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An Unbiased Detector of Curvilinear Structures
Carsten Steger

Abstract—The extraction of curvilinear structures is an important low-level operation in computer vision that has many applications.

Most existing operators use a simple model for the line that is to be extracted, i.e., they do not take into account the surroundings of

a line. This leads to the undesired consequence that the line will be extracted in the wrong position whenever a line with different

lateral contrast is extracted. In contrast, the algorithm proposed in this paper uses an explicit model for lines and their surroundings.

By analyzing the scale-space behavior of a model line profile, it is shown how the bias that is induced by asymmetrical lines can be

removed. Furthermore, the algorithm not only returns the precise subpixel line position, but also the width of the line for each line

point, also with subpixel accuracy.

Index Terms—Feature extraction, curvilinear structures, lines, scale-space, contour linking, low-level processing, aerial images,

medical images.

——————————   ✦    ——————————

1 INTRODUCTION

XTRACTING curvilinear structures, often simply called
lines, in digital images is an important low-level op-

eration in computer vision that has many applications. In
photogrammetric and remote sensing tasks, it can be used
to extract linear features, including roads, railroads, or riv-
ers, from satellite or low-resolution aerial imagery, which
can be used for the capture or update of data for geo-
graphic information systems [1]. In addition, it is useful in
medical imaging for the extraction of anatomical features,
e.g., blood vessels from an X-ray angiogram [2] or the bones
in the skull from a CT or MR image [3].

Previous work on line detection can be classified into
three categories. The first approach detects lines by consid-
ering the gray values of the image only [4], [5] and uses
purely local criteria, e.g., local gray value differences. Since
this will generate many false hypotheses for line points,
elaborate and computationally expensive perceptual group-
ing schemes have to be used to select salient lines in the
image [6], [7], [5]. Furthermore, lines cannot be extracted
with subpixel accuracy.

The second approach regards lines as objects having
parallel edges [8], [9]. First, the local line direction is deter-
mined for each pixel. Then two specially tuned edge detec-
tion filters are applied perpendicularly to the line, where
each filter detects either the left or right edge of the line.
The responses of each filter are combined nonlinearly [8].
The advantage of this approach is that, since derivatives of
Gaussian kernels are used, the procedure can be iterated in
scale-space to detect lines of arbitrary widths. However,
because the directional edge detection filters are not sepa-
rable, the approach is computationally expensive.

The final approach is to regard the image as a function
z(x, y) and extract lines from it by using differential geo-

metric properties. The basic idea behind these algorithms is
to locate the positions of ridges and ravines in the image
function. They can be further divided according to which
property they use.

The first subcategory defines ridges as points on a con-
tour line of the image where the curvature is maximum [3],
[10], [11]. One way to do this is to extract the contour lines
explicitly, to find the points of maximum curvature, and to
link the extracted points into ridges [10]. This scheme suf-
fers from two main drawbacks. First, since no contour lines
will be found for horizontal ridges, such ridges will be la-
beled as an extended peak. Furthermore, for ridges that have
a small gradient the contour lines become widely separated,
and thus hard to link. Another way to extract the maxima of
curvature on the contour lines is to give an explicit formula
for that curvature and its direction, and to search for maxima
in a curvature image [3], [11]. This procedure will also fail
for horizontal ridges. Furthermore, the ridge positions found
by this operator will often be in wrong positions [3], [12].

In the second subcategory, ridges are found at points
where one of the principal curvatures of the image assumes a
local maximum [13], [11]. For lines with a flat profile, it has
the problem that two separate points of maximum curvature
symmetrical to the true line position will be found [11].

In the third subcategory, ridges and ravines are detected
by locally approximating the image function by its second
or third order Taylor polynomial. The coefficients of this
polynomial are usually determined using the facet model,
i.e., by a least squares fit of the polynomial to the image
data over a window of a certain size [14], [15], [16], [17].
The direction of the line is determined from the Hessian
matrix of the Taylor polynomial. Line points are found by
selecting pixels that have a high second directional deriva-
tive perpendicular to the line direction. The advantage of
this approach is that lines can be detected with subpixel
accuracy [14]. However, because the convolution masks
that are used to determine the coefficients of the Taylor
polynomial are rather poor estimators for the first and second
partial derivatives, this approach usually leads to multiple
responses to a single line, especially when masks larger
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than 5 × 5 are used to suppress noise. Therefore, the ap-
proach does not scale well and cannot be used to detect
lines that are wider than the mask size. For these reasons, a
number of line detectors have been proposed that use
Gaussian masks to detect the ridge points [18], [19]. They
can be tuned for a certain line width by selecting an appro-
priate σ. It is also possible to select the appropriate σ for
each image point by iterating through scale space [18].
However, since the surroundings of the line are not mod-
eled, the extracted line position becomes progressively less
accurate as σ increases.

Few approaches to line detection consider extracting the
line width along with the line position. Most of them do
this by an iteration through scale-space while selecting the
scale, i.e., the σ, that yields the maximum of a scale-
normalized response as the line width [8], [18]. However,
this is computationally very expensive, especially if one is
only interested in lines in a certain range of widths. Fur-
thermore, these approaches will only yield a coarse esti-
mate of the line width, since the scale-space is quantized in
rather coarse intervals. A different approach is given in
[14], where lines and edges are extracted in one simultane-
ous operation. For each line point, two corresponding edge
points are matched from the resulting description. This ap-
proach has the advantage that lines and their correspond-
ing edges can, in principle, be extracted with subpixel accu-
racy. However, since a third-order facet model is used, the
same problems mentioned above apply. Furthermore, since
the approach does not use an explicit model for a line, the
location of the corresponding edge of a line is often not
meaningful, because the interaction between a line and its
corresponding edges is neglected.

