made by S to oracle SE(K, LR(·, ·, b)), the probability
that one of the messages in the query parses as 〈(M1, M2)〉 such that M1 is a (HEG[CG], k)-valid
public key and M2 ∈ [AE(M1, K)] is at most 2/2⌊k/2⌋. Similarly, for any query C ′||d, where d
is a bit, made by S to oracle SD(K, ·), the probability that SD′(K ′

1, C
′) = M ′, where M ′ parses

as 〈(M1, M2)〉, M1 is a (HEG[CG], k)-valid public key and M2 ∈ [AE(M1, K)] is at most 1/2⌊k/2⌋.
Therefore,

Pr [BadE ∨ BadD] ≤
2qe(k) + qd(k)

2⌊k/2⌋
≤

2 · Q(k)

2⌊k/2⌋
,

where Q(k) = qe(k) + qd(k). Hence

Advind-cca
SS

′,S′ (⌈k/2⌉) = 2 · Pr
[

Succ(S′)
]

− 1 ≥ 2 ·

(

Pr [Succ(S)] −
O(Q(k))

2⌊k/2⌋

)

− 1

14

= Advind-cca
SS,S (k) −

O(Q(k))

2⌊k/2⌋
.

Rearranging terms gives Equation (5).

Proof of Proposition 4.3: We define a hybrid adversary H attacking (HEG[CG], SS). H is
given inputs pk = ((q, g, X), fk) and Ca and has access to oracles SE(K, LR(·, ·, b)), SD(K, ·), and
AD(sk, ·), where sk = ((q, g, x), fk). Its goal is to guess the challenge bit b. By the definition
of experiment Expind-cca

HEG[CG],SS,H
(k), pk is a (HEG[CG], k)-valid public key and Ca ∈ [AE(pk, K)].

Therefore, 〈(pk, Ca)〉 is a message which, when encrypted with SE(K, ·), yields a ciphertext that
has last bit 0. We observe that for any string C chosen at random from {0, 1}|Ca| \ {Ca}, the
probability that K = AD(sk, C) is 0 (since AE(pk, K) = Ca and AE is deterministic), i.e., the
probability that C ∈ [AE(pk, K)] is 0. Hence 〈(pk, C)〉 is a message which, when encrypted with
SE(K, ·), yields a ciphertext that has last bit 1. (If C /∈ [AE(pk, K)], then the last bit will be 1.)
Thus, adversary H can construct two messages for which it can guess with probability 1 the last
bit of the corresponding ciphertext. Using this information it can then guess the challenge bit.
Details follow.

Adversary H chooses C at random from {0, 1}|Ca| \ {Ca}, makes a query 〈(pk, Ca)〉, 〈(pk, C)〉 to
oracle SE(K, LR(·, ·, b)), parses the response as C ′||d, where d is a bit, and returns d. The running
time of H is clearly polynomial in k. We claim that Advind-cca

HEG[CG],SS,H
(k) = 1. To prove this, we

consider the event

Succ(H) : H is successful, meaning its output equals the challenge bit b

If challenge bit b is 0, then the response to H ’s query is a ciphertext that has last bit 0. If bit b is
1, then the response is a ciphertext that has last bit 1. Thus

Pr [Succ(H)] =
1

2
+

1

2
= 1 .

Hence

Advind-cca
HEG[CG],SS,H

(k) = 2 · Pr [Succ(H)] − 1 = 1 ,

as desired.

Notice that the adversary constructed in the proof of Proposition 4.3 does not make any queries
to its oracles SD(K, ·) and AD(sk, ·).

Remark 4.4 An interesting question at this point may be why the proof of Theorem 4.1 fails
for the RO-model Hash ElGamal scheme HEG[CG] associated to a cyclic-group generator CG —it
must, since otherwise Theorem 3.1 would be contradicted— but succeeds for any instantiation of
this scheme. The answer is that symmetric encryption scheme SS, depicted in Figure 3 runs a
ciphertext verifier VfCtxtF for the asymmetric encryption scheme in question. In the case of the
RO-model scheme HEG[CG], any ciphertext verifier must query random oracles G and H. But as we
clarified in Section 2, SS does not have access to these oracles (although it might have access to its
own, independently chosen oracle Rs), and so cannot run such a ciphertext verifier. The adversary
of course does have access to G, H, but has no way to “pass” these objects to the encryption
algorithm of the symmetric encryption scheme. On the other hand, in the instantiated scheme, the
keys describing the functions instantiating the random oracles may be passed by the adversary to
the encryption algorithm of SS in the form of a message containing the public key, giving SS the

15

ability to run the ciphertext verifier. This might lead one to ask why SS does not have oracle access
to G, H. This is explained in Remark 2.1.

5 A generalization

In this section, we identify a subclass of IND-CCA-preserving asymmetric encryption schemes that
we call key-verifiable, ciphertext-verifiable IND-CCA-preserving asymmetric encryption schemes.
We show that such schemes exist in the RO model, but do not exist in the standard model. We then
discuss how this generalizes our results about the Hash El Gamal scheme. We begin by defining
the two properties mentioned above, namely, key verifiability and ciphertext verifiability.

