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An Uncertainty Principle for Real Signals in the
Fractional Fourier Transform Domain

Sudarshan Shinde and Vikram M. Gadre

Abstract—The fractional Fourier transform (FrFT) can be
thought of as a generalization of the Fourier transform to rotate
a signal representation by an arbitrary angle in the time–fre-
quency plane. A lower bound on the uncertainty product of signal
representations in two FrFT domains for real signals is obtained,
and it is shown that a Gaussian signal achieves the lower bound.
The effect of shifting and scaling the signal on the uncertainty
relation is discussed. An example is given in which the uncertainty
relation for a real signal is obtained, and it is shown that this
relation matches with that given by the uncertainty relation
derived.

Index Terms—Fractional Fourier transform, time–frequency
analysis, uncertainty principle.

I. INTRODUCTION

T
HE uncertainty principle in the time–frequency plane

plays an important role in signal processing. This prin-

ciple states that for a given unit energy signal with Fourier

transform , the product of spreads of the signal in time

domain and frequency domain is bounded by a lower bound

(1)

where

(2)

(3)

The fractional Fourier transform (FrFT) can be thought of as

a generalization of the Fourier transform, in which the signal
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representation can be thought of as getting rotated by an angle

in the time–frequency plane. It is natural to ask the following:

What kind of uncertainty relation will the time and FrFT spreads

obey?

It has already been shown [1], [2] that if is the FrFT

of , then a lower bound on the product of time and FrFT

spreads is given by . This lower bound can also be ob-

tained by using the relationship between Fourier transform and

FrFT given in [3] and uncertainty relation in the time–frequency

domain. Uncertainty relations in the FrFT domain are also dis-

cussed in [4] and [5]. In [4], it is shown that the product of time

spread and frequency spread of a signal are not invariant under

FrFT. Many other measures that are invariant under FrFT are

obtained in this paper. However, this paper does not talk about

the product of the spreads of a signal in time and FrFT domains.

In this paper, we achieve a lower bound on the product of the

spreads in time and FrFT domain for real . This lower bound

is a tighter lower bound than that given in [1] on the uncertainty

product of signal representations in two FrFT domains. This

lower bound can be achieved by a Gaussian signal.

II. FRACTIONAL FOURIER TRANSFORM

The FrFT operator , which rotates the signal representa-

tion by an angle in the time–frequency plane, is defined as [6]

(4)

where we have (5), shown at the bottom of the page.

The inverse FrFT is given by

(6)

Note that FrFT reduces to the ordinary Fourier transform for

.

The following properties of , given in [6] and [7],

will be useful later.

(7)

(8)

csc if not a multiple of

if a multiple of

if a multiple of

(5)
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(9)

(10)

III. UNCERTAINTY PRINCIPLE IN FrFT DOMAIN

Let be a unit energy real-valued signal such that

. We define the following:

(11)

(12)

(13)

(14)

(15)

(16)

(17)

Then

(18)

(19)

where (19) follows from the properties of in (7)–(10).

Lemma 1: If is real with , then .

Proof: Interchanging the role of time and FrFT domains

in (10), it follows that the inverse FrFT of

(20)

It is known [6] that

(21)

Choosing and noting that is real

(22)

(23)

Using the facts that is real, , and

since , we get that the right-hand side of (23) is

equal to zero. Since the left-hand side is equal to , we have

, and the lemma is proved.

Theorem 1 (Uncertainty Principle in the FrFT Domain): If

is a unit energy real-valued signal, and ,

then

(24)

and equality is achieved when

(25)

where is an arbitrary real constant.

Proof: Without loss of generality, we take . If is

not equal to zero, we can shift the signal appropriately to make it

zero. It will be shown in the next section that shifting the signal

does not affect the uncertainty relation. Since , by Lemma

1 for any angle , we have , and from (19)

(26)

From the Cauchy–Schwartz inequality

(27)

Now, for real

(28)

Expanding the right-hand side and noting that by putting

in (26), we have

(29)

and for a real-valued function such that

(30)

Therefore

(31)

Since is a frequency-domain variable, from the uncertainty

relation between time and frequency

(32)

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on November 4, 2008 at 23:25 from IEEE Xplore.  Restrictions apply.