In this paper, an approach to line detection is presented
that uses an explicit model for lines, and line profile mod-
els of increasing sophistication are discussed. A scale-
space analysis is carried out for each of the models. This
analysis is used to derive an algorithm in which lines and
their widths can be extracted with subpixel accuracy. The
algorithm uses a modification of the differential geometric
approach described above to detect lines and their corre-
sponding edges. Because Gaussian masks are used to es-
timate the derivatives of the image, the algorithm scales to
lines of arbitrary widths while always yielding a single
response. Furthermore, since the interaction between lines
and their corresponding edges is explicitly modeled, the
bias in the extracted line and edge position can be pre-
dicted analytically, and can thus be removed.

2 DETECTION OF LINE POINTS

2.1 Models for Line Profiles in 1D

Many approaches to line detection consider lines in 1D to
be bar-shaped, i.e., the ideal line of width 2w and height h is
assumed to have a profile given by
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The flatness of this profile is characteristic for many interest-
ing objects, e.g., roads in aerial images or printed characters.

However, the assumption that lines have the same contrast
on both sides is rarely true for real images. Therefore, asy-
metrical bar-shaped lines
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(a ∈  [0, 1]) are considered as the most common line profile
in this paper. General lines of height h can be obtained by
considering a scaled asymmetrical profile, i.e., hfa(x).

2.2 Detection of Lines in 1D

To derive the line detection algorithm, let us for the mo-
ment assume the lines z(x) do not have a flat profile as in (1)
and (2), but a “rounded” profile, e.g., a parabolic profile as
in [20]. Then it is sufficient to determine the points where
z′(x) vanishes. However, it is usually convenient to select
only salient lines. A useful criterion for salient lines is the
magnitude of the second derivative z′′ (x) in the point where
z′(x) = 0. Bright lines on a dark background have z′′ (x) ! 0,
while dark lines on a bright background have z′′ (x) @ 0.
Because of noise, this scheme will not yield good results for
real images. In this case, the first and second derivatives of
z(x) should be estimated by convolving the image with the
derivatives of the Gaussian smoothing kernel, since, under
very general assumptions, it is the only kernel that makes
the inherently ill-posed problem of estimating the deriva-
tives of a noisy function well-posed [21]. The Gaussian ker-
nels are given by:
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Thus, a scale-space description of the line profile can be
obtained [20]. The desirable properties of this approach are
that for the parabolic line profile the extracted position is
always the true line position, and that the magnitude of the
second derivative is always maximum at the line position.
Thus, salient lines can be selected based their second de-
rivative for all σ [20].

After the analysis of the parabolic profile has given us
the desirable properties a line extraction algorithm should
possess, let us now consider the more common case of a
bar-shaped profile for the rest of this paper. For this type
of profile without noise, no simple criterion that depends
only on z′(x) and z′′ (x) can be given, since z′(x) and z′′ (x)
vanish in the interval [−w, w]. However, if the bar profile
is convolved with the derivatives of the Gaussian kernel,
a smooth function is obtained in each case. The re-
sponses are:

rb(x, σ, w, h) = gσ(x) ∗  fb(x)

= h(φσ(x + w) − φσ(x − w))      (6)
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¢rb (x, σ, w, h) = ¢gs (x) ∗  fb(x)

= h(gσ(x + w) − gσ(x − w))      (7)

¢¢rb (x, σ, w, h) = ¢¢gs (x) ∗  fb(x)

= h ( ¢gs (x + w) − ¢gs (x − w)), (8)

where
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Fig. 1 shows the scale-space behavior of a bar profile with
w = 1 and h = 1. It can be seen that the bar profile gradually
becomes “round” at its corners. The first derivative van-
ishes only at x = 0 for all σ > 0 because of the infinite sup-
port of gσ(x). However, the second derivative ¢¢rb (x, σ, w, h)
does not take on its maximum negative value for small σ. In
fact, for σ ≤ 0.2 w it is very close to zero. Furthermore, there
are two distinct minima in the interval [−w, w]. It is, how-
ever, desirable for ¢¢rb (x, σ, w, h) to exhibit a clearly defined
minimum at x = 0, since salient lines are selected by this
value. This value of σ is given by the solution of the equa-
tion ∂/∂σ ( ¢¢rb (0, σ, w, h)) = 0. It can be shown that

s ≥
w

3
                                      (10)

has to hold. Furthermore, from this it is obvious that ¢¢rb (x, σ,

w, h) has its maximum negative response in scale-space for

s = w 3 . This means that the same scheme as described

above can be used to detect bar-shaped lines as well. How-

ever, the restriction on σ should be observed to ensure that
salient lines can be selected based of the magnitude of their
second derivative.

In addition to this, (7) and (8) can be used to derive
how the edges of a bar-shaped line behave in scale-space.
The positions of the edges are given by the maxima of
| ¢rb (x, σ, w, h)| or the zero crossings of ¢¢rb (x, σ, w, h). In the
one-dimensional case, these definitions are equivalent. As
will be discussed in Section 4, the implementation in 2D
uses the maxima of the gradient in the direction perpen-
dicular to the line. This will give the correct edge locations
unless the curvature of the line is very high compared to σ
[22], in which case the width will be extracted too small.
Since this scale-space analysis involves equations which
cannot be solved analytically, the calculations must be done
using a root finding algorithm [23]. Fig. 2 shows the loca-
tion of the line and its corresponding edges for w ∈  [0, 4]

and σ = 1. From (8) it is apparent that the edges of a line can
never move closer than σ to the real line, and, thus, the
width of the line will be estimated significantly too large for
narrow lines. This effect was also studied qualitatively in
the context of edges in [24] and [25], where a solution was
proposed based on edge focusing by successively applying
the filters with smaller values of σ. However, for the model
presented here it is possible to invert the map that describes
the edge position, and, therefore, the edges can be localized
very precisely once they are extracted from an image with-
out repeatedly applying the filter.