Let AS = (AK, AE, AD) be an asymmetric encryption scheme. Let us say that a value pk is an
(AS, k)-valid public key if there exists a value sk such that (pk, sk) ∈ [AK(1k)]. We say that AS is
key verifiable if there exists a polynomial-time, possibly randomized algorithm VfPK (called the key
verifier) and a negligible function ν (called the error probability of VfPK) such that VfPK(1k, pk)
returns 1 with probability at least 1 − ν(k) if pk is an (AS, k)-valid public key, and returns 1 with
probability at most ν(k) otherwise. If AK has access to a random oracle, then VfPK is given access
to the same random oracle.

We say that asymmetric encryption scheme AS = (AK, AE, AD) is ciphertext verifiable if there
exists a polynomial-time, possibly randomized algorithm VfCtxt (called the ciphertext verifier) and
a negligible function ν (called the error probability of VfCtxt) such that, if VfCtxt is run on inputs
1k, pk, K, C, where pk is an (AS, k)-valid public key and K ∈ {0, 1}k, then VfCtxt returns 1 with
probability at least 1 − ν(k) if C ∈ [AE(pk, K)], and returns 1 with probability at most ν(k)
otherwise. If AE or AD access a random oracle, then VfCtxt is given access to the same random
oracle.

The following result will be used later.

Proposition 5.1 Suppose AS is a RO-model asymmetric encryption scheme that is both key
verifiable and ciphertext verifiable. Let AS be any instantiation of AS via a poly-time family of
functions. Then AS is also both key verifiable and ciphertext verifiable.

Proof of Proposition 5.1: Let VfPK and VfCtxt be a key verifier and a ciphertext verifier for
AS, respectively. Let F be the poly-time family of functions used in AS to replace the random
oracle. Recall that a public key of AS contains a public key pk of AS and also a key fk specifying
an instance of F . We define algorithms VfPKF and VfCtxtF .

On inputs 1k, s, VfPKF attempts to parse s as a pair (pk, fk). If it fails, it returns 0. Otherwise, it
runs VfPK(1k, pk). If the result is 0, it returns 0. Otherwise, it verifies that fk ∈ {0, 1}fkl(k). If so,
it returns 1, if not it returns 0. Clearly, VfPKF is a key verifier for AS.

VfCtxtF is identical to VfCtxt except that the random oracle is replaced with the same instance of
F used in AS to replace the oracle.

We now observe that, in the RO model, there exist key-verifiable, ciphertext-verifiable IND-CCA-
preserving asymmetric encryption schemes, meaning the goal of key-verifiable, ciphertext-verifiable
asymmetric encryption is achievable in this model.

Theorem 5.2 Suppose there exists a cyclic-group generator for which the CDH problem is hard.
Then there exists a key-verifiable, ciphertext-verifiable RO-model asymmetric encryption scheme
that is IND-CCA-preserving in the RO model.

16

Proof of Theorem 5.2: If the CDH problem is hard for cyclic-group generator CG,
then Theorem 3.1 guarantees that the associated Hash ElGamal asymmetric encryption scheme
HEG[CG], defined in Section 3, is IND-CCA preserving in the RO model. The proof of Theorem 3.1
defines a key verifier VfPK and a ciphertext verifier VfCtxt for HEG[CG], each having error proba-
bility 0.

Next, we show that in the standard model, there do not exist key-verifiable, ciphertext-
verifiable IND-CCA-preserving asymmetric encryption schemes, meaning the goal of key-verifiable,
ciphertext-verifiable asymmetric encryption is not achievable in this model.

Theorem 5.3 Let AS be a standard-model asymmetric encryption scheme that is both key veri-
fiable and ciphertext verifiable. Then AS is not IND-CCA preserving.

Theorem 5.3 is proved below. We first state and prove our final result.

Theorem 5.4 Let AS be a RO-model asymmetric encryption scheme that is both key verifiable
and ciphertext verifiable. Let AS be any instantiation of AS via a poly-time family of functions.
Then AS is not IND-CCA preserving.

Proof of Theorem 5.4: AS is a standard-model asymmetric encryption scheme. Proposition 5.1
implies that it inherits the key verifiability and ciphertext verifiability of AS. Theorem 5.3 then
implies that it is not IND-CCA preserving.

Note that Theorem 5.4 implies Theorem 4.1 because the Hash El Gamal scheme is a RO-model
scheme that is key verifiable and ciphertext verifiable. Theorem 5.4 is, however, more general, and
shows that the uninstantiability of the Hash El Gamal scheme arises not due to some “peculiar” use
of random oracles, but due to the fact that the scheme possesses the properties of key verifiability
and ciphertext verifiability.

Proof of Theorem 5.3. The proof is almost identical to the proof of Theorem 4.1. Accordingly,
we use the same notation and the previous results, and only indicate the differences. Let VfPK and
VfCtxt be a key verifier and a ciphertext verifier for AS, respectively. The main difference is that
now VfPK and VfCtxt can be randomized algorithms with non-zero error probabilities.

We present an IND-CCA-secure symmetric encryption scheme SS such that the mm-hybrid
encryption scheme (AS, SS) is not IND-CCA secure. This proves the theorem.

Let SS′ = (SK′, SE′, SD′) be any standard-model IND-CCA-secure symmetric encryption
scheme. The construction of SS is in terms of SS′ and algorithms VfPK and VfCtxt, and is ex-
actly as in the proof of Theorem 4.1. See Figure 3. To conclude the proof, we need only establish
the following propositions.