SHINDE AND GADRE: UNCERTAINTY PRINCIPLE FOR REAL SIGNALS IN THE FRACTIONAL FOURIER TRANSFORM DOMAIN 2547

From (26), (27), (31), and (32)

(33)

This inequality turns to equality only if there exists a func-

tion for which inequalities (27) and (32) become equalities. The

Cauchy-Schwartz inequality (27) becomes an equality if for an

arbitrary constant satisfies

Solving this differential equation, we get

(34)

where is a constant of integration. In order to make real

valued, can be chosen as

(35)

where is an arbitrary constant. The value of can be found

out by noting that must be unit norm.

Thus, , which satisfies the Cauchy–Schwartz inequality

(27), turns out to be a Gaussian function. It is well known that the

Gaussian function also turns uncertainty inequality (32) to an

equality. Thus, the Gaussian function given by (25) indeed turns

inequality (24) into an equality, and the theorem is proved.

IV. EFFECT OF SHIFT AND SCALING

It is known that in the case of the conventional Fourier

Transform, the product of time and frequency spreads does not

change with a shift or a scaling of the signal, and the lower limit

on this product given by the uncertainty principle remains the

same with shift or scaling. In this section we study the effect

of shifting and scaling the signal on the uncertainty relation in

time-FrFT domain.

Given a signal , it is known [6] that FrFT of the shifted

signal is

(36)

Thus, spread of the signal changes in neither the time nor the

FrFT domain; therefore, shifting the signal has no effect on the

uncertainty relation.

Coming to scaling, let . We represent time

uncertainty of by and the uncertainty in the FrFT do-

main at an angle by , and we use similar notations for

. It is known that [6]

(37)

where

(38)

and some phase factor that is not of much importance here.

Similarly, we can write

(39)

where

(40)

It can be shown that

(41)

(42)

(43)

and we get

(44)

If the lower limit on , which is given by the

right-hand side of inequality (24), is denoted by ,

and the lower limit on is denoted by ,

then it can be shown that

(45)

Thus, scaling changes the product of spreads of the signal,

and it changes the lower limits on these products by a propor-

tional amount. It follows from (44) and (45) that if an uncer-

tainty relation for a signal is given, that is

(46)

and then multiplying both the sides of it by

, we can get an uncertainty

relation for , which is the scaled version of the signal.

It can be seen that the uncertainty relation derived here is

not robust to scaling since the lower limit depends on spread

of the signal in the time domain. The major drawback of this is

that given the signal spread in one domain, the lower limit on

the spread in the other domain cannot be found out without the

knowledge of . One way to get around this problem is to

replace the term containing the spread of the signal in the lower

limit by its lowest value over all . Since , it can

be shown that

(47)

and the uncertainty relation can be written as

(48)

Remark: If in (48), then it can be seen that

, proving that if the signal is real, its spread in the
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FrFT domain has a lower limit, irrespective of its spread in the

time domain.

Note that (48) does not give any advantage for , but it

can be seen that for , the uncertainty relation (24) reduces

to

(49)

This relation is only between two spreads, and even though it

does not give the lower bound on the product of the spreads

independent of , since the uncertainty relation has reduced

to a relation between only two spreads, given one spread, the

lower limit on the other spread can be calculated without the

knowledge of the spread in any third domain.

V. EXAMPLE

Let . Since this function is

of the form , where is the

Hermite polynomial of degree 1 and is chosen to make

unit norm, it is known [7] that is an eigenfunction of the

FrFT operator, that is

(50)

It can be easily calculated that . It can also be seen

that for all . Then

(51)

Thus, is indeed greater than the limit defined on it

by the uncertainty theorem.

Consider now . It can be shown that

(52)

where . It can be seen that for

as asserted by the remark

given in the previous section.

VI. CONCLUSION

In this paper, we achieved a tighter lower bound than that is

given in [1] on the product of uncertainties in two FrFT domains

for real signals. It is also shown that this lower bound is achieved

by a real-valued Gaussian signal. It is also shown that shifting

does not affect the uncertainty relation, and an uncertainty re-

lation for a scaled version of a signal can be derived by multi-

plying an uncertainty relation for the signal by an appropriate

factor.

Future work in this direction involves finding out how these

results can be generalized to complex signals and how the un-

certainty principle can be extended to the discrete domain.
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