The discussion so far has assumed that lines have the
same contrast on both sides, which is rarely the case for real
images. Let us now turn to the asymmetrical bar-shaped
lines given by (2). Their responses are

ra(x, σ, w, a) = φσ(x + w) + (a − 1)φσ(x − w)            (11)

¢ra  (x, σ, w, a) = gσ(x + w) + (a − 1)gσ(x − w)            (12)

¢¢ra (x, σ, w, a) = ¢gs (x + w) + (a − 1) ¢gs (x − w).        (13)

The location where ¢ra (x, σ, w, a) = 0, i.e., the position of the
line, is given by

l
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This means that the line will be estimated in a wrong posi-
tion whenever the contrast is significantly different on both
sides of the line. The estimated position of the line will be
within the actual boundaries of the line as long as

Fig. 1. Scale-space behavior of the bar-shaped line fb when convolved with the derivatives of Gaussian kernels for x ∈  [−3, 3] and σ ∈  [0.2, 2].

Fig. 2. Location of a bar-shaped line and its edges with width w ∈  [0, 4]
for σ = 1.
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The location of the corresponding edges can again only be
computed numerically. Fig. 3 gives an example of the line
and edge positions for w = 1, σ = 1, and a ∈  [0, 1]. It can be
seen that the positions of the line and the edges are greatly
influenced by line asymmetry. As a gets larger, the line and
edge positions are pushed to the weak side, i.e., the side
with the smaller edge gradient.

Note that (14) gives an explicit formula for the bias of the
line extractor. Suppose that we knew w and a for each line
point. Then it would be possible to remove the bias from
the line detection algorithm by shifting the line back into its
proper position. Section 5 will describe the solution to this
problem.

From the above analysis, it is apparent that failure to
model the surroundings of a line, i.e., the asymmetry of its
edges, can result in large errors of the estimated line posi-
tion and width. Algorithms that fail to take this into ac-
count may not return very meaningful results. In case a
different line profile might be more appropriate [2], e.g., an
appropriately modified parabolic profile, the methodology
presented here can be used to model the behavior of the
profile in scale-space, and thus to increase precision.

2.3 Lines in 1D, Discrete Case

The analysis so far has been carried out for analytical func-
tions z(x). For discrete signals, only two modifications have
to be made. The first is the choice of how to implement the
convolution in discrete space. Integrated Gaussian kernels
[26] were chosen as convolutions masks, mainly because
the scale-space analysis of Section 2.2 directly carries over
to the discrete case. An additional advantage is that they
give automatic normalization of the masks and a direct cri-
terion on how many coefficients are needed for a given ap-
proximation error. The integrated Gaussian is obtained if

one regards the discrete image zn as a piecewise constant

function z(x) = zn for x n nŒ - +
1
2

1
2

,2 . In this case, the

convolution masks are given by:
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For the implementation, the approximation error e is set

to 10
−4

 because for images that contain gray values in the

range [0, 255] this precision is sufficient. The number of

coefficients used is 2  x0  + 1, where x0 is given by gσ(x0) <

e/2 for ¢gn,s , and analogously for the other kernels. Of

course, other schemes, like discrete analog of the Gaussian
[26] or a recursive computation [27], are suitable as well.

The second problem that must be solved is the determi-
nation of line location in the discrete case. In principle, one
could use a zero crossing detector for this task. However,
this would yield the position of the line only with pixel ac-
curacy. In order to overcome this, the second order Taylor
polynomial of zn is examined. Let r, r′, and r′′  be the locally
estimated derivatives at point n of the image that are ob-
tained by convolving the image with gn, ¢gn , and ¢¢gn . Then
the Taylor polynomial is given by

p x r r x r x0 5 = + ¢ + ¢¢
1

2
2 .                         (19)

The position of the line, i.e., the point where p′(x) = 0 is

x
r

r
= -

¢

¢¢
.                                      (20)

The point n is declared a line point if this position falls

within the pixel’s boundaries, i.e., if x Œ -
1
2

1
2

,  and the

second derivative r′′  is larger than a user-specified thresh-
old. Please note that in order to extract lines, the response
r is unnecessary and therefore does not need to be com-
puted. The discussion of how to extract the edges corre-
sponding to a line point will be deferred to Section 4.

2.4 Detection of Lines in 2D

Curvilinear structures in 2D can be modeled as curves s(t)
that exhibit the characteristic 1D line profile fa in the direc-
tion perpendicular to the line, i.e., perpendicular to s′(t). Let
this direction be n(t). This means that the first directional
derivative in the direction n(t) should vanish and the sec-
ond directional derivative should be of large absolute
value. No assumption is made about the derivatives in the
direction of s′(t).

The only remaining problem is to compute the direction
of the line locally for each image point. In order to do this,
the partial derivatives rx, ry, rxx, rxy, and ryy of the image
have to be estimated by convolving the image with the dis-
crete two-dimensional Gaussian partial derivative kernels
corresponding to (16)–(18). The direction in which the sec-
ond directional derivative of z(x, y) takes on its maximum
absolute value is used as the direction n(t). This direction
can be determined by calculating the eigenvalues and ei-
genvectors of the Hessian matrix

Fig. 3. Location of an asymmetrical bar-shaped line and its corre-
sponding edges with width w = 1, σ = 1, and a ∈  [0, 1].
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The calculation can be done in a numerically stable and
efficient way by using one Jacobi rotation to annihilate the

rxy term [23]. Let the eigenvector corresponding to the ei-

genvalue of maximum absolute value, i.e., the direction

perpendicular to the line, be given by (nx, ny) with

n nx y,4 9
2

1= . As in the 1D case, a quadratic polynomial is

used to determine whether the first directional derivative

along (nx, ny) vanishes within the current pixel. This point

can be obtained by inserting (tnx, tny) into the Taylor poly-

nomial, and setting its derivative along t to zero. Hence, the
point is given by

(px, py) = (tnx, tny)                             (22)

where
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 is required in order for a

point to be declared a line point. As in the 1D case, the sec-

ond directional derivative along (nx, ny), i.e., the maximum

eigenvalue, can be used to select salient lines.