Proposition 5.5 Symmetric encryption scheme SS is IND-CCA secure.

Proposition 5.6 Multi-message hybrid encryption scheme (AS, SS) is not IND-CCA secure.

Proof of Proposition 5.5: Let S be a legitimate polynomial-time adversary attacking SS. We
will construct a legitimate polynomial-time adversary S

′ such that

Advind-cca
SS,S (k) ≤ Advind-cca

SS
′,S′ (⌈k/2⌉) +

O(Q(k))

2⌊k/2⌋
+ O(Q(k)) · ν(k) , (6)

where Q is a polynomial upper bounding the total number of queries made by S to its different
oracles, and ν is a negligible function related to the error probabilities of algorithms VfPK and

17

VfCtxt. Note that the last term is the only difference with Equation (5). Since SS′ is assumed
IND-CCA secure, the advantage function associated to S

′ above is negligible, and thus so is the
advantage function associated to S. To complete the proof, we need to specify adversary S

′ and
prove Equation (6).

Adversary S
′ is identical to the adversary in the proof of Proposition 4.2. The analysis of S

′ is
similar, but we need to take into account the possibility that algorithms VfPK and VfCtxt err. For
this reason, for the experiment in which S attacks SS, we define the following additional event.

Crct : Every time algorithms VfPK and VfCtxt are invoked, they return the correct value

We claim that if events BadE and BadD do not occur, then S
′ simulates perfectly the environment

provided to S in its attack against SS when algorithms VfPK and VfCtxt never err. First, note that
answers to queries to oracle SERs(K, LR(·, ·, b)) can only be off by the last bit. In the absence of
the “bad” events, each ciphertext returned to S as a reply to a query to oracle SERs(K, LR(·, ·, b))
has 1 as the last bit. This is also the case in S’s real attack when algorithms VfPK and VfCtxt are
always correct. If S queries SD(K, ·) with a ciphertext C ′||0, assuming events BadE and BadD do
not occur, S

′ gives S the response it would get in the real attack when algorithms VfPK and VfCtxt

are always correct, namely ⊥. Since S is legitimate, if it queries oracle SD(K, ·) with a ciphertext
C ′||1, then C ′ must not have previously been returned by oracle SE′(K ′

1, LR(·, ·, b)). Thus S
′ can

legitimately make query C ′ to its oracle SD′(K ′
1, ·). If M is the response, then, assuming that

events BadE and BadD do not occur, the answer S expects when algorithms VfPK and VfCtxt are
always correct is exactly M . Therefore,

Pr
[

Succ(S′)
]

≥ Pr
[

Succ(S′) | ¬BadE ∧ ¬BadD
]

− Pr [BadE ∨ BadD]

≥ Pr [Succ(S) | Crct] − Pr [BadE ∨ BadD]

≥ Pr [Succ(S)] − Pr [¬Crct] − Pr [BadE ∨ BadD] .

We now provide an upper bound for the probability of event ¬Crct. (The bound for BadE∨BadD is
identical to the one in the proof of Proposition 4.2.) Let qe(k) and qd(k) be the number of queries
S makes to oracles SERs(K, LR(·, ·, b)) and SD(K, ·), respectively, on input 1k. Let ν1 be the error
probability of key verifier VfPK, and ν2 the error probability of ciphertext verifier VfCtxt. Then

Pr [¬Crct] ≤ qe(k) · (ν1(k) + ν2(k)) + qd(k) · (ν1(k) + ν2(k)) = Q(k) · ν(k) ,

where Q(k) = qe(k) + qd(k) and ν(k) = ν1(k) + ν2(k).

Hence

Advind-cca
SS

′,S′ (⌈k/2⌉) = 2 · Pr
[

Succ(S′)
]

− 1 ≥ 2 ·

(

Pr [Succ(S)] − Q(k) · ν(k) −
O(Q(k))

2⌊k/2⌋

)

− 1

= Advind-cca
SS,S (k) − O(Q(k)) · ν(k) −

O(Q(k))

2⌊k/2⌋
.

Rearranging terms gives Equation (6).

Proof of Proposition 5.6: We define a hybrid adversary H attacking (AS, SS) exactly as in the
proof of Proposition 4.3. We claim that Advind-cca

AS,SS,H (k) ≥ 1 − 2−k − ν(k), where ν is a negligible
function related to the error probabilities of algorithms VfPK and VfCtxt. The analysis is similar
to the one in the proof of Proposition 4.3, but we need to take into account the additional event

Crct : Every time algorithms VfPK and VfCtxt are invoked, they return the correct value,

18

and the possibility that K = AD(sk, C), where C is chosen at random from {0, 1}|Ca| \ {Ca}. The
latter can happen with probability at most 2−k. I.e., the probability that C ∈ [AE(pk, K)] is at
most 2−k. Hence 〈(pk, C)〉 is a message which, when encrypted with SE(K, ·), yields a ciphertext
that with overwhelming probability has last bit 1. (If C /∈ [AE(pk, K)], then the last bit will be
1.) Assume that event Crct occurs. If challenge bit b is 0, then the response to H ’s query is a
ciphertext that has last bit 0. If bit b is 1, then with probability at least 1− 2−k, the response is a
ciphertext that has last bit 1. Thus

Pr [Succ(H)] ≥ Pr [Succ(H) | Crct] − Pr [¬Crct] ≥
1

2
·

(

1 −
1

2k

)

+
1

2
− Pr [¬Crct]

If ν1 is the error probability of key verifier VfPK, and ν2 is the error probability of ciphertext verifier
VfCtxt, then Pr [¬Crct] ≤ ν1(k) + ν2(k). Hence

Advind-cca
AS,SS,H (k) = 2 · Pr [Succ(H)] − 1 ≥ 1 − 2−k − 2 · (ν1(k) + ν2(k)) = 1 − 2−k − ν(k) ,

where ν(k) = 2 · (ν1(k) + ν2(k)).

References

[1] M. Agarwal, N. Saxena and N. Kayal, “PRIMES is in P,” Preprint. Available at http://www.

cse.iitk.ac.in/news/primality.html, August 6, 2002.

[2] J. Baek, B. Lee and K. Kim, “Secure length-saving ElGamal encryption under the Computational
Diffie-Hellman assumption,” Proceedings of the 1900 Australasian Conference on Information Security
and Privacy– ACISP, Lecture Notes in Computer Science Vol. 1841, E. Dawson, A. Clark and C. Boyd
ed., Springer-Verlag, 1900.

[3] J. Baek, B. Lee and K. Kim, “Provably secure length-saving public-key encryption scheme under
the computational Diffie-Hellman assumption,” ETRI Journal, 22(4), 2000.

[4] M. Bellare, A. Desai, E. Jokipii and P. Rogaway, “A concrete security treatment of symmet-
ric encryption: Analysis of the DES modes of operation,” Proceedings of the 38th Symposium on
Foundations of Computer Science, IEEE, 1997.

[5] M. Bellare and P. Rogaway, Random oracles are practical: a paradigm for designing efficient
protocols, First ACM Conference on Computer and Communications Security, ACM, 1993.

[6] R. Canetti, U. Feige, O. Goldreich and M. Naor, “Adaptively secure multi-party computa-
tion,” Proceedings of the 28th Annual Symposium on the Theory of Computing, ACM, 1996.

[7] R. Canetti, O. Goldreich, S. Halevi, “The random oracle methodology, revisited,” Proceedings
of the 30th Annual Symposium on the Theory of Computing, ACM, 1998.

[8] J.-S. Coron, H. Handschuh, M. Joye, P. Paillier, D. Pointcheval, C. Tymen, “GEM: A
Generic Chosen-Ciphertext Secure Encryption Method”, Topics in Cryptology – CT-RSA ’02, Lecture
Notes in Computer Science Vol. 2271, B. Preneel ed., Springer-Verlag, 2002.

[9] J.-S. Coron, H. Handschuh, M. Joye, P. Paillier, D. Pointcheval, C. Tymen, “Optimal
Chosen-Ciphertext Secure Encryption of Arbitrary-Length Messages,” Proceedings of the Fifth Inter-
national workshop on practice and theory in Public Key Cryptography (PKC’02), Lecture Notes in
Computer Science Vol. 1431, D. Naccache and P. Paillier eds., Springer-Verlag, 2002.

[10] R. Cramer and V. Shoup, “A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack,” Advances in Cryptology – CRYPTO ’98, Lecture Notes in Computer Science
Vol. 1462, H. Krawczyk ed., Springer-Verlag, 1998.

[11] R. Cramer and V. Shoup, “Design and analysis of practical public-key encryption schemes secure
against adaptive chosen ciphertext attack,” IACR ePrint archive Record 2001/108, 2001, http://

eprint.iacr.org/.

19

[12] T. ElGamal, “A public key cryptosystem and signature scheme based on discrete logarithms,” IEEE
Transactions on Information Theory, vol 31, 1985.

[13] A. Fiat and A. Shamir, “How to prove yourself: practical solutions to identification and signature
problems,” Advances in Cryptology – CRYPTO ’86, Lecture Notes in Computer Science Vol. 263,
A. Odlyzko ed., Springer-Verlag, 1986.

[14] E. Fujisaki, T. Okamoto, “Secure Integration of Asymmetric and Symmetric Encryption Schemes,”
Advances in Cryptology – CRYPTO ’99, Lecture Notes in Computer Science Vol. 1666, M. Wiener
ed., Springer-Verlag, 1999.

[15] S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of Computer and System Science,
Vol. 28, 1984, pp. 270–299.

[16] S. Goldwasser and Y. Taumann, “On the (in)security of the Fiat-Shamir paradigm,” Proceedings
of the 44th Symposium on Foundations of Computer Science, IEEE, 2003.

[17] S. Micali, “Computationally sound proofs,” SIAM Journal on Computing, Vol. 30, No. 4, 2000, pp.
1253-1298.

[18] J. B. Nielsen “Separating Random Oracle Proofs from Complexity Theoretic Proofs: The Non-
committing Encryption Case,” Advances in Cryptology – CRYPTO ’02, Lecture Notes in Computer
Science Vol. 2442, M. Yung ed., Springer-Verlag, 2002.

[19] T. Okamoto and D. Pointcheval “REACT: Rapid Enhanced-security Asymmetric Cryptosys-
tem Transform,” Topics in Cryptology – CT-RSA ’01, Lecture Notes in Computer Science Vol. 2020,
D. Naccache ed., Springer-Verlag, 2001.