2.5 Example

Figs. 4b and 4c give an example of the results obtainable
with this approach. Here, bright line points were extracted
from the input image given in Fig. 4a with σ = 1.1. This im-
age is part of an aerial image with a ground resolution of 2 m.
The subpixel location (px, py) of the line points and the direc-
tion (nx, ny) perpendicular to the line are symbolized by
vectors. The strength of the line, i.e., the absolute value of
the second directional derivative along (nx, ny) is symbol-
ized by gray values. Line points with high saliency have
dark gray values.

From Fig. 4 it might appear, if an eight-neighborhood is
used, that the proposed approach returns multiple re-
sponses to each line. However, when the subpixel location
of each line point is taken into account it can be seen that

there is always a single response to a given line since all
line point locations line up perfectly. Therefore, linking will
be considerably easier than in approaches that yield multi-
ple responses, e.g., [19], [14], [16].

3 LINKING LINE POINTS INTO LINES

After individual line pixels have been extracted, they need
to be linked into lines. It is necessary to do this right after
the extraction of the line points because the later stages of
determining line width and removing the bias require a
data structure that uses the notion of a left and right side of
an entire line. Therefore, the normals to the line have to be
oriented to the same side of the line. As is evident from Fig. 4,
the procedure so far cannot do this since line points are
regarded in isolation, and thus preference between two
valid directions n(t) is not made.

3.1 Linking Algorithm

In order to facilitate later mid-level vision processes, e.g.,
perceptual grouping, the data structure that results from
the linking process should contain explicit information
about the lines as well as the junctions between them. This
data structure should be topologically sound in the sense
that junctions are represented by points and not by ex-
tended areas as in [14] or [15]. Furthermore, since the pre-
sented approach yields only single responses to each line,
no thinning operation needs to be performed prior to link-
ing. This assures that the maximum information about the
line points is present in the data structure.

Since there is no suitable criterion to classify the line
points into junctions and normal line points in advance
without having to resort to extended junction areas another
approach has been adopted. From the algorithm in Section 2
the following data are obtained for each pixel: the orienta-
tion of the line (nx, ny) = (cosα, sinα), a measure of strength
of the line (the second directional derivative in the direction
of α), and the subpixel location of the line (px, py).

Starting from the pixel with maximum second deriva-
tive, lines are constructed by adding the appropriate neigh-
bor to the current line. Since the maximum point typically
does not lie at the endpoints of the line, this is done for both

directions n
'

 and −n
'

. Since it can be assumed that the

                                                     (a)                                                       (b)                                                        (c)

Fig. 4. Line points detected in an aerial image (a) of ground resolution 2 m. In (b) the line points and directions of (c) are superimposed onto the
magnitude of the response.
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line point detection algorithm yields a fairly accurate
estimate for the local direction of the line, only three
neighboring pixels that are compatible with this direction

are examined. For example, if the current pixel is (cx, cy)

and the current orientation of the line is in the interval

[−22.5$, 22.5$], only the points (cx + 1, cy − 1), (cx + 1, cy),

and (cx + 1, cy + 1) are examined. The choice regarding the

appropriate neighbor to add to the line is based on the
distance between the respective subpixel line locations
and the angle difference of the two points. Let

d p p= -2 1 2
 be the distance between the two points and

β = |α2 − α1|, β ∈  [0, π/2], be the angle difference be-

tween those points. The neighbor that is added to the line

is the one that minimizes d + cβ. In the implementation, c
= 1 is used. This algorithm will select each line point in
the correct order. At junction points, it will select one
branch to follow without detecting the junction, which
will be detected later on. The algorithm of adding line
points is continued until no more line points are found in
the current neighborhood or until the best matching can-
didate is a point that has already been added to another
line. If this happens, the point is marked as a junction,
and the line that contains the point is split into two lines
at the junction point, unless it is the first point of the cur-
rently processed line, in which case a line describing a
closed loop is found.

New lines are created as long as the starting point has a
second directional derivative that lies above a certain,
user-selectable upper threshold. Points are added to the
current line as long as their second directional derivative
is greater than another user-selectable lower threshold.
This is similar to a hysteresis threshold operation [28], [29].

The problem of orienting the normals n(t) of the line is
solved by the following procedure. First, at the starting
point of the line the normal is oriented such that it is turned
−90$ to the direction the line is traversed, i.e., it points to the
right of the starting point. Then at each line point there are
two possible normals whose angles differ by 180$. The an-
gle that minimizes the difference between the angle of the
normal of the previous point and the current point is cho-
sen as the correct orientation. This procedure ensures that

the normal always points to the right of the line as it is trav-
ersed from start to end.

With a slight modification, the algorithm is able to deal
with multiple responses if it is assumed that no more than
three parallel responses are generated. For the facet
model, for example, no such case has been encountered
for mask sizes of up to 13 × 13. Under this assumption, the
algorithm can proceed as above. Additionally, if there are
multiple responses to the line in the direction perpen-
dicular to the line, e.g., the pixels (cx, cy − 1) and (cx, cy + 1)
in the example above, they are marked as processed if
they have roughly the same orientation as (cx, cy). The
termination criterion for lines has to be modified to stop
at processed line points instead of line points that are
contained in another line.

3.2 Example

Fig. 5a shows the result of linking the line points in Fig. 4
into lines. The results are overlaid onto the original image.
In this case, the upper threshold was set to zero, i.e., all
lines, no matter how faint, were selected. It is apparent that
the lines obtained with the proposed approach are very
smooth and the subpixel location of the line is quite precise.
Fig. 5b displays the way the normals to the line were ori-
ented for this example.

3.3 Parameter Selection

The selection of thresholds is very important to make an
operator generally usable. Ideally, semantically meaningful
parameters should be used to select salient objects. For the
proposed line detector, these are the line width w and its
contrast h. However, as was described above, salient lines
are defined by their second directional derivative along
n(t). To convert thresholds on w and h into thresholds the
operator can use, first a σ should be chosen according to
(10). Then, σ, w, and h can be plugged into (8) to yield an
upper threshold for the operator.