[20] V. Shoup, “A proposal for an ISO standard for public key encryption”, IACR ePrint archive Record
2001/112, 2001, http://eprint.iacr.org/.

A Proof of Theorem 3.1

We explained the ideas behind this proof in Section 3. Here we provide the full adversary construc-
tions and analyses.

Proof setup. Let H be a polynomial-time hybrid adversary attacking (AS, SS). We will construct
polynomial-time adversaries S and C such that

Advind-cca
AS,SS,H (k) ≤ Advind-cca

SS,S (k) + O(Q(k)) · Advcdh
CG,C(k) +

O(Q(k)2)

2k
, (7)

where Q(k) is a polynomial upper bounding the number of queries made by H to the G and H
oracles. (This includes queries made directly by H and those made indirectly as a consequence of
H ’s queries to its ADG,H((q, g, x), ·) oracle.) Since SS is assumed IND-CCA secure and the CDH
problem is hard for CG, the advantage functions related to S and C above are negligible, and thus
so is the advantage function related to H . To complete the proof, we need to specify the adversaries
S,C and prove Equation (7).

Description of S. Adversary S is given input 1k and has access to oracles SERs(K, LR(·, ·, b)),
SDRs(K, ·), and Rs. Its goal is to guess the bit b. It begins with the following initializations.

((q, g, X), (q, g, x))
$

← AK(1k) ; y
$

← Zq ; Y ← gy ; W
$

← {0, 1}k ; Ca ← (Y, W) ;

T0
$

← {0, 1}k ; T1
$

← {0, 1}k − {T0}.

20

Subroutine GSim(Z)

If GT[Z] is not defined then GT[Z]
$

← {0, 1}k EndIf
Return GT[Z]

Subroutine HSim(L)
If HT[L] is defined then return it as the answer EndIf

(dec, gs)
$

← KeyTest(L) ; HT[L]
$

← Zq

If dec = 0 then return HT[L] as the answer EndIf
If dec = 1 then output gs (as a guess to the value of challenge bit b) and halt EndIf

Subroutine KeyTest(L)
dec ← 1
For i = 1, . . . , k do

Ci
0[L]

$

← SERs(K,LR(T0, T0, b)) ; If SDRs(L,Ci
0[L]) 6= T0 then dec ← 0 EndIf

Ci
1[L]

$

← SERs(K,LR(T1, T1, b)) ; If SDRs(L,Ci
1[L]) 6= T1 then dec ← 0 EndIf

EndFor
If dec = 0 return (0, 0) EndIf

For i = 1, . . . , k do Ci[L]
$

← SERs(K,LR(T0, T1, b)) ; T i ← SDRs(L,Ci[L]) EndFor
If T 1 = T 2 = · · · = T k = T0 then return (1, 0) EndIf
If T 1 = T 2 = · · · = T k = T1 then return (1, 1) EndIf
Return (0, 0)

Figure 4: Subroutines defined by S and used to simulate H ’s oracles.

Then it runs H on inputs public key (q, g, X) and ciphertext Ca. In the process H will query its
oracles

G, H, Rs, SERs(K, LR(·, ·, b)), SDRs(K, ·), ADG,H((q, g, x), ·) . (8)

S will answer these queries. To that end, it defines the subroutines shown in Figure 4. It answers
a query Z to G by running GSim(Z) and returning the answer to H . It answers a query L to H by
running HSim(L) and returning the answer to H . It answers queries to the SERs(K, LR(·, ·, b)) and
Rs oracles via its own oracles of the same name. It answers each query C to the SDRs(K, ·) oracle
using its own decryption oracle, unless there exist i, j and L such that L was queried to H and either
C = Ci

j [L] or C = Ci[L]. In that case, S aborts. Since S possesses the secret key (q, g, x), it can

answer queries to ADG,H((q, g, x), ·) by performing the computation of the decryption algorithm,
replacing calls that the latter makes to G or H by calls to the relevant subroutines just mentioned.
If H runs to completion (S can output its guess as to the value of b, and halt, before this), then S

outputs whatever H outputs.

Description of C. Adversary C is given inputs q, g, X, Y , where X, Y ∈ 〈g〉 have been chosen
uniformly at random. Its goal is to compute gxy where gx = X and gy = Y . Let k ← |〈2q + 1〉|. C

begins with the following initializations.

K
$

← SK(1k) ; b
$

← {0, 1} ; W
$

← {0, 1}k ; Ca ← (Y, W) .

Then it runs H on inputs public key (q, g, X) and ciphertext Ca. In the process H will query
the oracles listed in Equation (8). C will answer these queries. Queries to Rs are simulated the
standard way, by returning a random value for each new query and the previously returned value
for each repeated query. To simulate the rest of the oracles it defines the subroutines shown in

21

Subroutine GSim(Z)

If GT[Z] is not defined then GT[Z]
$

← {0, 1}k EndIf
Return GT[Z]

Subroutine HSim(L)

If HT[L] is not defined then HT[L]
$

← Zq EndIf
Return HT[L]

Subroutine ADSim(Y ′,W ′)
If there is no L such that gHT[L] = Y ′ then return ⊥ EndIf
Let L be such that gHT[L] = Y ′

Z ′ ← XHT[L] ; T ′ ← GSim(Z ′) ; K ′ ← T ′ ⊕ W ′ ; Return K ′

Figure 5: Subroutines defined by C and used to simulate H ’s oracles.

Figure 5. It answers a query Z to G by running GSim(Z) and returning the answer to H . It answers
a query L to H by running HSim(L) and returning the answer to H . Since it possesses K and
b, it can answer queries to the SERs(K, LR(·, ·, b)) or SDRs(K, ·) oracles by simply performing the
relevant computation and returning the answer. It answers a query (Y ′, W ′) to ADG,H((q, g, x), ·)
by running ADSim(Y ′, W ′) and returning the answer. When H has terminated, C picks Z at
random from the set {Z : GT[Z] is defined } and outputs Z.

Analysis. For the analysis, define the following experiment.

Expcdh
CG,C(k) : (q, g)

$

← CG(1k) ; x, y
$

← Zq ; Z ← C(q, g, gx, gy)

If Z = gxy then return 1 else return 0

We let PrC [·], PrS [·], and PrH [·] denote the probabilities in experiments Expcdh
CG,C(k),

Expind-cca
SS,S (k), and Expind-cca

AS,SS,H (k), respectively.

Let ((q, g, X), (q, g, x)) ∈ [AK(1k)] and K ∈ [SK(1k)]. We define the following events relating
to H ’s execution on inputs public key (q, g, X) and ciphertext Ca = (Y, W) where gy = Y . These
events are defined in any of the three experiments we are considering.

GH : There exists a time at which gxy is queried to G but K has not been queried to H
HG : There exists a time at which K has been queried to H but gxy has not been queried

to G
Succ(H) : H is successful, meaning its output equals the challenge bit b.

We clarify that the queries referred to above include both direct and indirect queries of H , but, in
the case of Expind-cca

AS,SS,H (k), they do not include the queries to G and H made by the computation

Ca ← AEG,H((q, g, X), ·) that initializes the experiment. (We are only considering queries to G, H
resulting from the execution of H .) The main claims related to the analysis are:

PrH [HG ∨ (Succ(H) ∧ ¬HG ∧ ¬GH)] ≤ PrS

[

Expind-cca
SS,S (k) = 1

]

+
O(Q(k))

2k
(9)

PrH [GH] ≤ Q(k) · PrC

[

Expcdh
CG,C(k) = 1

]

+
O(Q(k)2)

2k
. (10)

Let us see how these enable us to conclude the proof, and then return to prove them. We have:

1

2
· Advind-cca

AS,SS,H (k) +
1

2

22

= PrH

[

Expind-cca
AS,SS,H (k) = 1

]

= PrH [Succ(H)]

= PrH [(Succ(H) ∧ HG) ∨ (Succ(H) ∧ ¬HG ∧ ¬GH)] + PrH [Succ(H) ∧ GH]

≤ PrH [HG ∨ (Succ(H) ∧ ¬HG ∧ ¬GH)] + PrH [GH]

≤ PrS

[

Expind-cca
SS,S (k) = 1

]

+
O(Q(k))

2k
+ Q(k) · PrC

[

Expcdh
CG,C(k) = 1

]

+
O(Q(k)2)

2k

=
1

2
· Advind-cca

SS,S (k) +
1

2
+ Q(k) · Advcdh

CG,C(k) +
O(Q(k)2)

2k
.

Re-arranging terms and simplifying, we get Equation (7). To complete the proof, we must establish
Equations (9) and (10).

Proof of Equation (9). An important ingredient in this proof is the following lemma that
characterizes what Subroutine KeyTest accomplishes.

Lemma A.1 If L = K then KeyTest(L) returns (1, b), while if L 6= K then

Pr
[

(dec, gs)
$

← KeyTest(L) : (dec, gs) = (1, 1 − b)
]

≤ 4−k .

In other words, if L 6= K, then with high probability either the test indicates this by returning
dec = 0 or it successfully computes the value of the challenge bit b. Above, the probability is over
the coin tosses made by the SERs(K, LR(·, ·, b)) oracle called in KeyTest, with K and b fixed.

Proof of Lemma A.1: The fact that KeyTest(L) returns (1, b) when L = K is a consequence
merely of the unique decrytability of SS, namely the fact that for all K ∈ [SK(1k)] and all M ∈
{0, 1}∗ we have SDRs(K, SERs(K, M)) = M with probability one, the probability being over the
coin tosses of SE.

Now assume L 6= K. Let Pr [·] denote the probability taken over the coin tosses of SERs(K, ·),
with K fixed. Let

P0 = Pr
[

SDRs(L,SERs(K, T0)) = T0

]

and

P1 = Pr
[

SDRs(L,SERs(K, T1)) = T1

]

.

The probability that dec = 1 at the end of the first For loop in subroutine KeyTest is P k
0 P k

1 and
the probability that T1 = · · · = T k = T1−b is at most (1 − Pb)

k. So we have

Pr
[

(dec, gs)
$

← KeyTest(L) : (dec, gs) = (1, 1 − b)
]

= P k
0 P k

1 · (1 − Pb)
k

≤ P k
b · (1 − Pb)

k

= [Pb(1 − Pb)]
k

≤ 4−k .

The last line is true because the function f : [0, 1] → R defined by f(x) = x(1 − x) attains its
maximum at x = 1/2 and the value of this maximum is 1/4. This concludes the proof.