Fig. 6 exemplifies this procedure and shows that the
presented line detector can be scaled arbitrarily. In Fig. 6a, a
larger part of the aerial image in Fig. 5 is displayed, but this
time with a ground resolution of 1 m, i.e., twice the resolu-
tion. If seven-pixel-wide lines are to be detected, i.e., if w =
3.5, according to (10), a σ ≥ 2.0207 should be selected. In
fact, σ = 2.2 was used for this image. If lines with a contrast
of h ≥ 70 are to be selected, (8) shows that these lines will
have a second derivative of < −5.17893. Therefore, the up-
per threshold for the absolute value of the second deriva-
tive was set to five. The lower threshold was set to 0.8 to
follow the roads as far as possible into the road intersection.
Fig. 6b displays the lines that were detected with these
parameters.

4 DETERMINATION OF THE LINE WIDTH

The width of a line is an important feature in its own right.
Many applications, especially in remote sensing tasks, are
interested in obtaining the width of an object, e.g., a road or
a river, as precisely as possible. Furthermore, the width can,
for instance, be used in perceptual grouping processes to
avoid the grouping of lines that have incompatible widths.

                          (a)                                                   (b)

Fig. 5. (a) Linked lines. (b) Oriented normals. Lines are drawn in white
while junctions are displayed as black crosses and normals as black lines.
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However, the main reason that width is important in the
proposed approach is that it is needed to obtain an estimate
of the true line width such that the bias that is introduced
by asymmetrical lines can be removed.

4.1 Extraction of Edge Points

From the discussion in Section 2.2, it follows that a line is
bounded by an edge on each side. Hence, to detect the
width of the line for each line point, the closest points in the
image to the left and to the right of the line point, where the
absolute value of the gradient takes on its maximum value
need to be determined. Of course, these points should be
searched for exclusively along a line in the direction n(t) of
the current line point. Only a trivial modification of the Bre-
senham line drawing algorithm [30] is necessary to yield all
pixels that this line intersects. The analysis in Section 2.2
shows that it is only reasonable to search for edges in a re-
stricted neighborhood of the line. For ideal symmetrical

lines, the line to search would have a length of 3s . In or-
der to ensure that almost all of the edge points are detected,
the implementation uses a slightly larger search line length

of 2.5σ. This covers most of the asymmetrical lines as well,

for which the width can grow beyond 3s . Only the ex-
tremely asymmetrical cases in the upper left corner of Fig. 11
are not covered.

In an image of the absolute value of the gradient of the
image, the desired edges appear as bright lines. Fig. 7a ex-
emplifies this for the aerial image of Fig. 6a. In order to ex-
tract the lines from the gradient image

e x y f x y f x y f fx y x y, , ,1 6 1 6 1 6= + = +
2 2 2 2             (24)

where

f x y g x y z x y, , ,1 6 1 6 1 6= *s                         (25)

the following coefficients of a local Taylor polynomial need
to be computed:
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This has two main disadvantages. First, the computational
load increases by almost a factor of two, since four addi-
tional partial derivatives with slightly larger mask sizes
have to be computed. Second, the expressions above are
undefined whenever e(x, y) = 0.

It might appear that an approach to solve these problems
would be to use the algorithm to detect line points de-
scribed in Section 2 on the gradient image in order to detect
the edges of the line with subpixel accuracy. However, this
would mean that some additional smoothing would be ap-
plied to the gradient image. This is undesirable, since it
would destroy the correlation between the location of the
line points and the location of the corresponding edge
points. Therefore, the edge points in the gradient image are
extracted with a facet model line detector which uses the
same principles as described in Section 2, but uses different
convolution masks to determine the partial derivatives of
the image [14], [20]. The smallest possible mask size (3 × 3)
is used, since this results in the most accurate localization of
the edge points. It has the additional benefit that the com-
putational costs are very low. Experiments on a large num-
ber of images have shown that if the coefficients of the
Taylor polynomial are computed in this manner, they can,
in some cases, be significantly different than the correct
values. However, the positions of the edge points, espe-
cially those of the edges corresponding to salient lines, are
only affected very slightly. Fig. 7b illustrates this on the
image of Fig. 4a. Edge points extracted with the correct
formulas are displayed as black crosses, while those ex-
tracted with the 3 × 3 facet model are displayed as white
crosses. It is apparent that because third derivatives are
used in the correct formulas there are many more spurious
responses. Furthermore, five edge points along the salient
line in the upper-middle part of the image are missed be-
cause of this. Finally, it can be seen that the edge positions
corresponding to salient lines differ only minimally, and,
therefore, the approach presented here seems to be justified.

                           (a)                                                    (b)

Fig. 6. Lines detected (b) in an aerial image (a) of ground resolution 1 m.

                         (a)                                                       (b)

Fig. 7. (a) Lines and their corresponding edges in an image of the ab-
solute value of the gradient. (b) Comparison between the locations of
edge points extracted using the exact formula (black crosses) and the
3 × 3 facet model (white crosses).



120 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  20,  NO.  2,  FEBRUARY  1998

4.2 Handling of Missing Edge Points

One final important issue is what the algorithm should do
when it is unable to locate an edge point for a given line
point. This might happen, for example, if there is a very
weak and wide gradient next to the line, which does not
exhibit a well defined maximum. Another case where this
typically happens are the junction areas of lines, where the
line width usually grows beyond the range of 2.5 σ. Since
the algorithm does not have any other means of locating the
edge points, the only viable solution to this problem is to
interpolate or extrapolate the line width from neighboring
line points. It is at this point that the notion of a right and a
left side of the line, i.e., the orientation of the normals of the
line, becomes crucial.

The algorithm can be described as follows: The width of
the line is extracted for each line point, where possible. If
there is a gap in the extracted widths on one side of the line,
i.e., if the width of the line is undefined at some line point,
but there are some points before and after the current line
point that have a defined width, the width for the current
line point is obtained by linear interpolation. This can be
formalized as follows. Let i be the index of the last point
and j be the index of the next point with a defined line
width, respectively. Let a be the length of the line from i to
the current point k and b be the total line length from i to j.
Then the width of the current point k is given by

w
b a

b
w

a

b
wk i j=

-
+ .                           (31)

This scheme can easily be extended to the case where either
i or j are undefined, i.e., the line width is undefined at ei-
ther end of the line. The algorithm sets wi = wj in this case,
which means that if the line width is undefined at the end
of a line, it is extrapolated to the last defined line width.