Returning to the proof of Equation (9), we define the following events in Expind-cca
SS,S (k).

FailTest : There exists L 6= K such that L was queried to H
and KeyTest(L) returned (1, 1 − b) in subroutine HSim(L)

Illegit : There exist i, j and L such that L was queried to H

and either Ci
j [L] or Ci[L] was queried by H to SDRs(K, ·).

23

We obtain Equation (9) as shown below. Justifications follow the formulas.

PrH [HG ∨ (Succ(H) ∧ ¬HG ∧ ¬GH)]

≤ PrS [HG ∨ (Succ(H) ∧ ¬HG ∧ ¬GH) | ¬FailTest] + PrS [FailTest] (11)

≤ PrS

[

Expind-cca
SS,S (k) = 1

]

+ PrS [Illegit] + PrS [FailTest] (12)

≤ PrS

[

Expind-cca
SS,S (k) = 1

]

+ PrS [Illegit | ¬FailTest] + 2 · PrS [FailTest]

≤ PrS

[

Expind-cca
SS,S (k) = 1

]

+
O(Q(k))

2k
. (13)

To justify Equation (11), observe that if event FailTest does not happen, then the simulation of H

done by S is correct. (If HG occurs, then prior to this gxy was not a query to G, so the simulation of
the G oracle is correct. If ¬HG∧¬GH occurs, then also gxy was not a query to G, so the simulation
of the G oracle is correct. If FailTest does not occur, then the replies to queries to H are correct.)

To justify Equation (12), first note that if event HG occurs, then the L = K case of Lemma A.1
tells us that S halts with correct output. On the other hand, if neither HG nor GH occur, then S

halts with correct output as long as H does. But Expind-cca
SS,S (k) can still fail to return 1 because

S aborted due to the occurrence of Illegit. (When the latter occurs, S aborts to avoid calling its
oracle SDRs(K, ·) on a ciphertext returned by its SERs(K, LR(·, ·, b)) oracle.)

To justify Equation (13), first note that Lemma A.1 together with the fact that the total number
of queries is at most Q(k) implies that PrS [FailTest] ≤ Q(k)/4k. Next, we observe that if FailTest

does not occur, then H gets no information about T0, T1 other than that they are random distinct
k-bit strings. The unique decryptability of SS then tells us that PrS [Illegit | ¬FailTest] is bounded
above by the probability of guessing either T0 or T1 in Q(k) tries, and this is O(Q(k)/2k).

Proof of Equation (10). We define the following event in Expcdh
CG,C(k).

FailDec : There exist times t′ < t and Y ′, W ′, L such that all the following hold:

– query (Y ′, W ′) was made to ADG,H((q, g, x), ·) at time t′ and ADSim(Y ′, W ′)
returned ⊥

– query L was made to H at time t

– gHT[L] = Y ′.

The answers provided by ADSim(·, ·) are correct exactly when this event does not occur. Further-
more, if there is a time at which query gxy to G occurs and GH is true, then query K to H has not
occurred at this time, and thus the answers to queries to H have been correct. Hence

PrC

[

Expcdh
CG,C(k) = 1

]

≥
PrH [GH] − PrC [FailDec]

Q(k)
.

Re-arranging, we get

PrH [GH] ≤ Q(k) · PrC

[

Expcdh
CG,C(k) = 1

]

+ PrC [FailDec] . (14)

At any point in time, a query L to H has probability at most ℓ/q of making FailDec happen, where
ℓ is the number of queries that have been made to ADG,H((q, g, x), ·) at this time. Recall that
k = |〈2q + 1〉| and thus q ≥ 2k−2. Putting these observations together we get

PrC [FailDec] ≤
Q(k)2

q
≤

Q(k)2

2k−2
=

O(Q(k)2)

2k
.

Putting this together with Equation (14) completes the proof of Equation (10).

24

B Any IND-CCA-secure scheme is IND-CCA preserving

We remarked in Section 1.2 that any asymmetric encryption scheme that is IND-CCA secure is
also IND-CCA preserving. (The interesting thing about the Hash ElGamal scheme is that it is
not IND-CCA secure but is still IND-CCA preserving.) For completeness, we state and and prove
this formally here. We begin by recalling the definition of IND-CCA security of an asymmetric
encryption scheme.

Definition. This follows [4]. Associate to AS, an adversary A, and k ∈ N, the following experi-
ment.

Experiment Expind-cca
AS,A (k)

Randomly choose RO Ra : {0, 1}∗ → {0, 1}

(pk, sk)
$

← AKRa(1k) ; b
$

← {0, 1}

Run A with input 1k, pk and oracles AERa(pk, LR(·, ·, b)), ADRa(sk, ·), Ra

Let d denote the output of A

If d = b then return 1 else return 0.

We say that adversary A is legitimate if it never queries ADRa(sk, ·) with a ciphertext previously
returned by AERs(pk, LR(·, ·, b)). Asymmetric encryption scheme AS is said to be IND-CCA secure
if the function

Advind-cca
AS,A (k) = 2 · Pr

[

Expind-cca
AS,A (k) = 1

]

− 1

is negligible for all legitimate polynomial-time adversaries A. IND-CPA security is defined similarly,
except the adversary is not given access to oracle ADRa(sk, ·).

Result. The following holds in both the standard and the RO models.

Theorem B.1 Let AS be an IND-CCA-secure asymmetric encryption scheme. Then AS is IND-
CCA preserving.

Proof of Theorem B.1: Let AS = (AK, AE, AD) be an IND-CCA-secure asymmetric encryption
scheme and let SS = (SK, SE, SD) be an IND-CCA-secure symmetric encryption scheme. We will
show that for any polynomial-time legitimate hybrid adversary H attacking mm-hybrid encryption
scheme (AS, SS) there exist polynomial-time legitimate adversaries A and S such that for any k ∈ N

Advind-cca
AS,SS,H (k) ≤ 2Advind-cca

AS,A (k) + Advind-cca
SS,S (k) . (15)

Since AS and SS are assumed IND-CCA secure, the advantage functions related to A and S above
are negligible, and thus so is the advantage function related to H . To complete the proof, we need
to specify the adversaries A,S and prove Equation (15).

We first associate to (AS, SS), H , and k ∈ N, the following experiments, for i ∈ {1, 2, 3, 4}.

Experiment Expi
AS,SS,H (k)

Randomly choose RO R: {0, 1}∗ → {0, 1}

Define ROs Rs(·) = R(0‖·) and Ra(·) = R(1‖·)

(pk, sk)
$

← AKRa(1k) ; K
$

← SKRs(1k) ; K ′ $

← SKRs(1k)

If i = 1 or i = 4 then Ca
$

← AERa(pk, K) else Ca
$

← AERa(pk, K ′) EndIf

If i = 1 or i = 2 then run H with inputs pk, Ca and oracles

25

SERs(K, LR(·, ·, 0)), SDRs(K, ·), ADRa(sk, ·), R

Else run H with inputs pk, Ca and oracles

SERs(K, LR(·, ·, 1)), SDRs(K, ·), ADRa(sk, ·), R

EndIf

Let d denote the output of H

Return d.

For i ∈ {1, 2, 3, 4}, let Pi denote the probability that Expi
AS,SS,H (k) returns 1. It is easy to see that

Advind-cca
AS,SS,H (k) = P4 − P1 = (P4 − P3) + (P3 − P2) + (P2 − P1) .

We will show that there exist legitimate polynomial-time adversaries A
′, S, and A

′′ such that

P4 − P3 = Advind-cca
AS,A′ (k) , P3 − P2 = Advind-cca

SS,S (k) , and P2 − P1 = Advind-cca
AS,A′′ (k) . (16)

We obtain Equation (15) from the above by setting A = A
′ if Advind-cca

AS,A′ (k) ≥ Advind-cca
AS,A′′ (k), and

A = A
′′ otherwise. We now define adversaries A

′, A
′′, S and prove Equation (16).

Description of A
′. Adversary A

′ is given inputs 1k, pk and has access to oracles
AERa(pk, LR(·, ·, b)), ADRa(sk, ·), and Ra. Its goal is to guess the bit b. It begins with the fol-
lowing initializations.

K
$

← {0, 1}k ; K ′ $

← {0, 1}k

Make query (K ′, K) to AERa(pk, LR(·, ·, b)), and let Ca be the response

Then it runs H on inputs public key pk and ciphertext Ca. In the process H will query its oracles

Ra, Rs, SERs(K, LR(·, ·, b)), SDRs(K, ·), ADRa(sk, ·) . (17)

A
′ will answer these queries. Queries to Rs are simulated the standard way, by returning a random

value for each new query and the previously returned value for each repeated query. A
′ answers

queries to the ADRa(sk, ·) and Ra oracles via its own oracles of the same name. Since it possesses
K, it can answer queries to SDRs(K, ·) by simply performing the computation of the decryption
algorithm, replacing calls that the latter makes to Rs by the above-mentioned simulation, and
returning the answer. A

′ answers queries to SERs(K, LR(·, ·, b)) by using K to simulate oracle
SERs(K, LR(·, ·, 1)). When H halts and outputs d, A

′ outputs d.

Description of A
′′. Adversary A

′′ is identical to adversary A
′, except that it makes query

(K, K ′) to oracle AERa(pk, LR(·, ·, b)) and it answers queries to SERs(K, LR(·, ·, b)) by using K to
simulate oracle SERs(K, LR(·, ·, 0)).

Description of S. Adversary S is given input 1k and has access to oracles SERs(K, LR(·, ·, b)),
SDRs(K, ·), and Rs. Its goal is to guess the bit b. It begins with the following initializations.

K ′ $

← {0, 1}k ; (pk, sk)
$

← AKRa(1k) ; Ca
$

← AEpk(K ′)

Then it runs H on inputs public key pk and ciphertext Ca. In the process H will query the oracles
listed in Equation (17). S will answer these queries. Queries to Ra are simulated the standard
way, by returning a random value for each new query and the previously returned value for each
repeated query. S answers queries to the SERs(K, LR(·, ·, b)), SDRs(K, ·), and Rs oracles via its own
oracles of the same name. Since it possesses the secret key sk, it can answer queries to ADRa(sk, ·)

26

by simply performing the computation of the decryption algorithm, replacing calls that the latter
makes to Ra by the above-mentioned simulation, and returning the answer. When H halts and
outputs d, S outputs d.

Analysis. Clearly, if H is polynomial-time and legitimate, so are A
′, A

′′, and S. It is easy to see
that Equation (16) holds.

27