4.3 Examples

Fig. 8b displays the results of the line width extraction algo-
rithm for the example image of Fig. 6. This image is fairly
good-natured in the sense that the lines it contains are
rather symmetrical. From Fig. 8a it can be seen that the al-
gorithm is able to locate the edges of the wider line with
high precision. The only place where the edges do not cor-
respond to the semantic edges of the road object are in the
bottom part of the image, where nearby vegetation causes
the algorithm to estimate the line width too large. The
width of the narrower line is extracted slightly too large,

which is not surprising when the discussion in Section 2.2 is
taken into account. Revisiting Fig. 2, it is clear that an effect
like this is to be expected. How to remove this effect is the
topic of Section 5. A final thing to note is that the algorithm
extrapolates the line width in the junction area in the middle
of the image, as discussed in Section 4.2. This explains the
seemingly unjustified edge points in this area.

Fig. 9b exhibits the results of the proposed approach on
another aerial image of the same ground resolution, given
in Fig. 9a. The line in the upper part of the image contains a
very asymmetrical stretch in the center part of the line due
to shadows of nearby objects. Therefore, as is predictable
from the discussion in Section 2.2, especially Fig. 3, the line
position is shifted toward the edge of the line that possesses
the weaker gradient, i.e., the upper edge in this case. The line
and edge positions are very accurate in the rest of the image.

5 REMOVING THE BIAS FROM ASYMMETRICAL LINES

5.1 Detailed Analysis of Asymmetrical Line Profiles

Recall from the discussion at the end of Section 2.2 that if
the algorithm knew the true values of w and a, it could re-
move the bias in the estimation of the line position and
width. Equations (11)–(13) give an explict scale-space de-
scription of the asymmetrical line profile fa. The position l of
the line can be determined analytically by the zero-
crossings of ¢ra (x, σ, w, a) and is given in (14). The total
width of the line, as measured from the left to right edge, is
given by the zero-crossings of ¢¢ra (x, σ, w, a). Unfortunately,
these positions can only be computed by a root finding al-
gorithm since the equations cannot be solved analytically.
Let us call these positions el and er. Then the width to the
left and right of the line is given by vl = l − el and vr = er − l.
The total width of the line is v = vl + vr. The quantities l, el,
and er have the following useful property:

PROPOSITION 1. The values of l, el, and er form a scale-invariant
system. This means that if both σ and w are scaled by the
same constant factor c, the line and edge locations will be
cl, cel, and cer.

PROOF. Let l1 be the line location for σ1 and w1 for an arbi-

trary, but fixed a. Let σ2 = cσ1 and w2 = cw1. Then

l w a1,2 1,2
2

1,22 1= - -s4 9 0 5ln . Hence, we have

l w a c cw a cl2 2
2

2
2

1
2

1 12 1 2 1= - - = - - =s s4 9 0 5 2 74 9 0 5ln ln .

                        (a)                                                       (b)

Fig. 8. Lines and their width detected (b) in an aerial image (a). Lines are
displayed in white while the corresponding edges are displayed in black.

                        (a)                                                       (b)

Fig. 9. Lines and their width detected (b) in an aerial image (a).
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Now, let e1 be one of the two solutions of ¢¢ra (x, σ,
w1, a) = 0, either el or er, and likewise for e2, with σ1,2

and w1,2 as above. The expression ¢¢ra (x, σ, w1, a) = 0
can be transformed to (a − 1) (e2 − w2)/(e2 + w2) =
exp(−2e2w2/σ2

2
). If we plug in σ2 = cσ1 and w2 = cw1, we

see that this expression can only be fulfilled for e2 = ce1

since only then will the factors c cancel everywhere.
This property also holds for the derived quantities vl, vr,
and v. �

The meaning of Proposition 1 is that w and σ are not in-
dependent. In fact, we only need to consider all w for one
particular σ, e.g., σ = 1. Therefore, for the following analysis
we only need to discuss values that are normalized with
regard to the scale σ, i.e., wσ = w/σ, vσ = v/σ, and so on.
Hence the behavior of fa can be analyzed for σ = 1. All other
values can be obtained by a simple multiplication by the
actual scale σ.

With all this being established, the predicted total line
width vσ can be calculated for all wσ and a ∈  [0, 1]. Fig. 10
displays the predicted vσ for wσ ∈  [0, 3]. It be seen that vσ can
grow without bounds for wσ ↓  0 or a ↑  1. Furthermore, since
vσ ∈  [2, ∞], the contour lines for vσ ∈  [2, 6] are also displayed.

Section 4 gave a procedure to extract the quantity vσ
from the image. This is half of the information required to
get to the true values of w and a. However, an additional
quantity is needed to estimate a. Since the true height h of
the line profile hfa is unknown this quantity needs to be in-
dependent of h. One such quantity is the ratio of the gradi-
ent magnitude at er and el, i.e., the weak and strong side. It
is given by r = | ¢ra (er, σ, w, a)|/| ¢ra (el, σ, w, a)|. It is obvious
that the influence of h cancels out. Furthermore, r also re-
mains constant under simultaneous scalings of σ and w.
The quantity r has the advantage that it is easy to extract
from the image. Fig. 10 displays the predicted r for wσ ∈  [0, 3].
Since r ∈  [0, 1], the contour lines for r in this range are dis-
played in Fig. 10. For large wσ, r is very close to 1 − a. For
small wσ, it drops to near zero for all a.

5.2 Inversion of the Bias Function

The discussion above can be summarized as follows: The
true values of wσ and a are mapped to the quantities vσ and
r, which are observable from the image. More formally,

there is a function f : (wσ, a) ∈  [0, ∞] × [0, 1] ° (vσ, r) ∈  [2, ∞]
× [0, 1]. From the discussion in Section 4, it follows that it is
only useful to consider vσ ∈  [0, 5]. However, for very small
σ, it is possible that an edge point will be found within a
pixel in which the center of the pixel is less than 2.5 σ from
the line point, but the edge point is farther away than this.
Therefore, vσ ∈  [0, 6] is a good restriction for vσ. Since the
algorithm needs to determine the true values (wσ, a) from
the observed (vσ, r), the inverse f 

−1
 of the map f has to be

determined. Fig. 11 displays the contour lines of vσ ∈  [2, 6]
and r ∈  [0, 1]. The contour lines of vσ are U-shaped with the
tightest U corresponding to vσ = 2.1. The contour line corre-
sponding to vσ = 2 is actually only the point (0, 0). The con-
tour lines for r run across with the lowermost visible contour
line corresponding to r = 0.95. The contour line for r = 1 lies
completely on the wσ-axis. It can be seen that for any pair of
contour lines from vσ and r, there is only one intersection
point. Hence, f is invertible.

To calculate f 

−1
, a multidimensional root finding algo-

rithm has to be used [23]. To obtain maximum precision for
wσ and a, this root finding algorithm would have to be
called at each line point. This is undesirable for two reasons.
First, it is a computationally expensive operation. More
importantly, however, due to the nature of the function f,
very good starting values are required for the algorithm to

            

                                                            (a)                                                                                                       (b)

Fig. 10. Predicted behavior of the asymmetrical line fa for wσ ∈  [0, 3] and a ∈  [0, 1]. (a) Predicted line width vσ. (b) Predicted gradient ratio r.

Fig. 11. Contour lines of the predicted line width vσ ∈  [2, 6] and the
predicted gradient ratio r ∈  [0, 1].
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converge, especially for small vσ. Therefore, the inverse f 

−1
 is

precomputed for selected values of vσ and r and the true val-
ues are obtained by interpolation. The step size of vσ was
chosen as 0.1, while r was sampled at 0.05 intervals. Hence,
the intersection points of the contour lines in Fig. 11 are the
entries in the table of f 

−1
. Fig. 12 shows the true values of wσ

and a for any given vσ and r. It can be seen that despite the
fact that f is very ill-behaved for small wσ, f 

−1
 is quite well-

behaved. This leads to the conclusion that bilinear interpola-
tion can be used to obtain good values for wσ and a.

One final important detail is how the algorithm should
handle line points where vσ < 2, i.e., where f 

−1
 is undefined.

This can happen, for example, because the facet model
sometimes gives a multiple response for an edge point, or

because there are two lines very close to each other. In this
case the edge points cannot move as far outward as the
model predicts. If this happens, the line point will have an
undefined width. These cases can be handled by the proce-
dure given in Section 4.2.

5.3 Examples

Fig. 13 shows how the bias removal algorithm is able to
successfully adjust the line widths in the aerial image of
Fig. 8. Fig. 13a shows that because the lines in this image
are fairly symmetrical, the line positions have been adjusted
only minimally. Furthermore, it can be seen that the line
widths correspond much better to the true line widths.
Fig. 13b shows a four times enlarged part of the results

             

                                                           (a)                                                                                                         (b)

Fig. 12. The inverted bias function: true values of the line width wσ (a) and the asymmetry a (b), both for vσ ∈  [2, 6] and r ∈  [0, 1].

                                                                 (a)                                             (b)                                                (c)

Fig. 13. Lines and their width detected (a) in an aerial image of resolution 1 m with the bias removed. A four times enlarged detail (b) superim-
posed onto the original image of resolution 0.25 m. (c) Comparison to the line extraction without bias removal.

                                                               (a)                                             (b)                                                (c)

Fig. 14. Lines and their width detected (a) in an aerial image of resolution 1 m with the bias removed. A four times enlarged detail (b) superim-
posed onto the original image of resolution 0.25 m. (c) Comparison to the line extraction without bias removal.
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superimposed onto the image in its original ground resolu-
tion of 0.25 m, i.e., four times the resolution in which the
line extraction was carried out. For most of the line, the
edges are well within one pixel of the edge in the larger
resolution. Fig. 13c shows the same detail without the re-
moval of the bias. In this case, the extracted edges are about
two to four pixels from their true locations.

Fig. 14 shows the results of removing the bias from the
test image of Fig. 9. In the areas of the image where the line
is highly asymmetrical, especially in the center part of the
road, the line and edge locations are much improved. In
fact, for a very large part of the road the line position is
within one pixel of the road markings in the center of the
road in the high resolution image. Again, a four times en-
larged detail is shown in Fig. 14b. If this is compared to the
detail in Fig. 14c, the significant improvement in the line
and edge locations becomes apparent.

The final example in the domain of aerial images is a
much more difficult image. Fig. 15a shows an aerial image,
again of ground resolution 1 m. This image contains a large
area where the model of the line does not hold. There is a
very narrow line starting in the upper-left corner and con-
tinuing to the center of the image that has a very strong
asymmetry in its lower part, in addition to another edge
being very close. Furthermore, in its upper part, the house
roof acts as a nearby line. In such cases, the edge of a line
can only move outward much less than predicted by the
model. This complex interaction of multiple lines or lines
and multiple edges is very hard to model. An insight into

the complexity of the scale-space interactions going on here
can be gained from [31], where line models of up to three
parallel lines are examined. Fig. 15b shows the result of the
line extraction algorithm with bias removal. Since, in the
upper part, the line edges cannot move as far outward as
the model predicts, the width of the line is estimated as
almost zero. The same holds for the lower part of the line.
The reason that the bias removal corrects the line width to
near zero is that small errors in the width extraction lead to
a large correction for very narrow lines, i.e., if vσ is close to
two, as can be seen from Fig. 10a. However, the algorithm
is still able to move the line position to within the true line
in its asymmetrical part. This is displayed in Figs. 15c and d.
The extraction results are enlarged by a factor of two and
superimposed onto the original image of ground resolution
0.25 m. Despite the fact that the width is estimated incor-
rectly the line positions are not affected by this, i.e., they
correspond very closely to the true line positions in the
whole image.

The next example is from the domain of medical imaging,
and was taken from [11]. Fig. 16a shows a magnetic reso-
nance (MR) image of a human head. The results of extracting
bright lines with bias removal are displayed in Fig. 16b,
while a three times enlarged detail from the image is given
in Fig. 16c. The extracted line positions and widths are very
good throughout the image. Whether or not they corre-
spond to “interesting” anatomical features is application
dependent. Note, however, that the skull bone and several
other features are extracted with high precision. Compare

                           (a)                                                     (b)                                                       (c)                                                      (d)

Fig. 15. Lines and their width detected (b) in an aerial image of resolution 1 m (a) with bias removal. A two times enlarged detail (c) superimposed
onto the original image of resolution 0.25 m. (d) Comparison to the line extraction without bias removal.

                          (a)                                                     (b)                                                       (c)                                                      (d)

Fig. 16. Lines and their width detected (b) in an MR image (a) with the bias removed. A three times enlarged detail (c) superimposed onto the
original image. (d) Comparison to the line extraction without bias removal.
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this to Fig. 16d, where the line extraction was done without
bias removal. The line positions are much worse for the gyri
of the brain since they are highly asymmetrical lines. A
comparison to the results in [11] clearly shows the superi-
ority of this approach to all ridge detectors presented there.

The final example is again from the domain of medical
imaging, but this time the input is an X-ray image. Fig. 17
shows the results of applying the proposed approach to a
coronary angiogram. Since the image in Fig. 17a has very
low contrast, Fig. 17b shows the same image with higher
contrast. Fig. 17c displays the results of extracting dark
lines from Fig. 17a, the low-contrast image, superimposed
onto the high-contrast image. A three times enlarged detail
is displayed in Fig. 17d. The algorithm is very successful in
delineating the vascular stenosis in the central part of the
image, while it was also able to extract a large part of the
coronary artery tree. The reason that some arteries were not
found is that very restrictive thresholds were set for this
example. Therefore, it seems that the presented approach
could be used in a system like the one described in [2] to
extract complete coronary trees. However, since the pre-
sented algorithm does not generate many false hypothe-
ses, and, since the extracted lines are already connected
into lines and junctions, no complicated perceptual group-
ing would be necessary, and the rule base would only
need to eliminate false arteries, and could therefore be
much smaller.

6 CONCLUSIONS

This paper has presented an approach to extract lines and
their widths with high precision. A model for the most
common type of lines, the asymmetrical bar-shaped line,
was introduced. A scale-space analysis carried out for this
profile shows that there is a strong interaction between a
line and its two corresponding edges which cannot be ig-
nored. The true line width influences the line width occur-
ring in an image, while asymmetry influences both the line
width and its position. From this analysis, an algorithm to
extract the line position and its width was derived. This
algorithm exhibits the bias that is predicted by the model
for the asymmetrical line. Therefore, a method to remove
this bias was proposed. The resulting algorithm works very
well for a range of images containing lines of different

widths and asymmetries, as was demonstrated by a num-
ber of test images. High resolution versions of the test im-
ages were used to check the validity of the obtained results.
They show that the proposed approach is able to extract
lines with very high precision from low-resolution images.
Furthermore, tests have been carried out on synthetically
generated images in order to evaluate the accuracy of the
extracted lines. Subpixel shifts were modeled by adjusting
the gray values at the sides of the line. In the experiments,
the extracted points were never more than 0.04 pixel away
from the true line location. A thorough evaluation of the
algorithm in the presence of noise, however, still needs to
be done. Although the test images used were mainly aerial
and medical images, the algorithm can be applied in many
other domains as well, e.g., optical character recognition
[15]. The approach only uses the first and second direc-
tional derivatives of an image for the extraction of the line
points. No specialized directional filters are needed. The
edge point extraction is done by a localized search around
the line points already found using five small masks. This
makes the approach computationally efficient. For exam-
ple, the time to process the MR image of Fig. 16 of size 256
× 256 is about 1.7 seconds on an HP 735 workstation.

The presented approach shows two fundamental limita-
tions. First of all, it can only be used to detect lines with a
certain range of widths, i.e., between 0 and 2.5 σ. This is a
problem if the width of the important lines varies greatly in
the image. However, since the bias is removed by the algo-
rithm, one can in principle select σ large enough to cover all
desired line widths and the algorithm will still yield valid
results. This will work if the narrow lines are relatively sali-
ent. Otherwise, they will be smoothed away in scale-space.
Of course, once σ is selected so large that neighboring lines
start to influence each other the line model will fail and the
results will deteriorate. Hence, in reality there is a limited
range in which σ can be chosen to yield good results. In
most applications this is not a significant restriction, since
one is usually only interested in lines in a certain range of
widths. Furthermore, the algorithm could be iterated
through scale-space to extract lines of very different widths.
The second problem is that the definition of salient lines is
done via the second directional derivatives. However, one
can plug semantically meaningful values, i.e., the width
and height of the line, as well as σ, into (8) to obtain the

                           (a)                                                     (b)                                                       (c)                                                   (d)

Fig. 17. Lines detected in the coronary angiogram (a). Since this image has very low contrast, the results (c) extracted from (a) are superimposed
onto a version of the image with better contrast (b). A three times enlarged detail of (c) is displayed in (d).
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desired thresholds. Again, this is not a severe restriction,
but only a matter of convenience.

Finally, it should be stressed that the lines extracted are
not ridges in the topographic sense, i.e., they do not define
the way water runs downhill or accumulates [12], [32]. In
fact, they are much more than a ridge in the sense that a
ridge can be regarded in isolation, while a line needs to
model its surroundings. If a ridge detection algorithm is
used to extract lines, the asymmetry of the lines will in-
variably cause it to return biased results.

7 CODE AVAILABILITY

An implementation of the algorithm described in this paper
is available from
ftp://ftp9.informatik.tu-muenchen.de/pub/detect-lines/
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